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A method to derive the ABCD matrices for reflection and refraction for any diopter under arbitrary incident angle is developed. The result is benchmarked on a commercial software for an optical system compound of two cylindrical lenses. It is used to simulate the general astigmatism and calculate the resulting Orbital Angular Momentum of a laser beam that propagate through a pair of cylindrical lenses. It more generally useful to ease and simplify such kind of simulations in any optical system by avoiding use of complicated commercial softwares.

Introduction

The production of X-rays carrying Orbital Angular Momentum (OAM) has been made possible by means of Free-Electron Lasers and the High Harmonic Generation (HHG) in the XUV spectrum and Compton scattering for hard X-rays [START_REF] Ribič | Generation of coherent extreme-ultraviolet radiation carrying orbital angular momentum[END_REF][START_REF] Hemsing | Generating optical orbital angular momentum in a high-gain freeelectron laser at the first harmonic[END_REF][START_REF] Sanson | Hartmann wavefront sensor characterization of a high charge vortex beam in the extreme ultraviolet spectral range[END_REF][START_REF] Petrillo | Compton scattered x-gamma rays with orbital momentum[END_REF]. Laser beams carrying OAM with vortex in their intensity profiles are commonly used in these techniques. Consequently intensity profiles with vortex are also usually generated. However these techniques can be easily adapted to use and generate beams carrying OAM without vortex, in aim to increase the yield of production of such X-rays. Experiments of transfer of OAM to bound electrons, atoms and molecules could thus have a reduced acquisition time and may facilitate the development of spectroscopy using this process [START_REF] Schmiegelow | Transfer of optical orbital angular momentum to a bound electron[END_REF][START_REF] Mondal | Angular momentum transfer in interaction of laguerre-gaussian beams with atoms and molecules[END_REF].

General astigmatism is a key point to generate laser beam that carry OAM without vortex [START_REF] Visser | Orbital angular momentum of general astigmatic modes[END_REF]. The generation of general astigmatism come from the coupling between the tangential and sagittal planes at the interface [START_REF] Arnaud | Gaussian light beams with general astigmatism[END_REF]. To the best of our knowledge the 4 × 4 ABCD matrix for refraction of a beam at any incident angle is not published despite a large number of publications that separate the two orthogonal planes [START_REF] Massey | Reflection and refraction of gaussian light beams at tilted ellipsoidal surfaces[END_REF][START_REF] Gangopadhyay | Abcd matrix for reflection and refraction of gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip[END_REF][START_REF] Liu | Abcd matrix for reflection and refraction of gaussian beams at the surface of a parabola of revolution[END_REF][START_REF] Yu | Abcd matrix for reflection and refraction of gaussian beams on the interface of an elliptic paraboloid[END_REF]. Thus none of these publications can be used to simulate the generation of general astigmatism through an optical system.

This article presents a derivation of the 4 × 4 ABCD matrices for reflection and refraction at any incident angle on any surface shape, up to the second order in space coordinates. The results are then given in the paraxial approximation of the ABCD matrices formalism and for a surface smooth enough to be accurately described by an ellipsoid [START_REF] Kogelnik | Imaging of optical modes-resonators with internal lenses[END_REF]. The article is organized in four parts. The first part introduces the starting point which is common for the reflection and for the refraction. The second part is dedicated to the reflection case and the third part to the refraction case. Finally the fourth part presents the comparison with a commercial software (Code V) for an optical system compound of two cylindrical lenses.

