
HAL Id: hal-02265931
https://hal.science/hal-02265931

Submitted on 12 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HairBrush for Immersive Data-Driven Hair Modeling
Jun Xing, Koki Nagano, Weikai Chen, Haotian Xu, Li-Yi Wei, Yajie Zhao,

Jingwan Lu, Byungmoon Kim, Hao Li

To cite this version:
Jun Xing, Koki Nagano, Weikai Chen, Haotian Xu, Li-Yi Wei, et al.. HairBrush for Immersive Data-
Driven Hair Modeling. 32nd ACM User Interface Software and Technology Symposium, Oct 2019,
New Orleans, United States. �10.1145/3332165.3347876�. �hal-02265931�

https://hal.science/hal-02265931
https://hal.archives-ouvertes.fr

HairBrush for Immersive Data-Driven Hair Modeling
Jun Xing

USC Institute for Creative
Technologies

Koki Nagano
Pinscreen

Weikai Chen
USC Institute for Creative

Technologies

Haotian Xu
Wayne State University

Li-Yi Wei
Adobe Research

Yajie Zhao
USC Institute for Creative

Technologies

Jingwan Lu
Adobe Research

Byungmoon Kim
Adobe Research

Hao Li
USC Institute for Creative

Technologies
Pinscreen

ABSTRACT
While hair is an essential component of virtual humans,
it is also one of the most challenging digital assets to
create. Existing automatic techniques lack the general-
ity and flexibility to create rich hair variations, while
manual authoring interfaces often require considerable
artistic skills and efforts, especially for intricate 3D hair
structures that can be difficult to navigate. We propose
an interactive hair modeling system that can help create
complex hairstyles in minutes or hours that would oth-
erwise take much longer with existing tools. Modelers,
including novice users, can focus on the overall hairstyles
and local hair deformations, as our system intelligently
suggests the desired hair parts. Our method combines
the flexibility of manual authoring and the convenience
of data-driven automation. Since hair contains intricate
3D structures such as buns, knots, and strands, they
are inherently challenging to create using traditional 2D
interfaces. Our system provides a new 3D hair author-
ing interface for immersive interaction in virtual reality
(VR). Users can draw high-level guide strips, from which
our system predicts the most plausible hairstyles via a
deep neural network trained from a professionally curated
dataset. Each hairstyle in our dataset is composed of
multiple variations, serving as blend-shapes to fit the user
drawings via global blending and local deformation. The
fitted hair models are visualized as interactive suggestions
that the user can select, modify, or ignore. We conducted
a user study to confirm that our system can significantly
reduce manual labor while improve the output quality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST’19 , October 20–23, 2019, New Orleans, LA, USA

c© 2019 ACM. ISBN 978-1-4503-6816-2/19/10. . . $15.00

DOI: https://doi.org/10.1145/3332165.3347876

for modeling a variety of head and facial hairstyles that
are challenging to create via existing techniques.

CCS Concepts
•Human-centered computing → Virtual reality;
•Computing methodologies → Neural networks;
Shape modeling;

Author Keywords
hair, modeling, virtual reality, data-driven, machine
learning, user interface

INTRODUCTION
Recent advances in modeling and rendering of digital
humans have provided unprecedented realism for a variety
of real-time applications, as exemplified in “Meet Mike”
[33], “Siren” [34], and “Soul Machines” [1]. Compared to
other human components, compelling 3D hair models are
particularly challenging to create, render, and animate,
due to their variety in styles and shapes.

In production, 3D hair models are still created manually
with the help of advanced design softwares, such as XGen,
Ornatrix, or Hairfarm. While these solutions incorporate
a wide range of cutting edge tools for intuitive shape and
procedural strand manipulation, they are developed for
highly trained and experienced digital artists. Even for a
skilled user, compelling and realistic hairstyles can easily
take days or weeks to produce. Human hair is volumetric
and often consists of highly intricate 3D structures, such
as strands, wisps, buns, and braids, which are difficult to
design with traditional 2D interfaces. 3D hair digitiza-
tion and data-driven techniques can reduce the need for
manual labor [27, 11, 10, 25, 19, 9], but afford limited
control for real production environments.

We propose a a practical hair design system that com-
bines the intuition and immersion of VR-based 3D inter-
actions with the efficiency and automation of data-driven

https://doi.org/10.1145/3332165.3347876

(a) head hair gestures (b) prediction (c) facial hair gestures (d) prediction (e) result

Figure 1: Immersive hairstyle authoring with our system. Users can draw high-level hair gestures (green) in VR
(a), based on which our system predicts the most plausible hairstyles (b). Our system can also help create facial
hairs such as beards and eyebrows as shown in (c) and (d). Users can interact with the suggestions to maintain full
control, including deforming hair structures and merging multiple hairstyles. The hair model produced by our system
is composed of strips that can be rendered in high quality and in real-time. The final outcome (e) visualizes the
underlying strips (left) and rendered hairs (right), and is completed by an novice in 10 minutes with 382 suggested and
71 manually-drawn strips. Please refer to the accompanying video for live actions.

modeling. In an immersive virtual environment, users can
interactively express their intentions via natural gestures,
such as brushes for braids and spins for afro-curls, and
receive realistic 3D hairstyle suggestions by our system,
similar to prior autocomplete techniques for 2D sketching
[18, 45, 47] and 3D modeling [12, 28]. The suggested
high-quality hairstyles are learned and computed from
a hair model database created by professional artists.
Our interface allows users to accept, modify, or ignore
these suggestions to maintain full control over the design
process. Figure 1 provides an example.

We represent our hair models as textured polygonal strips,
which are widely adopted in AAA real-time games such
as Final Fantasy 15 and Uncharted 4, and state-of-the-
art real-time performance-driven CG characters such as
the “Siren” demo shown at GDC 2018 [34]. Hairstrips
are flexible to model and highly efficient to render [24],
suitable for authoring, animating, and rendering mul-
tiple virtual characters. The resulting strip-based hair
models can be also converted to other formats such as
strands. In contrast, with strand-based models, barely
a single character could be rendered on a high-end ma-
chine, and existing approaches for converting strands into
poly-strips tend to cause adverse rendering effects due
to the lack of consideration of appearances and textures
during optimization.

To connect imprecise manual interactions with detailed
hairstyles, we design a deep neural network architecture
to classify sparse and varying number of input strokes
to a matching hairstyle in a database. We first ask
hair modeling artists to manually create a strip-based
hair database with diverse styles and structures. We
then expand our initial hair database using non-rigid
deformations so that the deformed hair models share the
same topology (e.g. ponytail) but vary in lengths and
shapes. To simulate realistic usage scenarios, we train the

network using varying numbers of sparse representative
strokes. To amplify the training power of the limited
data set and to enhance robustness of classification, the
network maps pairs instead of individual strips into a
latent feature space. The mapping stage has shared-
parameter layers and max-pooling, ensuring our network
scales well to arbitrary numbers of user strokes.

As each hairstyle consists of multiple geometry variations,
we treat the retrieved hair models as blend-shapes [7] to
fit the input strokes via a combination of global linear
blending and local non-linear deformation. Instead of
taking an entire hair model as blending basis, we blend at
the strip level, to facilitate better expressiveness for each
hair strip combinations. Following the blending operation,
we perform real-time deformation to coherently propagate
local details of key strips to a global scale. Our system
also supports the creation of heterogeneous hairstyles by
interactive merging of multiple hairstyles.

