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a b s t r a c t

Numerical kinetic models of plasma turbulence require careful treatment of conserved quantities. In the
collisionless limit, numerical dissipation can impact entropy in a non-controlledmanner. In this paper, the
impact of the error in entropy conservation is investigated. In a simulation of ion-acoustic turbulence, a
large error (15%) in entropy conservation is found. Surprisingly, this error is independent of the numerical
method, scheme, or number of grid points. Adding a collision operator resolves this issue, but only if the
collision frequency is large enough that it modifies the qualitative time evolution of observables, such as
electric field amplitude, anomalous resistivity, or phase-space structures.

© 2015 Elsevier B.V. All rights reserved.
For a wide range of astrophysical and laboratory plasma
phenomena, collisions are negligible. Then, the evolution of the
particle distribution in phase-space is usually described by the
Vlasov equation, which translates the fact that the distribution is
constant along particle orbits.

Accurate numerical simulation of collisionless plasmas requires
careful treatment of conserved physical quantities, such as total
mass, total energy and total entropy. For example, to obtain
the turbulent steady-state accurately, spurious heating must be
avoided. The numerical treatment of kinetic nonlinearities such
as particle trapping is particularly challenging. Indeed, trapping
involves the filamentation of phase-space (phase-space mixing),
whereby an initially smooth particle distribution is mixed by the
particle motion into very fine structures. Phase-space filaments
eventually become smaller than the numerical grid size. Then
information is inevitably lost, which breaks the conservation of
entropy. This problem is well-known for Vlasov codes [1], but the
impact on physics of interest, i.e. the evolution of coarse-grained
observables, is unknown.

In overcoming the numerical issues associated with phase-
space filamentation, one can distinguish three classes of approach.
The first approach is to add a collision operator to the model [2],
even if the collision frequency has to be artificially increased
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to overcome the issues. The second approach is to add artificial
filters [3] or damping [4] (it can be argued that Fourier codes [5]
belong to this class). The third approach is to simply let numerical
discretization replace collisions to dissipate the smallest scales and
coarse-grain average the distribution function in an uncontrolled
manner. For all three classes of approach, however, a concern is
that simple models of collisions, numerical filtering, or numerical
dissipation, are artificial, and may impact the physics of interest.

In this work, we report a systematic spurious entropy produc-
tion, of 15% of the initial entropy, when the fully-nonlinear tur-
bulent stage is reached, regardless of the numerical treatment.
Indeed, the issue is not limited to Vlasov codes. The same error is
found for fundamentally different types of simulation, i.e. Vlasov
(semi-Lagrangian) and particle-in-cell (PIC), different schemes and
different choices of grid sizes. This is shown in Fig. 1, which is the
main figure in this paper, and which is discussed in detail in Sec-
tion 3. Furthermore, the error is relatively insensitive to parame-
ters of the physical system. As expected, a collision operator with
velocity diffusion resolves the issue, but only if the collision fre-
quency is so large that it dominates the long-time evolution.

1. Model

We restrict the analysis to a collisionless, one-dimensional,
ion–electron plasma with an initial homogeneous current. We
choose physical parameters such that the evolution of the plasma
is dominated by ion-acoustic turbulence. Ion-acoustic waves
[6,7] are longitudinal electrostatic waves, which are commonly ob-
served in space and laboratory plasmas. The nonlinear saturation
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Fig. 1. Time-evolution of the perturbed electron entropy. Inset: zoom on the early
stage, in semi-logarithmic scale. The simulation parameters are given in Section 1.4.

Table 1
Normalization.

Physical quantity Normalization constant

Time ω−1
p,e

Particle charge e
Mass me
Length λD
Velocity vT ,e
Distribution f n0/vT ,e
Electric field mev

2
T ,e/(eλD)

Energy mev
2
T ,e

has been studied from the early 1960s [8–12]. Theory and exper-
iments indicate that ion-acoustic waves are key agents of mag-
netic reconnection (via anomalous resistivity) [13–16], turbulent
heating [17], particle acceleration [18], and play important roles
in the context of laser–plasma interaction [19]. Furthermore, ion-
acoustic waves constitute the basis for dominant fluctuations in
magnetically confined plasmas. Indeed, drift-waves [20] arise from
the ion-acoustic branch, modified by inhomogeneities and geom-
etry effects. Linear instability of ion-acoustic waves requires that
the velocity drift exceeds some finite threshold. However, nonlin-
ear theory [21–23] predicts that ion-acoustic turbulence can grow
nonlinearly, even for small drifts.

