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Abstract The results of this study allow the reassessment of the rare earth elements (REE) 

external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without 

cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies 

and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are 

commonly thought to occur within the ocean masses themselves. However, the results from the 

present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool 

of river input. This leads us to favor a partial or complete removal of the colloidal REE pool 

during estuarine mixing by coagulation, as previously shown for dissolved humic acids and 

iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools 

have different REE patterns. Thus, the REE patterns of seawater could be the combination of 

both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental 

shelves could be considered potential REE traps, suggesting further that shelf sediments could 

potentially become a resource for REE, similar to metalliferous deep sea sediments. 
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Introduction Rare earth elements (REE) have received considerable attention in the past ten 

years, in part as a result of the tightening of export quotas from the monopolistic Chinese 

producers which has recently sparked a wave of speculation on REE prices, as observed in 

2011. Nowadays, REE are still considered critical because they are a key component of the 

transition towards a competitive and low-carbon energy economy1-3. Thus they are essential in 

a wide variety of applications such as direct drive wind turbines, electric and hybrid vehicles, 

low-energy lighting4,5. With a demand for REE thought to be growing at a rate of approximately 

5 –10% per year6, alternative primary and secondary REE supply sources must be found. 

However, even if recycling of scrap consumer electronics and technical industrial components 

will increasingly contribute to the REE supply in the near future7, it will not be able to meet the 

increasing demand 8. Thus mining of natural primary deposits is expected to remain as the major 

source of REE 9. However, efforts must be made on the exploration of new REE enriched 

deposits with low environmental impact. In this respect, high concentrations of REE have been 

reported from deep-ocean manganese nodules10,11, iron-manganese crusts10,12 and deep-sea 

muds of the Pacific Ocean floor13, which are being studied in detail for their economic potential. 

Oceans are often considered as being in a chemical steady state, thus displaying an elemental 

balance maintained by input/output rates. River inputs are well constrained14 and the behavior 

of REE during mixing of river and sea water is well studied15-17. However, as discussed by 

Rasmussen et al.18 and Lacan & Jeandel19 the amount of REE delivered to the coastal shelves 

and oceans must be significantly larger than previously estimated. In this context, the REE 

organic pool should be further considered. We report here a potential resource for REE with a 

focus on Atlantic continental shelves and especially actual and paleo-alluvial fan deposits. 

Methods Historically, the REE have been used to trace mass transfers during geological 

processes occurring both in the Earth’s interior and on the surface 20. As a matter of fact, these 

elements have been typically divided into light REE (LREE; La-Nd), middle REE (MREE; Sm-
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Tb) and heavy REE (HREE; Dy-Lu) due to their contrasting geochemical behaviour. Their 

extremely low concentrations in nature imply that they can passively record mass transfers with 

little perturbation from thermodynamic interactions 20. For this reason, we consider below that 

the transfer of stream water to the oceans leads to estuaries where mixtures of organic and 

inorganic phases are separated. Thus, about 90% of REE are removed from the solution by 

flocculation of colloidal material (from 86% for Lu to 95% for La)21. Inorganic REE remaining 

in solution can be also fractionated when coming into contact with highly reactive particles 

(such as ferromanganese particles), however this proportion is minimal (only 1% of REE 

compared to a withdrawal of 90% by colloidal flocculation). Thus, the REE patterns of the 

oceans appear to reflect those of the inorganic river water fraction 22. Such information is 

therefore unknown, and only apparent when the inorganic and colloidal organic phases are 

separated, for example, during estuarine mixing. The low-temperature aqueous REE behavior 

was investigated by focusing on available REE concentration data in selected studies on the (i) 

Dordogne river23, Dordogne, Garonne rivers and Gironde estuary24 (ii) Congo river25 and 

estuary (unpublished results from Germain Bayon), (iii) Amazon river26 and estuary 27, (iv) 

organic fraction from estuaries sediments 28 and (v) Ordovician organic rich grey monazites29. 