Generalized ABCD matrix method for any surface

In a previous paper we obtained the ABCD matrix for a reflector [START_REF] Dupraz | The abcd matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities[END_REF] from the method used in Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF]. This method cannot be used for refraction, due to some inconsistencies in the system of equations that will be discussed later. To overcome this problem we have modified the method to derive the ABCD matrix both for refraction and for reflection. The matrix given in Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF] links the infinitesimal deviations dq 2 , dq 3 , dp 2 and dp 3 of the incoming momentum p to the infinitesimal deviations dq 2 , dq 3 , dp 2 and dp 3 of the outgoing momentum p. They are expressed in their respective local coordinate system {u 1 , u 2 , u 3 } and {u 1 , u 2 , u 3 } attached to the chief ray of the beam (or the particle in the context of Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF]). The first coordinate is along the momentum, the second in the plane of incidence and hence, the third is perpendicular to the plane of incidence and the momentum. The vectors dq and dq correspond to deviations of position of the beam and the terms dp and dp correspond directly to deviations of momentum leading to angular deviations of the beam.

In Ref. [START_REF] Siegman | Lasers[END_REF] these infinitesimal deviations correspond to dq 2 , dq 3 , η i dp 2 / p and η i dp 3 / p for the incoming momentum, with η i the local index of refraction at the incident side of the diopter. And for the outgoing momentum the infinitesimal deviations are dq 2 , dq 3 , η o dp 2 / p and η o dp 3 / p with η o the local index of refraction at the outgoing side of the diopter, after refraction or reflection (i.e. for reflection η o = η i ).

The modified momenta are p b = p + dp and p b = p+dp for the incoming and outgoing momentum, respectively. Thus for small deviations dp and dp, one obtains p b ≈ p and p b ≈ p . If we choose p = η i and p = η o we have the same definition for the matrix in Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF] and Ref. [START_REF] Siegman | Lasers[END_REF].

Incident momenta

To consider the influence of infinitesimal deviations of momentum dp 2 and dp 3 , we used the spherical inclination α and azimuth φ angles to describe the incoming momentum in the frame {O; x 1 , x 2 , x 3 }, where the unit vector x 1 lies in the plane of incidence that is spanned by the incoming and outgoing momentum at the point of incidence, and x 3 is a unit vector normal to the surface at the point of incidence, consequently x 2 is a unit vector perpendicular to the plane of incidence (see Fig. 1):

p = η i   sin α cos φ sin α sin φ cos α   φ=0 = η i   sin α 0 cos α   . (1)
From this equation we calculate the infinitesimal vector of deviation dp from the derivative of the angles α and φ:

dp = η i   cos α cos φ cos α sin φ -sin α   φ=0 dα +η i   -sin α sin φ sin α cos φ 0   φ=0 dφ = η i   cos α 0 -sin α   dα + η i   0 sin α 0   dφ. ( 2 
)
By definition dp reads, as a function of dp 2 and dp 3 ,

dp = dp 2 u 2 + dp 3 u 3 =   cos α 0 -sin α   dp 2 +   0 1 0   dp 3 . (3)
Equating Eq. 2 and Eq. 3, one obtains:

dα = dp 2 /η i dφ = dp 3 / (η i sin α) . (4) 
Now we have to consider the influence of infinitesimal deviation of the position dq 2 , dq 3 of the incoming momentum. The direction of the momentum does not change contrary to the incidence point. However, the normal direction of the surface seen by the momentum is modified. To calculate it at any point, we need to express the surface equation of the boundary to the second order in the frame {O; x 1 , x 2 , x 3 }. This leads to the surface equation of an ellipsoid that can be represented by:

x 3 = - x 2 1 2R 1 - x 2 2 2R 2 , (5) 
in the local coordinates system {x 1 , x 2 , x 3 } of the surface. Where x 1 and x 2 lies in the directions of the two main curvatures of the surface, with R 1 and R 2 their radii of curvature, respectively. By rotation around x 3 the local coordinates system of the surface transforms to the incidence coordinates system {x 1 , x 2 , x 3 }. This rotation is [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF]:

     x 1 = x 1 cos β + x 2 sin β x 2 = -x 1 sin β + x 2 cos β x 3 = x 3 , ( 6 
)
where β is the angle of rotation. In the incidence coordinates system the surface equation reads, with R a and R b the radii of curvature along the direction of the coordinate axes. The relation between R a , R b , R c and the main curvatures of the surface R 1 and R 2 are given in Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF] and derived for a parabolic surface in Ref. [START_REF] Dupraz | The abcd matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities[END_REF]:

