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In this paper, we establish a probabilistic representation for two integration by parts formulas, one being of Bismut-Elworthy-Li's type, for the marginal law of a one-dimensional diffusion process killed at a given level. These formulas are established by combining a Markovian perturbation argument with a tailor-made Malliavin calculus for the underlying Markov chain structure involved in the probabilistic representation of the original marginal law. Among other applications, an unbiased Monte Carlo path simulation method for both integration by parts formula stems from the previous probabilistic representations.

Introduction

In this article, we consider the following one-dimensional stochastic differential equation (SDE in short) [START_REF] Agarwal | Finite variance unbiased estimation of stochastic differential equations[END_REF] X t " x `ż t 0 bpX s qds `ż t 0 σpX s qdW s , x P R where the coefficients b, σ : R Ñ R are smooth and bounded functions and pW t q tě0 stands for a onedimensional Brownian motion on a given filtered probability space pΩ, F, pF t q tě0 , Pq. The aim of this paper is to provide a probabilistic representation for two integration by parts (IBP) formulas for the marginal law of the process X killed at a fixed given level L. To be more specific, for a starting point x ě L, let τ " inf tt ě 0 : X t ă Lu be the first hitting time of the level L by the onedimensional process X. For a given finite horizon T ą 0, we are interested in establishing probabilistic representations for IBP formulae related to the following quantities Erf 1 pX T q1 tτ ąT u s and B x Erf pX T q1 tτ ąT u s [START_REF] Akahori | On a symmetrization of diffusion processes[END_REF] where f is a real-valued smooth function defined on rL, 8q. Extensions to non-smooth functions or to the transition density of the killed process are also obtained.

In the recent past, IBP formulae have raised a lot of interest as these explicit formulae can be further analyzed to obtain properties of densities or for Monte Carlo simulation among other applications, see Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] or Malliavin and Thalmaier [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF]. The former quantity in [START_REF] Akahori | On a symmetrization of diffusion processes[END_REF] is commonly considered in the literature on Malliavin calculus, while the latter quantity is referred in the literature to as the Bismut-Elworthy-Li (BEL for short) formula. The BEL formula is of interest for many practical applications such as the numerical computation of price sensitivities in finance for Delta hedging purpose. For a more detailed discussion on this topic, we refer the interested reader to Fournié and al. [START_REF] Fournié | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF], Fournié and al. [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF], Gobet et al. [START_REF] Gobet | Computation of Greeks for barrier and look-back options using Malliavin calculus[END_REF] [START_REF] Bernis | Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options[END_REF] for a short sample.

In particular, in Section 2.6 of [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF], the authors propose a continuous time version of the IBP formula for d-dimensional diffusion process X killed when it exits an open sub-domain D of R d . Denoting by τ the first exit time of X from D, the formula writes B x Erf pX T q1 tτ ąT u s " Erf pX T q1 tτ ąT u Hs where H has an explicit expression using stochastic integrals. Extensions have also been proposed by Arnaudon and Thalmaier [START_REF] Arnaudon | Gradient estimates for positive harmonic functions by stochastic analysis[END_REF], [START_REF] Arnaudon | The differentiation of hypoelliptic diffusion semigroups[END_REF]. At this stage, it is important to observe that, from a numerical perspective, these formulae will inevitably involve a time discretization, thus introducing a bias, in order to devise a Monte Carlo simulation method, as it is already the case for the quantity Erf pX T q1 tτ ąT u s, see e.g. Gobet [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF], Gobet and Menozzi [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF]. As observed in [START_REF] Arnaudon | The differentiation of hypoelliptic diffusion semigroups[END_REF], it may also require to compute the solution of a control problem which can be done off-line. One may thus claim as stated at the beginning of Section 2.6 in [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF]: "Its Monte-Carlo implementation, which has not yet been done, seems to be relatively expensive in computing time".

Our approach is probabilistic and relies on a perturbation argument of Markov semigroups to derive a probabilistic representation for the marginal law of the killed process based on a simple Markov chain approximation scheme for which we develop an appropriate Malliavin calculus machinery.

The main novelty in comparison with the aforementioned previous works lies in the fact that an unbiased Monte Carlo simulation method directly stems from the integration by parts formulae derived here. One may thus devise an estimator which does not involve any bias but only a statistical error. To the best of our knowledge, this feature appears to be new. As a by product of our analysis, we propose a probabilistic representation for the two derivatives B x ppT, x, zq and B z ppT, x, zq where p0, 8q rL, 8q 2 Q pT, x, zq Þ Ñ ppT, x, zq stands for the transition density evaluated at terminal point z at time T of the process X starting from x and killed at level L. We also point out that devising a Monte Carlo estimator for IBP formulae without introducing a bias from the exact simulation methods of Jenkins [START_REF] Jenkins | Exact simulation of the sample paths of a diffusion with a finite entrance boundary[END_REF] or Herrmann and Zucca [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF] does not seem to be apparent. An extension of the exact simulation method introduced by Beskos and al. [START_REF] Beskos | Retrospective exact simulation of diffusion sample paths with applications[END_REF] to compute the two first derivatives with respect to the starting point x of the quantity Erf pX x T qs, X being a one-dimensional diffusion with constant diffusion coefficient, has been recently proposed by Tanré and Reutenauer [START_REF] Reutenauer | An unbiased Monte Carlo estimator for derivatives[END_REF]. However, it seems difficult to implement from this method a Monte Carlo estimator for the aforementioned derivatives of the transition density of the diffusion without introducing any bias.

The first step towards obtaining an IBP formula is to prove a probabilistic representation for the marginal law of the killed diffusion process, in the spirit of Bally and Kohatsu-Higa [START_REF] Bally | A probabilistic interpretation of the parametrix method[END_REF] which developed such a formula for multi-dimensional diffusion processes (without stopping) and some Lévy driven SDEs by means of a probabilistic perturbation argument for Markov semigroups. We also refer the reader to Labordère et al. [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF] and Agarwal and Gobet [START_REF] Agarwal | Finite variance unbiased estimation of stochastic differential equations[END_REF] for some recent contributions in that direction for multi-dimensional diffusion processes.

Such representation involves a simple Markov chain structure evolving along a time grid given by the jump times of an independent renewal process. A similar representation was derived by the same authors in [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF] by means of analytic arguments. However, the representation obtained here is different and more amenable for the implementation of Monte Carlo simulation methods or to establish IBP formulae.

Once such representation is established, we then want to prove suitable IBP formulae using the underlying Markov chain structure and eventually the noise provided by the jump times. For this purpose, we set up a tailor-made Malliavin calculus for this new approximation process and perform a careful propagation argument of spatial derivatives, backward in time for the first quantity in [START_REF] Akahori | On a symmetrization of diffusion processes[END_REF] and forward in time for the second quantity in [START_REF] Akahori | On a symmetrization of diffusion processes[END_REF].

These developments are not free of mathematical hurdles. In fact, the proposed methodology leads to the appearance of boundary terms which have to be treated carefully. The key idea that we develop to deal with this issue consists in using the noise provided by the jump times. Contrary to the IBP formulae developed here, we point out that in most cases the explicitness of the IBP formulae for diffusions killed at a boundary demands a number of simplifications and approximations. A technical argument commonly used consists in performing a localisation of the underlying process in order to ensure that it is not close to the boundary. This technique is successful but has some theoretical and practical limitations as shown in Delarue [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF], [START_REF] Gobet | Computation of Greeks for barrier and look-back options using Malliavin calculus[END_REF] and Nakatsu [START_REF] Nakatsu | Integration by parts formulas concerning maxima of some SDEs with applications to study on density functions[END_REF]. This is one of the main reasons for the previously quoted statement in Section 2.6 of [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF].

We finally emphasize that the variance of the Monte Carlo estimators associated to the IBP formulae established here tends to be large and even infinite. This feature is not new and appears to be reminiscent of the probabilistic representation originally obtained in [START_REF] Bally | A probabilistic interpretation of the parametrix method[END_REF]. Importance sampling or higher order methods have been proposed to circumvent this issue in the case of multi-dimensional diffusions, see Andersson and Kohatsu-Higa [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF] and more recently Andersson et al. [START_REF] Andersson | Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations[END_REF]. Following the ideas developed in [START_REF] Andersson | Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations[END_REF], we show how to achieve finite variance for the Monte Carlo estimators obtained from the probabilistic representation formulas of the marginal law of the killed process and of both IBP formulas by employing an importance sampling scheme on the jump times of the renewal process. We finally provide some numerical tests illustrating our previous analysis.

The article is organized as follows. In Section 2, we provide some basic definitions, assumptions and present a reflection principle based on a simple one step Markov chain that will play a central role in our probabilistic representations for the marginal law of the killed process and for our IBP formulae. In addition, we also construct the adequate Malliavin calculus machinery related to the underlying Markov chain upon which both IBP formulae are made. In Section 3, the probabilistic representation for the marginal law of the killed process, based on the Markov chain of Section 2, is established. The change from the process X to the Markov chain coming from the reflection principle of Section 2 simplifies our analysis as all the irregularities of the process appear as indicator functions. Section 4 is devoted to the main ingredients to obtain our first IBP formula, that is, the IBP formula for the quantity Erf1 pX T q1 tτ ąT u s.

These ingredients are put to work in Section 5. Theorem 5 is the main result of this section. As a by product, we obtain a probabilistic representation for the first derivative of the transition density of the killed process with respect to its terminal point in Corollary 1. In Section 6, we establish the BEL formula for the law of the killed process. The main result of this section is Theorem 7 and, as a by product, we obtain a probabilistic representation for the first derivative of the transition density of the killed process with respect to the initial condition x in Corollary 2. Many of the proofs of Sections 3 and 4 are technical and postponed to the appendix in Section 10. In Section 7, we show how to achieve finite variance for our unbiased Monte Carlo estimators by an importance sampling technique that we briefly present. Some numerical results are presented in Section 8. Clearly, one needs to study numerical issues in more detail and these are left for later studies.

Notations. For a fixed given point z P R, the Dirac measure is denoted by δ z pdxq. Derivatives may be denoted by f 1 pxq in the one-dimensional case or by B i f pxq in the multi-dimensional case for the partial derivative with respect to the i-th variable appearing in the multivariate function f or also by B i

x f pxq " f piq pxq where the latest is used in functions of one variable and the former is used mostly for multivariate functions.

We will often work with continuous or smooth functions defined on rL, 8q. In order to shorten notation, we will consider their extensions 1 on R. This is done just in order to shorten the length of equations and notation. Therefore all statements can be rewritten using the same assumptions but restricted to the domain rL, 8q.

The space of functions which are k-times continuously differentiable on a closed domain D is denoted by C k pDq. At the boundary points of D, all derivatives are considered as limits taken from the interior of D only. In the case that the derivatives are bounded, the space of corresponding functions is denoted by C k b pDq, k P N Y t0, 8u. In particular, note that functions in C 1 b may not be bounded but are at most linearly growing. Finally, C k p pDq denote the class of k-times differentiable functions with at most polynomial growth at infinity. The space of p-integrable random variables (r.v.'s) is denoted by L p with its extension L 8 for p " 8.

Given a measure space S, the space of real valued Borel measurable functions on S will be denoted by MpSq. We also introduce the simplex A n :" tt P p0, T s n ; 0 ă t 1 ă ¨¨¨ă t n ď T u, n P N where T is fixed throughout the paper.

The transition density function at x of the standard Brownian motion at time t is denoted by gpt, xq " p2πtq ´1{2 expp´x 2 {p2tqq. Its associated Hermite polynomials of order i, i P N, are defined by H i pt, xq " pgpt, xqq ´1B i

x gpt, xq. In order to simplify lengthy equation, we may use the symbol E " to mean that two quantities are equal in expectation. Sometimes the same symbol maybe used for equality on conditional expectation. This will be clearly indicated at the point where it is used.

Generic constants are usually denoted by C and are independent of all variables unless otherwise explicitly stated. As usual they may change value from one line to the next.

As we will be using discrete Markov chains in this article, we will often have indexes whose range may be the set of integers. In order to shorten the length of statements, we will use the following notation for the most common set of indexes N n " t1, ..., nu or Nn " t0, ..., nu with n P N " N Y t0u. In the case that n ď 0, then N n :" H.

Preliminaries

2.1. Assumptions and basic definitions. Throughout the article, we work on a probability space pΩ, F, Pq which is assumed to be rich enough to support all r.v's considered in what follows. In addition, we will work under the following assumptions on the coefficients: Assumption (H).

(i) The coefficients of the SDE (1) are smooth and bounded, in particular, b P C 8 b pRq and a P C 8 b pRq. (ii) The function σ is bounded and uniformly elliptic, that is, there exist a, a ą 0 such that for any

x P R, a ď apxq " σ 2 pxq ď a. Therefore, without loss of generality, we will assume that σpxq ą 0. 

where ρ is a r.v. distributed according to a Bernoulli(1/2) law, independent of W , namely Ppρ " 1q " Ppρ " 0q " 1{2. Under our assumption on the coefficients, the flow derivatives of Xs,x t exist. In particular, one has

B x Xs,x t "2ρ ´1 `σ1 pxqpW t ´Ws q, B 2 x Xs,x t " σ 2 pxqpW t ´Ws q. (4) 
In the particular case that s " 0, we may use the simplified form Xt " X0,x t . At this point, we give a brief explanation about how the approximation process X appears in the forthcoming probabilistic representation. The proof of the following lemma is straightforward by using the reflection principle, see e.g. Karatzas and Shreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. Lemma 1. Define the following approximation process:

Ȳt " x `σpxqW t , x ě L, together with its associated exit time τ :" inf t, Ȳt " L ( . Then, for any bounded measurable function f , the following property is satisfied:

E " f p ȲT q1 tτ ąT u ‰ "E " f p ȲT q1 t ȲT ěLu ‰ ´E " f p2L ´Ȳ T q1 t ȲT ăLu ‰ " 2E " p2ρ ´1qf p XT q1 t XT ěLu ‰ . (5) 
2.3. Basic Markov chain framework. We also consider a Poisson process with parameter λ ą 0, independent of the one-dimensional Brownian motion W with jump times T i , i P N and we set ζ i :" T i ^T , i P N with the convention that ζ 0 " T 0 " 0. Define π to be the partition of r0, T s given by π :" t0 ": ζ 0 ă ¨¨¨ă ζ N T ď T u. Associated with this set, we recall the definition of the simplex A n :" tt P p0, T s n ; 0 ă t 1 ă ¨¨¨ă t n ď T u. For instance, on the set tN T " nu, n P N, we have pζ 1 , . . . , ζ n q P A n and ζ n`1 " T . In particular, for the set tN T " 0u (i.e. n " 0), we let π :" t0, T u and A 0 " H. In this sense, we will use throughout the rest of the paper the index n P N without any further mention of its range of values.

As it is the case in the previous observation, many proofs and definitions will be carried out conditioning on the set tN T " nu, n P N.

Let X :" p Xi q iP N be the discrete time Markov chain starting at time 0 from X0 " x and evolving according to Xi`1 :

"ρ i`1 Xi `p1 ´ρi`1 qp2L ´X i q `σi Z i`1 , i P NN T , (6) 
where for simplicity we set σ i :" σp Xi q, Z i`1 :" W ζi`1 ´Wζi " σ ´1 i `X i`1 ´ρi`1 Xi ´p1 ´ρi`1 qp2L ´X i q ȃnd tρ i ; i P Nu is an i.i.d. sequence of Bernoullip1{2q r.v.'s such that W, N and tρ i ; i P Nu are mutually independent. In what follows we use the notation h i " hp Xi q, i P Nn`1 for any function h : R Ñ R. In particular, the reader may have noticed that we already used this notation in the above formula for h " σ. We also associate to the Markov chain X the following sets [START_REF] Bally | A probabilistic interpretation of the parametrix method[END_REF] D i,n :" t Xi ě L, N T " nu, for i P Nn`1 .

It is important to point out that given N T " n, the conditional distribution of Xn`1 given Xn is not the same as the conditional distribution of Xi`1 given Xi for i P Nn´1 . This is due to the fact that the length of the last interval is T ´ζn , rather than the waiting time between two consecutive Poisson jumps. This remark applies to various definitions and results to be stated through the rest of the article.

We define the filtration G :" pG i q iP N where G i :" σpZ i , ζ i , ρ i q with the notation a i :" pa 1 , . . . , a i q for a " Z, ζ, ρ, i P N and G 0 defined as the trivial σ-field. We assume that the filtration G satisfies the usual conditions.

2.4. Simplified Malliavin Calculus for the underlying Markov chain. In this section we introduce the required material for our Malliavin calculus computations. Instead of using an infinite dimensional calculus as it is usually done in the literature, the approach developed below is based on a finite dimensional calculus for which the dimension is given by the number of jumps of the underlying Poisson process involved in the Markov chain X. In what follows, n P N unless stated otherwise.