In the present work, we use a model of ion-acoustic turbulence
as a paradigm for kinetic models in the presence of strong
resonances.

1.1. Normalization

It is appropriate to normalize physical quantities with the
constants listed in Table 1, where λD is the Debye length, e = qi =

−qe is the elementary charge, n0 is the spatially-averaged plasma
density, and ms, ωp,s and vT ,s = (2Ts/ms)

1/2 are the mass, plasma
frequency and thermal velocity, respectively, of species s (s = i, e).

1.2. Model description

The evolution of each particle distribution, fs(x, v, t) is given by
the Vlasov equation,

∂ fs
∂t

+ v
∂ fs
∂x

+
qsE
ms

∂ fs
∂v

= C(fs), (1)

where C(fs) is an eventual collision operator.
The evolution of the electric field E(x, t) satisfies a current

equation,

∂E
∂t

= −


s

msω
2
p,s

n0qs


vfs(x, v, t) dv. (2)
Table 2
Relative error (order-of-magnitude) in energy and entropy conservation.

Total energy Entropy

Dissipative bump-on-tail 10−5 10−5

Ion-acoustic turbulence 10−3 10−1

The initial electric field is obtained by solving Poisson’s equation.
Analytically, satisfying Eqs. (1)–(2) at all times, if Poisson equation
is satisfied at t = 0, is equivalent to satisfying Eq. (1) and
Poisson equation at all times (given that the collision operator
conserves particle number andmomentum). Numerically, we have
thoroughly checked that there is no significant discrepancy in the
results between the method chosen in this work (solving Poisson
at t = 0 and solving Eq. (2) at each time step), and a method that
can seem more natural (i.e. solving Poisson at each time step).

The model is applicable as a statistical description of a
plasma when electromagnetic perturbations are dominated by
electrostatic waves in one direction. This is relevant for plasma
immersed in a strong, relatively homogeneous magnetic field [24].

1.3. Numerical codes

To investigate the impact of the numerical method, and of the
numerical scheme, we perform the same simulation with three
different kinetic codes.

The first code is the semi-Lagrangian code COBBLES, which
is based on the splitting method [3], and on the Constrained-
Interpolation-Profile, Conservative Semi-Lagrangian (CIP–CSL)
scheme [25]. In the CIP–CSL scheme, the evolution of space- and
velocity-integrals of the distribution function is computed from
separate kinetic equations, along with the evolution of the distri-
bution function itself, in a way that keeps a flux balance between
neighboring grids. The implementation guarantees the local con-
servation of density, up to the machine precision. COBBLES was
described, verified, validated and benchmarked in Ref. [26] for a
dissipative bump-on-tail (single species) model. COBBLES is capa-
ble of accurate long-time simulations, in various regimes, including
chaotic ones [27,28], of the bump-on-tail instability in a one-
species, 1D plasma. COBBLES was recently extended to treat two
species kinetically. The extended code and its diagnostics are ver-
ified and benchmarked in the Appendix, by recovering several
results of Ref. [12], including statistical properties of anomalous
resistivity.

As a side note, and a general message in computational science,
let us emphasize that the conservation properties strongly depend
on the simulated physics. With the same COBBLES code, for
two-species ion-acoustic turbulence, compared to one-species
simulations of the dissipative bump-on-tail instability [29], the
conservation of entropy and total energy is degraded by several
orders of magnitude. Table 2 shows the order-of-magnitude of
relative error in energy and entropy conservation for these two
models for the same code (COBBLES).

The second code is the semi-Lagrangian code V1D1, which was
developed at the British Antarctic Survey in Cambridge, originally
by R.B. Horne and M.P. Freeman, and then further by C.E.J. Watt.
V1D1 is based on the MacCormack method, which is an explicit
finite difference method with predictor–corrector algorithm. It
was used in many works, e.g. Refs. [30,12].

The third code is a simple PIC code, PICKLES (Particle-In-Cell
Kinetic Lazy Electrostatic Solver), which is based on a fourth-
order Runge–Kutta method. PICKLES can handle both full-f and
δf treatments [23]. In this paper we use the δf version only. We
denote the number of marker-particles per species as Np.