Even with a suggestive system, conventional 2D inter-
faces can still be difficult to create hairs due to their
complex and volumetric 3D structures. We thus pro-
vide an immersive authoring interface in virtual reality
(VR), which can facilitate 3D painting and sculpting for
freeform design. Users can naturally model any hairstyles
using a variety of brush types in 3D without physical
limitations. When interacting freely in space, new chal-
lenges arise such as the difficulty to accurately perceive
depth, position, and align objects [3]. We further propose
new interface techniques to enable precise and intuitive
interactions between the user and the hair model. We use
our VR prototype for database creation, training data
collection and subsequent user studies.

Experiments demonstrate that our system can save a
significant amount of manual effort, while providing full
degrees of freedom to create a large variation of com-
pelling hairstyles that can be difficult to produce via

existing methods, such as ponytails (Figure 1b), braids
(Figure 3), facial-hairs (Figure 1d), afro-curls (bottom
row of Figure 11), hair buns, and long hair with small
curls (Figure 17). Even novice users can create complex
hairstyles with intricate geometry, texture, and shading
in minutes that would otherwise take days for experts.
The contributions of this paper are:

• An immersive and suggestive VR-based interface for
intuitive and interactive hair authoring;

• A deep neural network that accurately predicts and
suggests high-level hairstyles from sparse, imprecise
brush strokes;

• A hair synthesis method that combines both global
blending and local deformation;

• A new hair dataset with a wide diversity of hairstyles
and structures that are manually created by profes-
sional artists.

RELATED WORK

Manual Hair Modeling
To generate photorealistic CG characters, sophisticated
design tools have been proposed to model, simulate, and
render human hair. We refer readers to [41] for an ex-
tensive overview. Manual modeling offers complete free-
dom in creating the desired hairstyles [13, 6, 48], but
requires significant expertise and labor, especially for
human hairstyles with rich and complex structures. The
authoring interface needs to be easy to use (e.g. sketch-
based for creation [44, 15] or posing [32]) without re-
quiring detailed inputs such as individual strands [2] or
clusters [23]. We present a system that produces realistic
outputs in real-time given only a few sparse user strokes
to facilitate interactive exploration.

Hair Capture
Production-level capture typically requires controlled en-
vironments, manual tuning, and sophisticated acquisition
devices, e.g. multi-view stereo rigs [14, 21, 25, 27]. To
popularize hair capture for end-users, existing methods
offer various tradeoffs among setup, quality, and robust-
ness, e.g. thermal imaging [17], capturing from multiple
views [19] versus single view [9], or requiring different
amounts and types of user inputs [11, 10, 42]. Such meth-
ods can reduce manual edits but also limit the output
effects to the captured data at hand.

Despite the large body of works on hair capture, facial
hair reconstruction remains largely unexplored. Facial
hairs can have more varied shape, density, and length
than scalp hairs. In [4], a 3D reconstruction method is
proposed to recover both the geometry of sparse facial hair
and its underlying skin surface. Other recent works [22,
8, 29, 38] focus on generating or editing facial hair in
2D. To the best of our knowledge, our method provides
the first suggestive system for intelligent 3D modeling of
both scalp and facial hairs.

Data-driven Hair Modeling
Instead of using only data captured at the current ses-
sion, a database or a set of exemplars can enrich the
scope and diversity of the output hairs [40, 18, 49]. In-
spired by these data-driven approaches and auto-compete
authoring systems [12, 45, 47, 28, 37], we provide an auto-
complete hair-modeling interface that suggests potential
detailed hair structures from a database based on sparse
user inputs. Instead of using hand-crafted metrics (e.g.
[18]) that often fail to handle the large style variations
and complexity of hairstyle (e.g., ponytail vs. braid), we
propose a deep neural network for database retrieval that
is able to exploit high-level hairstyle features. Moreover,
a deep neural network is much faster, and scales well
with the dataset size, as later shown by [20].

3D Deep Learning
Recent methods such as [50, 31] applied deep learning
to reconstruct hair from a single image. In particular,
Zhou et al. [50] take the 2D orientation field of a hair
image as input and synthesize strand features that are
evenly distributed on a parameterized 2D scalp. Saito et
al. [31] represent hair geometry using 3D volumetric field,
which can be efficiently encoded and learned through
a volumetric variational autoencoder (VAE). However,
their methods are limited to hair reconstruction from
images and do not offer intuitive control to modify hair
details. Different from these generation networks that
rely on fixed and finite-dimensional input representations,
our network is only used for nearest hairstyle retrieval
via the hair strokes represented as point sequences. Our
works is inspired by the seminal work on point clouds
recognition [30]. PointNet uses multi-layer perceptron to
encode individual 3D points into feature vectors and ag-
gregate them into a global feature vector by max pooling.
Though simple, the architecture has nice properties of
being invariant to the number or order of points.

Modeling in VR
Even with the assistance of data and/or machine learning,
traditional 2D interfaces such as [18] present inherent
challenges for authoring 3D content, especially those with
intricate 3D structures such as human hair buns, knots,
and wisps. Recent advances in VR modeling [39, 16, 26]
have offered a new venue for interactive 3D modeling.
However, none of existing VR platforms supports direct
editing on hair geometry, not to mention an automated
system which can predict and complete a complex hair
model from sparse painting strokes. We introduce the
first hair modeling tool that leverages the unprecedented
authoring freedom in VR and provides intelligent online
hairstyle suggestion and manual authoring assistance.

DESIGN GOALS
To build a powerful, flexible, and easy to use hair au-
thoring system, we have the following design goals in
mind:

Wide audience Both novice and professionals can eas-
ily and quickly create high quality hair models with
our system.

Flexible input Only high-level, sparse input gestures
are required to indicate intended hairstyles. Users can
choose to provide more inputs for finer controls.

Assistance Based on sparse user inputs, our system
interactively suggests complete hair structures, which
can be composed of parts from different hair styles.

Interactivity The suggestions should be dynamically
updated in real-time during user interaction and scale
well to different numbers of query strips.

Immersion Complex 3D structures, such as buns, knots,
and strands, should be easy to specify.

Quality output The output models should be complete
and realistic, regardless of the amounts and types of
user inputs.

(a) setup (b) interface

Figure 2: System setup and user interface. One controller
is used as the brush for freeform drawing, and the other
as a UI panel from which the users can pinpoint to select
different tools and change parameters (e.g. brush, color,
and models).

USER INTERFACE
To meet the design goals in Section 3, we have built an
assistant VR authoring system to help users easily and
quickly create high-quality hair models. Users draw high-
level, sparse hair strips to indicate intended hairstyles.
Based on user inputs, our system interactively suggests
complete, detailed, and realistic hair structures. Our
interface design is inspired by systems in VR brushing
(e.g., Tilt-Brush [16]) and geometry autocompletion (e.g.,
[12, 28]).

Basic user interaction
As shown in Figure 2b and the supplementary video, our
system supports basic user interactions such as brushing
strips, loading models, undo/redo, changing stroke colors
and hair textures, etc. With VR handles (HTC Vive in
our prototype), users can freely rotate, bend, and stretch
hair strips in 3D (Figure 2a), as well as change the brush
sizes and shapes via the touchpad of the freeform drawing
controller.