We start by defining the following space of smooth r.v.'s.

Definition 1. For i P Nn , we define the set S i`1,n p Xq as the subset of r.v.'s H P L 0 such that there exists a measurable function h : R2 ˆt0, 1u ˆA2 Ñ R satisfying

(1) H " hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q on the set tN T " nu.
(2) For any r P t0, 1u and any ps, tq P A 2 , hp¨, ¨, r, s, tq P C 8 p pR 2 q.

For a r.v. H P S i`1,n p Xq, i P Nn , we may sometimes abuse the notation and write

(8) H " Hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q,
that is the same symbol H may denote the r.v. or the function in the set S i`1,n p Xq. One can easily define the flow derivatives for H P S i`1,n p Xq as follows:

B Xi`1 H :"B 2 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q, B Xi H :"B 1 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q `B2 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 qB Xi Xi`1 , (9) 
B Xi Xi`1 :"p2ρ i`1 ´1q `σ1 i Z i`1 .
We now define the derivative and integral operators for H P S i`1,n p Xq, i P Nn , as

I i`1 pHq :"H Z i`1 σ i pζ i`1 ´ζi q ´Di`1 H, D i`1 H :" B Xi`1 H. ( 10 
)
Note that due to the above definitions and Assumption pHq, we also have that I i`1 pHq, D i`1 H P S i`1,n p Xq so that we can define iterations of the above operators, namely I `1 i`1 pHq " I i`1 pI i`1 pHqq and similarly D `1 i`1 pHq " D i`1 pD i`1 Hq, P N, with the convention I 0 i`1 pHq " D 0 i`1 pHq " H. Through this article, we will use the following notation for a certain type of conditional expectation that will appear frequently. For any X P L 1 and any i P Nn ,

E i,n rXs :" ErX | G i , T n`1 , ρ n`1 , N T " ns.
With the above definitions, the following duality 2 is satisfied for any f P C 1 p pRq and any pi, q P Nn ˆN:

E i,n " D i`1 f p Xi`1 qH ‰ "E i,n " f p Xi`1 qI i`1 pHq ‰ . (11) 
In order to obtain explicit norm estimates for r.v.'s in S i`1,n p Xq it is useful to define for H P S i`1,n p Xq, i P Nn and p ě 1 }H} p p,i,n :" E i,n r|H| p s .

density of the Wiener process. Therefore the derivative and integral, D i`1 and I i`1 , i P Nn defined in the formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] are renormalizations of the usual duality principle in Malliavin calculus. In our case this notation simplifies greatly many equations.

Another useful formula that is used at several places later on is the following extraction formula for H 1 , H 2 P S i`1,n p Xq :

I i`1 pH 1 H 2 q " ÿ j"0 p´1q j ˆ j ˙I ´j i`1 pH 1 qD j i`1 H 2 . ( 12 
)
The proof of the above statement is done by induction. Then, by iteration, one obtains that I i p1q P S i,n p Xq and it satisfies I `1 i p1q " I i p1qI i p1q ´ I i p1q which, in particular, implies:

I i p1q " p´1q H pa i´1 pζ i ´ζi´1 q, σ i´1 Z i q. ( 13 
)
Using [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] for H 1 " 1 and H 2 " H as well as [START_REF] Defosseux | Affine lie algebras and conditioned space-time brownian motions in affine weyl chambers[END_REF], the following norm bound for stochastic integrals is clearly satisfied for i P N and any measurable set

A P F › › 1 A I i`1 pHq › › p,i,n ď C ,p ÿ j"0 pζ i`1 ´ζi q j´ 2 }1 A D j i`1 H} p,i,n . (14) 
The following Hölder like inequality for smooth r.v.'s H 1 , H 2 P S i`1,n p Xq is also frequently used in our computations without any further mentioning for any i P N, for any p, p 1 , p 2 ě 1 satisfying p ´1 " p ´1 1 `p´1

2 and any A P F:

}1 A H 1 H 2 } p,i,n ďC}1 A H 1 } p1,i,n }1 A H 2 } p2,i,n . (15) 
We will also frequently manipulate quantities such as E i,n rδ L p Xi`1 qHs for H P S i`1,n p Xq. The previous expression has a clear meaning due to the IBP formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] (see the theory in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], Chapter V.9. for a much more general framework) or in the sense of conditional laws

E i,n rδ L p Xi`1 qHs "E i,n r1 Di`1,n I i`1 pHqs " E i,n rH| Xi`1 " Lsgpa i pζ i`1 ´ζi q, L ´X i q.
We finally introduce the following space of r.v.'s with certain time (ir)regularity estimates. Definition 2. For P Z, i P Nn , we define the space M i`1,n p X, {2q as the set of r.v.'s H P L 0 , satisfying the property (1) in Definition 1 and such that 1 Di,n }1 Di`1,n H} p,i,n ď Cpζ i`1 ´ζi q {2 for some deterministic constant C independent of pp, i, nq.

We again remark that since the definition of the space M i`1,n p X, {2q uses the conditional norm E i,n r.s and property (1) in Definition 1, when we say that a r.v. H P M i`1,n p X, {2q, this statement is understood on the set tN T " nu, n P N.

A straightforward consequence of equation ( 12) and ( 14) is the following property.

Lemma 2. For j P t0, 1u, i P N, and k P N, if

H 1 P M i`1,n p X, j{2q X S i`1,n p Xq with }D k i`1 H 1 } p,i,n ď C then I k i`1 pH 1 q P M i`1,n p X, pj ´kq{2q. Furthermore, if H 2 P M i`1,n p X, k{2q then the product H 1 H 2 P M i`1,n p X, pj `kq{2q. Lemma 3. Let h " hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q P S i`1,
n p Xq with i P N, then the following chain rule type formula holds

B Xi I i`1 phq " I i`1 pB Xi hq ´σ1 i σ i I i`1 phq.
Proof. From the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF], the usual chain rule and the fact that B Xi I i`1 p1q " ´σ1

i σi I i`1 p1q, B Xi I i`1 phq " ´σ1 i σ i I i`1 p1qh `Ii`1 p1qB Xi h ´B Xi D i`1 h I i`1 pB Xi hq " I i`1 p1qB Xi h ´Di`1 B Xi h.
Note that B Xi and D i`1 do not commute. Indeed, by the usual chain rule, one has

B Xi D i`1 h ´Di`1 B Xi h " B 1 B 2 h `B2 2 h B Xi`1 B Xi ´Di`1 pB 1 h `B2 h B Xi`1 B Xi q " ´B2 h σ 1 i σ i
where in the last equality we used the fact that D i`1

B Xi`1 B Xi " σ 1 i σi
. By combining the above computations we obtain

B Xi I i`1 phq ´Ii`1 pB Xi hq " ´σ1 i σ i pI i`1 p1q ´Di`1 hq " ´σ1 i σ i I i`1 phq.
Remark 1. Heuristically, the result of Lemma 3 can be viewed as a chain rule formula of the type B Xi pI i`1 phqq " pI i`1 qpB Xi hq `pB Xi I i`1 qphq.

Markov chain representation for killed processes

In this section, we establish a probabilistic representation for the marginal law of the killed process, that is, for the law of X T on the set tτ ą T u based on the Markov chain X introduced in the previous section. The proof of the following result is postponed to Appendix 10.

Theorem 2. Let f : R Ñ R be a measurable function with at most polynomial growth at infinity such that f pLq " 0. Then, one has

E " f pX T q1 tτ ąT u ‰ " E " f p XN T `1q N T `1 ź i"1 1 D i,N T θi ı . ( 16 
)
Here, for i P N n`1 , we let θi :"

1 tN T ąi´1u 2p2ρ i ´1qλ ´1 `Ii pc i 1 q `I2 i pc i 2 q ˘`1 tN T "i´1u 2e λT p2ρ N T `1 ´1q. (17) 
In the above definitions, we have used c i j P S i,n p Xq, j " 1, 2, i P N n`1 , n P N where

c i 1 " c i 1 p Xi´1 , Xi q:"b i " bp Xi q, ( 18 
)
c i 2 " c i 2 p Xi´1 , Xi q :" 1 2 pa i ´ai´1 q " 1 2
pap Xi q ´ap Xi´1 qq.

Furthermore, we have θi P S i,n p Xq, i P N n`1 , n P N and the following time degeneracy estimate is satisfied: for all p ě 1, there exists some positive constant C :" CpT, a, b, pq such that for i P N n , [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF] 1 tiďnu pζ i ´ζi´1 q

p 2 1 Di´1,n E i´1,n " 1 Di,n | θi | p ‰ `1ti"n`1u 1 Dn,n E n,n " 1 Dn`1,n | θn`1 | p ‰ ď C.
As a consequence, for all p P r0, 2q, one has E

" ˇˇś N T `1 i"1 1 D i,N T θi ˇˇp ı ă 8 .
We importantly observe that the above probabilistic representation allows to implement an unbiased Monte-Carlo simulation method since one just has to simulate the Poisson process N , then the Markov chain X along the jump times of N and finally to compute the explicit product of weights. Contrary to our previous work [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], the Markov chain X is defined from the reflection principle introduced in Lemma 1 thus reducing further the number of variables in the problem. This probabilistic representation is thus more workable for the forthcoming IBP formulae.

Remark 3. We make several remarks before moving on: (i) The assumption f pLq " 0 can be avoided at the cost of longer formulae as one can obtain a probabilistic representation based on the same Markov chain for the probability Ppτ ě T q using the results in Section 3 of [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], but we do not pursue this goal here. (ii) In the proof of the above result, one uses the following crucial property: For i P Nn , the random variables

1 Di`1,n c i`1 1 , 1 Di`1,n B Xi c i`1 2 P M i`1,n p X, 0q and 1 Di`1,n c i`1 2 P M i`1,n p X, 1{2q so that 1 Di`1,n I i`1 pc i`1 1 q, 1 Di`1,n I 2 i`1 pc i`1
2 q P M i`1,n p X, ´1{2q and therefore 1 Di`1,n θi`1 P M i`1,n p X, ´1{2q. (iii) The power p{2 appearing in the time degeneracy estimates in [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF] is crucial in order to determine the integrability of the r.v. appearing on the right hand side of [START_REF] Garroni | Second order elliptic integro-differential problems[END_REF]. This motivates the definition below.

x

X0 - θ1 ' X1 - θ2 ' X2 ¨¨¨¨' Xn´1 - θn ' Xn ": ‹ n - θn`1 f p Xn`1 q Space evolution ζ 0 -ζ 1 -ζ 2 ¨¨¨¨ζ n´1 -ζ n -T Continuous time evolution Figure 1.
The time evolution of the Markov chain and its weights Definition 3. We say that a weight r.v. H P S i,n satisfies the time degeneracy estimate if for all p ě 1

1 Di´1,n › › 1 Di,n H › › p,i´1,n ď Cpζ i ´ζi´1 q ´1 2 (20)
in the case that i P N n and 1 Dn,n › › 1 Dn`1,n H › › p,n,n ď C in the case that i " n `1. At this stage, we find it useful to show graphically the dynamic structure of the Markov chain and the random weights θi , i P N N T `1 for the probabilistic representation ( 16). This will be important in order to understand the structure of the IBP formula.

In the above figure, one observes the evolution of the Markov chain Xi , i P Nn`1 , together with its associated weight sequence appearing in the probabilistic representation. We also note that at the end of the Markov chain evolution which always happens at time T , the test function f is evaluated at Xn`1 . Furthermore, the right hand side of ( 16) is the product of all elements on top of the arrows on the first line of the above figure and the corresponding indicator functions of the sets D i,n defined by [START_REF] Bally | A probabilistic interpretation of the parametrix method[END_REF], with f p Xn`1 q. The second line gives the time evolution followed by the jump times of the Poisson process N which coincide with the times at which transitions of the Markov chain X happen.

In other figures that appear later on, we will use the general symbol ‹ k , k P N n`1 defined in Figure 1 which stands for product ‹ k :" ś k i"1 1 Di,n θi . We remark here that as stated in [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF], on the set tN T " nu, the definition of p Xn`1 , θn`1 q differs from all other p Xi , θi q, i P N n .

Ingredients for an IBP formula

In this section we give the main ingredients in order to establish an integration by parts formula for the marginal law taken at time T of the killed process.

In order to understand the main ingredients to be introduced in this section, one starts by supposing that the problem is to find an IBP formula for E " f 1 pX T q1 tτ ěT u ‰ . The BEL formula will be easier to handle and is tackled in Section 6.

4.1. Some Heuristics. The following heuristic arguments may help the reader to understand the strategy developed in the next sections to prove our IBP formulae.

Step 1: The first step was performed with the probabilistic representation established in Theorem 2 involving the Markov chain X evolving on a time grid governed by the set of jump times of the Poisson process N .

Step 2: As already explained in the introduction, the central idea is to reduce the infinite dimensional problem of finding an IBP formula for Erf 1 pX T q1 tτ ąT u s to a finite dimensional problem, namely finding an IBP formula for the quantity E

" f 1 p XN T `1q ś N T `1 i"1 1 D i,N T θi ı
, for which the dimension is random and given by the number of jumps of the Poisson process at time T .

At this stage, unfortunately, one cannot perform a standard integration by parts formula as in [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] on the whole time interval r0, T s for various reasons. For example, the Skorokhod integral of the product of weights ś N T `1 i"1 1 D i,N T θi will inevitably involve the Malliavin derivatives of θi and the indicator function 1 D i,N T , which in turn will raise integrability problems of the resulting Malliavin weight.

The key idea that we use consists in performing IBP formulae locally on each random intervals rζ i , ζ i`1 s, for i P Nn on the set tN T " nu, that is, by using the noise of the Markov chain on this specific time interval and then by combining them in an suitable way. The case i " n is easy to consider because, by taking the conditional expectation E n,n r.s in the original probabilistic representation on the set tN T " nu, the IBP reduces to E n,n rf 1 p XN T `1q1 Dn`1,n θn s " E n,n rf p XN T `1q1 Dn`1,n I n`1 p θn`1 qs by [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] and the fact that f pLq " 0. However, performing the IBP formula on a random interval rζ i , ζ i`1 s for 0 ď i ă n is more challenging.

In order to do it, our first ingredient consists in transferring the derivative operator appearing on the test function f backward in time from the last interval to the interval on which we perform the local IBP, say rζ i , ζ i`1 s. This operation will unfortunately generate a boundary term each time a transfer is performed, i.e. one for each time interval rζ j , ζ j`1 s, j " i, ¨¨¨, n. As previously mentioned, the boundary terms will induce integrability problems. In order to circumvent this issue, we then introduce our second ingredient which consists in performing a boundary merging procedure of this term using the time randomness provided by the Poisson process. We refer the reader to Section 4.3 for a more detailed discussion of this issue. Then, an additional ingredient that we use is a time merging lemma about the reduction of jump times of the Poisson process. It is described in Lemma 13 and directly employed in the proof of our main result, namely Theorem 5.

As already explained above, the last ingredient consists in combining these various local IBP formulae in a suitable way. Roughly speaking, we consider a weighted sum of each integral operator, the weight being the length of the corresponding time interval.

4.2.

The transfer of derivative lemma. Lemma 4. Let f P C 1 p pRq and n P N. The following transfer of derivative formula holds for i P Nn´1 :

E i,n " B Xi`1 f p Xi`1 q1 Di`1,n θi`1 ‰ "B Xi E i,n " f p Xi`1 q1 Di`1,n Ð Ý θ e i`1
The proof of Lemma 4 is postponed to Appendix 10.2. The transfer of derivatives procedure starts on the last time interval rζ n , T s according to formula [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF]. It expresses the fact that the derivative operator B Xn`1 on the left hand side of the equation is transferred to a flow derivative B Xn of the conditional expectation on the right hand side of [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF]. Remark that the derivative of f has been written ubiquitously as B Xn`1 f p Xn`1 q and that exceptionally in the last time interval there is no boundary term due to the assumption f pLq " 0.

Then, by the Markov property, the first conditional expectation appearing on the right hand side of ( 21) can be expressed as a function of Xn which will be the new test function that will be used in [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF] for the case i " n ´1 ą 0 and so on.

The transfer of derivatives for other time intervals is obtained in [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF]. This formula in comparison with (25) has a boundary term which is denoted by

Ð Ý θ B i`1 .
In this fashion, various transfer of derivatives formulae can be obtained by transferring successively the derivative operator through all intervals backward in time. The left pointing arrow appearing on the top of the notation Ð Ý θ a i`1 , for a P te, c, Bu expresses the fact that we are performing a transfer of derivatives argument backward in time.

the derivative operator no longer appears on the test function f for the terms associated to [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF] . We remark that the last term in ( 21) is singular but well defined if the time variables are fixed which is the case here as there is a conditioning with respect to the Poisson process expressed with the conditional expectations E i,n in [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF]. Since the boundary weight

Ð Ý θ c i`1 and Ð Ý θ B i`1 in
Ð Ý θ B i`1 is multiplied by δ L p Xi`1 q the time degeneracy estimate for the product δ L p Xi`1 q Ð Ý θ B i`1
deteriorates so that the resulting probabilistic representation will not be exploitable without the extra ingredient of the boundary merging lemmas. A further study is thus required before proving moment estimates. We will discuss this matter in detail in the next section.