1.4. Numerical simulations

Unless stated otherwise, and except in the appendix,we analyze
a single physical system. The mass ratio is mi/me = 4. The system
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Fig. 2. Time-evolution of the electric field amplitude (moving time-average). Inset:
zoom on the peak. The legend is shared with Fig. 1.

Fig. 3. Snapshots of velocity distributions.

size is 2π/k1, where k1 = 0.2. The initial velocity distribution for
each species is a Gaussian,

f0,s(v) =
n0

(2π)1/2vT ,s
exp

−

v − v0,s

2
2v2

T ,s
(3)

with v0,i = 0 and v0,e = 2.1 (slightly above linear instability
threshold). The ion and electron temperatures are equal (vT ,i =

0.5). Boundary conditions are periodic in real space, and the
implementation ensures zero-particle flux at the velocity cut-offs
v0,s ± vcut,s, with vcut,i = 3.5 and vcut,e = 7, in order to avoid
spurious leakage of particles [26].

Firstly, the collision operator in Eq. (1) is disabled. Thus,
numerical discretization replaces collisions to dissipate the
smallest scales and coarse-grain average the distribution function.

The only varying parameters, among the simulations presented
in the next section, are the numerical scheme (semi-Lagrangian
or PIC), the numerical method (CIP–CSL, MacCormack, or fourth-
order Runge–Kutta), or the number of grid points or particles.

For COBBLES and V1D1, the numbers of grid points in
configuration-space and velocity-space are denoted as Nx and Nv ,
respectively. For COBBLES, the time-step width is adaptive, with
a maximum ∆t = 0.1. As the electric field amplitude grows,
the time-stepwidth is halved before the Courant–Friedrichs–Lewy
condition is violated. For PICKLES, the number of particles is
denoted as Np.

2. Evolution

Fig. 2 shows the time-evolution of the electric field amplitude,
Emax(t) ≡ maxx [E(x, t)]. All codes are in quantitative agreement
throughout the linear (t < 0.57×103), and early-nonlinear stages
(0.57 × 103 < t < 0.75 × 103) of the evolution.

At t ≈ 0.75× 103, the V1D1 simulation diverges. Increasing the
number of grids, the velocity cut-offs, or decreasing the time-step
width does not solve this numerical issue, but rather only slightly
postpones the time of divergence.

The other simulations are in qualitative agreement throughout
the long-time nonlinear evolution. However, the PICKLES simula-
tions underestimate the saturated amplitude. Indeed, the error in
total energy conservation is of the order of 1% for PICKLES, and less
than 0.1% for COBBLES.

Snapshots of the velocity distributions are shown in Fig. 3 for
the COBBLES simulation for Nx × Nv = 1024 × 1024. This figure
shows that most of the redistribution of electrons occurs between
t ≈ 0.7 × 103 and t ≈ 0.9 × 103.

3. Entropy production

Let us now focus on the entropy. Numerically, it is estimated as

S(tn) = −

Nx
i=1

Nv/2
j=1


f ni,j log f

n
i,j + f ni,Nv+1−j log f

n
i,Nv+1−j


∆x∆v. (4)

3.1. Collisionless limit

In the absence of a collision operator, entropy is trivially
conserved in the physical (continuous) model. In the numerical
simulation,wemeasure the error δS ≡ S(t)−S0, where S0 ≡ S(t =

0). Fig. 1 shows the time-evolution of the error in electron entropy
conservation, in COBBLES for four different numbers of grid points,
in V1D1, and in PICKLES, for two different numbers of particles.
The error in total electron entropy conservation is negligible until
t ≈ 0.7 × 103. Then, it quickly increases to 15%. This entropy
production is remarkably insensitive to the numerical treatment.
The order-of-magnitude of the error is the same for PIC or Vlasov
codes, for CPI–CSL or MacCormack schemes, for different numbers
of grid points, for different numbers of particles, and for widely
different time-step widths (not shown here).

In the case of COBBLES, we also investigated the impact of
velocity cut-offs, but found no impact, as long as vcut was large
enough. In the COBBLES simulations discussed in this paper, the
cut-offs are such that the distribution function at the cut-offs
is typically between 10−25 and 10−20 (normalized to its peak).
Doubling the cut-off velocity (along with Nv) did not have any
impact that could be distinguished from fluctuations due to
random phases of initial perturbation.