Online modeling suggestion and hint update
As the user draws intended hair strips, our system pre-
dicts the most plausible hairstyles, rendered as transpar-
ent hints. Whenever a new user strip is detected, the

(a) gestures (b) hint (c) transparency

(d) more gestures (e) select (f) accepted

(g) back hair merge (h) top hair merge (i) merged result

Figure 3: Examples of user interaction and system as-
sistance. The user starts drawing one guide strip at the
lower back of the head in a mirror mode (a), and our
system predicts the best matching hairstyle visualized in
transparent green (b). The transparency can be changed
by moving the controller closer (more opaque) or farther
(more transparent) from the head (c). The user can ignore
the suggestion and draw more gestures, and a different
hairstyle is retrieved and deformed to fit the current set
of user interactions (d). The user can accept part of the
suggestion using the selection brush (e), and the accepted
suggestion will be adjusted to the current brush color
(f). When the user draws a new gesture on the top of
the head, our system provides a new suggestion taking
into account both the current guide strip and the exist-
ing bun (g). Then the user accepts the suggestions and
draws another gesture in the front (h) and context-aware
suggestions are updated. (i) shows the merged result.

(a) normal (b) attach (c) spin (d) braid

Figure 4: Brush modes. (a) shows the original gestures
drawn by the user, which could have different effects
under different brush modes, including the attach brush
that attaches the strokes onto the scalp (b), and the spin
(c) and braid (d) brushes for more complex structures.

hairstyle
classifier

blend &
deform

guide strips base model blendshapes output

Figure 5: System pipeline. The user input gestures are classified by a neutral network to predict the most plausible
hairstyle. Each hairstyle contains multiple blendshapes sharing the same topology while varying in shape and length.
The blend shapes can be linearly blended to fit the user gestures.

interface updates and displays modeling suggestions in
real time that fits the user inputs (Figures 3a and 3b). In
order to distinguish user strokes from system suggestions,
the hints are visualized with transparency (Figure 3c).
The user can control the hint transparency by moving
the brush closer to or farther from the head and move
the head for different views. When the user changes the
guide strips, e.g. add more or remove existing ones, the
system updates the suggestion accordingly (Figure 3d).
The user can press a button to activate the selection
brush to partially select the suggestions or ignore the
suggestions by continuing to draw (Figure 3e). If the
system has achieved the desired hairstyle, the user can
select all suggestions via a simple gesture to finalize the
hair creation (Figure 3f).

Hybrid hairstyle
Our system supports creation of heterogeneous hairstyle
by merging multiple hairstyles in a single output. Once a
hairstyle is accepted or manually drawn in a local region
(Figure 3g), the user can continue to draw new guide
strips and the system will update the suggestions taking
into account both current guide strips and previously
accepted/drawn ones (Figure 3h), enabling a smooth
blend of styles (Figure 3i).

Brush modes
Although VR provides the complete freedom for drawing,
it can be very difficult to manually draw complicated hair
structures, such as curls and braids. Thus, our system
provides two special hair brushes that allow users to draw
spin curves and braids with simple gestures (Figures 4c
and 4d). For the spin brush, the spin size and curliness
can be adjusted via the touchpad of the freeform drawing
controller. The braid brush can guide our system to
provide automatic suggestions of complex braids. We also
provide the attach brush (Figure 4b) that automatically
project the whole stroke onto the scalp surface, which is
useful when creating the inner layer hair.

Manual mode
Apart from auto-completion, manual mode is also sup-
ported in our system. Users can manually draw either
from scratch or on top of system suggestions. To facilitate
easier drawing, our system supports automatic anchoring
and collision avoidance. If automatic anchoring is acti-
vated, the strip root will be automatically anchored onto
the scalp surface. Collision avoidance, if turned on, auto-
matically pushes out the part of stroke inside the head to
avoid strip-head collision. To allow symmetric drawing
on both sides of a head, we also provide the mirror tool
so users only need to draw on one side (Figure 3a). Users
can also manually deform a strip and choose to propagate
the deformation to the remaining strips to change the
entire hairstyle.

METHOD OVERVIEW
Our pipeline consists of the following steps, as illustrated
in Figure 5.

Hairstyle prediction
Given sparse input user gestures as key strips, we estimate
the user-intended hairstyle based on a nonlinear classifier
trained by a deep neural network. The predicted hairstyle
will match the input strips at a high level, providing
the best-matched class label while being robust to local
perturbations that may be introduced by novice users.

Hair strip generation
Our system then synthesizes the detailed hair strips of
full scale that conform to the input key strips. The esti-
mated hair class will direct the remaining algorithm steps
to the corresponding set of hair templates/blendshapes
(Figure 5) with the same topology but variations in size,
length, and shape. We first initialize the output with
a default hair model belonging to the predicted class
label. For each key strip, we find the closest strip in each
retrieved hair template and linearly blend the template
strips to approximate the key strip. The blending coef-
ficients are propagated to the remaining hair strips to
obtain a smoothly interpolated hair model. Due to the
limited expressiveness of linear blending, the result is

(a) geometry (b) texture

Figure 6: Hair representation in geometry and texture.
(a) illustrates a hair-strip mesh, with samples shown in
red and the medial axis shown in yellow. Each sample has
a local coordinate frame as visualized by 3 color arrows.
We can transform the samples to deform a template mesh
(top) to a target geometry (bottom). (b) shows an albedo
hair texture map.

prone to under-fitting. We therefore non-rigidly deform
the matching strips in the output so that their geometry
better matches the corresponding key strips. The defor-
mation is again propagated to the rest of the strips to
preserve local details.

Users can selectively accept the suggested hair model
generated by our framework. Once selected, the hair
strips will stay fixed unless they are manually deformed
for further refinement. While users keep drawing in the
void regions, the newly suggested hair model obeys both
the new guide strokes and existing hair strips, to maintain
coherence while avoiding overlap.

REPRESENTATION
We adopt a strip-based representation [24] to ease the
manipulation of a large number of hair strands. With
detailed texture maps and sophisticated rendering tech-
nique, a single strip can realistically depict multiple
strands of hair (Figure 6b). To make the surface normal
less flat, our system adopts an U-shape strip geometry
(Figure 6a), where user can control the cross curvature
of the strip.

Medial axis representation
We represent each hair strip with a fixed number of
samples (30 in our implementation) evenly spaced on its
medial axis (red dots in Figure 6). For each sample, we
store both the point position p and a local coordinate
system (d, r, n) (Figure 6) defined by the VR handle. The
mesh geometry can be represented and reconstructed via
the local frames.

Shape matching distance
Given a query strip, the system searches for its matching
strip in the database that has the closest geometry. We
denote the sample points of strip Pi and Pj as {pim} and
{pjn}, respectively. We then define the shape matching

distance between Pi and Pj as

dSM (Pi,Pj) = ∆Ld(Pi,Pj) (1)

∆L = 1 + ω
||li − lj ||
||li + lj ||

(2)

d(Pi,Pj) =

√∑
k

(pik − p
j
k)2 (3)

, where all coordinates of {pim} and {pjn} are in the global
space (with origin at the head center).

In Equation (2), li stands for the length of i-th strip
Pi while ω is a scaling factor that is set as 3.0 in our
implementation. The value of ∆L equals to 1.0 if Pi and
Pj have the same length, and increases as the discrep-
ancy between li and lj increases. d(Pi,Pj) measures the
piecewise distance between the corresponding points of
Pi and Pj . In sum, dSM penalizes the case where there
is a large difference between the lengths or shapes of the
input strips.

