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Abstract
Abstract: External fields act on the order parameter, the tensor which is describing the local order of 

molecules, driving the liquid crystal cells to their final configuration. The external actions can be an applied 

magnetic or electric field or the confinement created by the walls of the cell. Here we consider a nematic 

liquid crystal confined in a cylindrical cell. Besides elasticity, electric field and confinement, we consider 

the flexoelectricity too. Given the free energy density of the nematic, the corresponding Euler-Lagrange 

equation is solved numerically. A phase diagram of the director configuration according to the 

flexoelectricity of the material is obtained.
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Introduction

The free energy density of a liquid crystal is depending on the distortion of the local order parameter

from its uniformly aligned configuration. This quantity contains terms describing the coupling of elastic

strains and external fields. In some circumstances, the director field can exhibit a spatial undulated

distortion  too.  In  fact,  we  see  helicoidally  periodic  alignments  in  liquid  crystal  materials  which  are

cholesteric or ferroelectric [1]. In nematics, a periodic structure can appear spontaneously too, with

period that  can be controlled by external  factors  such as  applied fields,  saddle-splay  elasticity  and

asymmetric  anchoring  conditions  [2-4].  The  electric  field  controls  the  instability  produced  by  the

flexoelectric effect too [5-7].

In this paper we will consider a nematic liquid crystal confined in a cylindrical cell. Let us assume as

order parameter the director field n, describing the local mean orientation of molecules. The flexoelectric

contribution to  the bulk  free  energy is  given by fFlexo=−P∙E.  Flexoelectricity  is  a  property of  liquid

crystals  similar  to  the  piezoelectric  effect.  In  certain  anisotropic  materials,  which contain  molecular

asymmetry or quadrupolar ordering with permanent molecular dipoles,  an applied electric  field may

induce an orientational distortion. Conversely any distortion will induce a macroscopic polarization within

the material. The polarization vector P in the flexoelectric term is then described with a distortion in the



nematic director field: 

 The two terms in the polarization vector are due to the splay and the bend contribution. The coupling

of the polarization P with an external electric field results in the appearance of a periodic distortion. In

fact, Meyer showed that the infinite liquid crystal must be disturbed, the perturbation is periodic along

the director orientation and the period is inversely proportional to electric field strength [5]. The nematic

planar cell was studied in [7]. Here we will discuss the role of flexoelectricity in a confined geometry with

cylindrical symmetry. The problem of a cylindrical confinements had been addressed by the author in

previous papers [8,9].

Cylindrical cell

Here we are giving a reduced version of the theory proposed in [9]. Let us consider a cylinder with

radius R. In this cylindrical cell, we can imagine to have  a nematic liquid crystal. We use the frame as in

Figure 1 and solve the Euler-Lagrange equation in cylindrical coordinates. 

 

Figure 1: Cylindrical cell and frame of references on the left and on the right the angles of

director chosen for calculations

 

The bulk free energy density in the one elastic constant approximation, with an electric field applied

parallel to the z-axis, is given by: 

 

 In a simplified approach, we assume θ=θ(r), only depending on the radial distance, and moreover,



φ=0. The Euler-Lagrange equation and the bulk free energy density are [9]:

 Let us note the presence of the dielectric anisotropy in the term which is coupling electric field and

director. Moreover, let us write the surface energy density as:

 

 For an anchoring that is favouring an homeotropic alignment of the nematic perpendicular at the wall of

the cylinder, we use:

 

 If we want to avoid the presence of a defect at the axis of cylinder (z-axis), the director must escape

in the z-direction. The solution, if the applied electric field is zero, is given by an inverse tangent:

 

 This is a well-known solution obtained by Belavin and Polyakov [10]. To solve the equation in the case

of electric field different from zero, we choose a solution as:



 

 The second equation can be solved iteratively. In the numerical solution, it is observed that at the

fourth step of iteration the solution is within 0.1%. So we have: 

 

 To determine the value of parameter β we determine the solution minimizing the reduced total free

energy:

where L is an arbitrary length of the cylindrical cell.

 

Flexoelectricity

Let us consider the contribution of flexoelectricity to Euler-Lagrange equation. After calculation, we

see  that  this  contribution  depends  on  the  difference  between  the  splay  and  bend  flexoelectric

coefficients:



 

 Defining two parameters, the equation to solve is the following:

 

 After  the  numerical  solution,  in  Ref.[9],  we  gave  several  figures  illustrating  the  role  of  anchoring

parameter b and the dimensionless electric field parameter ξ.

 

Discussion

As it is intuitively expected, when the electric field is higher that a threshold value, the angle θ goes to

zero and the director field is parallel to the cylinder axis, in all the cell. If the flexoelectric parameter Π is

large,  a distorted  configuration (see the  Figure  2)  is  favoured,  and the threshold field  required for

suppressing this configuration is increased. Moreover, if the flexoelectric parameter is large, the   angle θ

starts to oscillate as the field increases. We must have a huge electric field to suppress the oscillating

distortion and have cosθ=0, that  is,  with all  the nematic  aligned parallel  to the field,  in a uniform

configuration. 

In the Figure 2, the phase diagram is shown, when anchoring parameter b is fixed and equal to 6. We

see three regions, denoted by U for uniform alignment of director parallel to z-axis, D for the director

with a deformed configuration, and O when the director is oscillating and cosine becomes negative too.

Angle θ turns more than π/2 on the distance R. 

A last note on the flexoelectric term. The flexoelectric vector is a sum of two contributions:

 



These two components which are perpendicular each other: when they are coupled with the electric field,

parallel to the cylinder axis, we have then the two contributions in the bulk energy with an opposite sign.

To conclude, let us discuss the saddle-splay contribution to the free energy. In the previously made

assumptions, (θ=θ(r), φ=0), this is a term which is simply renormalizing the value of the surface energy

and then it does not need  a further discussion. 

  

Figure 2. Phase diagram of the cylindrical confinement, when the anchoring parameter b is

fixed. The three regions are denoted by U for the uniform alignment of director parallel to

the cylinder axis, D when the director has a deformed configuration, and O if director is

oscillating and cosine becomes negative too.
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