
HAL Id: hal-02265808
https://hal.science/hal-02265808

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstraction Refinement Algorithms for Timed
Automata

Victor Roussanaly, Ocan Sankur, Nicolas Markey

To cite this version:
Victor Roussanaly, Ocan Sankur, Nicolas Markey. Abstraction Refinement Algorithms for Timed
Automata. CAV 2019 - 31st International Conference on Computer Aided Verification, Jul 2019, New
York, United States. pp.22-40, �10.1007/978-3-030-25540-4_2�. �hal-02265808�

https://hal.science/hal-02265808
https://hal.archives-ouvertes.fr


Abstraction Refinement Algorithms
for Timed Automata

Victor Roussanaly, Ocan Sankur,
and Nicolas Markey(B)

Univ Rennes, Inria, CNRS, IRISA, Rennes, France
nmarkey@irisa.fr

Abstract. We present abstraction-refinement algorithms for model
checking safety properties of timed automata. The abstraction domain
we consider abstracts away zones by restricting the set of clock con-
straints that can be used to define them, while the refinement procedure
computes the set of constraints that must be taken into consideration
in the abstraction so as to exclude a given spurious counterexample.
We implement this idea in two ways: an enumerative algorithm where
a lazy abstraction approach is adopted, meaning that possibly different
abstract domains are assigned to each exploration node; and a symbolic
algorithm where the abstract transition system is encoded with Boolean
formulas.

1 Introduction

Model checking [4,10,12,26] is an automated technique for verifying that the
set of behaviors of a computer system satisfies a given property. Model-checking
algorithms explore finite-state automata (representing the system under study)
in order to decide if the property holds; if not, the algorithm returns an explana-
tion. These algorithms have been extended to verify real-time systems modelled
as timed automata [2,3], an extension of finite automata with clock variables to
measure and constrain the amount of time elapsed between occurrences of transi-
tions. The state-space exploration can be done by representing clock constraints
efficiently using convex polyhedra called zones [8,9]. Algorithms based on this
data structure have been implemented in several tools such as Uppaal [7], and
have been applied in various industrial cases.

The well-known issue in the applications of model checking is the state-space
explosion problem: the size of the state space grows exponentially in the size
of the description of the system. There are several sources for this explosion:
the system might be made of the composition of several subsystems (such as
a distributed system), it might contain several discrete variables (such as in a
piece of software), or it might contain a number of real-valued clocks as in our
case.
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Numerous attempts have been made to circumvent this problem. Abstrac-
tion is a generic approach that consists in simplifying the model under study,
so as to make it easier to verify [13]. Existential abstraction may only add extra
behaviors, so that when a safety property holds in an abstracted model, it also
holds in the original model; if on the other hand a safety property fails to hold,
the model-checking algorithms return a witness trace exhibiting the non-safe
behaviour: this either invalidates the property on the original model, if the trace
exists in that model, or gives information about how to automatically refine the
abstraction. This approach, named CEGAR (counter-example guided abstrac-
tion refinement) [11], was further developed and used, for instance, in software
verification (BLAST [20], SLAM [5], ...).

The CEGAR approach has been adapted to timed automata, e.g. in [14,
18], but the abstractions considered there only consist in removing clocks and
discrete variables, and adding them back during refinement. So for most well-
designed models, one ends up adding all clocks and variables which renders the
method useless. Two notable exceptions are [22], in which the zone extrapolation
operators are dynamically adapted during the exploration, and [29], in which
zones are refined when needed using interpolants. Both approaches define “exact”
abstractions in the sense that they make sure that all traces discovered in the
abstract model are feasible in the concrete model at any time.

In this work, we consider a more general setting and study predicate abstrac-
tions on clock variables. Just like in software model checking, we define abstract
state spaces using these predicates, where the values of the clocks and their
relations are approximately represented by these predicates. New predicates are
generated if needed during the refinement step. We instantiate our approach by
two algorithms. The first one is a zone-based enumerative algorithm inspired by
the lazy abstraction in software model checking [19], where we assign a possibly
different abstract domain to each node in the exploration. The second algorithm
is based on binary decision diagrams (BDD): by exploiting the observation that a
small number of predicates was often sufficient to prove safety properties, we use
an efficient BDD encoding of zones similar to one introduced in early work [28].