DATABASE CONSTRUCTION

(a) target ponytail (b) user input (c) change view (d) knot position (e) # gesture (f) braid

Figure 7: Hair gestures example. In order to create a
ponytail in (a), user could draw some gestures (green
lines), from which our system extracts high-level features
for hairstyle retrieval. The high-level features should be
insensitive to viewpoints (b, c), knot position (b, d), and
gestures number (b, e), while being discriminative for
different hairstyles, e.g. ponytail and braid (b, f). Image
courtesy of [15] in (a).

We construct three separate databases for scalp hairs,
beards and mustaches, and eye brows. The scalp hair
database D contains 30 different styles {Hi} with various
hair length (long, middle and short), hairline (left, right,
middle or none), and hair parts (bun and ponytail). For
each hairstyle Hi, our collaborating artist created a base
model H0

i via our system (about 23 minutes), and ex-

panded it into 10 more variations Hji , j = 1, 2, ..., 10, via
our deformation tool (around 55 minutes). These varia-
tions serve as the blend-shapes of our method as depicted
in Figure 5. We further augment each hair model Hji with
up to 5 different amounts of curliness. For example, our
three results in Figure 14 (bottom) and Figure 15 share
the same style but different curliness (wavy, straight, and
braid). Since facial hairs tend to have simpler structures
than scalp hairs, we created 5 different styles for both
the beard/mustache and eyebrow databases, and each
hairstyle consists of 5 different variations.

Hair models {Hji} that belong to the same hairstyle Hi
share the same topology: 1) each strip in one model

Hji can always find its corresponding strip in any other

n
x

90
180180

180 180 > 100 > 100

….. shared weights

180 -> 100 > 100

180 > 100 > 100

strips strip pairs fully connected layers partial features global feature

100 > 50 > 20

fully connected layers 30 classes

180 -

-

-

- -

180100

100

…..
100

-

Feature Extraction Module Classification Module

-
max
pooling 100

Figure 8: Network architecture. Given n sparse strips that depict a hairstyle, our network encodes them into a global
feature vector (blue color), followed by classifying the global feature to get the probability of different hairstyles (yellow
color).

models within the class label i; 2) corresponded strips
share the same root point on the scalp.

Hair models typically consist of multiple layers of strips
where the outer layers dominate the overall appearance.
We thus manually label the hair strips into outer and
inner layers and further accelerate the algorithm by only
matching strips on the outer layers during query. UI-wise,
users only need to draw outer strips while our system can
automatically generate globally coherent inner layers.

To learn how ordinary users sketch key strips, we asked
31 participants (10 females and 21 males with 5 of them
being experienced drawing artists) to manually segment
each hairstyle Hi into 5 representative regions. The
segmentation is utilized to extract a sparse set of rep-
resentative hair strips for learning high-level hairstyle
features (Section 8).

HAIRSTYLE PREDICTION
We need to bridge the gap between sparse strips {Pi}
(Section 6) and complete hair models {Hj} (Section 7).
Directly measuring the geometric difference using hand-
crafted metric, e.g. Hausdorff distance, is expensive and
sensitive to large hairstyle variations (e.g., ponytail vs.
braid). To resolve this issue, we propose to compare
their similarity in a latent feature space, which is more
robust and invariant to spatial locations, drawing orders,
and strip numbers (Figure 7). Towards this end, we
adopt deep neural network for feature extraction due
to its robustness to outliers, ability to exploit high-level
hairstyle features, and computational efficiency at run
time that scales well with the data size.

Our network architecture is illustrated in Figure 8. The
input is a vectorized representation of strip geometry −
the concatenated 3D coordinates of the sample points,
and the output is the class label of the corresponding
hairstyle. The network consists of two main parts: a
feature extraction module that maps the input to a non-
linear global feature, followed by a classification module
which predicts the probability of different hairstyles. We
elaborate on two components that are critical for robust
and accurate prediction.

Sparse strips as training data
To resemble the real application scenario, we only extract
a random number (ranging from 1 to 10) of sparse strips
from each hair model during training. While some users
sketch a hairstyle with the most representative strokes
spread out on the head, others draw dense strips locally
before moving to the next area. To consider both cases,
we asked different users to segment the entire set of hair
strips into 5 representative clusters (Section 7), with each
cluster containing at most 10 nearest strips. The training
data are generated by sampling from these clusters in a
combinatorial way. As a result, large amount of training
data can be produced from limited hair models.

Extract features from paired strips and apply max pooling
Instead of analyzing individual strips, we pair up every
two strips to obtain

(
n
2

)
(n is the number of hair strips

sampled from each hair model) strip pairs {Pi,Pj} and
feed them into two fully connected layers with shared pa-
rameters. When only one strip is available, we duplicate
it to form a strip pair. Partial features of the hairstyle
will be extracted from each strip pair by mapping it to a
fixed-size feature vector Fi,j . In order to handle arbitrary
number of strips, we aggregate all the partial features
{Fi,j} via a max-pooling layer to obtain a global feature
F of the hairstyle, similar to PointNet [30]. The rationale
behind the use of strip pair as the basic feature is that it
can capture more structural information than individual
strips (as illustrated in Figure 7) and yet achieve com-
parable accuracy with denser strip groupings (e.g. 3 or
more) with less computational cost.

Network details
Each input strip is represented with 30 uniformly sampled
points, leading to a 180-dimensional (30×3×2) vector for
each strip pair. The classification module consists of two
fully-connected layers and a softmax layer that outputs
a 30-dimensional vector which encodes the probability of
each hairstyle.

Run time usage
At run time, up to the 6 latest strips are fed into the
network for hairstyle prediction. The prediction accuracy
of our network is 85% for top-1 and 94% for top-5 classi-
fication. Once users accept system suggestions, existing
guide stripes will be removed. As our system provides

references our results zoom-in geometry back views geometry

Figure 9: The hair models of AAA game characters (top: ”The Last of Us”, bottom: ”The Witcher 3”) took a
professional artist several days to place the initial hair strips and 2 to 3 weeks to refine the geometry and texture,
while our system could create the comparable hairstyle and quality much faster (top: 38 minutes using pure manual
drawing, bottom: 6 minutes using suggestive drawing, for a non-professional user).

Figure 10: Authoring process and intermediate results of our system. (a) User first draws a guide strip (shown in green)
on top of the head, and our system provides online hairstyle suggestion that best matches the input guide strip (b).
User can ignore the suggestion by continue drawing (c), and the suggestion will be updated accordingly in realtime (d).
Such process is iterated until satisfactory suggestion is obtained (e, f). User can partially accept the suggestion and
continue such interaction (g), and the new suggestion will be aware of the existing strips (h). Users can also manually
draw more strips, or delete and deform the existing strips to achieve desired appearance (i,j).

real-time feedback, users could accept system suggestion
if they find it appropriate. Therefore discarding older op-
erations enables the algorithm to provide more accurate
updates according to the latest user inputs.

FULL-SCALE HAIR GENERATION
With the hairstyle predicted by the network, our system
then generates full hair details: blend and deform vari-
ations from the predicted hairstyle to fit user strokes,
repeat these steps to merge multiple hairstyles, and re-
construct full hair geometry from the hair samples.