Fig. 4 shows how the entropy conservation error depends on
three physical parameters, the initial velocity drift vd ≡ v0,e − v0,i,
the mass ratio mr ≡ mi/me, and the system size as defined by
k1. The velocity drift is normalized by the critical value for linear
instability, vd,cr = 1.96 for mr = 4, and vd,cr = 3.93 for mr = 25.
Although the error in entropy conservation decreases as linear
marginality is approached, it saturates to a large value, of the order
of 10%. The problem is slightly worse for larger system size, and
slightly milder for larger mass ratio, but the error stays within the
same order of magnitude.

3.2. Impact of collision operator

As expected, the entropy balance can be recovered by includ-
ing a collision operator that efficiently dissipates small scale struc-
tures. However, our simulations suggest that the error in entropy
balance stays within the same order of magnitude as in the colli-
sionless case, unless collision frequency is so large that it modifies
the qualitative behavior of observables, such as the electric field.
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Fig. 4. Peak relative entropy conservation error, as a function of the initial velocity
drift vd ≡ v0,e − v0,i , normalized by the linear instability threshold vd,cr . The
error bars correspond to standard deviations, each based on four simulations with
different numbers of grid points.

Fig. 5. Peak relative error in entropy balance, as a function of the collision
frequency. The simulation parameters are the same as in Figs. 1–3, except for the
presence of collisions.

We now include a velocity diffusive collision operator,

C(fs) = νD,s
∂2(fs − f0,s)

∂v2
, (5)

where νD ≡ νD,e is a free parameter, and νD,i = νD,e(me/mi)
1/2.

In this case, the continuous system satisfies an entropy balance for
each species,

dδS
dt

=
dδSC
dt

≡ −


νD,s

∂2(f − f0)
∂v2

log f dx dv. (6)

In the simulations, we measure the time integral δS − δSC (in
order to have a measure with the same dimension as above). Then
we define the error in entropy balance as (δS − δSC )/S0. Fig. 5
shows how the error in entropy balance varies as a function of
the collision frequency νD. The error decreases dramatically with
increasing collision frequency. At νD/ωp,e = 5 × 10−5, it is one
order-of-magnitude lower than in the collisionless limit. However,
for such a value of collision frequency, the time-evolution, and
steady-state value of electric field are significantly changed, and
sensitive to the collision frequency. This can be seen in Fig. 6, which
compares the time-evolution of electric field for different collision
frequencies. Similar conclusions were obtained for the anomalous
resistivity with the same threshold in νD.

The collision frequency νD/ωp,e = 10−5 corresponds in order-
of-magnitude to rather dense parts of the interplanetary medium,
with e.g. density 103 cm−3 and temperature 200 K. If one were
Fig. 6. Time-evolution of the electric field amplitude for different values of the
velocity-diffusion collision frequency.

Fig. 7. Perturbation in electron velocity distribution. (a) Simulation A. (b) Simula-
tion B. Solid curves: initial fit, Eq. (7). Dashed curves: analytical solution, Eq. (8), of
diffusion equation from initial fit.

to model ion-acoustic turbulence in such a plasma with a kinetic
numerical simulation, one could perform a first simulation, sim-
ulation A, with a collision frequency calculated from equilibrium
plasma parameters, νD/ωp,e = 10−5. As suggested by the present
work, one would then be confronted with a spurious entropy pro-
duction of about 10%. One could then try to artificially increase
the collision frequency in a second simulation, simulation B, to
e.g. νD/ωp,e = 10−4, even though the target plasma still has a col-
lisionality νD/ωp,e = 10−5. Spurious entropy production in simu-
lation B would then be reduced to less than 1%. Let us then address
the following question: which simulation, A or B (as indicated by
arrows in Fig. 5), better represents the target analytical model, that
is Eqs. (1), (2) and (5) with νD/ωp,e = 10−5. Fig. 7 compares snap-
shots of the perturbation in electron velocity distribution, ⟨δfe⟩ =

⟨fe⟩x − f0,e, in simulations A and B. At t = t0 ≡ 1500ω−1
p,e , both
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simulations feature a BGK-like flattening, which can be fitted as

⟨δfe⟩ (t0) = a0 exp


−


v − v1

u0

2


− a0 exp


−


v − v2

u0

2


. (7)

Between t = t0 and a later time t = t1 ≡ 4000ω−1
p,e , the spatially-

averaged evolution of the BGK-like structure is dominated by col-
lisional diffusion [31]. Therefore, the electron velocity distribution
approximately follows