Let us explain the abstract domains we consider. Assume there are two clock
variables x and y. The abstraction we consider consists in restricting the clock

y

x

y

x

(a) Abstraction of zone 1 ≤ x, y ≤ 2
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(b) Abstraction of zone y ≤ 1 ∧ 1 ≤ x− y ≤ 2

Fig. 1. The abstract domain is defined by the clock constraints shown in thick red
lines. In each example, the abstraction of the zone shown on the left (shaded area) is
the larger zone on the right. (Color figure online)
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constraints that can be used when defining zones. Assume that we only allow to
compare x with 2 or 3; that y can only be compared with 2, and x−y can only be
compared with −1 or 2. Then any conjunction of constraints one might obtain
in this manner will be delimited by the thick red lines in Fig. 1; one cannot
define a finer region under this restriction. The figure shows the abstraction
process: given a “concrete” zone, its abstraction is the smallest zone which is a
superset and is definable under our restriction. For instance, the abstraction of
1 ≤ x, y ≤ 2 is 0 ≤ x, y ≤ 2 ∧ −1 ≤ x − y (cf. Fig. 1a).

Related Works. We give more detail on zone abstractions in timed automata.
Most efforts in the literature have been concentrated in designing zone abstrac-
tion operators that are exact in the sense that they preserve the reachability
relation between the locations of a timed automaton; see [6]. The idea is to
determine bounds on the constants to which a given clock can be compared to
in a given part of the automaton, since the clock values do not matter outside
these bounds. In [21,22], the authors give an algorithm where these bounds are
dynamically adapted during the exploration, which allows one to obtain coarser
abstractions. In [29], the exploration tree contains pairs of zones: a concrete zone
as in the usual algorithm, and a coarser abstract zone. The algorithm explores
all branches using the coarser zone and immediately refines the abstract zone
whenever an edge which is disabled in the concrete zone is enabled. In [17], a
CEGAR loop was used to solve timed games by analyzing strategies computed
for each abstract game. The abstraction consisted in collapsing locations.

Some works have adapted the abstraction-refinement paradigm to timed
automata. In [14], the authors apply “localization reduction” to timed automata
within an abstraction-refinement loop: they abstract away clocks and discrete
variables, and only introduce them as they are needed to rule out spurious coun-
terexamples. A more general but similar approach was developed in [18]. In [31],
the authors adapt the trace abstraction refinement idea to timed automata where
a finite automaton is maintained to rule out infeasible edge sequences.

The CEGAR approach was also used recently in the LinAIG framework for
verifying linear hybrid automata [1]. In this work, the backward reachability algo-
rithm exploits don’t-cares to reduce the size of the Boolean circuits representing
the state space. The abstractions consist in enlarging the size of don’t-cares to
reduce the number of linear predicates used in the representation.

2 Timed Automata and Zones

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of R
C
≥0. For a

clock valuation v, a subset R ⊆ C, and a non-negative real d, we denote with
v[R ← d] the valuation w such that w(x) = v(x) for x ∈ C \ R and w(x) = d for
x ∈ R, and with v + d the valuation w′ such that w′(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the obvious way. We write 0
for the valuation that assigns 0 to every clock. An atomic guard is a formula of
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the form x ≺ k or x−y ≺ k with x, y ∈ C, k ∈ N, and ≺ ∈ {<,≤, >,≥}. A guard
is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted
v |= g, if all atomic guards hold true when each x ∈ C is replaced with v(x).
Let [[g]] = {v ∈ R

C
≥0 | v |= g} denote the set of valuations satisfying g. We write

ΦC for the set of guards built on C.
A timed automaton A is a tuple (L, Inv, �0, C, E), where L is a finite set of

locations, Inv : L → ΦC defines location invariants, C is a finite set of clocks,
E ⊆ L×ΦC × 2C ×L is a set of edges, and �0 ∈ L is the initial location. An edge
e = (�, g, R, �′) is also written as �

g,R−−→ �′. For any location �, we let E(�) denote
the set of edges leaving �.

A configuration of A is a pair q = (�, v) ∈ L × R
C
≥0 such that v |= Inv(�).

A run of A is a sequence q1e1q2e2 . . . qn where for all i ≥ 1, qi = (�i, vi) is
a configuration, and either ei ∈ R>0, in which case qi+1 = (�i, vi + ei), or
ei = (�i, gi, Ri, �i+1) ∈ E, in which case vi |= gi and qi+1 = (�i+1, vi[Ri ← 0]).
A path is a sequence of edges with matching endpoint locations.