Blending
Given the target hairstyle Hi classified by the network
in Figure 8, we use its corresponding hair models {Hji}
(Section 7) as ”blendshapes” [7] to fit the input key
strips {P`}. The method in [7] treats each complete face
model as a blend shape. Applying the same approach
by treating entire hair meshes as linear bases does not
work well as hairstyles can have more shape variations
than faces. We thus perform local blending at the hair-
strip level for better expressiveness and accuracy. The
hair models {Hji} from the same hairstyle Hi have the
same size and topology. Therefore, we represent each
strip in the generated model V as a linear combination of
its corresponding strips in {Hji} and optimize the blend
weights such that the resulting hair model matches the
key strips well. The steps are as follows:

Strip matching
The purpose of strip matching is to find a suitable blend-
ing basis for each key strip P`. Every strip in Hji has
corresponding strips in all other hair models that belong
to the same hairstyle Hi. Suppose hairstyle Hi has n
strips. Then Hi has n blending bases: {cj}j=0,1,...,n−1,
where cj = {ckj }k=0,1,...,m−1 are the individual strips in
basis cj and m is the number of hair models belonging to
style Hi. For each key strip P`, we search for its closest
hair strip Mi from the retrieved hair models {Hji}. The
similarity between the strips is measured using the shape
matching metric dSM defined in Equation (1). Hence,
the strip with the lowest dSM to P` will be considered
as its matching strip. For P`, if its matching strip Mi

belongs to the j-th basis {ckj }, then {ckj } will become
P`’s blending basis in the following steps. The match-
ing process could be accelerated via kd-tree search. As
discussed in Section 7, we only search for the matching
strip in the outer layer of hairstyle.

Key strips fitting
Given a key strip P` and its blending basis ci = {cki },
we first calculate the mean shape Bi of {cki } and then
compute the displacement vector dki as follows:

dki = cki −Bi (4)

Hence, each key strip P` can be approximated as linear
combination of the displacement vectors and the mean

shape:

P` ' ti
∑
k

αki d
k
i + siBi (5)

αi = {αki } are the blending coefficients; ti and si are
positive scaling factors for linear blending and mean
shape, respectively. We introduce ti and si to enhance
the expressiveness and smoothness of linear model. As
the linear model restricts the coefficient to stay between
0 and 1 to avoid unstable extrapolations, it can under-fit
large variations and produce non-smooth, rigid results.
The additional degrees of freedom would help smooth
the outcome geometry while providing more capability
in representing largely deformed structures.

We optimize the set of weights, ti, αi and si, to minimize
the following fitting error using real-time L-BFGS solver:

arg min
ti,αi,si

∥∥∥∥∥P` −
(
ti
∑
k

αki d
k
i + siBi

)∥∥∥∥∥
s.t. αki ∈ [0, 1],

∑
i

αki = 1

(6)

Coefficient propagation
After key strip fitting, part of the blending bases
{{ck0}, {ck1}, ..., {ckn−1}} has received blending coefficients,
producing corresponding strips in the fitting result V.
We then propagate the computed coefficients to the re-
maining bases.

Each basis cj has three different sets of coefficients: tj ,
αj and sj , which are propagated using the same formula
in Equation (7). In particular, suppose {ci} is the set of
bases that have received blending coefficients. Then the
coefficients for any other basis wj can be calculated based
on the spatial distance and shape similarity between Bi
and Bj :

wj =
∑
i

e−
dSM (Bi,Bj)

σ wi (7)

where dSM is the distance function defined in Equa-
tion (1); Bi and Bj are the mean shapes; wi and wj are
the corresponding coefficients (i.e. wj = {tj , {αkj }, sj});
σ is a constant, which is set to 0.08 for distance normal-
ization. The coefficient propagation can be computed
efficiently since dSM (Bi, Bj) can be pre-computed after
the database construction.

After all the blending coefficients are solved, each strip Vj
of a full-scale hair model V can be calculated by applying
the linear model in Equation (5).

Deformation
Although linear blending provides robust and smooth
fitting to the key strips, it is prone to under-fit due
to limited variations in the linear bases. Therefore we
further deform the blending result towards key strips.
Given the key strips {Pi} and the linear blending results
{Vi}, we compute the target displacement for each Vi as:

∆di = ki(Pi − Vi) (8)

∆di consists of point-wise translation vectors, and ki is a
weight that goes from 0 (the hair root) to 1 (the hair tip)
smoothly, making sure the hair roots are always fixed.
We then propagate the displacement vectors computed
at the {Vi} to the remaining strips, analogous to the
coefficient propagation for blending in Equation (7).

Intuitively, Vi is deformed to resemble Pi while maintain-
ing its original details. Compared to optimation-based
mesh deformation [36, 35], this simple one-pass method
deforms hair strips in real time with sufficient quality.

Merging
In addition to fitting a single hairstyle , our system can
also merge multiple hairstyles as exemplified in Figure 3h.
To keep track of multiple hairstyles, we build a volumetric
field to represent the occupancy of hair strips in 3D. We
initialize a dense volumetric grid that is large enough
to encompass any hair strip anchored on the scalp with
all cell values set to 0. For each sample point from an
existing hair strip, we set the occupied grid cell to 1, and
propagate the occupancy to its neighboring cells using a
Gaussian kernel. For the newly suggested hair model, we
remove those strips that overlap with the existing strips,
e.g. with more than 60% of its points locate in grid cells
with positive occupancy values.

Hair Geometry Reconstruction
We first resolve the strip-head collision. To accelerate the
computation, we pre-compute a dense volumetric levelset
field with respect to the scalp surface. For each grid
cell, its direction and distance to the scalp are also pre-
computed and stored. During run time, samples inside
the head are detected and projected back to their nearest
points on the scalp, and samples outside the head remain
fixed.

With the calculated sample locations, we proceed to
reconstruct the full geometry of hair details. In particular,
we build the Bishop frame [5] for each strip, and use the
parallel transport method to calculate the transformation
at each sample point. The full output hair mesh could
be easily transformed via linear blending of these sample
transformations.

EVALUATION
Our system is able to model highly complex and diverse
hairstyles, such as curly hairs (Figure 14), ponytails (Fig-
ure 10), braids (Figure 11), afro braids (Figure 15), buns
(Figures 3 and 17), and beard (Figures 1 and 9). These
are extremely difficult or time-consuming to create from
scratch using existing modeling techniques (e.g., [23, 15,
18, 20, 31]) and commercial systems (e.g., XGen, Or-
natrix). We evaluate our system via sample outcomes,
comparisons with prior methods, and a pilot user study.

inputs predictions deformed/blended outputs

Figure 11: Results of network prediction and our hairstyle
auto-complete. From left to right: input guidance strips,
suggested default hairstyle (network output), deformed
and blended result according to key strips in two different
views.

(a) strip model (b) strand model

Figure 12: Our system supports converting strip- to
strand-based representations.

Results and Analysis
We show how our system can help author high-quality
hair models with large variations. Figure 11 shows the
modeling results created with very sparse set of guide
strips. We first validate the performance of hairstyle
prediction. As seen from the first and second column,
our prediction network is capable of capturing high-level
features of input strips, such as hair length and curliness.
We then present the effect of blending and deformation
in fitting the hair models to the input key strips (third
column). Although the base model (second column)
matches the query strips at a high level, details deviate
from the user’s intentions. The proposed blending and
deformation algorithm produces results with realistic
local details better following input guide strokes.

We evaluate the merging operation in Figure 10. Given a
partially accepted hair model, users can create a heteroge-
neous hairstyle by either drawing in a different style, e.g.
invoking more curliness, or changing the hair topology,
e.g. adding a hair knot. On top of the merged result,
users can further refine the hair model with manual oper-
ations, e.g. bridge the topology transition or add/remove
hair strips. Figure 12 shows that our strips can be con-
verted to strand-based representation for rendering. In
particular, we compute the orientation field based on the

hair strips, and grow the hair strands from the fixed roots
[18].