⟨δfe⟩ (t) = a(t) exp


−


v − v1

u(t)

2


− a(t) exp


−


v − v2

u(t)

2


, (8)

with a(t) = a0[1 + 4νD(t − t0)/u2
0]

−1/2 and u(t) = [u2
0 + 4νD(t −

t0)]1/2. The analytical prediction for the velocity distribution of the
BGK-like structure at t = t1 is shown as dashed curves in Fig. 7, for
νD/ωp,e = 10−5 (corresponding to the target analyticalmodel).We
observe that simulation A is in quantitative agreement with this
analytical prediction, but not simulation B. Of course, the result of
simulation B would be in quantitative agreement with the analyt-
ical prediction if we had chosen νD/ωp,e = 10−4. However, that is
not our target value for the analytical model, but rather the value
to which we artificially increased collision frequency in numerical
simulation B in order to mitigate the spurious entropy production
problem.

At least from the point-of-view of the evolution of phase-
space structures, there are regimes where the analytical solution
is closer to numerical simulations with large entropy balance
error, than to numerical simulations with small entropy balance
error but artificially large collision frequency. Therefore, artificially
increasing collision frequencymay not be a suitable solution to the
entropy problem in general.

4. Discussion

The spurious entropy production is surprisingly insensitive to
the numerical treatment, and occurs during particle redistribution.
This suggests that the error is due to the generation of small scales
during redistribution, and that, while the diffusion mechanism is
artificial, the magnitude of the entropy source is representative
of physical dissipative processes. Similar observations and conclu-
sions were obtained for numerical models of the atmospheric cli-
mate system [32].

Particle redistribution is known to be associated with the for-
mation of self-trapped structures in phase-space [23,33], with var-
ious sizes. These structures aremeasured by the phasestrophy [34],
which is related to entropy. Entropy production may be related to
the production of phase-space structures, which are too small to
be resolved with any reasonable number of grid points.

5. Conclusions

In the fully-nonlinear stage of collisionless ion-acoustic turbu-
lence, a spurious, ∼10% entropy production was observed, regard-
less of the numerical treatment, and relatively insensitive to the
parameters of the physical system. One hypothetical explanation
is that the entropy production is a measure of a physical (as op-
posed to numerical) process, namely the creation of structures
with scales much smaller than reasonably accurate grids.
The above analysis suggests that there are regimes where
accuracy of entropy conservation is not a good measure of the
accuracy of the time-evolution of most coarse-grain observables
such as density, temperature, electromagnetic fields, anomalous
resistivity, or phase-space structures.
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Appendix. CIP–CSL simulation of 2-species plasma

In this paper, the CIP–CSL scheme was applied for the first
time to ion-acoustic turbulence. In practice, this work consists
of an extension of the single-species code COBBLES to 2 species.
Although this extension may seem like a trivial task, it actually
required several key improvements, such as the use of the in-
pairs summation method, and computing the current not from the
distribution function f , but from the perturbed, velocity-integrated
distribution function δσv . These improvements were necessary
because fully-nonlinear simulations of ion-acoustic turbulence
are much more stringent than those of single-mode Langmuir
wave, especially for real mass ratio. Therefore careful verification
and benchmarks are necessary steps before exploiting the code
for investigating new physics of ion-acoustic turbulence. These
verifications and benchmarks are described below.

A.1. Numerical scheme

The variables are sampled on a uniform Eulerian grid (xi, vj),
where i = 1 . . .Nx and j = 1 . . .Nv . f ni,j is the value of the
distribution f at the grid point of coordinates xi = i∆x, vj =

−vcut + j∆v at the time tn = n∆t . The density within a cell and
the line densities are defined as,

ρn
i,j =

 xi+1

xi

 vj+1

vj

f̃ n(x, v) dx dv, (A.1)

σ n
x i,j =

 xi+1

xi
f̃ n(x, vj) dx, (A.2)

σ n
v i,j =

 vj+1

vj

f̃ n(xi, v) dv. (A.3)

The evolution of electric field, Eq. (2), is treated by a forward Euler
scheme, or, alternatively, by solving Poisson equation at each time-
step in Fourier space.When the current equation is used, we found
that the inaccuracy in total energy conservation is reduced by
evaluating the current from δσv = σv(t) − σv(t = 0) instead of
from f (t).