x 3 = - x 2 1 2R a - x 2 2 2R b - x 1 x 2 R c , (7) 
1 R a = cos 2 β R 1 + sin 2 β R 2 , ( 8 
) 1 R b = sin 2 β R 1 + cos 2 β R 2 , ( 9 
) 1 R c = R 2 -R 1 R 1 R 2 cos β sin β. (10) 
The normal vector n reads:

n =   x 1 /R a + x 2 /R c x 2 /R b + x 1 /R c 1   x1 = 0 x2 = 0 =   0 0 1   .
(11) Note that for small deviations from the point of origin (i.e. small x 1 and x 2 ) n could be considered as a unit vector up to second order correction in x 1 and x 2 .

The reflection matrix

From Ref. [START_REF] Heckbert | Beam tracing polygonal objects[END_REF] the reflected momentum is

p = p -2 (p T n) n. ( 12 
)
With Eq. 1, Eq. 11 and Eq. 12 and considering for a while only the deviations of momentum dp (13) Then the infinitesimal deviation of the momentum can be calculated

dp = η i   cos α 0 sin α   dα + η i   0 sin α 0   dφ, (14) 
and from Fig.

1 dp = dp 2 u 2 + dp 3 u 3 =   -cos α 0 -sin α   dp 2 +   0 1 0   dp 3 . (15)
By equating Eq. 14 and Eq. 15, we obtain

     η i cos α dα = -cos α dp 2 η i sin α dα = -sin α dp 2 η i sin α dφ = dp 3 . ( 16 
)
This system is consistent and finally using Eq. 4 we get dp 2 = -dp 2

dp 3 = dp 3 . ( 17 
)
Now considering only the deviation of positions dq 2 and dq 3 (i.e. dp 2 = dp 3 = 0) and from Eq. 12 with Eq. 1 and Eq. 11 the reflected momentum is

p = η i   sin α -2K [K sin α + cos α] -2M [K sin α + cos α] cos α -2 [K sin α + cos α]   x1 = 0 x2 = 0 . (18) with K = x 1 R a + x 2 R c (19) 
M = x 1 R c + x 2 R b . ( 20 
)
The infinitesimal deviation of p can be calculated with the derivative of x 1 and x 2 applied in x 1 = 0 and

x 2 = 0 dp = η i   -2 cos α/R a -2 cos α/R c -2 sin α/R a   dx 1 + η i   -2 cos α/R c -2 cos α/R b -2 sin α/R c   dx 2 , (21)
Using the following relations from Fig. 1 dx

1 = dq 2 / cos α = -dq 2 / cos α dx 2 = dq 3 = dq 3 , (22) 
and equating Eq. 21 and Eq. 15 for dq 2 = 0 (i.e. dq 3 = 0) one can find

dp 2 = 2η i dq 2 / (R a cos α) dp 3 = -2η i dq 2 /R c . (23) 
Then considering only dq 3 = 0 (i.e. dq 2 = 0) one gets

dp 2 = 2η i dq 3 /R c dp 3 = -2η i cos αdq 3 /R b . ( 24 
)
Finally collecting all the results for the reflection one obtains the reflection matrix given in the Eq.49 in the Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF]:

    dq 2 dq 3 dp 2 dp 3     =     A B C A         dq 2 dq 3 dp 2 dp 3     , (25) 
where:

A =   -1 0 0 1   (26) B = 0 (27) C =     2η i / (R a cos α) 2η i /R c -2η i /R c -2η i cos α/R b     . (28)

The refraction matrix

From Ref. [START_REF] Heckbert | Beam tracing polygonal objects[END_REF] the refracted momentum is

p = η i η o p η i +   η o η i 2 -1 + p T n η i 2 - p T n η i   n   η o , (29) 
where the norm p ≈ η o is clearly apparent.