2.2 Zones and DBMs

Several tools for timed automata implement algorithms based on zones, which
are particular polyhedra definable with clock constraints. Formally, a zone Z is
a subset of RC

≥0 definable by a guard in ΦC .
We recall a few basic operations defined on zones. First, the intersection Z∩Z ′

of two zones Z and Z ′ is clearly a zone. Given a zone Z, the set of time-successors
of Z, defined as Z↑ = {v + t ∈ R

C
≥0 | t ∈ R≥0, v ∈ Z}, is easily seen to be

a zone; similarly for time-predecessors Z↓ = {v ∈ R
C
≥0 | ∃t ≥ 0. v + t ∈ Z}.

Given R ⊆ C, we let ResetR(Z) be the zone {v[R ← 0] ∈ R
C
≥0 | v ∈ Z}, and

Freex(Z) = {v′ ∈ R
C
≥0 | ∃v ∈ Z, d ∈ R≥0, v

′ = v[x ← d]}.
Zones can be represented as difference-bound matrices (DBM) [8,15].

Let C0 = C ∪ {0}, where 0 is an extra symbol representing a special clock vari-
able whose value is always 0. A DBM is a |C0| × |C0|-matrix taking values in
(Z×{<,≤})∪{(+∞, <)}. Intuitively, cell (x, y) of a DBM M stores a pair (d,≺)
representing an upper bound on the difference x−y. For any DBM M , we let [[M ]]
denote the zone it defines.

While several DBMs can represent the same zone, each zone admits a canon-
ical representation, which is obtained by storing the tightest clock constraints
defining the zone. This canonical representation can be obtained by comput-
ing shortest paths in a graph where the vertices are clocks and the edges
weighted by clock constraints, with natural addition and comparison of elements
of (Z×{<,≤})∪{(+∞, <)}. This graph has a negative cycle if, and only if, the
associated DBM represents the empty zone.

All the operations on zones can be performed efficiently (in O(|C0|3)) on their
associated DBMs while maintaining reduced form. For instance, the intersection
N = Z ∩ Z ′ of two canonical DBMs Z and Z ′ can be obtained by first com-
puting the DBM M = min(Z,Z ′) such that M(x, y) = min{Z(x, y), Z ′(x, y)}
for all (x, y) ∈ C0

2, and then turning M into canonical form. We refer to [8] for
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full details. By a slight abuse of notation, we use the same notations for DBMs
as for zones, writing e.g. M ′ = M↑, where M and M ′ are reduced DBMs such
that [[M ′]] = [[M ]]↑. Given an edge e = (�, g, R, �′), and a zone Z, we define
Poste(Z) = Inv(�′) ∩ (g ∩ ResetR(Z))↑, and Pree(Z) = (g ∩ FreeR(Inv(�′) ∩ Z))↓.
For a path ρ = e1e2 . . . en, we define Postρ and Preρ by iteratively applying
Postei

and Preei
respectively.

2.3 Clock-Predicate Abstraction and Interpolation

For all clocks x and y in C0, we consider a finite set Dx,y ⊆ N×{≤, <}, and gather
these in a table D = (Dx,y)x,y∈C0 . D is the abstract domain which restricts zones
to be defined only using constraints of the form x − y ≺ k with (k,≺) ∈ Dx,y,
as seen earlier. Let us call D the concrete domain if Dx,y = N × {≤, <} for
all x, y ∈ C0. A zone Z is D-definable if there exists a DBM D such that Z = [[D]]
and D(x, y) ∈ Dx,y for all x, y ∈ C0. Note that we do not require this witness
DBM D to be reduced; the reduction of such a DBM might introduce additional
values. We say that domain D′ is a refinement of D if for all x, y ∈ C0, we have
Dx,y ⊆ D′

x,y.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 →

2R
C
≥0 where αD(Z) is the smallest D-definable zone containing Z. For any

reduced DBM D, αD([[D]]) can be computed by setting D′(x, y) = min{(k,≺)
∈ Dx,y | D(x, y) ≤ (k,≺)} (with min ∅ = (∞, <)).