A.2. Parameters

Hereafter, we adopt the physical parameters of Ref. [12]. The
mass ratio is mi/me = 25. The system size is 2π/k1, where k1 =

0.0147. The electron mean velocity is v0,e = 1.2
√
2 = 1.70

(note that the present definition of thermal velocity differs from
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Fig. A.8. Absolute value of relative error in particle number, total energy and
entropy conservation.

the reference by a factor
√
2). The temperature ratio is Te/Ti = 2

(vT ,i = 0.141). The initial velocity distributions are shown in
Fig. A.12. The velocity cut-offs are ±vcut,s, with vcut,i = 2.87 and
vcut,e = 10.2. The initial electron distribution is perturbed as

fe =


1 +

nmax
n=1

knϵ cos(knx + φn)


f0,e(v), (A.4)

where kn = nk1, nmax = 53 (kmax = 0.78), φn is a random phase,
and ϵ = 6.76 × 10−5, which corresponds to a thermal fluctuation
level.

A.3. Conservation properties

In the numerical simulation, velocity-integrals are calculated
using the in-pairs method. The total number of particles, or
equivalently, total mass, is obtained as

N(tn) =

Nx
i=1

Nv/2
j=1


ρn
i,j + ρn

i,Nv+1−j


. (A.5)

The total energy is given byH = Ti +Te +W , where T is the kinetic
energy,

T (tn) =
m
2

Nx
i=1

Nv/2
j=1


v2
j f

n
i,j + v2

Nv+1−jf
n
i,Nv+1−j


∆x∆v, (A.6)

andW is the electric-field energy,

W (tn) =
1
2

Nx
i=1

E2(xi, tn)∆x. (A.7)

In the above definitions, we dropped the species subscript s.
Fig. A.8 shows the absolute value of relative error in particle

number and energy (e.g. |δN|/N(0), where δN ≡ N(t) − N(0))
in a simulation with Nx = 1024 and Nv = 2048 grid points.
This computation, which extends to t = 2000 (not shown here)
took 4 real-world hours on 64 parallel processors, using Cray XT4
system. The relative error in total mass conservation is equal to
the machine precision (10−14%). The relative error in total energy
is below 0.1%.

Fig. A.9 shows the relation between kinetic energy and field
energy. Note that the field energy is much smaller than the
variation of kinetic energy of any one species. Thus in terms of
field energy only, the energy conservation is relatively inaccurate,
|δH|/W (t) ∼ 0.5, since in this point-of-view the field energy is
compared to the small difference between |δTi| and |δTe|. We also
checked convergence, that is the error for each conserved quantity
decreases with increasing grid points and decreasing time-step
width. Similar results were obtained with simulations where
Poisson equation is solved at each time-step instead of Eq. (2).
Fig. A.9. Energy balance. Field energy and variation of total kinetic energy, both
magnified 10 times, as well as variation in kinetic energy for each species.

Fig. A.10. Time-series of anomalous resistivity, for 3 different sets of initial random
phases. The vertical axis is normalized to allow direct comparison with Fig. 1(a) of
Ref. [12].

A.4. Benchmark

We benchmark the two-species extension of the COBBLES code
by reproducing results of Ref. [12], which were obtained from the
V1D1 code, for both small and large mass ratios.

A.4.1. Small mass ratio
We ran 128 simulations with different sets of initial random

phases φn. Fig. A.10 shows the evolution of anomalous resistivity
for three of these runs. The vertical axis is multiplied by a factor
such that the value can be read directly as the value of resistivity
in units of Ωm for the plasma parameters of the reference. There
is a good qualitative agreement with the reference. Although the
fluctuations in the final stage seem smaller than in the reference,
we will see that statistically this is not the case. Here, anomalous
resistivity η is defined in a way which is more general but slightly
different than the reference,

(pi − pe) η = E0 −
mi

mi + me

d (pi − pe)
dt

, (A.8)

where E0 is the spatial average of the electric field, and ps ≡
vfsdxdv is the momentum of species s. However, since E0 = 0,

the definitions differ only by a factor 1/(1+me/mi) = 0.96 in this
case.

Fig. A.11 shows the evolution of the fastest linearly growing
mode for the three same runs. Similarly, the vertical axis is
multiplied by a factor such that the value can be read directly as
the value of Ek in units of Vm−1 for the plasma parameters of the
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Fig. A.11. Time-series of Fourier component k = 0.501 of the electric field. The
vertical axis is normalized to allow direct comparison with Fig. 1(b) of Ref. [12].