The Amazon and Congo rivers were selected as they are the two majors systems flowing into 

the Atlantic ocean. The Dordogne river was chosen to highlight the behavior of a smaller river 

system. 

 

Results and discussion For the three main rivers flowing into the Atlantic ocean (i.e., Amazon, 

Congo and Dordogne rivers; Figure 1), it can be observed that the REE patterns of upstream 

samples (Figure 1a) depict low REE concentration and a negative cerium (Ce) anomaly, 

whereas more organic samples downstream (Figure 1a, b, c) display higher REE concentrations 

(> one order of magnitude) and middle REE enriched patterns with no Ce anomaly. This 

corresponds to an organic sedimentary input (with for example up to 15-20 mg/L of dissolved 
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organic carbon in the Dordogne river23). It can also be observed that in the Amazon estuary 

(Figure 1d), the REE become progressively less concentrated (up 2-3 orders of magnitude) as 

the salinity increases. In addition, MREE patterns evolve to more HREE enriched patterns with 

a gradual development of a negative Ce anomaly. Similar MREE patterns are also found in the  

organic fractions from sediments of the different estuaries (Figure 1e) and are further observed 

in organic rich grey monazites (Figure 1f), as previously observed on humic substances30.  

 

Figure 1 Upper continental crust (UCC)-normalized REE patterns in samples from (a) 

Dordogne River basin23, (b) Congo River basin25, (c) Amazon River basin26, (d) Amazon River 

estuary27, (e) Congo River estuary (unpublished results from Germain Bayon) and Dordogne, 

Garonne Rivers and Gironde estuary24, (f) African continental slope and foothill sediments31, 

Amazon estuary sediments32 and Gironde estuary sediments33, (g) organic fraction from 

estuaries sediments28 and (h) Ordovician organic rich grey monazites29. UCC values are from 

McLennan34. 

 

Figure 2 Sketch illustrating the REE external cycle and summarizing the processes responsible 

for REE fractionation from river water to organic sediments. UCC-normalized REE patterns 

are detailed in Figure 1, and Atlantic seawater is from Freslon et al.28. UCC-normalized patterns 

for (a) river water, (b) river, estuarine and seawater, and (c) sedimentary organic matter and 

authigenic monazites. 

 

Results highlighted in this short communication thus allow reassessing the REE external 

cycle (Figure 2). The river input to the oceans has relatively flat REE patterns without a Ce 

anomaly, whereas oceanic REE patterns exhibit strong negative Ce anomalies and HREE 

enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought 
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to occur within the ocean masses themselves. However, the results highlighted in this short 

communication show that seawater-like REE patterns originate in the dissolved pool of river 

input (i.e., uphill watershed). Therefore, a partial or complete removal of the colloidal REE 

pool during estuarine mixing by coagulation is expected, as previously shown for dissolved 

organic matter (DOM) and iron35. Indeed, Rousseau et al.27 and Osborne et al.36 illustrated that 

Amazon and Orinoco Rivers REE patterns lose their typical MREE enrichments. They associate 

this fractionation to colloid coagulation. These MREE patterns gradually evolves towards 

HREE-enriched patterns that are more similar to Atlantic Ocean water17. REE fractionation 

occurs because colloidal and truly dissolved pools have different REE patterns. Thus, REE 

patterns of seawater could be the combination of both intra-oceanic and riverine processes.  

Merschel et al.37 show that estuarine processes may affect the flux of DOM, Fe and REE 

into the ocean via salt-induced coagulation and subsequent removal of river-borne nano-

particles and colloids. In the near shore environment, DOM, Fe and REE are removed, at 

different rates, along the increasing salinity gradient of estuaries and shelves27,36,38. The 

seawater REE signature could be inherited from river water39. Commonly, REE signatures of 

ocean water are usually considered to reflect (i) the respective REE inputs from rivers, aeolian 

transport, hydrothermal vents and dissolution of marine carbonates and (ii) interactions with 

the biogeochemical cycles, involving REE-removal from surface waters by adsorption onto 

settling Fe-Mn particles. The strong Ce depletion and the HREE-enrichment of ocean waters 

are commonly attributed to the redox chemistry of Ce and to the high stability constants of 