An interpolant for a pair of zones (Z1, Z2) with Z1 ∩ Z2 = ∅ is a zone Z3

with Z1 ⊆ Z3 and Z3 ∩ Z2 = ∅1 [29]. We use interpolants to refine our
abstractions; in order not to add too many new constraints when refining,
our aim is to find minimal interpolants: define the density of a DBM D as
d(D) = #{(x, y) ∈ C0

2 | D(x, y) �= (∞, <)}. Notice that while any pair of dis-
joint convex polyhedra can be separated by hyperplanes, not all pairs of disjoint
zones admit interpolants of density 1; this is because not all (half-spaces delim-
ited by) hyperplanes are zones. Still, we can bound the density of a minimal
interpolant:

Lemma 1. For any pair of disjoint, non-empty zones (A,B), there exists an
interpolant of density less than or equal to |C0|/2.

By adapting the algorithm of [29] for computing interpolants, we can compute
minimal interpolants efficiently:

Proposition 2. Computing a minimal interpolant can be performed in O(|C|4).

3 Enumerative Algorithm

The first type of algorithm we present is a zone-based enumerative algorithm
based on the clock-predicate abstractions. Let us first describe the overall
1 It is sometimes also required that the interpolant only involves clocks that have

non-trivial constraints in both Z1 and Z2. We do not impose this requirement in our
definition, but it will hold true in the interpolants computed by our algorithm.
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algorithm in Algorithm 1, which is a typical abstraction-refinement loop. We then
explain how the abstract reachability and refinement procedures are instantiated.

Algorithm 1. Enumerative
algorithm checking the reacha-
bility of a target location �T .
Input: A = (L, Inv, �0, C, E), �T

1 Initialize D0;
2 wait:= {node(�0,0↑, D0)};
3 passed:= ∅;
4 while do
5 π := AbsReach(A,wait,

passed, �T );
6 if π = ∅ then
7 return Not reachable;
8 else
9 if trace π is feasible then

10 return Reachable;

11 else
Refine(π,wait, passed);

12 return Not reachable;

Algorithm 2. AbsReach
Input: (L, Inv, l0, C, E), wait, passed,

�T
1 while wait �= ∅ do
2 n := wait.pop();
3 if n.� = �T then
4 return Trace from root to n;

5 if ∃n′ ∈ passed such that n.� =
n′.� ∧ n.Z ⊆ n′.Z then

6 n.covered := n′;
7 else
8 n.Z := α(n.Z, n);
9 passed.add(n);

10 for e = (�, g, R, �′) ∈ E(n.�)
s.t. Z′ := Poste(n.Z) �= ∅
do

11 D′ := choose-dom(n, e);
12 n′ := node(�′, Z′, D′);
13 n′.parent := n;
14 wait.add(n′);

15 return ∅;

The initialization at line 1 chooses an abstract domain for the initial state,
which can be either empty (thus the coarsest abstraction) or defined according
to some heuristics. The algorithm maintains the wait and passed lists that are
used in the forward exploration. As usual, the wait list can be implemented
as a stack, a queue, or another priority list that determines the search order.
The algorithm also uses covering nodes. Indeed if there are two node n and
n′, with n ∈ passed, n′ ∈ wait, n.� = n′.�, and n′.z ⊆ n.Z, then we know
that every location reachable from n′ is also reachable from n. Since we have
already explored n and we generated its successors, there is no need to explore
the successors of n′. The algorithm explicitly creates an exploration tree: line 2
creates a node containing location �0, zone 0↑, and the abstract domain D0 as the
root of our tree, and adds this to the wait list. More details on the tree are given
in the next subsection. Procedure AbsReach then looks for a trace to the target
location �T . If such a trace exists, line 9 checks its feasibility. Here π is a sequence
of node and edges of A. The feasibility check is done by computing predecessors
with zones starting from the final state, without using the abstraction function.
If the last zone intersects our initial zone, this means that the trace is feasible.
More details are given in Sect. 3.2.
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3.1 Abstract Forward Reachability: AbsReach

We give a generic algorithm independently from the implementations of the
abstraction functions and the refinement procedure.

Algorithm 2 describes the reachability procedure under a given abstract
domain D. It is similar to the standard forward reachability algorithm using
a wait-list and a passed-list. We explicitly create an exploration tree where the
leaves are nodes in wait, covered nodes, or nodes that have no non-empty succes-
sors. Each node n contains the fields �, Z which are labels describing the current
location and zone; field covered points to a node covering the current node (it is
undefined if the current node is not (known to be) covered); field parent points
to the parent node in the tree (it is undefined for the root); and field D is the
abstract domain associated with the node. Thus, the algorithm uses a possibly
different abstract domain for each node in the exploration tree.