As previously done for reflection, we consider first only the deviations of the momentum dp 2 and dp 3 (i.e. dq 2 = dq 3 = 0). The refracted momentum reads

p = η i   sin α cos φ sin α sin φ V   φ=0 (30) = η i   sin α 0 V   , with V = η o η i 2 -sin 2 α. (31) 
The infinitesimal deviation of this momentum is

dp = η i   cos α 0 -sin α cos α/V   dα+ η i   0 sin α 0   dφ, ( 32 
)
and from Fig.

1 dp = η i η o   V 0 -sin α   dp 2 +   0 1 0   dp 3 . (33)
By equating Eq. 32 and Eq. 33, we obtain

     η o cos α dα = V dp 2 η o sin α cos α dα/V = sin α dp 2 η i sin α dφ = dp 3 . ( 34 
)
This system is consistent, which is not the case with the method developed in Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF]. The inconsistency come from the method use to calculate p from the incoming momentum p (after reflection or refraction). In Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF] the incoming momentum p is modified by adding dp before the reflection or the refraction. Then the modified momentum is propagated using Eq. 12 or Eq. 29 for reflection or refraction respectively. Finally the propagated incoming momentum and the outgoing momentum found from Fig. 1 are compared. Our method directly propagate the incoming momentum p without simplification nor modification. Then the derivative is taken after the reflection or the refraction. Finally the derivatives of the propagated incoming momentum and of the outgoing momentum found from Fig. 1 are compared. If the Ref. [START_REF] Sieber | Billiard systems in three dimensions: the boundary integral equation and the trace formula[END_REF] method is used, one gets for example for the system of equations 34:

     dp 2 = η o cos α dp 2 / (η i V ) dp 3 = dp 3 η i sin α dp 2 /η o = 0 . ( 35 
)
Where the first and the last equations are inconsistent for dp 2 = 0 and α = 0 [π]. Same inconsistency appears for the following systems of equations. Using Eq. 34 and Eq. 4 one gets

dp 2 = η o cos α dp 2 / (η i V ) dp 3 = dp 3 . (36) 
Secondly, we consider only the deviations of the position dq 2 and dq 3 (i.e. dp 2 = dp 3 = 0) and from Eq. 29 with Eq. 1 and Eq. 11 the refracted momentum is

p = η i    1 -K 2 sin α -K cos α + K √ N M √ N -K sin α -cos α √ N -K sin α    x1 = 0 x2 = 0 , (37) 
where K and M are given in Eq. 19 and Eq. 20 respectively, and

N = η o η i 2 -1 + (K sin α + cos α) 2 . ( 38 
)
Then the infinitesimal deviation of the outgoing momentum is

dp = η i   -(cos α + V ) /R a -(cos α + V ) /R c -sin α/R a + sin α cos α/ (R a V )   dx 1 + η i   -(cos α + V ) /R c -(cos α + V ) /R b -sin α/R c + sin α cos α/ (R c V )   dx 2 . (39)
The following relations are found from Fig. 1 dx

1 = dq 2 / cos α = dq 2 / cos θ = η o dq 2 / (η i V ) dx 2 = dq 3 = dq 3 , (40) 
For dq 2 = 0 (i.e. dq 3 = 0) by equating Eq. 39 and Eq. 33 and using the previous relations one can find

dp 2 = η o (V -cos α) dq 2 / (R a V cos α) dp 3 = η i (V -cos α) dq 2 / (R c cos α) . (41) 
Now considering only dq 3 = 0 (i.e. dq 2 = 0) one gets

dp 2 = η o (V -cos α) dq 3 / (R c V ) dp 3 = η i (V -cos α) dq 3 /R b . (42) 
Finally collecting all the results for the refraction one obtains the following refraction matrix

    dq 2 dq 3 dp 2 dp 3     =     D B E F         dq 2 dq 3 dp 2 dp 3     , (43) 
where