Fig. A.12. Snapshots of velocity distributions. The axes are normalized to allow
direct comparison with Fig. 1(c) of Ref. [12].

Fig. A.13. Snapshots of electric field spectrum in k-space. The axes are normalized
to allow direct comparison with Fig. 2 of Ref. [12].

reference. The linear growth rate is recovered, saturation occurs at
a similar time (between t = 200 and t = 250), and the value at
t = 350 agrees with the one run shown in the reference.

Fig. A.12 shows snapshots of the velocity distributions (spatial
averages of fs). Again, one can compare directly the latter figure
with the reference, and observe a good quantitative agreement, for
example for the size of the plateau.

Fig. A.13 shows snapshots of electric field spectrum in k-
space, at four different times. Again, one can compare directly the
latter figure with the reference. Although the initial conditions
are slightly different for k > kmax, the spectrum reproduces the
evolution observed in the reference.Many features, such as a broad
Fig. A.14. Mean value and ±3σ curves, for ensembles of 32 and 128 runs. The
vertical axis are normalized to allow direct comparison with Fig. 4(b) of Ref. [12].

Fig. A.15. Time-series of anomalous resistivity, for real mass ratio. The vertical axis
is normalized to allow direct comparison with Fig. 8(a) of Ref. [12].

pick around k = 0.1 at t = 130, or a Ek ∼ k−3 law for high k at
t = 300, are in agreement with the reference. This comparison is
important to ensure that the field equation is accurately treated.

Reproducing fully-nonlinear, turbulent time-evolution is a
stringent test for a numerical code. However,meaningful quantita-
tive benchmark requires statistical analysis. Fig. A.14 shows the av-
erage η̄ of the anomalous resistivity, aswell as η̄±3σ curves,where
σ is the standard deviation, for an ensemble of 128 runs. There is a
satisfying quantitative agreement with the reference, although we
obtain a larger standard deviation, up to 40% higher than the ref-
erence. To show that the average and the standard deviation con-
verged, a η̄ + 3σ curve, obtained for an ensemble of 32 runs, is
super-imposed.

In the reference, the skewness and kurtosis of the probability
distribution of η are also calculated. However, 128 is not a high
enoughnumber of ensemble for skewness and kurtosis to converge
in the present series of simulations.

A.4.2. Real mass ratio
In this subsection, we benchmark simulations with real

ion–electron mass ratio. We adopt the parameters of Table 2 in
Ref. [12]. The mass ratio is mi/me = 1836.15, the system size is
2π/k1, where k1 = 0.0197. The electron drift velocity is v0,e =

1.70. The temperature ratio is Te/Ti = 2 (vT ,i = 0.0165). The ve-
locity cut-offs are vcut,i = 0.358 and vcut,e = 10.2. The parameters
of initial electron distribution are nmax = 43 (kmax = 0.847), and
ϵ = 6.76 × 10−5. The grid points numbers are Nx = 1024 and
Nv = 4096.

Fig. A.15 shows the evolution of anomalous resistivity. There is a
good qualitative agreement with the reference. Unfortunately, the
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Fig. A.16. Time-series of Fourier component k = 0.532 of the electric field for real
mass ratio. The vertical axis is normalized to allow direct comparison with Fig. 8(b)
of Ref. [12].

Fig. A.17. Snapshot of distribution functions, at t = 1600, for real mass ratio. (a)
Electron distribution. (b) Ion distribution. The axes are normalized to allow direct
comparison with Fig. 9 of Ref. [12], except for the color code. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

reference does not include statistical investigation of anomalous
resistivity.

Fig. A.16 shows the evolution of the fastest linearly growing
mode. The linear growth rate is recovered, saturation occurs at a
similar time (between t = 1100 and t = 1200), and the saturated
value is 10−3 < Ek < 10−2, in agreement with the reference.

Fig. A.17 shows a snapshot of electron and ion distribution func-
tions at t = 1600. Many features coincide with the distribution
shown in Fig. 9(b) and (d) in the reference, namely the electron is-
land sizes ∆v/

√
2 from 0.3 to 2 and 3.97∆x from 50 to 100, the

merging process e.g. around 3.97x = 100, and the absence of is-
land in the ion distribution.
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