The boundary merging lemmas.

The second ingredient that we need in order to establish our first IBP formula is the boundary merging lemma. Though the sequence of weights Ð Ý θ B i , i P N N T ( satisfies the time degeneracy estimate stated in Lemma 4, which is similar to the one satisfied by the sequence θi , i P N N T ( in [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF], the fact that it is multiplied by δ L p Xi q increases its time degeneracy by a factor of pζ i ´ζi´1 q ´1{2 .

The key idea in order to circumvent this issue consists in using the time randomness provided by the Poisson process in order to smooth this singularity. This will eventually allow us to retrieve a time degeneracy estimate similar to [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF]. We call this ingredient the boundary merging lemmas.

To be more specific, in order to circumvent the time degeneracy problem related to the boundary term on the right hand side of [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF], one needs to consider two successive random time intervals, say rζ i´1 , ζ i s and rζ i , ζ i`1 s, and take expectations with respect to the intermediate time ζ i in order to regularize the term δ L p Xi q that appears when one transfers the derivative using ( 21) on the time interval rζ i´1 , ζ i s. This operation will remove the time singularity induced by the Dirac delta distribution but will also reduce the number of jumps by one unit.

An important remark is that the boundary merging lemmas are not needed in the case that there are no jumps in the interval r0, T s, that is, on the set tN T " 0u, because of the condition f pLq " 0.

From the application of the boundary merging lemmas, a new Markov chain structure appears which we call the merged boundary (one-step) Markov chain XB whose transition on the time interval rζ j , ζ i`1 s, for j " i ´1, i, is given by

XB j,i`1 " XB j,i`1 p Xj q :"L `1 ´µp Xj q ˘`X j µp Xj q `σpLqZ j,i`1 , Z j,i`1 :" i`1 ÿ k"j`1 Z k , (26) 
with µpxq :" ´σpLq{σpxq.

In the above one-step dynamics and in what follows, the index j " i ´1 will be used to indicate the boundary merging of the underlying Markov chain X on the two consecutive time intervals rζ i´1 , ζ i s and rζ i , ζ i`1 s while the index j " i will be used in a second stage once the reduction of jumps (a.k.a. time merging) is performed in Section 5.1. As the proof of time degeneration estimates are similar and in order to simplify the presentation, we will deal with both cases at the same time in the next two Lemmas.

In the same way as it was done in Section 2.4, we define the associated space of smooth r.v.'s.

Definition 4. For i P Nn and j P ti ´1, iu, we define the set S j,i`1,n p XB q as the subset of r.v.'s H P L 0 such that there exists a measurable functions h : R 2 ˆt0, 1u ˆAi`1´j Ñ R satisfying (1) the random variable H can be written as

H " hp Xj , XB j,i`1 , ρ i`1 , ζ j , ζ i , ζ i`1 q on the set tN T " nu.
(2) For any r P t0, 1u and any s P A i`1´j , one has hp¨, ¨, r, sq P C 8 p pR 2 q. Similarly to the operators D and I, defined in Section 2.4, related to the Markov chain X, we introduce the operators D and Ī associated to the merged boundary process XB defined above. For any (smooth) r.v. H P S j,i`1,n p XB q and ě 1, we let

Īj,i`1 pHq :"H Z j,i`1 σpLqpζ i`1 ´ζj q ´D i`1 H, Ī `1 j,i`1 pHq :" Ī j,i`1 p Īj,i`1 pHqq Di`1 H :"B 2 hp Xj , XB j,i`1 , ρ i`1 , ζ j , ζ i , ζ i`1 q, D `1 i`1 H :" D i`1 p Di`1
Hq. Observe that since Z j,i`1 " σ ´1pLqp XB j,i`1 ´pL `1 ´µp Xj q ˘`X j µp Xj qqq P S j,i`1,n p XB q, it is clear that the r.v.'s Īj,i`1 p1q and Ī2 j,i`1 p1q also belong to S j,i`1,n p XB q so that they are explicit functions of the variables Xj , XB j,i`1 , ρ i`1 , ζ j , ζ i and ζ i`1 . In the following result, we will also use new weights Ð Ý θ B˚e j,i`1 , for j " i ´1, i, obtained by a merging procedure of the two weights Ð Ý θ B i and

Ð Ý θ e i`1 on the boundary set Xi " L ( Ð Ý θ B˚e j,i`1 :"4λ ´1 a 1 pLq ´bpLq a j `Ī 2 j,i`1 p di`1 2 q `Ī j,i`1 p di`1 1 q with di`1 1 :" pb ´a1 qp XB j,i`1 q, di`1 2 :" 1 2 pap XB j,i`1 q ´apLqq (27)
for i " 0, ¨¨¨, n´1. For the last interval, on tN T " nu, we have Ð Ý θ B˚e j,n`1 :" 4e λT a 1 pLq´bpLq aj , for j " n´1, n.

The cases j " i ´1 for (27) and j " n ´1 for Ð Ý θ B˚e n´1,n`1 are used in the following result where we perform the boundary merging procedure. The remaining cases j " i for Ð Ý θ B˚e i,i`1 and j " n for

Ð Ý θ

B˚e n,n`1 will be used once time merging is performed in Section 5. For this reason, some properties that we will employ later appear in the next lemma for these cases.

The definition of the time degeneracy estimate in the sense of Definition 3 is naturally extended to this case if we define

D B j,i`1,n :" t XB j,i`1 ě L, N T " nu, j " i ´1, i
and replace [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF] for H P S j,i`1,n p XB q by

@p ě 1, 1 Dj,n E " 1 D B j,i`1,n |H| p ˇˇGj, ζ i`1 , N T " n ı ď Cpζ i`1 ´ζj q ´p 2 , i P N n´1 , j " i ´1, i (28) 
and

1 Dj,n E " 1 D B j,n`1,n |H| p ˇˇGj, N T " n ı ď C for j " n ´1, n.
We are now in position to provide the second ingredient in order to establish our first IBP formula, namely the boundary merging lemma. Its proof is postponed to Section 10.3.2. Lemma 5. Let f P C 0 p pRq and n P N. The following property is satisfied for any

i P N n´1 E " f p Xi`1 q1 Di`1,n Ð Ý θ e i`1 δ L p Xi q Ð Ý θ B i | G i´1 , ζ i`1 , N T " n ‰ (29) " λ ´1 ζ i`1 ´ζi´1 E " f p XB i´1,i`1 q1 D B i´1,i`1,n Ð Ý θ B˚e i´1,i`1 | G i´1 , ζ i`1 , N T " n ‰ .
Similarly, for the last time interval, one has

E " f p Xn`1 q1 Dn`1,n Ð Ý θ e n`1 δ L p Xn q Ð Ý θ B n | G n´1 , N T " n ‰ (30) " λ ´1 T ´ζn´1 E " f p XB n´1,n`1 q1 D B n´1,n`1,n Ð Ý θ B˚e n´1,n`1 | G n´1 , N T " n ‰ .
Here, | Ð Ý θ B˚e j,n`1 | ď C a.s. for j " n ´1, n. Moreover, with the above definitions

Ð Ý θ

B˚e j,i`1 P S j,i`1,n p XB q, j " i ´1, i and Ð Ý θ B˚e j,i`1 satisfies the time degeneracy estimates in the sense of [START_REF] Reutenauer | An unbiased Monte Carlo estimator for derivatives[END_REF].

The above lemma can be illustrated using Figure 3 Ð Ý θ e i`1 q, no merging procedure is required so that the respective Markov chain elements Xi and Xi`1 remain unchanged. For this reason, we have chosen to leave the weights Ð Ý θ e i and Ð Ý θ e i`1 in black on the left hand side. On the right hand side of Figure 3, we see the result of the boundary merging procedure. Clearly the transition for the merged term has changed from Xi´1 to XB i´1,i`1 and then, for the next time interval rζ i`1 , ζ i`2 s, the transition of the underlying Markov chain remains unchanged and is given by

Y i`2 :" Xi`2 pi `1, XB i´1,i`1 q "ρ i`2 XB i´1,i`1 `p1 ´ρi`2 qp2L ´X B i´1,i`1 q `σp XB i´1,i`1 qZ i`2 ,
and where Ð Ý

β e i`2 :" Ð Ý θ e i`2 p XB i´1,i`1 , Y i`2 , ρ i`2 , ζ i`1 , ζ i`2
q stands for the same weight formula as

Ð Ý θ e i`2
but whose starting point is XB i´1,i`1 and its end point is Y i`2 . We remind the reader that we freely use function notation for smooth r.v.'s on the spaces S i`2,n p Xq as in [START_REF] Bernis | Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options[END_REF]. So far, we have explained how to transfer the derivatives and how to deal with boundary terms. The last step consists in performing a local IBP formula on a fixed time interval, say rζ i , ζ i`1 s. This operation will involve the integral operator applied to corresponding weight, namely I i p1 Di,n θi q, and thus will inevitably increase the time singularity in the estimate as stated in [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF]. Moreover, by the extraction formula, the Malliavin derivative of 1 Di,n will also generate a boundary term that has to be carefully treated by a merging procedure. This is the purpose of the following second boundary merging Lemma that we now describe.

Xi´1 Xi Xi`1 Xi`2 XB i´1,i`1 Xi´1 Ð Ý θ e i`2 Ð Ý θ B i Ð Ý θ B ˚e i ´1, i `1 Ð Ý θ e i Ð Ý θ e i`1 Xi´1 Xi Xi`1 Xi`2 XB i´1,i`1 Y i`2 Ð Ý β e i`2 Xi´1 Ð Ý θ e i`2 Ð Ý θ B ˚e i ´1, i `1 Ð Ý θ e i Ð Ý θ e i`1
The proof of the following result is postponed to Section 10.3.3. As the resulting boundary merging weight is different, the notation for the boundary merged weight changes from B ˚e to B f e. The merged boundary process does not change. Lemma 6. Let f P C 0 p pRq and n P N. The following property is satisfied for any

i P N n´1 E " f p Xi`1 q1 Di`1,n Ð Ý θ e i`1 δ L p Xi qpζ i ´ζi´1 q θi | G i´1 , ζ i`1 , N T " n ı (31) " λ ´1 ζ i`1 ´ζi´1 E " f p XB i´1,i`1 q1 D B i´1,i`1,n Ð Ý θ Bfe i´1,i`1 | G i´1 , ζ i`1 , N T " n ‰
where we define the boundary merged weight

Ð Ý θ Bfe j,i`1 for j " i ´1, i as Ð Ý θ Bfe j,i`1 :"4λ ´1 a 1 pLq ´bpLq a 3{2 j σpLq p Xj ´Lq ´Ī 2 j,i`1 p di`1 2 q `Ī j,i`1 p di`1 1 q with coefficients given by di`1 k :" di`1 k ˆp Φg ´1qpapLqpζ i`1 ´ζj q, Z j,i`1 q, k " 1, 2,
Φpt, zq :"

ż 8 |z| gpt, yqdy.
Similarly, for the last time interval, one has

E " f p Xn`1 q1 Dn`1,n Ð Ý θ e n`1 δ L p Xn qpζ n ´ζn´1 q θn | G n´1 , N T " n ‰ (32) " λ ´1 T ´ζn´1 E " f p XB n´1,n`1 q1 D B n´1,n`1,n Ð Ý θ Bfe n´1,n`1 | G n´1 , N T " n ‰ where Ð Ý θ Bfe j,n`1 :" 4e λT 2a 1 pLq´bpLq a 3{2 j σpLq p Xj ´Lq dn`1 , dn`1 :" p Φg ´1qpapLqpζ n`1 ´ζj q, Z j,n`1 q so that | Ð Ý θ Bfe j,n`1 | ď C a.s., for j " n ´1, n.
Moreover, for any i P Nn , for any j " i´1, i, Ð Ý θ Bfe j,i`1 P S j,i`1,n p XB q and it satisfies the time degeneracy estimates in the sense of (28). 

Ð Ý θ

Bfe j,i`1 of Lemmas 5 and 6. The index j " i ´1 is used for the boundary merging operation while the index j " i will be used once the reduction of jumps operation (a.k.a. time merging) is performed in Section 5.1.

(ii) The reason why the terms Φg ´1 appear in the definitions of the coefficients di`1 , contrary to the previous Lemma 5, is due to the time increments ζ i ´ζi´1 and ζ n ´ζn´1 on the left hand side of equalities (31) and (32).

(iii) An important technical remark which follows from the definitions of the merged weights Ð Ý θ B˚e j,i`1 and Ð Ý θ Bfe j,i`1 , j " i ´1, i in Lemmas 5 and 6 is that they do not depend neither on ρ i or ρ i`1 .

A first IBP formula: Putting the ingredients to work

As explained at the beginning of Section 4, in order to obtain an IBP formula, one first has to take the conditional expectation w.r.t the Poisson process

N inside E " B XN T `1 f p XN T `1q ś N T `1 i"1 1 D i,N T θi ı
. Once the jump times are fixed, one observes that there is a Markov chain structure to which one may apply the transfer of derivatives procedure described in Lemma 4. This leads to a tree structure of terms which are combined up to the time interval where we decide to stop the transfer of derivatives and to perform a local IBP formula using only the noise on this specific interval. Throughout this section we will often denote this interval by the general index k. For example, the tree structure is illustrated in Figure 4 where the IBP is performed on the time interval rζ k´1 , ζ k s for k " 2. The application of the IBP formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] on the time interval rζ k´1 , ζ k s will give after using the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] the new weight

I k p1 D k,n θk q " δ L p Xk q θk `1D k,n I k p θk q.
We thus see that a boundary term appears which is treated by the boundary merging procedure described in Lemma 6 and thus gives rise to the new weight associated to the symbol B f e.

The terms which contain boundary weights due to the successive application of the transfer of derivatives formula [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF] are treated by the boundary merging procedure of Lemma 5. Figure 4 shows these terms before the boundary merging procedure in a simplified algebraic notation that will be introduced in this section.

This boundary merging operation will lead to the recovery of an integrable time degeneracy estimate and to the reduction of one jump unit (after an application of the so-called time merging procedure) in the underlying Poisson process. Finally, a local IBP formula is performed on the interval rζ k´1 , ζ k s where we have stopped the transfer of derivatives. As described above, after using the extraction formula, the new weight given by I k p1 D k,n θk q will also generate a boundary term to which we apply the boundary merging procedure described by Lemma 6. As before, this will in turn reduce the number of jump times by one unit.

We importantly note that when one stops the (backward) transfer of derivatives procedure and decide to perform a local IBP formula on the time interval rζ k´1 , ζ k s, the weights 1 Dj,n θj for the preceding time intervals, namely rζ j´1 , ζ j s, for j " 1, ¨¨¨, k ´1, correspond to the original probabilistic representation in Theorem 2 and thus remain unchanged. A similar remark applies when a time merging of weights or a correction weight appears on one branch of the tree structure below.

The overall tree diagram before carrying out the boundary merging procedure can be schematically described as follows in the case of N T " 4 jumps of the Poisson process An important remark in order to understand the tree notation to be introduced in the next section is that the blue curved arrows will lead to the application of the boundary merging Lemma 5. Therefore, as the number of jumps will be reduced by the time merging procedure, those time merged weights will no longer be considered as weights associated to the set tN T " 4u but tN T " 3u. A similar remark applies when applying Lemma 6 to the boundary term generated by I k p1 D k,n θk q which is denoted by the straight blue arrow in Figure 4.

0 " ζ 0 0 " ζ 0 0 0 ζ 1 ζ 1 I ζ 2 e ζ 3 ζ 3 ζ 2 B 0 c c B B
We believe that the above explanations given before the proof of our main result are important for the reader because they are necessary to understand the following section where the various symbols for the above tree structure are introduced.

5.1. The tree structure in the IBP formula. In this section, we start by describing all the branches of the tree that are generated after performing transfer of derivatives and the two types of boundary merging previously described.