Comparisons
We first compare our system with the professional hair
modeling tools, such as Maya XGen, to demonstrate
that our system could be applied to real-world AAA
game hair asset creation. We then compare our method
with a wide range of prior techniques: semi-automatic
image-based hair modeling [18], and fully automatic hair
reconstruction approaches [20, 31]. While previous hair
modeling approaches mainly focus on generating hair
models from 2D images, our framework enables hair
creation and authoring in 3D space. Since none of these
previous systems can handle facial hairs, we only compare
scalp hair authoring.

Hu et al. [18] ours

Figure 13: Comparison with [18]. The blue and green
color of our guide strips (third column) indicates two sug-
gestion selection sessions. The results by the 2D method
[18] may lack realistic 3D structures. For each example,
[18] took around 1 minute to draw and 2 minutes to
process, and our system took 5/12 (top/bottom) minutes
to complete (including manual refinement).

Professional tools
In Figure 9, we compare the scalp and facial hair models
generated using our system with that of the modern hair
modeling software deployed in most industrial studios.
For AAA games, one hair model could easily take days
for a professional artist to simply place the strips, as
manipulating the mesh geometry (vertices, edges, and
faces) could be extremely tedious in a 2D interface. It
could take more days or even weeks to iterate the geome-
try and texture refinement before reaching a satisfying
rendering. In contrast, our VR tool provides the full ex-
pressiveness to directly place the strips in 3D, as well as
realtime immersive feedback of the final rendering. Even
for non-professional users, they could create a compara-
ble hairstyle within an hour using pure manual drawing
in VR (top row). With system suggestion turned on,
the authoring time can be further reduced to only a few
minutes (bottom row).

Hu et al. [20] ours

Figure 14: Comparison with [20]. The top case of [20] has
a wrong style while the bottom case lacks detailed curls.
The processing time is around 2 seconds for [20] and 2
minutes for our system (without manual refinement).

Sketching from photos
We also compare our approach with the semi-automatic
image-based hair modeling algorithm [18] (Figure 13).
As driven by a hair database, their approach retrieves the
best matched hair examples based on the reference image
and the user strokes drawn on 2D. However, due to the
ambiguity of 3D projection and the view occlusion, the
2D strokes may not faithfully reflect the 3D structures.
Our method, in contrast, allow users to directly sketch
key hair strips in 3D, enabling more accurate retrieval of
hairstyle and higher quality of detailed hair geometry, as
demonstrated in Figure 13. Moreover, the output of our
blendshape method always falls in the plausible space,
while the deformation-based method may cause artifacts.

Synthesis from photos
We further compare our algorithm with the state-of-the-
art automatic hair reconstruction approach [20] in Fig-
ure 14. To bridge the discrepancy of inputs, we asked a
novice user to draw sparse guide strips that best repre-
sent the hairstyle in the input image. Our result is then
automatically generated without any manual refinement.
As shown in Figure 14, though Hu et al. [20] can generate
a hair geometry that roughly matches the global shape
of the hair in the input, it fails to reproduce the fine
details. The deviation of local details may be either due
to an inaccurate retrieval of hairstyle and deformation
(first row of Figure 14) or the limited capability of dataset
(second row of Figure 14). We also compare our approach
with [31], a more recent deep learning-based method for
reconstructing 3D hair from a single image. Though
[31] is highly robust to the variations of inputs, their
method also fail to capture local details as manifested
in the second result of Figure 15. In contrast to both
approaches, our approach offers significantly more accu-
rate approximation of the input image allowing users to
create sophisticated hairstyles with just a few gestures.

Saito et al. [31] ours

Figure 15: Comparison with [31]. The results by [31]
may not capture sufficient details from the input images.
The processing time is about 1 minute for [31] and 3/4
(top/bottom) minutes for our system (without manual
refinement).

User study

(a) reference (b) manual (c) ours

Figure 16: User study drawing session. From the
reference image (a), a participant manually created the
result in (b) in 18 minutes, and the result in (c) using
our suggestive system in 5 minutes.

Figure 17: More hair results created by users with our
system. Authoring time (minutes) from left to right: 5,
6, 4, and 8.

We conducted a preliminary user study to evaluate the
usability of our suggestive system. We recruited 1 ex-
perienced hair modeling artist and 8 novice users with
different levels of sketching experiences as participants.

Procedure
The study consisted of three sessions: warm-up (10 min),
target session (60 min), open session and interview (20
min). For the target session, the participants were given
a reference portrait image (loaded into VR) and asked
to create the hair model via (1) manual drawing, and (2)
suggestive modeling in our VR system (Figure 16). The
orders of these three conditions were counter-balanced
among all participants. For the open session, the goal
is to let the participants explore the full functionality of
our system and uncover potential usability issues.

Outcome
We measured the completion time and stroke counts
for the target session. The results show that using our
suggestive system could save both the authoring time
(average/min/max time: 6/3/10 minutes) and number
of strokes (average/min/max: 22/11/32 strokes), com-
pared to the manual drawing (average/min/max time:
18/15/25 minutes, average/min/max: 71/58/95 strokes).
The reported time of our suggestive approach includes
both the manual drawing and editing operations as re-
finement. Without refinement, the users can create a
desired hairstyle in just 2 to 4 minutes with 2 to 8 guide
strips. The total stroke counts include those undone and
deleted by the users.

Feedback
Overall, the participants found our system novel and use-
ful, and liked the auto-complete function of our system.
The participants reported the real-time suggestion was
gratifying and accurate, which provided them helpful
visual guidance for VR drawing. The artist pointed out
that controlling and adjusting the strip position and angle
is very time-consuming in professional hair modeling soft-
ware like Maya XGen. Our VR-based system can provide
more freedom and easiness to achieve similar operations.
The artist also suggested integrating our system with pro-
fessional modeling tools for smooth authoring experience
and instant preview of the final rendering effects.

Figure 16 shows the results of our study participants.
With manual drawing, the participants have complete
freedom in drawing, and thus are able to author the
desired details. However, it is difficult for people without
VR drawing experience to create an accurate hair model
from scratch, even when a reference image is loaded in
VR. Our interactive system, on the other hand, suggests
complete hair models to match sparse user strokes, and
allows merging and deformation of different hairstyles at
ease. The hair models in Figure 17 were created by our
participants in the open session.

VR interface
Both the VR interface and the autocomplete function
of our system can help improve usability. We omitted

the evaluation of the VR interface against traditional
desktop interfaces, as the benefits of VR interaction are
not unique to this work and have been demonstrated
in other platforms such as VR brushing and painting.
Instead, we asked three professional hair modeling artists
about the efforts to create our paper results using their
desktop tools, and all of them told us achieving the same
complexity and quality of strip placement would take
them more than 2 days on average. The VR interaction
aspect of our interface has only been evaluated with
anecdotal evidence, and we leave full evaluation as a
future work.

LIMITATIONS AND FUTURE WORK
Since our system could be used for efficient and high-
quality strip-based hair modeling, it has practical value
for the scalable production of games and immersive con-
tent. Our results may not be realistic enough for main
characters in some high-end AAA game titles, which
usually take several months for a single hairstyle (e.g.,
Uncharted 4), our system can quickly generate reasonably
high-fidelity hair models with superior quality than in
game characters such as GTA V. We also argue that for
secondary and crowd characters, there is no viable alterna-
tive solution for efficient polystrip modeling. Application-
wise, our system is also useful for rapid prototyping
tasks and concept design during pre-production, and can
achieve faster turn-around times for asset creation. Our
system also provides a solution to generate polystrip
hairstyles for large number of real-time characters under
a tight deadline. As far as we know, there is no other
approach that can handle this.