D =     η i V ηo cos α 0 0 1     (44) 
B = 0 (45) E =     ηo (V -cos α) Ra V cos α ηo(V -cos α) Rc V η i (V -cos α) Rc cos α η i (V -cos α) R b     (46) 
F =     ηo η i cos α V 0 0 1     (47) 
Thus for example to calculate the complex Q 2 parameter of a Gaussian beam after a diopter from the complex Q 1 parameter before this interface the equation is [START_REF] Siegman | Lasers[END_REF]:

Q 2 -1 η o = E + F Q 1 -1 η i D + BQ 1 -1 η i , (48) 
where Q 2 and Q 1 are 2 × 2 matrices as defined in Ref. [START_REF] Alda | Laser and gaussian beam propagation and transformation[END_REF].

Comparison with the commercial software Code V

To check the validity of our method we compared the beam mode obtained with our matrices and with a dedicated software Code V after two cylindrical lenses system [START_REF]Code V, version 11.1[END_REF]. The optical system is the following:

1. a 100 mm free space propagation 2. a cylindrical lens of 155.1 mm radius of curvature, 5.93 mm center thickness made of "NBK7-Schoot" glass ("LJ1996L1" from Thorlabs). This lens is rotated 10 • around the principal axis (along the vanishing curvature) and 45 • around the normal vector. 3. a second cylindrical lens "LJ1996L1" 100 mm away from the first surface of the first lens. This lens is rotated -10 • around the principal axis (along the vanishing curvature). 4. the image plane is positioned about 250 mm away from the first surface of the second lens.

The initial beam is a Gaussian beam at its waist (infinite radius of curvature). The waist size radius is 10 mm (at 1/e 2 in intensity) and the laser wavelength is 800 nm. We calculate with the previously introduced matrices the propagation of the Gaussian laser beam through the optical system to the image plane. One can calculate with the Eq.22 of the Ref. [START_REF] Visser | Orbital angular momentum of general astigmatic modes[END_REF] the OAM carried by the beam. It is about 187 for that optical system at the image plane.

To compare the beam mode obtained we calculated the laser beam radii at different positions around the image plane. We proceed as well with the accurate "Beam Synthesis Propagation" (BSP) and the Gaussian Beam Trace (BEA) calculations from Code V software. BSP propagates the optical field by approximating the initial beam as a sum of beamlets. It propagates the individual beamlets, and then sums the beamlets to determine the propagated optical field. Finally the optical field is fitted with a Gaussian function within Code V. BEA option traces a "slow" Gaussian beam through an optical system, using propagation equations and calculates at each surface the beam radius, beam orientation, wavefront radius of curvature, waist position and waist radius. BEA seems to use the matrix based propagation, but details are not present in the Code V documentation. The results are presented in the Fig. 2. The relative difference is about 10 -4 between our calculation and the BEA calculation and less than 1 % between our calculation and the BSP calculation. The comparison with BSP is a bit worse, probably due to the finite size of the optical elements (which are taken into account in BSP) and the fitting step accuracy.

The Code V calculation is a bit tedious as the position of the image plane has to be redefined each time the beam parameters are calculated at a different position. Our calculation is easier to use because we have directly the complex beam parameter matrix (cf. Ref. [START_REF] Alda | Laser and gaussian beam propagation and transformation[END_REF]) and we can propagate or retropropagate it. Moreover the BSP calculation despite of being very precise as it is a diffraction based calculation, takes a long computing time once there are few surfaces in the optical system.

Conclusion

In this article we have given a way to derive the 4 × 4 ABCD matrix for reflection and refraction at any incident angle on any surface shape. This matrix can be used to simulate general astigmatism through an optical system. This property of a laser beam is directly linked to OAM therefore the derived 4 × 4 ABCD matrices are a mean to calculate the OAM of a laser beam through any optical system.
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 1 Figure 1: Representation of (left) reflection and (right) refraction coordinates system used in this article (for φ = 0).
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 2 Figure 2: Comparison between calculations based on our ABCD matrices and two different Code V software methods. The four missing points (two radii of two positions) of the BSP calculation are due to an unsuccesful fitting process, as given back by Code V.