We denote by S n`1 , the set of all symbol sequences of length n `1 described by the following vectors of length n `1. More explicitly, when n " 0, we define S 1 :" tI 1 1 , B 1 1 u with I 1 1 :" pIq and B 1 1 :" pB f eq and for n P N,

S n`1 :" ˜ď 1ďkďn`1 tI n`1 k , B n`1 k u ¸ď ˜ď 2ďkďn`1 tC n`1 k , B n`1 k u ¸.
Therefore in S n`1 there are in total 2pn`1q`2n vectors. The above vectors give the description of a branch in the IBP formula and are defined as follows. On the one hand, we let C n`1 k :" p0, ..., 0, c, e, ..., eq and I n`1 k :" p0, ..., 0, I, e, ..., eq where the component c or I appears in the k-th coordinate for k " 2, ..., n `1 and we allow k " 1 only for the vectors I n`1 k . On the other hand, we denote by B n`1 k :" p0, ..., 0, B e, e, ..., eq, k " 2, . . . , n `1 and B n`1 k :" p0, ..., 0, B f e, e, ..., eq, k " 1, . . . , n `1, where the element B ˚e or B f e appears in the k-th coordinate for k " 2, . . . , n and k " 1, ..., n respectively 3 .

As mentioned previously, the index k corresponds to the time interval on which we perform the local IBP formula. In other words, if the symbol 0 appears at the j-th coordinate of a vector, for 1 ď j ă k, this means that the weight corresponding to that time interval, namely rζ j´1 , ζ j s, remains the same as given in the probabilistic representation of Theorem 2, i.e. 1 Dj,n θj . The symbol c appearing at the k-th coordinate of the vector C n`1 k means that the new weight (associated to this vector and to the interval

rζ k´1 , ζ k s) is 1 D k,n Ð Ý θ c k .
The symbol I appearing at the k-th coordinate of I n`1 k stands for the IBP weight, i.e. 1 D k,n I k p θk q. The symbol B ˚e corresponds to the merging between exchange (denoted by e) and boundary (denoted by B) r.v.'s according to Lemma 5 while the symbol B f e corresponds to the same merging but occurring on the same interval as the one where we perform the IBP formula and is computed according to Lemma 6.

We remark here that in the last interval there is no boundary term because we always assume that the test function f vanishes at the boundary.

If we fix our attention on all the branches that are generated with the objective of carrying out the local IBP formula on the interval rζ k´1 , ζ k s, we find the two following subsets of S n`1 which correspond to the branches that finish with a correction weight Ð Ý θ c and the branches that finish with a time merging of two time intervals, before leaving unchanged the remaining weights on remaining intervals. For k " 1, . . . , n `1, we define Sk n`1 :"

ď kăjďn`1 C n`1 j ( , 9 
S k n`1 :" B n`1 k ( ď ˜ď kăjďn`1 B n`1 j
( and in the special case n " 0, we let 9 S 1 1 :" B 1 1 ( . For example, the following figure describes the situation in the case when originally there were n " 4 jump times. Observe that, on the one hand, due to the merging procedure, all sequences of arrows 3 In order to keep index notation short, so as not to have to always consider two cases when k takes as lowest value 1 or 2, we include C n`1 1 and B n`1 1 as symbols but any statement in this case should be taken as an empty statement or that the symbol corresponds to the zero (empty) element. 5.2. The Markov chain and weights associated to the IBP tree branches. For the corresponding time partition π :" t0 " ζ 0 ă ... ă ζ n`1 " T u of the underlying Poisson process on the set tN T " nu, we now need to define the underlying Markov chain Xs , for s P S n`1 or s P 9 S k n`1 , that will be used in the probabilistic representation of our first IBP formula.

It will be defined as the same process as the original Markov chain X except that on a certain time interval it may use the one-step transition of the merged boundary Markov chain XB given by [START_REF] Nakatsu | Integration by parts formulas concerning maxima of some SDEs with applications to study on density functions[END_REF]. To be more specific, in the case that s " B n`1 k or B n`1 k , k " 1, ..., n `1, the Markov chain Xs is defined by

Xs j :" $ ' & ' % Xj , if 0 ď j ď k ´1, XB k´1 
,k p Xk´1 q for j " k, Xj pk, XB k´1,k q for j " k `1, ..., n `1.

Here XB k´1,k p Xk´1 q stands for the one-step transition defined in [START_REF] Nakatsu | Integration by parts formulas concerning maxima of some SDEs with applications to study on density functions[END_REF]. Similarly, for j " k`1, ¨¨¨, n`1, Xj pk, XB k´1,k q is the flow notation for the scheme (6) taken at step j starting from the point XB k´1,k at step k. For any other s P S n`1 of length n `1, the process Xs corresponds to the original Markov chain dynamics, that is, we let Xs " X. We also define the associated set

D s i,n :" t Xs i ě L, N T " nu.
We now introduce the weights corresponding to the Markov chain Xs to be used in the IBP formula. For each s P S n`1 , we will define its associated weights p Ð Ý θ s 1 , ...,

Ð Ý θ

s n`1 q and its product 4 as

Ð Ý θ s :" n`1 ź j"1 Ð Ý θ s j .
We now proceed to define the weights for each element s " ps 1 , ..., s n`1 q P S n`1 as follows for i P N n`1 :

(1) If s i " 0, then Ð Ý θ

s i :" 1 D s i,n θi p Xs i´1 , Xs i , ρ i , ζ i´1 , ζ i q " 1 Di,n θi p Xi´1 , Xi , ρ i , ζ i´1 , ζ i q. (2) If s i P tc, eu, with the notation introduced in (22) Ð Ý θ s i :" 1 D s i,n Ð Ý θ si i p Xs i´1 , Xs i , ρ i , ζ i´1 , ζ i q.
As remarked at the beginning of Section 2.4, the weight Ð Ý θ s i is an explicit function of the underlying Markov chain and we will make use of such property in what follows. 4 Recall the standard convention ś H " 1.

(3) Similarly, if s i P tB ˚e, B f e, Iu, then using [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], Lemmas 5 and 6

Ð Ý θ s i :" $ ' ' & ' ' % Ð Ý θ B˚e i´1,i p Xs i´1 , Xs i , ρ i , ζ i´1 , ζ i q1 D s i,n , if s i " B ˚e, pζ i ´ζi´1 q ´1Ð Ý θ Bfe i´1,i p Xs i´1 , Xs i , ρ i , ζ i´1 , ζ i q1 D s i,n , if s i " B f e, I i p θi q1 D s i,n , if s i " I.
In the case of time merging, we importantly refer the reader to Remark 4. Due to this, we know that the reduction of one jump does not affect the sequence ρ i , i P N n`1 as the boundary merged weight does not depend on it.

5.3. The IBP formula.

Theorem 5. Let f P C 1 b pRq such that f pLq " 0. Under assumption (H), the following IBP formula is satisfied:

T Erf 1 pX T q1 tτ ěT u s "E » - - N T `1 ÿ k"1 pζ k ´ζk´1 q $ ' & ' % f p XN T `1q Ð Ý θ I N T `1 k `ÿ sP Sk N T `1Y 9 S k N T `1 f p Xs N T `1q Ð Ý θ s , / .
/ -fi ffi fl .

Moreover, the r.v. appearing inside the expectation of the right-hand side of the above equality belongs to L p pPq for p P r0, 2q.

Proof. We start from the Markov chain representation given by Theorem 2, namely

Erf 1 pX T q1 tτ ěT u s " Erf 1 p XN T `1q N T `1 ź i"1 1 D i,N T θi s " ÿ ně0 E " Erf 1 p Xn`1 q n`1 ź i"1 1 Di,n θi |T n`1 s 1 tN T "nu ı .
where we notice that tN T " nu " tT n`1 ą T u X tT n ď T u. We remind the reader that E i,n rXs is the expectation of X conditional on tG i , T n`1 , ρ n`1 , N T " nu and therefore for the rest of the proof we will work on the set tN T " nu.

Step 1: IBP on the last interval. We start by proving the IBP for the last time interval. That is, by the tower property of conditional expectation and the integration by parts formula, (11) on the (deterministic) time interval rζ n , T s, noting that f pLq " 0, one has

Erf 1 p Xn`1 q1 D i,N T θ n`1 n ź i"1 1 D i,N T θi | T n`1 s " ErE n,n rD n`1 f p Xn`1 q1 Dn`1,n θ n`1 s n ź i"1 1 Di,n θi | T n`1 s " Erf p Xn`1 q1 Dn`1,n I n`1 p θn`1 q n ź i"1 1 Di,n θi | T n`1 s. ( 33 
)
Step 2: The transfer of derivatives. In this step, we will perform the transfer of derivatives from the last time interval rζ N T , T s to the time interval rζ k´1 , ζ k s. In order to carry this step, using the Markov property of the process X, we define for k P N n the functions:

F k p Xk q :" E k,n " f p Xn`1 q n`1 ź i"k`1 1 Di,n Ð Ý θ e i ‰ " E " f p Xn`1 q n`1 ź i"k`1 1 Di,n Ð Ý θ e i | Xk , T n`1 , ρ n`1 , N T " n ‰ ,
with the convention that F n`1 p Xn`1 q " f p Xn`1 q and ś H ¨¨¨" 1. Note that the following recursive relation is satisfied for k P N n

F k p Xk q " E k,n rF k`1 p Xk`1 q1 D k`1,n Ð Ý θ e k`1 s. ( 34 
)
From the transfer of derivatives formula [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF] of Lemma 4, we obtain

ErB Xn`1 f p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErB Xn`1 F n`1 p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErB Xn F n p Xn q n ź i"1 1 Di,n θi | T n`1 s `Erf p Xn q1 Dn`1,n Ð Ý θ c n`1 n ź i"1 1 Di,n θi | T n`1 s.
Next, we proceed using a backward induction argument by combining successive applications of the transfer of derivative formula of Lemma 4 with the tower property of conditional expectation. To be more specific, from Lemma 4, one has for k

P N n E k,n rB Xk`1 F k`1 p Xk`1 q1 D k`1,n θk`1 s "B Xk F k p Xk q `Ek,n rF k`1 p Xk`1 q1 D k`1,n Ð Ý θ c k`1 s (35) `Ek,n rF k`1 p Xk`1 qδ L p Xk`1 q Ð Ý θ B k`1 s
which directly implies by iteration

Erf 1 p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErB Xk F k p Xk q k ź i"1 1 Di,n θi | T n`1 s `n ÿ j"k`1 ErF j p Xj q1 Dj,n Ð Ý θ c j j´1 ź i"1 θ i | T n`1 s `n ÿ j"k`1 ErF j p Xj qδ L p Xj q Ð Ý θ B j j´1 ź i"1 1 Di,n θi | T n`1 s (36) `Erf p XT q1 Dn`1,n Ð Ý θ c n`1 n ź i"1 1 Di,n θi | T n`1 s
for k " 1, . . . , n, with the convention ř H ¨¨¨" 0.

Step 3: The local IBP on the interval rζ k´1 , ζ k s. To proceed, we first notice that θk P S k,n p Xq, for k P N n`1 , is a smooth r.v.. Then from the tower property of conditional expectation (using E k´1,n r¨s), the integration by parts formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF], the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] and (61) one obtains

ErB Xk F k p Xk qθ k | G k´1 , T n`1 s " ErF k p Xk q1 D k,n I k p θk q | G k´1 , T n`1 s ´ErF k p Xk qδ L p Xk q θk | G k´1 , T n`1 s, " ErF k p Xk q1 D k,n I k p θk q | G k´1 , T n`1 s `ErF k p Xk qδ L p Xk q Ð Ý θ B k | G k´1 , T n`1 s.
Now, plugging the previous identity into (36) and using the recursive formula (34) yield for k P N n :

Erf 1 p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErF k p Xk q1 D k,n I k p θk q k´1 ź i"1 1 Di,n θi | T n`1 s `n ÿ j"k`1 ErF j p Xj q1 Dj,n Ð Ý θ c j j´1 ź i"1 1 Di,n θi | T n`1 s `n ÿ j"k ErF j`1 p Xj`1 q1 Dj`1,n Ð Ý θ e j`1 δ L p Xj q Ð Ý θ B j j´1 ź i"1 1 Di,n θi | T n`1 s (37) `Erf p Xn`1 q1 Dn`1,n Ð Ý θ c n`1 n ź i"1 1 Di,n θi | T n`1 s.
Step 4: Combining all the local IBP formulae. Multiplying (33) by pT ´ζn q, (37) by pζ k ´ζk´1 q and summing from k " 1 to n the resulting equalities, we obtain

T Erf 1 p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " n`1 ÿ k"1 pζ k ´ζk´1 qErB Xn`1 f p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s, "Erf p Xn`1 q1 Dn`1,n pT ´ζn qI n`1 p θn`1 q n ź i"1 1 Di,n θi | T n`1 s `n ÿ k"1 Erf p Xn`1 q n`1 ź i"k`1 1 Di,n Ð Ý θ e i ˆ1D k,n pζ k ´ζk´1 qI k p θk q ˆk´1 ź i"1 1 Di,n θi | T n`1 s `n ÿ k"1 pζ k ´ζk´1 q n ÿ j"k`1 Erf p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆ1Dj,n Ð Ý θ c j ˆj´1 ź i"1 1 Di,n θi | T n`1 s `n ÿ k"1 pζ k ´ζk´1 q n ÿ j"k Erf p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆδL p Xj q Ð Ý θ B j ˆj´1 ź i"1 1 Di,n θi | T n`1 s `n ÿ k"1 pζ k ´ζk´1 qErf p Xn`1 q1 Dn`1,n Ð Ý θ c n`1 n ź i"1 1 Di,n θi | T n`1 s
where we used the fact that T ´ζn `řn k"1 pζ k ´ζk´1 q " T ´ζ0 " T in the first equality. The final argument starts by multiplying the above identity by 1 tN T "nu and taking the expectation of both hand sides with respect to the Poisson process.

Step 5: The merging procedure. Now, we perform the boundary and time merging procedures for the fourth term appearing in the right-hand side of the above equality. This is done by first conditioning with respect to G j´1 , ζ j`1 , N T " n in the inside sum and then by applying Lemma 5, for j ą k and Lemma 6. More specifically, for any n ě 1, k P N n and k ă j ď n,

E " f p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆδL p Xj q Ð Ý θ B j |G j´1 , ζ j`1 , N T " n ı " E " F j`1 p Xj`1 q1 Dj`1,n Ð Ý θ e j`1 ˆδL p Xj q Ð Ý θ B j |G j´1 , ζ j`1 , N T " n ı " λ ´1 ζ j`1 ´ζj´1 E " F j`1 p XB j´1,j`1 q1 D B j´1,j`1,n Ð Ý θ B˚e j´1,j`1 |G j´1 , ζ j`1 , N T " n ı and for j " k, E " f p Xn`1 q n`1 ź i"k`1 1 Di,n Ð Ý θ e i ˆδL p Xk qpζ k ´ζk´1 q Ð Ý θ B k |G k´1 , ζ k`1 , N T " n ı " E " F k`1 p Xk`1 q1 D k`1,n Ð Ý θ e k`1 ˆδL p Xk q Ð Ý θ B k |G k´1 , ζ k`1 , N T " n ı " λ ´1 ζ k`1 ´ζk´1 E " F k`1 p XB k´1,k`1 q1 D B k´1,k`1,n Ð Ý θ Bfe k´1,k`1 |G k´1 , ζ k`1 , N T " n ı so that E " n ÿ k"1 pζ k ´ζk´1 q n ÿ j"k Erf p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆδL p Xj q Ð Ý θ B j ˆj´1 ź i"1 1 Di,n θi | T n`1 s1 tN T "nu ı " E " n ÿ k"1 pζ k ´ζk´1 q ˆn ÿ j"k`1 F j`1 p XB j´1,j`1 qλ ´1pζ j`1 ´ζj´1 q ´11 D B j´1,j`1,n Ð Ý θ B˚e j´1,j`1 ˆj´1 ź i"1 1 Di,n θi 1 tN T "nu ı `E" n ÿ k"1 pζ k ´ζk´1 qF k`1 p XB k´1,k`1 qλ ´1pζ k`1 ´ζk´1 q ´11 D B k´1,k`1,n Ð Ý θ Bfe k´1,k`1 ˆk´1 ź i"1 1 Di,n θi 1 tN T "nu ı
We then apply Lemma 13 to the above identity. In order to do it, we make use of the following decomposition

E " n ÿ k"1 pζ k ´ζk´1 q n ÿ j"k Erf p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆδL p Xj q Ð Ý θ B j ˆj´1 ź i"1 1 Di,n θi | T n`1 s1 tN T "nu ı " E " n ÿ k"1 n ÿ j"k`1 pζ j`1 ´ζj´1 q ´1G 1 pζ 1 , ¨¨¨, ζ j´1 , ζ j`1 , ¨¨¨, ζ N T `1q1 tN T "nu ı `E" n ÿ k"1 pζ k`1 ´ζk´1 q ´1G 2 pζ 1 , ¨¨¨, ζ k´1 , ζ k`1 , ¨¨¨, ζ N T `1q1 tN T "nu ı
where G 1 and G 2 are the measurable functions defined for j ě k `1 by

G 1 pζ 1 , ¨¨¨, ζ j´1 , ζ j`1 , ¨¨¨, ζ N T `1q :" λ ´1pζ k ´ζk´1 qE " F j`1 p XB j´1,j`1 q1 D B j´1,j`1,n Ð Ý θ B˚e j´1,j`1 ˆj´1 ź i"1 1 Di,n θi | T n`1 ı , G 2 pζ 1 , ¨¨¨, ζ k´1 , ζ k`1 , ¨¨¨, ζ N T `1q :" λ ´1pζ k ´ζk´1 qE " F k`1 p XB k´1,k`1 q1 D B k´1,k`1,n Ð Ý θ Bfe k´1,k`1 ˆk´1 ź i"1 1 Di,n θi | T n`1
ı .