We would like to emphasize that our system is designed
as an extension, rather than a replacement, for the profes-
sional desktop tools. For example, the initial hair models
could also be exported into 3D modeling tools, like Maya,
for further refinement. Using our models as priors can
significantly increase the production speed.

(a) reference (b) parts (c) result

Figure 18: Failure case. Our system may not merge
between two very different hair parts, as visualized with
green (the braids) and brown (the rest hair) colors in (b).

In traditional strip-based hair modeling, texture and ge-
ometry are highly coupled. In this paper, we mainly
focus on the modeling of hair geometry, but leave the
optimization of hair textures less explored. Even so, we

demonstrate that our system can greatly accelerate the
modeling and designing of complex hairstyles, enabling
realistic hair modeling in minutes. The strip-strip in-
tersection is not explored in our work as it is highly
depended on the texture. For instance, in professional
strip hair modeling, strip-strip intersections are often
utilized to create volumetric effects. Investigating how to
arrange hair geometries based on the texture to produce
more realistic rendering would be an interesting future
work. Integrating our system with the professional hair
modeling tools like XGen to provide a smooth authoring
experience would also be of interest.

In our system, a strip cannot change between different
types, such as from a flat strip to a braid strip. This may
cause artifacts at the connection area of different hair
parts, as shown in Figure 18. One future work is to allow
fine-level control of the strip geometry.

In games, rigging via bones/joints is a popular approach
for animating hair strips, often combined with some ef-
ficient simulation techniques. Simulating complex hair
strip animations and collisions are somewhat less ex-
plored. A potential direction is to add efficient secondary
animation authoring [46, 43] with our hair geometry
modeling.

As a data-driven approach, the quality and expressiveness
of our results are limited by the variations and capacity of
the dataset. Preparing a high-quality dataset with large
variations in both geometry and texture still requires
huge amount of artistic effort, especially for curly hairs.

ACKNOWLEDGMENTS
This research was funded by in part by Adobe, the ONR
YIP grant N00014-17-S-FO14, the CONIX Research Cen-
ter, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA, the
Andrew and Erna Viterbi Early Career Chair, the U.S.
Army Research Laboratory (ARL) under contract num-
ber W911NF-14-D-0005, and Sony. Hao Li is affiliated
with USC, USC/ICT, and Pinscreen. This project was
not funded by nor conducted at Pinscreen. Koki Nagano
is affiliated with Pinscreen but worked on this project
through his affiliation at USC/ICT. We would like to
thank Aviral Agarwal for his help and professional ad-
vice on hair modeling, Liwen Hu for providing us the
code for strip-to-strand conversion, Emily O’Brien and
Mike Seymour for the scanned head models, and the
anonymous reviewers for their valuable suggestions. The
content of the information does not necessarily reflect the
position or the policy of the government, and no official
endorsement should be inferred.

REFERENCES
[1] 2017. Soul Machines. (2017).

https://www.soulmachines.com/.

[2] Rıfat Aras, Barkın Başarankut, Tolga Çapın, and

Bülent Özgüç. 2008. 3D Hair sketching for real-time

https://www.soulmachines.com/

dynamic & key frame animations. The Visual
Computer 24, 7 (2008), 577–585.

[3] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson,
Tovi Grossman, Karan Singh, and George
Fitzmaurice. 2017. Experimental Evaluation of
Sketching on Surfaces in VR. In CHI ’17.
5643–5654.

[4] Thabo Beeler, Bernd Bickel, Gioacchino Noris, Paul
Beardsley, Steve Marschner, Robert W Sumner,
and Markus Gross. 2012. Coupled 3D
reconstruction of sparse facial hair and skin. ACM
Transactions on Graphics (ToG) 31, 4 (2012), 117.

[5] Miklós Bergou, Max Wardetzky, Stephen Robinson,
Basile Audoly, and Eitan Grinspun. 2008. Discrete
Elastic Rods. ACM Trans. Graph. 27, 3, Article 63
(2008), 12 pages.

[6] Florence Bertails, Basile Audoly, Marie-Paule Cani,
Bernard Querleux, Frédéric Leroy, and Jean-Luc
Lévêque. 2006. Super-helices for Predicting the
Dynamics of Natural Hair. ACM Trans. Graph. 25,
3 (2006), 1180–1187.

[7] Volker Blanz and Thomas Vetter. 1999. A
Morphable Model for the Synthesis of 3D Faces. In
SIGGRAPH ’99. 187–194.

[8] Andrew Brock, Theodore Lim, James M Ritchie,
and Nick Weston. 2016. Neural photo editing with
introspective adversarial networks. arXiv preprint
arXiv:1609.07093 (2016).

[9] Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin
Weng, and Kun Zhou. 2016. AutoHair: Fully
Automatic Hair Modeling from a Single Image.
ACM Trans. Graph. 35, 4, Article 116 (2016), 12
pages.

[10] Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang
Jin, and Kun Zhou. 2013. Dynamic Hair
Manipulation in Images and Videos. ACM Trans.
Graph. 32, 4, Article 75 (2013), 8 pages.

[11] Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu,
Baining Guo, and Kun Zhou. 2012. Single-view Hair
Modeling for Portrait Manipulation. ACM Trans.
Graph. 31, 4, Article 116 (2012), 8 pages.

[12] Siddhartha Chaudhuri and Vladlen Koltun. 2010.
Data-driven Suggestions for Creativity Support in
3D Modeling. ACM Trans. Graph. 29, 6, Article 183
(2010), 10 pages.

[13] Byoungwon Choe and Hyeong-Seok Ko. 2005. A
statistical wisp model and pseudophysical
approaches for interactive hairstyle generation.
IEEE Transactions on Visualization and Computer
Graphics 11, 2 (2005), 160–170.

[14] Jose I Echevarria, Derek Bradley, Diego Gutierrez,
and Thabo Beeler. 2014. Capturing and stylizing
hair for 3D fabrication. ACM Transactions on
Graphics (ToG) 33, 4 (2014), 125.

[15] Hongbo Fu, Yichen Wei, Chiew-Lan Tai, and Long
Quan. 2007. Sketching Hairstyles. In SBIM ’07.
31–36.

[16] Google. 2016. Tilt Brush. (2016).
https://www.tiltbrush.com/.

[17] Tomas Lay Herrera, Arno Zinke, and Andreas
Weber. 2012. Lighting hair from the inside: A
thermal approach to hair reconstruction. ACM
Transactions on Graphics (TOG) 31, 6 (2012), 146.

[18] Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li.
2015. Single-view Hair Modeling Using a Hairstyle
Database. ACM Trans. Graph. 34, 4, Article 125
(2015), 9 pages.

[19] Liwen Hu, Chongyang Ma, Linjie Luo, Li-Yi Wei,
and Hao Li. 2014. Capturing Braided Hairstyles.
ACM Trans. Graph. 33, 6, Article 225 (2014), 9
pages.

[20] Liwen Hu, Shunsuke Saito, Lingyu Wei, Koki
Nagano, Jaewoo Seo, Jens Fursund, Iman Sadeghi,
Carrie Sun, Yen-Chun Chen, and Hao Li. 2017.
Avatar Digitization from a Single Image for
Real-time Rendering. ACM Trans. Graph. 36, 6,
Article 195 (2017), 14 pages.