The difference of our algorithm w.r.t. the standard reachability can be seen
at lines 8 and 11. At line 8, we apply the abstraction function to the zone taken
from the wait-list before adding it to the passed-list. The abstraction function α
is a function of a zone Z and a node n. This allows one to define variants with
different dependencies; for instance, α might depend on the abstract domain n.D
at the current node, but it can also use other information available in n or on
the path ending in n. For now, it is best to think of α simply as Z �→ αn.D(Z).
At line 11, the function choose-dom chooses an abstract domain for the node n′.
The domain could be chosen global for all nodes, or local to each node. A good
trade-off, which we used in our experiments, is to have domains associated with
locations of the timed automaton.

Remark 1. Note that we use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone
possible when we test whether the node is covered. We only need to use the
abstracted zone when we compute its successor and when we test whether the
node is covering. This allows us to store a unique zone.

As a first step towards proving correctness of our algorithm, we show that
the following property is preserved by Algorithm AbsReach:

For all nodes n in passed, for all edges e from n.�, if Poste(n.Z) �= ∅,
then n has a child n′ such that Poste(n.Z) ⊆ n′.Z. If n′ is in passed,
then we also have αn′.D(Poste(n.Z)) ⊆ n′.Z.

(1)

Lemma 3. Algorithm AbsReach preserves Property (1).

Note that although we use inclusion in Property (1), AbsReach would actually
preserve equality of zones, but we will not always have equality before running
AbsReach. This is because Refine might change the zones of some nodes without
updating the zones of all their descendants.
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3.2 Refinement: Refine

We now describe our refinement procedure Refine. Let us now assume that
AbsReach returns π = A1

σ1−→ A2
σ2−→ . . .

σk−1−−−→ Ak, and write Di for the
domain associated with each Ai. We write C1 for the initial concrete zone, and
for i < k, we define Ci+1 = Postσi

(Ai). We also note Zk = Ak and for i < k,
Zi = Preσi

(Zi+1) ∩ Ai. Then π is not feasible if, and only if, Postσ1...σk
(C1) = ∅,

or equivalently Preσ1...σk
(Ak) ∩ C1 = ∅. Since for all i < k, it holds Ci ⊆ Ai+1,

we have that π is not feasible if, and only if, ∃i ≤ k. Ci ∩ Zi = ∅. We illustrate
this on Fig. 2.

Z1

C1

A1

Z2

C2

A2

C3

A3 = Z3

ost Post

Pre
Pre

Fig. 2. Spurious counter-example: Z1 ∩ C1 = ∅

Let us assume that π is not feasible. Let us denote by i0 the maximal index
such that Ci0 ∩ Zi0 = ∅. This index also has the property that for all j < i0,
we have Zj = ∅ and Zi0 �= ∅. Once we have identified this trace as spurious by
computing the Zj , we have two possibilities:

– if Zi0 ∩ αDi0
(Ci0) �= ∅: this means that we can reach Ak from αDi0

(Ci0) but
not from Ci0 . In other words, our abstraction is too coarse and we must add
some values to Di0 so that Zi0 ∩ αDi0

(Ci0) = ∅. Those values are found by
computing the interpolant of Zi0 and Ci0

– Otherwise it means that αDi0
(Ci0) cannot reach Ak and the only reason the

trace exists is because either Di0 or Ai0−1 has been modified at some point
and Ai0 was not modified accordingly.

We can then update the values of Ci for i > i0 and repeat the process until
we reach an index j0 such that Cj0 = ∅. We then have modified the nodes
ni0 , . . . , nj0 and knowing that nj0 .Z = ∅, we can delete it and all of its descen-
dants. Since some of the descendants of ni0 have not been modified, this might
cause some refinements of the first type in the future. In order to ensure termi-
nation, we sometimes have to cut a subtree from a node in ni0 , . . . , nj0−1 and
reinsert it in the wait list to restart the exploration from there. We call this
action cut, and we can use several heuristics to decide when to use it. In the
rest of this paper we will use the following heuristics: we perform cut on the first
node of ni0 ...nj0 that is covered by some other node. Since this node is covered,
we know that we will not restart the exploration from this node, or that the
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node was covered by one of its descendant. If none of these nodes are covered,
we delete nj0 and its descendants. Other heuristics are possible, for instance
applying cut on ni0 . We found that the above heuristics was the most efficient
in our experiments.