Now observe that the weights Ð Ý θ

B˚e j´1,j`1 ,

Ð Ý θ

Bfe k´1,k`1 satisfy the time degeneracy estimates in the sense of ( 28) and so do the weights Ð Ý θ e i , θi , so that from the tower property of conditional expectation and Lemma 8 with p " 1, the following estimates hold

|G 1 | ď C n λ ´1pζ k ´ζk´1 q n`1 ź i"1,i‰j,j`1 pζ i ´ζi´1 q ´1 2 pζ j`1 ´ζj´1 q ´1 2 , |G 2 | ď C n λ ´1pζ k ´ζk´1 q n`1 ź i"1,i‰k,k`1 pζ i ´ζi´1 q ´1 2 pζ k`1 ´ζk´1 q ´1 2
with the convention ζ 0 " 0, ζ n`1 " T on tN T " nu.

Using that conditional on the event tN T " n, ζ 1 , ¨¨¨, ζ j´1 , ζ j`1 , ¨¨¨, ζ N T u, the distribution of ζ j is uniform on rζ j´1 , ζ j`1 s, we get

Erpζ j`1 ´ζj´1 q ´1|G 1 |1 tN T "nu s ď C n ż T 0 ¨¨¨ż s2 0 ps k ´sk´1 qps j`1 ´sj´1 q ´3 2 n`1 ź i"1,‰j,j`1 ps i ´si´1 q ´1 2 ds 1 ¨¨¨ds n ď C n ż T 0 ¨¨¨ż s2 0 ps k ´sk´1 qps j`1 ´sj´1 q ´1 2 n`1 ź i"1,i‰j,j`1 ps i ´si´1 q ´1 2 ds 1 ¨¨¨ds j´1 ds j`1 ¨¨¨ds n ă 8.
The same argument yields Erpζ k`1 ´ζk´1 q ´1|G 2 |1 tN T "nu s ă 8. From Lemma 13, we thus obtain

E " pζ k ´ζk´1 q n ÿ j"k f p Xn`1 q n`1 ź i"j`1 1 Di,n Ð Ý θ e i ˆδL p Xj q Ð Ý θ B j ˆj´1 ź i"1 θ i 1 tN T "nu ı "E " pζ k ´ζk´1 q n ÿ j"k`1 f p XB n j n q n ź i"j`1 1 D B n j i,n Ð Ý θ e,B n j i ˆ1D B n j j,n Ð Ý θ B˚e,B n j j ˆj´1 ź i"1 θ i 1 tN T "n´1u ı `E" f p XB n k n q n ź i"k`1 1 D B n k i,n Ð Ý θ e,B n k i ˆ1D B n k k,n Ð Ý θ Bfe,B n k k ˆk´1 ź i"1 θ i 1 tN T "n´1u ı .
Step 6: Integrability properties. The proof of the L p pPq-integrability, p P r0, 2q, follows from the time degeneracy estimates for each weight in the Lemmas 4, 5, 6 and 8 combined with a similar argument to the one employed at the end of the proof in Section 10 (see the discussion following Lemma 8). This also implies that the infinite sum over n converges absolutely and therefore after a re-ordering of the different terms one obtains the claimed formula. This concludes the proof. Remark 6. (i) The right hand side of the IBP formula may alternatively be written in a longer but maybe more appealing format as

T Erf 1 pX T q1 tτ ěT u s " E « f p XN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q # Ð Ý θ I N T `1 k `NT `1 ÿ j"k`1 Ð Ý θ C N T `1 j +ff `E « N T `1 ÿ k"1 pζ k ´ζk´1 q N T `1 ÿ j"k`1 f p XB N T `1 j N T `1 q Ð Ý θ B N T `1 j ff `E « N T `1 ÿ k"1 f p XB N T `1 k N T `1 q Ð Ý θ B N T `1 k ff .
(ii) The restriction f pLq " 0, can be easily removed if one considers the test function f pxq " f pxq ´f pLq instead of f .

Note that, the previous theorem not only yields an IBP formula which is suitable for Monte Carlo simulation, it also provides a probabilistic representation for the derivative, with respect to the terminal point, of the transition density of the killed process at time T . To be more specific, under assumption (H), for any bounded measurable f defined on rL, 8q, one deduces Erf pX T q1 tτ ąT u s " ş 8 L f pzqppT, x, zq dz where p0, 8q ˆrL, 8q 2 Q pT, x, zq Þ Ñ ppT, x, zq is the transition density of the killed process at time T starting from x at time 0. Moreover, from Theorem 5, by a standard approximation argument that we omit, one deduces that z Þ Ñ ppT, x, zq is differentiable on rL, 8q. 5 The next result provides a probabilistic representation of this derivative from which directly stems an unbiased Monte Carlo simulation method.

Corollary 1. Under assumption (H), the transition density of the killed process at time T is differentiable with respect to its terminal point. Moreover, for all pT, x, zq P p0, 8q ˆrL, 8q 2 the following probabilistic representation holds

T B z ppT, x, zq " E « N T `1 ÿ k"1 pζ k ´ζk´1 qgpap XN T qpT ´ζN T q, z ´X N T q Ð Ý θ I N T `1 k ff `E » - - N T `1 ÿ k"1 pζ k ´ζk´1 q ÿ sP Sk N T `1Y 9 S k N T `1 p s pT ´ζN T , Xs N T , zq Ð Ý θ s fi ffi fl .
Here p s denotes the transition density of the Markov chain Xs , that is, z Þ Ñ p s pT ´ζN T , x, zq is the density of the r.v.

Xs N T `1 conditional on Xs N T " x ( . In particular, for s " B N T `1 N T `1 or B N T `1 N T `1 , the dynamics (26) readily gives p s pT ´ζN T , Xs N T , zq " gpapLqpζ N T `1 ´ζN T q, z ´pLp1 ´µp XN T qq `X N T µp XN T qq since Xs N T " XN T .

Bismut-Elworthy-Li type formula

In this section, we briefly derive the IBP formula for B x Erf pX T q1 tτ ěT u s commonly referred in the literature as the Bismut-Elworthy-Li formula. As we will see, obtaining this formula is simpler than the IBP formula derived in Theorem 5 as it does not involve boundary weights. Therefore the proof of this formula will not require any merging procedure contrary to the one of Theorem 5.

First, we give the transfer of derivatives lemma which is carried out forward in time in comparison with Lemma 4 where it is done backward in time. The proof is similar to the one of Lemma 4 given in Section 10.2 and therefore we omit it. Note that due to the change of time direction some changes of notation and sign occur among other changes in the formulae for the weights. Lemma 7. Let f P C 1 p pRq and n P N. Then, the following transfer of derivative formula holds for i P Nn´1 :

B Xi E i,n rf p Xi`1 q1 Di`1,n θi`1 s " E i,n rB Xi`1 f p Xi`1 q1 Di`1,n Ý Ñ θ e i`1 s `Ei,n rf p Xi`1 q ´1Di`1,n Ý Ñ θ c i`1 `δL p Xi`1 q Ý Ñ θ B i`1 ¯s, where the r.v.'s p Ý Ñ θ e i`1 , Ý Ñ θ c i`1 , Ý Ñ θ B i`1 q P S i`1,n p Xq are defined by Ý Ñ θ e i`1 :"2λ ´1 `I2 i`1 pd i`1 2 q `Ii`1 pd i`1 1 q ˘, Ý Ñ θ c i`1 :"I i`1 ´p2ρ i`1 ´1q θi`1 ´Ý Ñ θ e i`1 ¯`B Xi θi`1 `σ1 i I i`1 `Zi`1 θi`1 ˘, Ý Ñ θ B i`1 :" Ý Ñ θ e i`1 , d i`1 1 :"c i`1 1 `p2ρ i`1 ´1qB Xi c i`1 2 , d i`1 2 :"c i`1 2 .
In a similar way, let f P C 1 p pRq such that f pLq " 0. Then, the following transfer of derivative formula is satisfied

B Xn E n,n " f p Xn`1 q1 Dn`1,n θn`1 ‰ " E n,n " B Xn`1 f p Xn`1 q1 Dn`1,n Ý Ñ θ e n`1 ‰ with Ý Ñ θ e n`1 :" 2e λT p1 `p2ρ n`1 ´1qσ 1 n Z n`1 q so that @p ě 1, } Ý Ñ θ e n`1 } p,n,n ď C. We also set Ý Ñ θ c n`1 :" 0 for notational convenience.
With the above definitions, for any i P Nn´1 , we have E i,n rf p Xi`1 q1 Di`1,n θi`1 s ˇˇX i"¨P C 1 p pRq a.s. Moreover, the weights Ý Ñ θ a i`1 , a P te, c, Bu, i P Nn , satisfy the time degeneracy estimates.

As we did before the statement of Theorem 5, we need to define the weights that will be used in the BEL formula. It will be apparent in what follows that no boundary terms will appear so that no merging operation is needed. Similarly to Section 5.1, we consider the vectors of length n `1 defined by p C n`1 k " pe, . . . , e, c, 0, . . . , 0q where the symbol c appears in the k-th coordinate for k P N n`1 and p I n`1 k " pe, . . . , e, I, 0, . . . , 0q where the symbol I appears in the k-th coordinate for k P N n`1 . Again in order to keep index notation short, we included p C n`1 n`1 as a symbol but any statement in this case should be taken as an empty statement or that the symbol corresponds to an empty element. We then define the set p S k n`1 "

Ť 1ďjďk t p C n`1 j u for k P N n`1 .
Note that since there are no merging terms, the weights Ý Ñ θ e i and Ý Ñ θ c i are given by Lemma 7 applied on the set tN T " nu. Again, we consider the mapping, which to a vector s P p S k n`1 , provides the associated product of weights denoted by

Ý Ñ θ s , namely for i P N n`1 Ý Ñ θ C n`1 i :" n`1 ź "i`1 θ ˆ1Di,n Ý Ñ θ c i ˆi´1 ź j"1 1 Dj,n Ý Ñ θ e j , Ý Ñ θ I n`1 i :" n`1 ź "i`1 θ ˆ1Di,n I i p Ý Ñ θ e i q ˆi´1 ź j"1 1 Dj,n Ý Ñ θ e j .
Theorem 7. Let f P C 1 b pRq such that f pLq " 0. Using the weights defined above, the following Bismut-Elworthy-Li formula is satisfied for any initial point x P rL, 8q:

T B x Erf pX T q1 tτ ěT u s "E » - -f p XN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q $ ' & ' % Ý Ñ θ I N T `1 k `ÿ sP p S k N T `1 Ý Ñ θ s , / . / - fi ffi fl .
Moreover, the r.v. appearing inside the expectation in the right-hand side of the above equality belongs to L p pPq, for any p P r0, 2q.

Proof. As in the proof of Theorem 5, we have Erf pX T q1 tτ ěT u s "

ÿ ně0 E " Erf p Xn`1 q n`1 ź i"1 1 Di,n θi |T n`1 s 1 tN T "nu ı .
In most of the arguments below, we will work on the set tN T " nu. In order to perform a forward induction argument through the Markov chain structure, we define for k P N n`1 the functions

p F k p Xk q :" E k,n " f p Xn`1 q n`1 ź i"k`1 1 Di,n θi ‰ " E " f p Xn`1 q n`1 ź i"k`1 1 Di,n θi | Xk , T n`1 , ρ n`1 , N T " n ‰ .
We let p F n`1 p Xn`1 q :" f p Xn`1 q and the following recursive relation is satisfied for

k P N n p F k p Xk q " E k,n r p F k`1 p Xk`1 q1 D k`1,n θ k`1 s. (38)
Then, iterating the transfer of derivative formula in Lemma 7 for k P N n , we obtain 6

B x Erf p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErD k p F k p Xk q k ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `k ÿ j"1 Er p F j p Xj q1 Dj,n Ý Ñ θ c j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s (39) `k ÿ j"1 Er p F j p Xj qδ L p Xj q Ý Ñ θ B j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s.
To further simplify the first term on the right-hand side of the above equation, we use the tower property of conditional expectation, the integration by parts formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] and the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] to obtain

ErD k p F k p Xk q1 D k,n Ý Ñ θ e k | G k´1 , T n`1 s " Er p F k p Xk q1 D k,n I k p Ý Ñ θ e k q | G k´1 , T n`1 s ´Er p F k p Xk qδ L p Xk q Ý Ñ θ e k | G k´1 , T n`1 s.
In the case k " n, using the transfer of derivative formula of Lemma 7 on the last time interval and then performing the IBP formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF], noting that f pLq " 0, we obtain the representation

B x Erf p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " ErD n`1 f p Xn`1 q n`1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `n ÿ j"1 Er p F j p Xj q1 Dj,n Ý Ñ θ c j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `n ÿ j"1 Er p F j p Xj qδ L p Xj q Ý Ñ θ B j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s. " Erf p Xn`1 q1 Dn`1,n I n`1 p Ý Ñ θ e n`1 q n ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `n`1 ÿ j"1 Er p F j p Xj q1 Dj,n Ý Ñ θ c j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s (40) `n ÿ j"1 Er p F j p Xj qδ L p Xj q Ý Ñ θ B j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s
where we remind the reader that we previously set Ý Ñ θ e n`1 " 0 in Lemma 7 for notational convenience. At this stage we emphasize that all the boundary terms in (40) vanish. In fact, as f pLq " 0, the boundary 6 As before, we use the convention ř H ¨¨¨" 0,

ś H ¨¨¨" 1.
term in the last interval vanishes as stated in Lemma 7. For the other intervals, from (38), we claim that for j P N n , (41)

Er p F j`1 p Xj`1 q1 Dj`1,n θj`1 δ L p Xj q Ý Ñ θ B j | G j´1 , T n`1 s " 0.
To see this, we note that for Xj " L, one has Xj`1 " L`σpLqZ j`1 , which is independent of ρ j`1 , and θj`1 given by ( 17) reduces to θj`1 " 2p2ρ j`1 ´1qλ ´1p 1 2 pap Xj`1 q ´apLqqI 2 j`1 p1q `pbpLq ´a1 p Xj`1 qqI j`1 p1q à2

p Xj`1q 2 ´b1 p Xj`1 qq. Therefore the conclusion follows by conditioning with respect to Xj " L ( in (41) and by noting that Er2ρ j`1 ´1|G j´1 , T n`1 , Xj " Ls " 0.

From this property the identity (39) becomes

B x Erf p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s "Er p F k p Xk q1 D k,n I k p Ý Ñ θ e k q k´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `k ÿ j"1 Er p F j p Xj q1 Dj,n Ý Ñ θ c j j´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s.
Now, for each k P N n , one can multiply the above equality by the length of the interval on which the local IBP formula is performed, namely ζ k ´ζk´1 and sum them over all k. For the last interval, we multiply (40) by T ´ζn . This gives

T B x Erf p Xn`1 q n`1 ź i"1 1 Di,n θi | T n`1 s " n`1 ÿ k"1 pζ k ´ζk´1 qErf p Xn`1 q n`1 ź i"k`1 1 Di,n θi ˆ1D k,n I k p Ý Ñ θ e k q ˆk´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s `n`1 ÿ k"1 pζ k ´ζk´1 q k ÿ j"1 Erf p Xn`1 q n`1 ź i"j`1 1 Di,n θi ˆ1Dj,n Ý Ñ θ c j ˆj´1 ź i"1 1 Di,n Ý Ñ θ e i | T n`1 s.
From the above formula, the L p -moment estimate, p P r0, 2q, follows by similar arguments as described at the end of the proof of Theorem 2. Finally, one concludes by using the Lebesgue differentiation which yields

T B x Erf pX T q1 tτ ěT u s " T B x Erf p XN T `1q N T `1 ź i"1 θ i s " ÿ ně0 E " T B x Erf p Xn`1 q n`1 ź i"1 θ i |T n`1 s 1 tN T "nu ı
and summing the previous formula over n.