[21] Wenzel Jakob, Jonathan T. Moon, and Steve
Marschner. 2009. Capturing Hair Assemblies Fiber
by Fiber. ACM Trans. Graph. 28, 5, Article 164
(2009), 9 pages.

[22] Ira Kemelmacher-Shlizerman. 2016. Transfiguring
portraits. ACM Transactions on Graphics (TOG)
35, 4 (2016), 94.

[23] Tae-Yong Kim and Ulrich Neumann. 2002.
Interactive Multiresolution Hair Modeling and
Editing. ACM Trans. Graph. 21, 3 (2002), 620–629.

[24] Chuan Koon Koh and Zhiyong Huang. 2000.
Real-time animation of human hair modeled in
strips. In Computer Animation and Simulation
2000. 101–110.

[25] Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013.
Structure-aware Hair Capture. ACM Trans. Graph.
32, 4, Article 76 (2013), 12 pages.

[26] Oculus. 2016. Quill. (2016).
https://www.oculus.com/story-studio/quill/.

[27] Sylvain Paris, Will Chang, Oleg I. Kozhushnyan,
Wojciech Jarosz, Wojciech Matusik, Matthias
Zwicker, and Frédo Durand. 2008. Hair Photobooth:
Geometric and Photometric Acquisition of Real
Hairstyles. ACM Trans. Graph. 27, 3, Article 30
(2008), 9 pages.

[28] Mengqi Peng, Jun Xing, and Li-Yi Wei. 2018.
Autocomplete 3D Sculpting. ACM Trans. Graph.
37, 4, Article 132 (2018), 15 pages.

https://www.tiltbrush.com/
https://www.oculus.com/story-studio/quill/

[29] Tiziano Portenier, Qiyang Hu, Attila Szabó,
Siavash Arjomand Bigdeli, Paolo Favaro, and
Matthias Zwicker. 2018. Faceshop: Deep
Sketch-based Face Image Editing. ACM Trans.
Graph. 37, 4, Article 99 (2018), 13 pages.

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. 2017. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In
CVPR ’17. 652–660.

[31] Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru
Ibayashi, Linjie Luo, and Hao Li. 2018. 3D Hair
Synthesis Using Volumetric Variational
Autoencoders. ACM Trans. Graph. 37, 6, Article
208 (2018), 12 pages.

[32] Shogo Seki and Takeo Igarashi. 2017. Sketch-based
3D Hair Posing by Contour Drawings. In SCA ’17.
Article 29, 2 pages.

[33] Mike Seymour. 2017. Meet Mike. (2017).
https://www.fxguide.com/featured/real-time-mike/.

[34] Mike Seymour.
2018. Siren. (2018). https://www.fxguide.com/featured/
epics-state-of-unreal-virtual-human-gdc-day-2-part-1/.

[35] Olga Sorkine and Marc Alexa. 2007.
As-rigid-as-possible Surface Modeling. In SGP ’07.
109–116.

[36] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C.
Rössl, and H.-P. Seidel. 2004. Laplacian Surface
Editing. In SGP ’04. 175–184.

[37] Ryo Suzuki, Koji Yatani, Mark D. Gross, and Tom
Yeh. 2018. Tabby: Explorable Design for 3D
Printing Textures. CoRR abs/1810.13251 (2018).

[38] Paul Upchurch, Jacob R Gardner, Geoff Pleiss,
Robert Pless, Noah Snavely, Kavita Bala, and
Kilian Q Weinberger. 2017. Deep Feature
Interpolation for Image Content Changes.. In
CVPR ’17. 7064–7073.

[39] HTC Vive. 2017. MakeVR. (2017).
https://www.viveport.com/apps/

23d40515-641c-4adb-94f5-9ba0ed3deed5.

[40] Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining
Guo. 2009. Example-based Hair Geometry
Synthesis. ACM Trans. Graph. 28, 3, Article 56
(2009), 9 pages.

[41] Kelly Ward, Florence Bertails, Tae-Yong Kim,
Stephen R Marschner, Marie-Paule Cani, and

Ming C Lin. 2007. A survey on hair modeling:
Styling, simulation, and rendering. IEEE
Transactions on Visualization and Computer
Graphics 13, 2 (2007).

[42] Yanlin Weng, Lvdi Wang, Xiao Li, Menglei Chai,
and Kun Zhou. 2013. Hair interpolation for portrait
morphing. Computer Graphics Forum 32, 7 (2013),
79–84.

[43] Nora S. Willett, Wilmot Li, Jovan Popovic,
Floraine Berthouzoz, and Adam Finkelstein. 2017.
Secondary Motion for Performed 2D Animation. In
UIST ’17. 97–108.

[44] Jamie Wither, Florence Bertails, and Marie-Paule
Cani. 2007. Realistic Hair from a Sketch. In SMI
’07. 33–42.

[45] Jun Xing, Hsiang-Ting Chen, and Li-Yi Wei. 2014.
Autocomplete Painting Repetitions. ACM Trans.
Graph. 33, 6, Article 172 (2014), 11 pages.

[46] Jun Xing, Rubaiat Habib Kazi, Tovi Grossman,
Li-Yi Wei, Jos Stam, and George Fitzmaurice. 2016.
Energy-Brushes: Interactive Tools for Illustrating
Stylized Elemental Dynamics. In UIST ’16.
755–766.

[47] Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji
Yatani. 2015. Autocomplete Hand-drawn
Animations. ACM Trans. Graph. 34, 6, Article 169
(2015), 11 pages.

[48] Cem Yuksel, Scott Schaefer, and John Keyser. 2009.
Hair Meshes. ACM Trans. Graph. 28, 5, Article 166
(2009), 7 pages.

[49] Meng Zhang, Menglei Chai, Hongzhi Wu, Hao Yang,
and Kun Zhou. 2017. A Data-driven Approach to
Four-view Image-based Hair Modeling. ACM Trans.
Graph. 36, 4, Article 156 (2017), 11 pages.

[50] Yi Zhou, Liwen Hu, Jun Xing, Weikai Chen,
Han-Wei Kung, Xin Tong, and Hao Li. 2018.
HairNet: Single-View Hair Reconstruction Using
Convolutional Neural Networks. In ECCV ’18.
235–251.

APPENDIX

DATASET
In Figures 19 and 20, we provide the 30 base models
in our dataset of the scalp hair, with variations in hair
length, hairline, curliness, and hair parts (e.g. ponytail
and bun).

https://www.fxguide.com/featured/real-time-mike/
https://www.fxguide.com/featured/epics-state-of-unreal-virtual-human-gdc-day-2-part-1/
https://www.fxguide.com/featured/epics-state-of-unreal-virtual-human-gdc-day-2-part-1/
https://www.viveport.com/apps/23d40515-641c-4adb-94f5-9ba0ed3deed5
https://www.viveport.com/apps/23d40515-641c-4adb-94f5-9ba0ed3deed5

Figure 19: Our data set, part 1. We use the symbol “×2” at the top-right corner of a hairstyle to indicate it has a
flipped counterpart.

Figure 20: Our data set, part 2.

	Introduction
	Related Work
	Design Goals
	User Interface
	Method Overview
	Representation
	Database Construction
	Hairstyle Prediction
	Full-scale Hair Generation
	Blending
	Deformation
	Merging
	Hair Geometry Reconstruction

	Evaluation
	Results and Analysis
	Comparisons
	User study

	Limitations and Future Work
	Acknowledgments
	References
	Dataset