HREE carbonate complexes. Nevertheless, different processes may lead to REE and/or Ce 

removal from solution. The most often discussed hypothesis is the occurrence of REE 

fractionation during estuarine mixing, enhanced by sorption on particles with extremely high 

surface reactivity rather than active microbial uptake, yet the exact nature of these particles 

(e.g., containing hydrous manganese oxide) is uncertain40.  
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In this context, the Atlantic continental shelves could be considered potential REE traps 

and shelf sediments would , similar to metalliferous deep sea sediments13, represent a potential 

REE resource.. This latter hypothesis is illustrated by recent results from Freslon et al.28 and 

Rousseau et al.27. Indeed, by analyzing various fractions (detrital, Fe-Mn oxides, organic 

compounds) of sediments deposited in river estuaries, they proposed that organic matter is a 

major REE scavenger and possibly plays an important role in the oceanic REE budget (i.e., 

through direct scavenging and remineralization within the water column, up to 14% for the 

Congo Basin28). Although high REE contents may be found in selected organic components, 

studies of bulk sediment in continental shelf areas reveal a high content of detrital silicate 

material which is known to act as a diluting agent13,31,41, lowering final total REE concentrations 

(up to one order of magnitude for Congo margin, Figure 1f). 

Eventually, based on calculation proposed by Chabaux et al.42, Nd flux is equal to >1 

t/year in the Garonne system, which is low, compared to other major river systems, such as the 

Amazon main stream and its major tributaries surrounded by many floodplains that have a 

maximum Nd flux equal to >1000 t/year (during high-water season), constituting 30% of the 

river flux to the Atlantic Ocean39,43. As a consequence, one can estimate a total REE input of 

more than 2600 t/year for the Amazon system, divided as follows: 1940 t/year of LREE, 365 

t/year of MREE and 312 t/year of HREE (Table 1). The most important fluxes are the ones 

observed during the high water seasons (Table 1). Eastern and Western Atlantic continental 

shelves should thus be considered as exploration targets with a high REE potential, especially 

the Amazon, Orinoco and Congo estuaries. Eventually one must also consider the onshore 

palaeo-sedimentary-platforms in which distal clays were deposited in a reducing marine 

environment with organic carbon and phosphate anomalies in the same setting18,44. Such a 

sedimentary depositional environment should be of great interest to explore for REE especially 

if deep diagenesis to very low grade metamorphism conditions occurred, favoring rhabdophane 
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(hexagonal [L-MREE]PO4.H2O) and then monazite (monoclinic [L-MREE]PO4) 

crystallization29. However, such sedimentary depositional environment could not directly be 

compared to Pacific deep sea muds13; Indeed, another possible REE source that has not 

previously been considered into budget is the weathering of volcanic materials45.  
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t/year Nd t/year LREE t/year MREE t/year HREE 

Amazon (annuala) 549.2  1940.4 365.4 311.9 

Amazon min (low-water stageb) 158.1 553.1 137.6 106.9 

Amazon max (high-water stagec) 1215.0 4457.0 716.1 602.2 

Congo max (high-water stagec) 431.6 1733.6 177.4 153.9 

Gironde & Dordogne (annuala) 1.2 5.3 0.6 0.3 

 

Table 1. Assessment of Nd, LREE, MREE and HREE inputs to the Atlantic seabed sediments 

supported by the calculated percent removals of Sholkovitz21 using data from Barroux et al.43, 

Dupré et al.25, Gaillardet et al.46, and Martin et al.24. a corresponds to average annual REE 

fluxes with respect to average annual discharge. b corresponds to a one-year linear 

extrapolation considering the minimum REE input/discharge recorded during the low-water 

stage. c corresponds to a linear extrapolation for one-year considering the maximum REE 

input/discharge recorded during the high-water stage. 
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