Remark 8. (i)

The right hand side of the IBP formula may alternatively be written as

T B x Erf pX T q1 tτ ěT u s " E « f p XN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q # Ý Ñ θ I N T `1 k `k ÿ j"1 Ý Ñ θ C N T `1 j +ff .
(ii) We note that the above formula does not involve any merging procedure. This is due to the fact that only the first derivative is being considered here. In fact, the key property (41) would not be satisfied if one considers second order derivatives. Therefore, a merging procedure similar to the one described in Section 4.3 would be necessary.

(iii) Similarly to the previous section, the above theorem yields a probabilistic representation for the derivative of the transition density of the killed process at time T from which stems an unbiased Monte Carlo simulation method. In contrast with Corollary 1, the derivative is taken with respect to the starting point. This can be seen by formally taking the Dirac mass at point z as a test function in Theorem 7. 7 7 We again refer the interested reader to [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] or to [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF] for an analytical proof of the differentiability of the map rL, 8q Q

x Þ Ñ ppT, x, zq.

Corollary 2. Under assumption (H), the transition density of the killed process at time T is differentiable with respect to its starting point. Moreover, for all pT, x, zq P p0, 8q ˆrL, 8q 2 the following probabilistic representation holds

T B x ppT, x, zq "E » - -gpap XN T qpT ´ζN T q, z ´X N T q N T `1 ÿ k"1 pζ k ´ζk´1 q $ ' & ' % Ý Ñ θ I N T `1 k `ÿ sP p S k N T `1 Ý Ñ θ s , / .
/ -fi ffi fl .

Achieving finite variance by importance sampling

The previous probabilistic representations of Theorems 2, 5 and 7 as well as Corollaries 1 and 2 allow to devise an unbiased Monte Carlo simulation. However, in general, its use is hampered by the fact that the variance is infinite as suggested for instance by the moment estimate of Lemma 9. The main tool that we develop here in order to circumvent this issue consists in employing an importance sampling scheme on the jump times of the Poisson process N as originally proposed by Andersson and Kohatsu-Higa [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]. Since the arguments developed below follow similar lines of reasonings as those employed in [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF], we will omit some technical details.

Let us first introduce a renewal process in the following sense:

Definition 5. Let pT n q ně1 be a sequence of random variables such that pT n ´Tn´1 q ně1 , with the convention T 0 " 0, are i.i.d. with density f and c.d.f: t Þ Ñ F ptq " ş t ´8 f psq ds. Then, the renewal process J :" pJ t q tě0 with jump times pT n q ně1 is defined by J t :" ř ně1 1 tTnďtu . As previously done, we assume that J is independent of the Brownian motion W . It is readily seen that tJ t " nu " tT n ď t ă T n`1 u and by an induction argument that we omit, one may prove that the joint distribution of pT 1 , ¨¨¨, T n q is given by PpT 1 P ds 1 , ¨¨¨, T n P ds n q " n´1 ź j"0 f ps i`1 ´si q1 t0ăs1㨨¨ăsnu which in turn implies

Er1 tJt"nu ΦpT 1 , ¨¨¨, T n qs " Er1 tTnďtăTn`1u ΦpT 1 , ¨¨¨, T n qs (42) " ż 8 t ż ∆nptq Φps 1 , ¨¨¨, s n q n ź j"0 f ps j`1 ´sj q ds n`1 (43) 
so that, by Fubini's theorem

Er1 tJt"nu ΦpT 1 , ¨¨¨, T n qs " ż ∆nptq Φps 1 , ¨¨¨, s n qp1 ´F pt ´sn qq n´1 ź j"0 f ps j`1 ´sj q ds n (44)
for any map Φ : ∆ n ptq Ñ R satisfying Er1 tJt"nu |ΦpT 1 , ¨¨¨, T n q|s ă 8. Usual choices that we will consider are the followings: Examples:

(1) If the density function f is given by f ptq " λe ´λt 1 r0,8q ptq so that F ptq " 1 ´e´λt , t ě 0, for some positive parameter λ, then J is a Poisson process with intensity λ. (2) If the density function f is given by f ptq " 1´α τ 1´α 1 t α 1 r0,τ s ptq, so that F ptq " pt{τ q 1´α , t P r0, τ s, for some parameters pα, τ q P p0, 1q ˆp0, 8q, then J is a renewal process with r0, τ s-valued Betap1 ά, 1q jump times.

(3) More generally, if the density function f is given by f ptq " τ 1´α´β Bpα,βq 1 t 1´α pτ ´tq 1´β 1 r0,τ s ptq, so that F ptq " Bpt{τ , α, βq{Bpα, βq, r0, 1s Q x Þ Ñ Bpx, α, βq being the incomplete Beta function, for some parameters pα, β, τ q P p0, 1q 2 ˆp0, 8q, then J is a renewal process with r0, τ s-valued Betapα, βq jump times.

Having these definitions at hand, as done before, we define the partition π of r0, T s given by π :" t0 ": τ 0 ă ¨¨¨ă τ J T ď T u with τ i :" T i ^T . The probabilistic representation of Theorem 2 then becomes

E " f pX T q1 tτ ąT u ‰ " E " f p XJ T `1q J T `1 ź i"1 1 D i,J T θi ı . ( 45 
)
where the dynamics of the Markov chain X is given by ( 6) with innovations Z i`1 " W τi`1 ´Wτi , i " 0, ¨¨¨, J T ( , with the set D i,n :" t Xi ě L, J T " nu , i P Nn`1 , and for i P NJ T θi :"

1 tJ T ąi´1u 2p2ρ i ´1qpf pτ i ´τi´1 qq ´1 `Ii pc i 1 q `I2 i pc i 2 q ˘`1 tJ T "i´1u p1 ´F pT ´τJ T qq ´1p2ρ J T `1 ´1q. (46) 
Moreover, the following estimates holds on the set tJ T " nu (47)

1 tiďnu pτ i ´τi´1 q p 2 f pτ i ´τi´1 q p 1 Di´1,n E i´1,n " 1 Di,n | θi | p ‰ `1ti"n`1u 1 Dn,n p1´F pT ´τn qq p E n,n " 1 Dn`1,n | θn`1 | p ‰ ď C
where C is positive constant independent of n. Hence, using (47) and then (44), for all p ě 1, one gets

E « ˇˇJ T `1 ź i"1 1 D i,J T θi ˇˇp ff " ÿ ně0 E « ˇˇn `1 ź i"1 1 Di,n θi ˇˇp1 tJ T "nu ff ď C ÿ ně0 C n`1 ż An p1 ´F pT ´tn qq ´p`1 n ź i"1 pt i ´ti´1 q ´p 2 f pt i ´ti´1 q ´p`1 dt 1 ¨¨¨dt n .
As already mentioned before, the previous estimate is actually quite sharp and the series appearing in the right-hand side is finite for p P r0, 2q if J is a Poisson process. In order to achieve a finite variance, one has to select the law of the jump times suitably. Indeed, if for instance J is a renewal process with r0, τ s-valued Betap1 ´α, 1q jump times, α P p0, 1q, τ ą T , a simple computation shows that the above series is finite as soon as ´p 2 `αpp ´1q ą ´1, that is, pp 1 2 ´αq ă 1 ´α. In particular, taking α " 1{2, it is readily seen that the moment of order p of the random variable appearing inside the expectation in the right-hand side of (45) is finite for all p ě 1. Similarly, if J is a renewal process with r0, τ s-valued Betap1 ´α, 1 ´βq jump times, pα, βq P p0, 1q 2 , τ ą T , the integral appearing in the right-hand side of the above inequality is finite as soon as pp 1 2 ´αq ă 1 ´α and ´pβ ă 1 ´β, the later condition being always satisfied. In particular, taking α " 1{2 and any β P p0, 1q, any moment of order p for p ě 1 is finite.

We now provide the probabilistic representation for the two IBP formulas using the above importance sampling technique. We thus redefine the weights appearing in the first IBP formula keeping in mind that the sequence p θi q 1ďiďJ T `1 is now given by (46). The new random variables p Ð Ý θ

Ð Ý θ c J T `1 :" ´2p1 ´F pT ´τJ T qq ´1pσ 1 σq J T pT τJ T qI 2 J T `1p1q.
For the boundary merging weights of Lemmas 5 and 6, we first redefine the Markov chain XB with dynamics (26) by modifying the corresponding increments Z j,i`1 as done previously. We then set D B j,i`1,n :" t XB j,i`1 ě L, J T " nu, j " i ´1, i. Finally, on the set tJ T " nu,

Ð Ý θ B˚e j,i`1 :"4pf pτ i`1 ´τj qq ´1 a 1 pLq ´bpLq a j `Ī 2 j,i`1 p di`1 2 q `Ī j,i`1 p di`1 1 q ˘, (49) 
Ð Ý θ Bfe j,i`1 :"4pf pτ i`1 ´τj qq ´1 a 1 pLq ´bpLq a 3{2 j σpLq p Xj ´Lq ´Ī 2 j,i`1 p di`1 2 q `Ī j,i`1 p di`1 1 q (50)
for j " i ´1, i with coefficients given by di`1 p Xj ´Lq dn`1 for j " n ´1, n with dn`1 :" p Φg ´1qpapLqpτ n`1 ´τj q, Z j,n`1 q. At this stage, it is important to remark that the above new weights satisfy a time degeneracy estimate, with a slight modification of Definition 3. The notation E i,n rXs now is used for the expectation of X conditional on G i , T n`1 , ρ n`1 , J T " n ( and one considers the corresponding norm }.} p,i,n . We now say that a weight H P S i,n satisfies the time degeneracy estimate if for all p ě 1 (51)

k :" di`1 k ˆp Φg ´1qpapLqpτ i`1 ´τj q, Z j,i`1 q, k " 1, 2,
1 Di´1,n › › 1 Di,n H › › p,i´1,n ď Cf pτ i ´τi´1 q ´1pτ i ´τi´1 q ´1 2 in the case that i P N n and 1 Dn,n › › 1 Dn`1,n H › › p,n,n ď C in the case that i " n `1.
In a completely analogous manner as done in Lemma 4, the weights Ð Ý θ a i for a P te, c, Bu satisfies the time degeneracy estimate (51). For the boundary merging weights, we replace (51) for H P S j,i`1,n p XB q by

@p ě 1, 1 Dj,n E " 1 D B j,i`1,n |H| p ˇˇGj´1, τ i`1 , J T " n ı ď Cpf pτ i`1 ´τj qq ´ppζ i`1 ´ζj q ´p 2 , i P N n´1 , (52) for j " i ´1, i and1 Dj,n E " 1 D B j,n`1,n |H| p ˇˇGj´1, J T " n ı ď C for j " n ´1, n. Doing so, the new boundary merging weights Ð Ý θ B˚e j,i`1 and

Ð Ý θ

Bfe j,i`1 defined respectively by ( 49) and (50) both satisfy the time degeneracy estimate (52).

With the above new definitions and properties, we finally redefine the corresponding weights Ð Ý θ s with the related Markov chain Xs for each s P S n`1 or s P 9

S k n`1 on the time partition π :" t0 ": τ 0 ă ¨¨¨ă τ n`1 :" T u of the underlying renewal process on the set tJ T " nu. This is done in a completely analogous manner as presented in the subsection 5.2.

We can now restate Theorem 5 as follows. For any function f P C 1 b pRq satisfying f pLq " 0,

T Erf 1 pX T q1 tτ ěT u s "E » - - J T `1 ÿ k"1 pτ k ´τk´1 q $ ' & ' % f p XJ T `1q Ð Ý θ I J T `1 k `ÿ sP Sk J T `1Y 9 S k J T `1 f p Xs J T `1q Ð Ý θ s , / .
/ -fi ffi fl .

Note also that the corresponding other formulation of Remark 6 also holds. Moreover, if J is a renewal process with r0, τ s-valued Betap1 ´α, 1q jump times, τ ą T , with α satisfying pp 1 2 ´αq ă 1 ´α or if J is a renewal process with r0, τ s-valued Betap1 ´α, 1 ´βq jump times, τ ą T , with α and β such that pp 1 2 ´αq ă 1 ´α and β P p0, 1q, then the r.v. appearing inside the expectation of the right-hand side of the above equality belongs to L p pPq for any p ě 1. The proof follows similar lines of reasonings as those employed above in order to deal with the new probabilistic representation (45) and is thus omitted.

We proceed similarly for the BEL formula of Theorem 7. Namely, we redefine the weights Ý Ñ θ a , for a P te, c, Bu as follows Ý Ñ θ e i :"2pf pτ i ´τi´1 qq

´1 `I2 i pd i 2 q `Ii pd i 1 q ˘, Ý Ñ θ c i :"I i ´p2ρ i ´1q θi ´Ý Ñ θ e i ¯`B Xi´1 θi `σ1 i I i `Zi θi ˘, Ý Ñ θ B i :" Ý Ñ θ e i
and also set Ý Ñ θ e n`1 :" 2p1 ´F pT ´ζn qq ´1p1 `p2ρ n`1 ´1qσ 1 n Z n`1 q, Ý Ñ θ c n`1 :" 0. These new weights satisfy the time degeneracy estimate (51). Then, the following BEL formula is satisfied for any f P C 1 b pRq satisfying f pLq " 0 and any initial point x P rL, 8q:

T B x Erf pX T q1 tτ ěT u s "E » - -f p XJ T `1q J T `1 ÿ k"1 pζ k ´ζk´1 q $ ' & ' % Ý Ñ θ I J T `1 k `ÿ sP p S k J T `1 Ý Ñ θ s , / . / - fi ffi fl .
Moreover, the r.v. appearing inside the expectation in the right-hand side of the above equality belongs to L p pPq, for any p ě 1 in the case of r0, τ s-valued Betap1´α, 1q jump times or r0, τ s-valued Betap1´α, 1´βq jump times under the condition pp 1 2 ´αq ă 1 ´α and β P p0, 1q. In particular, choosing α " 1{2, the L p pPq moment is finite for any p ě 1.

Numerical tests

In this section, we provide some numerical results for the unbiased Monte Carlo simulation method based on the probabilistic representation formula established in Theorem 2 for the marginal law of the killed process and the Bismut-Elworthy-Li (BEL for short) formula of Theorem 7. A similar numerical analysis could be done for the IBP formula established in Theorem 5 but we restrict to the two aforementioned case for sake of simplicity. For a one dimensional Brownian motion W , we thus consider the following one-dimensional SDE with dynamics (53)

X t " x 0 `ż t 0 bpX s qds `ż t 0 σpX s qdW s , x P R
and we choose the coefficients b, σ and the test function f as follows

σpxq " σ ˆpsinpωxq `2q, bpxq " ´x x 2 `c1 3c3 σpxq, f pxq " c 3 x 3 `c1 x `c0
for some positive constant σ ą 0. With this particular choice, we first observe that assumption (H) is clearly satisfied and that a direct computation yields Lf pxq :" bpxqf 1 pxq `1 2 σ 2 pxqf 2 pxq " 0. The process pf pX t qq tě0 is thus a martingale and by Doob's stopping theorem one gets Erf pX τ ^T qs " f px 0 q where τ " inf tt ě 0 : X t ď Lu. We now shift the function f by considering hpxq " f pxq ´f pLq satisfying hpLq " 0 instead of f . It is readily seen that h satisfies Lhpxq " 0 so that ErhpX τ ^T qs " ErhpX T q1 tτ ąT u s " hpx 0 q. Note that since h is not bounded but of polynomial growth, only Theorem 2 directly applies. However, the extension of Theorem 7 (and also of Theorem 5) to polynomially growing function can be performed by a standard approximation argument noting that all moments of XN T `1 and X T are bounded.

Having this extension in mind, by Theorem 7, one has

@x ě L, T h 1 pxq " B x ErhpX T q1 tτ ąT u s " E » - -hp XN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q $ ' & ' % Ý Ñ θ I N T `1 k `ÿ sP p S k N T `1 Ý Ñ θ s , / .
/ -fi ffi fl .

We select the following parameters: T " 0.5, L " 0, c 0 " 0, c 1 " 1, c 3 " 1 and x 0 " 1 so that hpx 0 q " 2 and T h 1 px 0 q " 2. We use three different parameters sets for σ " ω " 0.1, 0.2, 0.3. We examine the performance of the proposed Monte Carlo estimator with respect to the previous sets of parameters when one uses the Exponential sampling (the distribution of the jump times is exponential with parameter λ) as it is written in Theorem 2 and Theorem 7 and when one uses an importance sampling technique with Beta distribution with parameters pγ, τ q for the jump times of the renewal process, as exposed in Section 7, which allows to achieve finite variance for our estimators. We note that though the variance is not finite in the case of Exponential time sampling, we include it here in order to compare its performance with the Beta sampling scheme. In both cases, we first select the optimal parameters which minimize the variance of the estimator using few samples, that is, the optimal λ in the case of Exponential sampling and the optimal pγ, τ q in the case of Beta sampling. We then use M " 4 ˆ10 6 i.i.d. samples to estimate the considered quantities. The results are summarized in the two tables below. The first column of Table 1 and Table 2 provides the value of the two parameters σ " ω. The second column (resp. third column) of Table 1 provides the estimated value of the quantity ErhpX T q1 tτ ąT u s with its associated variance, L 1 pPq-error and 95%-confidence interval in the case of Exponential sampling (resp. Beta sampling). The second column (resp. third column) of Table 2 provides the estimated value of the quantity B x ErhpX T q1 tτ ąT u s with its associated variance, L 1 pPq-error and 95%-confidence interval in the case of Exponential sampling (resp. Beta sampling).