Lemma 4. Pick a node n, and let Y = n.Z. Then after running Refine, either
node n is deleted, or it holds n.Z ⊆ Y . In other words, the zone of a node can
only be reduced by Refine.

It follows that Refine also preserves Property (1), so that:

Lemma 5. Algorithm 1 satisfies Property (1).

We can then prove that our algorithm correctly decides the reachability prob-
lem and always terminates.

Theorem 6. Algorithm 1 terminates and is correct.

4 Symbolic Algorithm

4.1 Boolean Encoding of Zones

We now present a symbolic algorithm that represents abstract states using
Boolean formulas. Let B = {0, 1}, and V be a set of variables. A Boolean for-
mula f that uses variables from set X ⊆ V will be written f(X) to make the
dependency explicit; we sometimes write f(X,Y ) in place of f(X ∪ Y ). Such a
formula represents a set [[f ]] = {v ∈ B

V | v |= f}. We consider primed versions
of all variables; this will allow us to write formulas relating two valuations. For
any subset X ⊆ V, we define X ′ = {p′ | p ∈ X}.

A literal is either p or ¬p for a variable p. Given a set X of variables, an X-
minterm is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of B

X . Given a vector of Boolean
formulas Y = (Yx)x∈X , formula f [Y /X] is the substitution of X by Y in f ,
obtained by replacing each x ∈ X with the formula Yx. The positive cofactor
of f(X) by x is ∃x. (x ∧ f(X)), and its negative cofactor is ∃x. (¬x ∧ f(X)).

Let us define a generic operator post that computes successors of a
set S(X,Y ) given a relation R(X,X ′) (here, Y designates any set of variables
on which S might depend outside of X): postR(S(X,Y )) = (∃X.S(X,Y ) ∧
R(X,X ′))[X/X ′]. Similarly, we set preR(S(X,Y )) = (∃X ′.S(X,Y )[X ′/X] ∧
R(X,X ′)), which computes the predecessors of S(X,Y ) by the relation R [24].

Clock Predicate Abstraction. We fix a total order � on C0. In this section, abstract
domains are defined as D = (Dx,y)x�y∈C0 , that is only for pairs x � y. In fact,
constraints of the form x − y ≤ k with x � y are encoded using the negation of
y − x < −k since (x − y ≤ k) ⇔ ¬(y − x < −k). We thus define Dx,y = −Dy,x

for all x � y.
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For x, y ∈ C0, let Px,y denote the set of clock predicates associated to Dx,y:

PD
x,y = {Px−y≺k | (k,≺) ∈ Dx,y}.

Let PD = ∪x,y∈C0Px,y denote the set of all clock predicates associated
with D (we may omit the superscript D when it is clear). For all (x, y) ∈
C0

2 and (k,≺) ∈ Dx,y, we denote by px−y≺k the literal Px−y≺k if x � y,
and ¬Py−x≺−1−k otherwise (where ≤−1 = < and <−1 = ≤). We also consider a
set B of Boolean variables used to encode locations. Overall, the state space is
described using Boolean formulas on these two types of variables, so states are
elements of BP∪B.

Our Boolean encoding of clock constraints and semantic operations follow
those of [28] for a concrete domain. We define these however for abstract domains,
and show how successor computation and refinement operations can be per-
formed.

Let us define the clock semantics of predicate Px−y�k as [[Px−y�k]]C0 =
{ν ∈ R

C0
≥0 | ν(x) − ν(y) � k}. Since the set C of clocks is fixed, we may omit

the subscript and just write [[Px−y�k]]. We define the conjunction, disjunction,
and negation as intersection, union, and complement, respectively. Given a P-
minterm v ∈ B

P , we define [[v]]D =
⋂

p s.t. v(p)[[p]]D ∩⋂
p s.t. ¬v(p)[[p]]cD. Thus, nega-

tion of a predicate encodes its complement. For a Boolean formula F (P), we set
[[F ]] =

⋃
v∈Minterms(F )[[v]]D. Intuitively, the minterms of P define smallest zones

of R
C
≥0 definable using P. A minterm v ∈ B

B∪P defines a pair [[v]]D = (l, Z)
where l is encoded by v|B and Z = [[v|P ]]D. A Boolean formula F on B ∪ P
defines a set [[F ]]D = ∪v∈Minterms(F )[[v]]D of such pairs. A minterm v is satisfiable
if [[v]]D �= ∅.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2B

P

with αD(Z) = {v | v ∈ B
P and [[v]]D ∩ Z �= ∅}, from the set of zones to the

set of subsets of Boolean valuations on P. We define the concretization function
as [[·]]D : 2B

P → 2R
C
≥0 . The pair (αD, [[·]]D) is a Galois connection, and [[αD(Z)]]D is

the most precise abstraction of Z in the domain induced by D. Notice that αD is
non-convex in general: for instance, if the clock predicates are x ≤ 2, y ≤ 2, then
the set defined by the constraint x = y maps to (px≤2 ∧py≤2)∨ (¬px≤2 ∧¬py≤2).