Most notably, we observe that in both tables the performance of our estimators quickly deteriorates as σ " ω increases. Actually, for large values of σ, ω, say greater than 0.4, the variance becomes difficult to estimate from the simulations and the obtained estimates become unreliable. We also see that the Beta time sampling method outperforms the Exponential time sampling for all values of the considered parameters especially for large values of σ. This behavior was already observed in [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF] and is reminiscent of unbiased simulation methods for multidimensional diffusion processes. It was thus expected here since there is no hope that our estimator will overcome this problem. To circumvent this issue, one may resort to more sophisticated method such as the second order approximation method developed by [START_REF] Andersson | Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations[END_REF].

Some Conclusions

In the present work, we presented a probabilistic representation formula for the marginal law of a killed process based on a basic Markov chain which is obtained using the reflection principle. From this representation, we established two IBP formulae, one being of BEL's type, from which directly stem an unbiased Monte Carlo method. The main element used in this construction is a suitable tailor-made Malliavin calculus for the underlying Markov chain. For this reason, we do not need to use the full fledge power of Malliavin calculus by closing the derivative operator but just the concepts for simple discrete time Markov chain.

The methodology developed here seems to follow a general pattern that could be used to obtain IBP formulae for some other irregular functionals of the Wiener process for which boundary problems may appear such as the exit time, the local time, the running maximum or the occupation time of a multidimensional diffusion process. Although the problem investigated here focuses in the one dimensional case, we believe that the approach developed here also extends to some multi-dimensional cases for which the reflection principle is well understood and densities for basic approximation processes are known, see e.g. [START_REF] Akahori | On a symmetrization of diffusion processes[END_REF], [START_REF] Defosseux | Affine lie algebras and conditioned space-time brownian motions in affine weyl chambers[END_REF] and the references therein.

On the other hand, it seems difficult at this moment to generalize the methods in [START_REF] Jenkins | Exact simulation of the sample paths of a diffusion with a finite entrance boundary[END_REF] and [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF] to the multi-dimensional case or even to obtain an amenable integration by parts formula based on a Markov chain using these formulations or a Lamperti like transform. We will discuss this extension in future works as well as their implementation for simulation purposes. 10. Appendix 10.1. Proof of the probabilistic representation in Theorem 2. Let X be the solution to [START_REF] Agarwal | Finite variance unbiased estimation of stochastic differential equations[END_REF]. Let P denote the semigroup operator associated with the killed process. That is, for a measurable and bounded function f , one defines P t f pxq " E " f pX t q1 tτ ątu ‰ . We remark that due to the indicator function, this semigroup is not conservative.

The heuristic argument in order to obtain the probabilistic representation is to use Itô's formula on an approximation process obtained from (1) by removing the drift and freezing the diffusion coefficient at the starting point. From Itô's formula, one obtains a one step expansion of the law of X around the law of the Markov chain X. Then, an IBP formula based on the Markov chain X has to be used to obtain the probabilistic representation of this first step expansion using one jump of the Poisson process N . Then, one just needs to iterate the first step expansion in order to obtain the full probabilistic representation.

In order to do this rigorously, one needs to use the regularity properties of the semigroup P which can be found in [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF], Chapter VI and/or [START_REF] Garroni | Second order elliptic integro-differential problems[END_REF]. In particular, under assumption pHq on the coefficients, one obtains that if f is a smooth function such that lim xÓL f pxq " f pLq " 0 then P f P C 1,2 pp0, T s ˆrL, 8qq and it satisfies B t P t f " LP t f on rL, 8q, t ą 0, where L " 1 2 aB 2 x `bB x is the infinitesimal generator of X. Moreover, one has sup 0ďtďT |B x P t f | 8 ď C, for " 1, 2, for some positive constant C :" CpT, a, bq.

Under the condition that the test function f vanishes at L, we obtain that P satisfies its corresponding Dirichlet boundary condition P t f pLq " f pLq " 0 together with P 0 f pxq " f pxq for all x ě L.

The argument used to obtain the probabilistic representation starts by applying Itô's formula to pP T ´tf p Ȳt^τ qq tPr0,T s where the process Ȳ is defined in Lemma 1 on the interval r0, T s and τ is its associated exit time. We also recall the definition of the approximation process obtained from the reflection principle of Lemma 1, namely Xs,x t " ρx `p1 ´ρqp2L ´xq `σpxqpW t ´Ws q (with the shorten notation Xt " X0,x t ):

f p ȲT q1 tτ ąT u E " P T f pxq `ż T 0 ˆ´B u P u f p Ȳs q ˇˇu "T ´s `1 2 apxqB 2 x P T ´sf p Ȳs q ˙1tτąsu ds E " P T f pxq `ż T 0 ˆ1 2 
`apxq ´ap Ȳs q ˘B2

x P T ´sf p Ȳs q ´bp Ȳs qB x P T ´sf p Ȳs q ˙1tτąsu ds

E " P T f pxq `2p2ρ ´1q ż T 0 ˆ1 2 
`apxq ´ap Xs q ˘B2

x P T ´sf p Xs q ´bp Xs qB x P T ´sf p Xs q ˙1t XsěLu ds.

We now rewrite the previous representation using the Markov chain p Xi q 0ďiďN T `1 defined by ( 6) together with the Poisson process N . From the previous identity, we get

P T f pxq E " f p XT q2p2ρ ´1q `2p2ρ ´1q ż T 0 ˆ1 2 `ap Xs q ´apxq ˘B2
x P T ´sf p Xs q `bp Xs qB x P T ´sf p Xs q ˙1t XsěLu ds (54)

E " f p XN T `1qθ N T `11 tN T "0u `eλT 2λ ´1p2ρ N T ´1q " 1 2 pap X1 q ´apxqqB 2 x P T ´ζ1 f p X1 q `bp X1 qB x P T ´ζ1 f p X1 q * 1 t X1ěLu 1 tN T "1u
Next, we apply the IBP formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] with respect to the r.v. X1 in the above expression. The formula is applied once to the terms associated with the drift coefficient b and two times with respect to the terms related to the diffusion coefficient a. In order to do that one first has to take the conditional expectation E 0,1 r.s in the second term of the above equality. As these IBPs involve the indicator function 1 t X1ěLu , the correct calculation has to be done using the theory in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], Chapter V.9. 8 This yields

P T f pxq E "f p XN T `1qθ N T `11 tN T "0u `eλT 2λ ´1p2ρ N T ´1q ˆˆ1 2 I 1 ``ap X1 q ´apxq ˘1t X1ěLu ˘Bx P T ´ζ1 f p X1 q `I1 `bp X1 q1 t X1ěLu ˘PT ´ζ1 f p X1 q ˙1tN T "1u E "f p XN T `1qθ N T `11 tN T "0u `eλT 2λ ´1p2ρ N T ´1q ˆˆ1 2 I 1 ``ap X1 q ´apxq ˘˘B x P T ´ζ1 f p X1 q `I1 `bp X1 q ˘PT ´ζ1 f p X1 q ˙1t X1ěLu 1 tN T "1u
where we used the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] applied to the r.v. 1 t XsěLu and Lemma 11 (taking first the conditional expectation w.r.t ζ 1 ) for " 1, k " 0 for the last equality. 8 An alternative but longer approach can also be achieved using smooth approximations for the indicator function.

Now we carry out again the same procedure for the second term in the above integrand using again the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] and the fact that P t f pLq " f pLq " 0. We obtain

P T ´tf p Ȳt q1 tτ ątu E "f p XN T `1qθ N T `11 tN T "0u `eλT 2λ ´1p2ρ N T ´1q ˆˆ1 2 I 2 1 `ap X1 q ´apxq ˘PT ´ζ1 f p X1 q `I1 `bp X1 q ˘PT ´ζ1 f p X1 q ˙1t X1ěLu 1 tN T "1u (55) 
We emphasize that, under assumption (H), the following estimates hold: for all p ě 1, there exists C :" Cpa, b, T, pq such that }1 t X1ěLu I 1 pap X1 q ´apxqq} p,0,1 ď C, (56)

}1 t X1ěLu I 2 1 pap X1 q ´apxqq} p,0,1 `}1 t X1ěLu I 1 pbp X1 qq} p,0,1 ď ζ ´1{2 1
which in turn, by using the fact that on PpN T " 1, ζ 1 P dtq " λe ´λT dt on r0, T s, lead to the integrability of the second term appearing in (55). We now prove the three estimates (56). Since they are obtained using the same technique, we only briefly explain how to obtain the first inequality. Using the definition of I 1 , one has that

I 1 pap X1 q ´apxqq " pap X1 q ´apxqq Z 1 σpxqζ 1 `a1 p X1 q.
Therefore in order to bound the above expression, we need to find an upper bound for |ap X1 q ´apxq| and then use classical estimates for the moments of Gaussian r.v.'s. In order to bound |ap X1 q ´apxq|, one uses the Lipschitz property of a as follows

1 t X1ěLu |ap X1 q ´apxq| ď C1 t X1ěLu | X1 ´x| ď C| X1 ´xρ 1 ´p1 ´ρ1 qp2L ´xq| ď C|Z 1 |.
Here we have used the fact that X1 ě L and x ě L implies | X1 ´x| ď | X1 ´xρ ´p1 ´ρqp2L ´xq|. Finally the estimate (56) follows from the application of Lemma 2 with H 1 " ap X1 q ´apxq. With the notations introduced in Section 2.4, ( 7) and ( 17), the identity (55) can be rewritten as

P T f pxq " E " f p XN T `1q1 D N T `1,N T θN T `11 tN T "0u ı `eλT E " P T ´ζ1 f p X1 q1 D N T ,N T θ1 1 tN T "1u ı . ( 57 
)
Using again (54), applying Lemma 12 and by finally performing IBPs as before, we obtain by induction the following formula, @n P N, .

P T f pxq " n´1 ÿ j"0 E « f p XN T `1q N T `1 ź i"1 1 D i,N T θi 1 tN T "ju ff `eλT E « P T ´ζn f p Xn q n ź i"1 1 D i,N T θi 1 tN T "nu ff . (58) 
To conclude it remains to prove the absolute convergence of the first sum and the convergence to zero of the last term 9 . These two results follow directly from the boundedness of f and the following general estimates on the product of weights. Lemma 8. The r.v.'s θi P S i,n , i P N n`1 satisfy the time degeneracy estimates in Definition 3. More precisely, for any p ě 1, there exists a (deterministic) constant C ą 0 (which may depend on λ) such that for i

P N n 1 Di´1,n E i´1,n " 1 Di,n | θi | p ‰ ď Cpζ i ´ζi´1 q ´p 2 . (59) Furthermore, one has 1 Dn´1,n E n,n " 1 Dn,n | θn`1 | p ‰ ď C.
Proof. The proof for i ď N T follows from Lemma 2 after noting that c i 2 " 1 2 pap Xi q ´ap Xi´1 qq P M i p X, 1{2q X S i p Xq and is based on the same arguments as in the proof of (56). In the case i " N T `1 the conclusion follows directly from the boundedness of the r.v. θN T `1. This argument will be used repeatedly in order to obtain the so-called time degeneracy estimates. Lemma 9. Assume that the weights p θi , S i,n q, i P N n`1 satisfy the time degeneracy estimates in Definition 3. Then for any p P r0, 2q, we have the following moment estimate:

E « ˇˇN T `1 ź i"1 1 D i,N T θi ˇˇp ff ď E 1´p 2 ,1 pCT ´p 2 `1q ă 8.
Here E 1´p 2 ,1 stands for the Mittag-Leffler function E α,β pzq :"

ř ně0 z k
Γpβ`kαq with parameters α " 1 ṕ 2 , β " 1.

Proof. For the proof, it is enough to use the Markov property of the Markov chain X together with the time degeneracy estimates and the fact that given N T " n, the jump times of the Poisson process are distributed as the order statistics of n i.i.d. uniform r0, T s-valued r.v.'s satisfying PpN T " n, ζ 1 P dt 1 , ¨¨¨, ζ n P dt n q " λ n e ´λT dt 1 , ¨¨¨, dt n on the set A n " tpt 1 , ¨¨¨, t n q P r0, T s n : 0 ă t 1 ă ¨¨¨ă t n ă T u.

This gives

E « ˇˇN T `1 ź i"1 1 D i,N T θi ˇˇp1 tN T "nu ff ď C n`1 ż An n ź i"1 pt i ´ti´1 q ´p 2 dt 1 ¨¨¨dt n " C n`1 T np1´p 2 q Γ n p1 ´p 2 q Γp1 `np1 ´p 2 qq
for some positive constant C :" CpT, a, b, p, λq. One concludes the proof by adding the previous inequality from n " 0 to infinity.

As a consequence, ( 16) holds for bounded smooth functions. The extension to bounded continuous functions follows from an approximation argument while the extension to bounded measurable function follows from a monotone class argument. The extension to polynomially growing functions is performed by a limit argument noting that all moments of XN T `1 and X T are bounded. Remark 9. (i) From the above proof, it should be clear that inequality (59) (or equivalently [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF]) is strongly tied with the restriction p P r0, 2q in Lemma 8. This is the reason why it is important to always have weights which satisfy a time degeneracy estimate as stated in Definition 3. (ii) On the other hand, the estimate in (59), as remarked in [START_REF] Bally | A probabilistic interpretation of the parametrix method[END_REF], also suggests that the variance of the Monte Carlo estimator may be infinite. In order to achieve finite variance, one can resort to an importance sampling technique on the jump times as proposed by Anderson and Kohatsu-Higa [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]. 10.2. Proof of the transfer of derivatives of Lemma 4. First, we remark that from the explanation given after the definition of the operators D and I in [START_REF] Defosseux | Affine lie algebras and conditioned space-time brownian motions in affine weyl chambers[END_REF] [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] are elements of S i`1 p Xq. Then, it is clear that since the coefficients b and σ are smooth as stated in pHq and the transition of the Markov chain X has a smooth Gaussian transition density, the map

, the r.v.'s p Ð Ý θ e i`1 , Ð Ý θ c i`1 , Ð Ý θ B i`1 q defined by
x Þ Ñ E i,n rf p Xi`1 q1 Di`1,n Ð Ý θ e i`1 s ˇˇX i"x is in C 1 p pRq a.
s. In order to prove [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF], we consider the difference between the term appearing on the left-hand side and the first term appearing on the right-hand side of equation [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF]. Using the integration by parts formula [START_REF] Delarue | Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme[END_REF] and then the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] ´1 `I2 i`1 pB Xi c i`1 2 q `Ii`1 pB Xi d i`1 1 q ´pσ 1 σ ´1q i `Ii`1 pd i`1 1 q `2I 2 i`1 pc i`1 2 q ˘˘,

B Xi c i`1 2 "a 1 i`1 B Xi Xi`1 ´a1 i , B 2 Xi c i`1 2 "a 2 i`1 pB Xi Xi`1 q 2 `a1 i`1 B 2 Xi Xi`1 ´a2 i , B Xi d i`1 1 "b 1 i`1 B Xi Xi`1 ´p2ρ i`1 ´1qB 2 Xi c i`1 2 ,
which in turn, after some algebraic simplifications, yields the formula for Ð Ý θ c i`1 appearing in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. In order to conclude the proof of [START_REF] Herrmann | Exact simulation of the first-passage time of diffusions[END_REF], it remains to notice that for f P C 1 p prL, 8qq, one has ´Ei,n " f p Xi`1 qδ L p Xi`1 q θi`1 ‰ "E i,n " f p Xi`1 qδ L p Xi`1 q Ð Ý θ 

Ð Ý θ B

i`1 q are straightforward applications of Lemma 2 using the same arguments as in (56). The proof of the transfer of derivative formula [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF] as well as the time degeneracy estimates of the r.v.'s for Ð Ý θ a n`1 , a P te, cu on the set tN T " nu follow from similar arguments and we omit the remaining technical details. 10.3. Proof of the boundary merging lemmas.

10.3.1.

A time convolution result for Gaussians. In this section, we describe a series of explicit calculations of convolutions of Gaussian densities with respect to the time variable. These are used when merging weights and building the boundary process. Proof. The results follows from simple manipulations using the following Laplace transform for x, η ą 0:

Lpg ´1qpηq :" ż 8 0 e ´ηs g ´1psq ds "x ´1e ´?2ηx 2 with g ´1psq :" s ´1gps, xq. (64)

In particular, one uses the fact that sB x gpa 2 s, xq " ´x a 2 gpa 2 s, xq in proving (63). 10.3.2. Proof of Lemma 5. The key ingredient to prove [START_REF] Revuz | Continuous Martingales and Brownian motion[END_REF], that is, the boundary merging of Ð Ý θ e i`1 and Ð Ý θ B i , is Lemma 10. We divide the proof into several steps.

Step 1: Simplify the statement. First, one observes that it is easier to verify [START_REF] Revuz | Continuous Martingales and Brownian motion[END_REF] Step 2: Proof of (65). Case j " 0. In order to foster the understanding of the proof, let us first consider the case j " 0. The following arguments also gives rise to the definition of the merged boundary process.

First, observe that as p2ρ i ´1qσ i´1 Z i " L ´X i´1 :" Y i´1 on the set Xi " L ( , one has p2ρ i ´1qδ L p Xi qI i p1q " δ L p Xi q Y i´1 a i´1 pζ i ´ζi´1 q .

Next, we rewrite the right hand side of (65), namely, using the independence of W and N , we have

E " f p Xi , Xi`1 q1 Di`1,n δ L p Xi qp2ρ i ´1qI i p1q ˇˇG i´1 , ζ i`1 , ζ i , ρ i , N T " n ‰ " ż 8 L
f pL, zq Y i´1 a i´1 pζ i ´ζi´1 q gpa i´1 pζ i ´ζi´1 q, Y i´1 q gpapLqpζ i`1 ´ζi q, z ´Lq dz.

We now use the following key property: for a real-valued bounded G i´1 ˆBpR 2 `q-measurable function h : Ω ˆR2

`Ñ R, one has

Erhpζ i , ζ i`1 q | G i´1 , ζ i`1 , N T " ns " Erhps `U, tq| G i´1 , ζ i`1 , N T " ns ˇˇs "ζi´1, t"ζi`1 . ( 66 
)
where U " Up0, t ´sq is independent of G i´1 and N . More precisely, by using the tower property for conditional expectation and (66), we obtain In order to compute the above time convolution and show that the above conditional expectation can be rewritten using the boundary process XB , we apply Lemma 10, in particular (??), noticing that Yi´1 ai´1s gpa i´1 s, Y i´1 q " B 2 gpa i´1 s, |Y i´1 |q, to obtain E " f p Xi , Xi`1 q1 Di`1,n δ L p Xi qp2ρ i ´1qI i p1q ˇˇG i´1 , ζ i`1 , ρ i , N T " n ‰ " 1 a i´1 pζ i`1 ´ζi´1 q ż 8 L f pL, zqgpapLqpζ i`1 ´ζi´1 q, z ´pLp1 ´µp Xi´1 qq `X i´1 µp Xi´1 qqq dz,

" 1 a i´1 pζ i`1 ´ζi´1 q E " f pL, XB i´1,i`1 q1 D B i´1,i`1,n ˇˇG i´1 , ζ i`1 , N T " n ‰ .
This finishes the proof for the case j " 0.

Step 3: The general case: j " 1, 2. Using equality (62), one can similarly prove (65) in the case j " 1, 2. In fact, a useful formula to prove this general case directly from (62) is the following property for i P N n which was stated in [START_REF] Fournié | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF].

I j

i`1 p1q " p´1q j `g´1 B j y g ˘pa i pζ i`1 ´ζi q, y ´ρi`1 Xi ´p1 ´ρi`1 qp2L ´X i qq ˇˇy " Xi`1

.

Step 4: The general case follows by linearity. Note that in the general case of (29), we have that Ð Ý θ e i`1 is given by [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. This expression can be rewritten using the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] as linear combinations of terms of the type f j p Xi , Xi`1 qI j i`1 p1q for some particular functions f j P C pR 2 q. Therefore the result in (65) applies.

One uses again [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] for Ī in order to rewrite the resulting expressions in a compact form. For this, note that we have conveniently defined D as the adjoint of Ī for which the extraction formulae are satisfied. 10.4. Localization and reduction lemmas. The following lemma is the basic result which explains that the expectation of a weight can be simplified thanks to the symmetry of the law of Xi , for 1 ď i ď N T . For this reason, we call the following result a reduction lemma. This section only uses the results and setting of Section 2.4. Proof. The proof follows by using [START_REF] Fournié | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF] and noting that the Hermite polynomials of even degree are even functions (as functions of the variable Z i ) and the fact that, conditional on G i´1 , T n`1 and Xi " L, the law of the random vector pZ i , 2ρ i ´1q is a Bernoulli(1/2) r.v. with symmetric values ˘pσ ´1 i´1 pL ´X i´1 q, 1q for i P N n .

The above lemma states that any weight for which its leading term satisfies that `k is odd (in the sense of highest order of time degeneration) will have a reduction in its time degeneration. Combining the extraction formula [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] with Lemma 12, one obtains a result which encompasses extraction, localization (at L) and reduction in time degeneration. The proof is straightforward and follows by rewriting the above expectations using that the conditional law of the jump times of a Poisson process given the number of jumps follows the same law as the order statistics for i.i.d. uniformly distributed r.v.'s.

The next result is used for the reduction of jumps after the boundary merging procedure. For this reason we called it the time merging lemma. Lemma 13. Let n P N. Let G : tpt 1 , ..., t n q : 0 ă t 1 ă ¨¨¨ă t n ă T u Ñ R be a measurable function such that for all i P N n , Erpζ i`1 ´ζi´1 q ´1Gpζ 1 , . . . , ζ i´1 , ζ i`1 , . . . , ζ N T `1q1 tN T "nu s ă 8. Then, for any i P N n , one has Erpζ i`1 ´ζi´1 q ´1Gpζ 1 , ¨¨¨, ζ i´1 , ζ i`1 , . . . , ζ N T `1q1 tN T "nu s " λErGpζ 1 , . . . , ζ N T `1q1 tN T "n´1u s. Proof. The proof follows from standard computations having at hand the two following important facts: conditionally on the event tN T " n, ζ 1 , . . . , ζ i´1 , ζ i`1 , . . . ., ζ N T u, the distribution of ζ i is uniform on rζ i´1 , ζ i`1 s and nPpN T " nq " λT PpN T " n ´1q.

Remark 10. The above result will be used in the proof of Theorem 5 for i P N n on the set tN T " nu for some measurable functions G of the following form 
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 3 Figure 3. Markov chain structure before merging of boundary terms on the left and after merging on the right.
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 4 (i) We again emphasize the role of the two indexes j " i ´1, i, for i P N n , in the definition of the boundary merged weights Ð Ý θ B˚e j,i`1 and
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 4 Figure 4. A tree in the case of N T " 4 jump times with an IBP performed on the time interval rζ 1 , ζ 2 s before any merging.

Figure 5 .

 5 Figure 5. A tree in the case of N T " 4 jump times with an IBP on the interval rζ 1 , ζ 2 s after time merging. All branches that contain a merged terms are associated to the set tN T " 3u.

  B˚e j,n`1 :" 4p1 ´F pT ´τj qq ´1 a 1 pLq´bpLq aj , Ð Ý θ Bfe j,n`1 :" 4p1 ´F pT ´τj qq ´1 2a 1 pLq´bpLq a 3{2 j σpLq

e i` 1 1 " c i` 1 1 2 in

 1112 qs ´Ei,n rf p Xi`1 qδ L p Xi`1 q θi`1 s. (60) Note that by using the relationd i`1 ´p2ρ i`1 ´1qB Xi c i`1

B i` 1 ı

 1 (61) which is a direct consequence of Corollary 3.The time degeneracy estimates of the r.v.

Lemma 10 .

 10 For x, y, α, β P R `and P t0, 1, 2u, ż t 0 B x gpα 2 s, xqB y pgpβ 2 pt ´sq, yqqds " ´α´2 B y pgpβ 2 t, y `β α xqq. 2 s, xqB y pgpβ 2 pt ´sq, yqqds " ´α´3 β ´1xB y p Φpβ 2 t, y `β α xqq. (63) where Φpt, zq :" ş 8 |z| gpt, yqdy.

  Xi , Xi`1 q1 Di`1,n δ L p Xi qp2ρ i ´1qI i p1q ˇˇG i´1 , ζ i`1 , ρ i , N T " n ‰ gpa i´1 s, Y i´1 qgpapLqppζ i`1 ´ζi´1 q ´sq, z ´Lq ds.

Lemma 11 .

 11 Let f P C 1 p pRq and p , k, nq P N ˆN2 . Then, for any i P N n , one hasE " f p Xi qδ L p Xi qp2ρ i ´1q I k i p1q|G i´1 , T n`1 , N T " n ‰ " # 0, if `k is odd, E " f p Xi qδ L p Xi qp2ρ i ´1q k I k i p1q | G i´1 , T n`1 , N T " n ‰ , if `k is even.

Corollary 3 . 10 . 5 .Lemma 12 .

 310512 Let f P C 1 p pRq and p , k, nq P N 0 ˆN2 . Let c P C k b pRq. Then, for any i P N n , one hasE " f p Xi qδ L p Xi qp2ρ i ´1q I i pcp Xi qq|G i´1 , T n`1 , N T " n ‰ " Xt qδ L p Xt qp2ρ ´1q k´j I k´j i p1q|G i´1 , T n`1 , N T " n ı .Appendix: Results about emergence and reduction of jumps. The first result is used in the proof of the probabilistic representation in Theorem 2 and is used to express that time integrals add jumps to the Poisson process. Let n P N and G : tpt 1 , . . . , t n`2 q : 0 ă t 1 ă ¨¨¨ă t n`1 ă t n`2 :" T u Ñ R `be a measurable function such that Er ş T ζn Gpζ 1 , . . . , ζ n , s, T q1 tN T "nu dss ă 8. Then Er ż T ζn Gpζ 1 , . . . , ζ n , s, T q1 tN T "nu dss " λ ´1ErGpζ 1 , . . . , ζ n , ζ n`1 , T q1 tN T "n`1u s

Gpζ 1 , 1 1

 11 . . . , ζ i´1 , ζ i`1 , . . . , ζ N T q " F p XB i´1,i`1 , ζ i`1 , ¨¨¨, ζ n`1 q ˆ1D B i´1,i`1,n Dj,n θj

  appearing in the next time interval, by taking expectations with respect to ζ i in[START_REF] Revuz | Continuous Martingales and Brownian motion[END_REF]. This operation leads to a new transition on the time interval rζ i´1 , ζ i`1 s for the underlying Markov chain. More precisely, the new r.v. XB i´1,i`1 , and the new weight,

	blue is merged together with the weight	Ð Ý θ B i marked in i`1 Ð Ý Ð Ý e θ θ B˚e i´1,i`1 , both
	marked in red in the above figure, will replace the symbols in blue:	Ð Ý θ B i and	Ð Ý θ e i`1 . In this sense, we call
	Ð Ý θ B˚e i´1,i`1 the boundary merging of weights Remark that for the branch corresponding to the pair p Ð Ý θ B i and Ð Ý θ e i`1 . Ð Ý θ e i ,	

below. The boundary weight r.v.

Table 1 .

 1 Unbiased Monte Carlo estimation for the quantity ErhpX T q1 tτ ąT u s based on Theorem 2 by Exponential and Beta sampling with its associated 95%-confidence interval.

	σ"ω	Exponential sampling	Beta sampling
	0.1	2.0; 26.3; 3.2; (+/-) 0.005	2.0; 14.9; 2.9; (+/-) 0.004
	0.2	1.99; 213.2; 4.7; (+/-) 0.014 1.99; 77.2; 4.5; (+/-) 0.009
	0.3	2.0; 3064.1; 7.8; (+/-) 0.054 1.98; 681.2; 7.6 ;(+/-) 0.025
	σ"ω	Exponential sampling	Beta sampling
	0.1	1.99; 379.7; 8.4 ; (+/-) 0.019 2.00; 295.0; 8.4 ;(+/-) 0.017
	0.2	1.98; 1008.7; 7.1; (+/-) 0.035 1.98; 467.7; 7.1 ;(+/-) 0.021
	0.3	1.97; 5411.8; 8.9; (+/-) 0.072 1.97; 2358.4; 8.7 ;(+/-) 0.047

Table 2 .

 2 Unbiased Monte Carlo estimation for the quantity B x ErhpX T q1 tτ ąT u s based on Theorem 7 by Exponential and Beta sampling with its associated variance and 95%confidence interval.

  , we getBy combining the two previous computations, we see that the difference E i,n rB Xi`1 f p Xi`1 q1 Di`1,n θi`1 s B s can be expressed asE i,n rf p Xi`1 q1 Di`1,n I i`1 p θi`1 ´p2ρ i`1 ´1q Ð Ý θ e i`1 qs ´Ei,n rf p Xi`1 q1 Di`1,n B Xi Xi`1 q1 Di`1,n I i`1 pσ 1 i Z i`1

	Xi E i,n rf p Xi`1 q1 Di`1,n	Ð Ý e θ i`1 Ð Ý θ e i`1 s
	´Ei,n rf p Ð Ý θ

  proper extraction and localization as in Corollary 3, and then add them together. Therefore proving the following general statement will suffice: For any j " 0, 1, 2 and real-valuedf P C 0 p pR 2 q, E " f p Xi , Xi`1 q1 Di`1,n I j i`1 p1qδ L p Xi qp2ρ i ´1qI i p1q ˇˇG i´1 , ζ i`1 , N T " n Īj i´1,i`1 p1q ˇˇG i´1 , ζ i`1 , N T " n ‰ .

	(65)				‰
		"	λ ´1 ζ i`1 ´ζi´1	E "	f pL, XB i´1,i`1 q1 D B i´1,i`1,n a ´1 i´1
					for each term
	appearing in	Ð Ý θ e i`1 and	Ð Ý θ

B

i in

[START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]

, after

In most cases, unless explicitly said we assume that functions are extended using e.g. Whitney's extension theorem.

This duality is obtained using the Gaussian density of Xi`1 while in classical Malliavin calculus it is based on the

We refer the interested reader to[START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF] for an alternative proof based on analytic arguments.

An analytical proof of this fact can be found in[START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], Lemma 5.2.

Therefore towards obtaining the formulae which appear in the definition of the weights Ð Ý θ B˚e one combines linearly (65) to obtain: :

Here, ci`1

and belongs to S i´1,i`1 p XB q.

To continue simplifying the above expression and to obtain di`1

from ci`1 3 , note that except for the factor p2ρ i`1 ´1q in the coefficient ci`1 3 all expressions on the right hand side of the above equality do not depend on ρ i`1 . In particular, note that the r.v. XB i´1,i`1 does not depend on ρ i`1 . Therefore by the symmetry of the Bernoulli r.v. 2ρ i`1 ´1, the term pa 1 σ 1 qp XB i´1,i`1 qpZ i`1 `Zi q ´a1 pLq in ci`1

vanishes, leading to the definition of di`1

1 . From here, (29) follows by multiplying (67) by 2λ ´1pa 1 pLq ´bpLqq in order to obtain Ð Ý θ B on the left side of the equation. Finally, the equality (30) follows by arguments similar to those employed in (65) for j " 0 and we omit its proof.

Step 5: The time degeneracy estimates. Using the basic properties for Skorokhod integral, obtained mutatis mutandis from Lemma 2, one obtains the time degeneracy inequalities as it was done in Lemma 8 using the estimate (56). On the set Xi´1 ě L ( , one obtains that

This ends the proof of Lemma 5.

One may heuristically understand why the above merged structure appears. Actually, the Dirac delta function δ L p Xi q appearing inside the conditional expectation (65) imposes the approximation process to go from Xi´1 to L and then from L to Xi . The two corresponding Gaussian laws on each interval are convolved in time in the conditional expectation through the random time ζ i . Therefore, using the branching property of Gaussian kernels, stated in Lemma 10 in its analytic form 10 , one obtains the results after renormalization of the variances. This is the argument used in the above proof. 10.3.3. Proof of Lemma 6. As this proof has many intersections with the proof of Lemma 5, we only indicate the main points. Essentially we need to perform two steps. First, one simplifies (using the reduction formula of Corollary 3) the expression of θi using the fact that one has δ L p Xi q in the expression (31) as was done in the proof of (61). Then one follows the lines of reasoning as in the proof of Lemma 5, except that one needs to use (63) instead of (62).

We remark here that the time degeneration estimate in Lemma 6 improves in comparison with its corresponding estimate in Lemma 5 because of the inequalities

where the last inequality follows from change of variables and Komatsu's inequality and in the first we assume that Xi´1 , XB i´1,i`1 ě L. The proofs corresponding to the last interval are easier and follow similar arguments. This concludes the proof of Lemma 6.
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