4.2 Reduction and Successor Computation

We now define the reduction operation, which is similar to the reduction of
DBMs. The idea is to eliminate unsatisfiable minterms from a given Boolean
formula. For example, we would like to make sure that in all minterms, if px−y≤1

holds, then so does px−y≤2, when both are available predicates. Another issue is
to eliminate minterms that are unsatisfiable due to triangle inequality. This is
similar to the shortest path computation used to turn DBMs in canonical form.

Example 1. Given predicates P = {px−y≤1, py−z≤1, px−z≤2}, the formula
px−y≤1 ∧ py−z≤1 is not reduced since it contains the unsatisfiable minterm
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px−y≤1 ∧ py−z≤1 ∧ ¬px−z≤2. However, the same formula is reduced if P =
{px−y≤1, py−z≤1}.

In this paper, we use limited reduction, since reductions are the most expen-
sive operations in our algorithms. The following formula corresponds to 2-
reduction, which intuitively amounts to applying shortest paths for paths of
lengths 1 and 2:

∧

(x,y)∈C0
2

(k,≺)∈Dx,y

[
px−y≺k ←

( ∨

(l1,≺1)∈Dx,y

(l1,≺1)≤(k,≺)

px−y≺1l1 ∨
∨

z∈C0,(l1,≺1)∈Dx,z ,
(l2,≺2)∈Dz,y

(l1,≺1)+(l2,≺2)≤(k,≺)

px−z≺l ∧ pz−y≺′l′
)]

Lemma 7. For all formulas S(P), we have [[S]]D = [[reduce2D(S)]]D and all
minterms of reduce2D(S) are 2-reduced.

Since 2-reduction des not consider shortest paths of all lengths, there are, in
general, 2-reduced unsatisfiable minterms. Nevertheless, any abstraction can be
refined so that the updated 2-reduction eliminates a given unsatisfiable minterm:

Lemma 8. Let v ∈ B
PD

be a minterm such that v |= reduce2D and [[v]] = ∅.
One can compute in polynomial time a refinement D′ ⊃ D such that v �|=
reduce2D′ .

We now explain how successor computation is realized in our encoding. For a
guard g, assume we have computed an abstraction αD(g) in the present abstract
domain. For each transition σ = (�1, g, R, �2), let us define the formula Tσ =
�1 ∧αD(g). We show how each basic operation on zones can be computed in our
BDD encoding. In our algorithm, all formulas A(B,P) representing sets of states
are assumed to be reduced, that is, A(B,P) ⊆ reduce2D(A(B,P)).

The intersection operation is simply logical conjunction:

Lemma 9. For all reduced formulas A(P) and B(P), we have A(P) ∧ B(P) =
αD([[A(P)]]D ∩ [[B(P)]]D).

For the time successors, we define Up(A(B,P)) = reduce(postSUp
(A(B,P)))

where

SUp =
∧

x∈C
(k,≺)∈Dx,0

(¬px−0≺k → ¬p′
x−0≺k)

∧

x,y∈C0,x 
=0
(k,≺)∈Dx,y

(p′
x−y≺k ↔ px−y≺k).

Lemma 10. For any Boolean formula A(B,P), αD([[A]]↑) ⊆ Up(A). Moreover,
if D is the concrete domain and A is reduced, then this holds with equality.

Following similar ideas, we handle clock resets by defining Resetz(A) =
reduce(postSResetz

(A)), for a (complex) relation SResetz to encode how predicates
evolve (see the long version [27] of this article for more detailled explanations).

We get:

Lemma 11. For any Boolean formula A(B,P), and any clock z ∈ C, we have
αD(Resetz([[A]]D)) ⊆ Resetz(A). Moreover, if D is the concrete domain, and A
is reduced, then the above holds with equality.
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Algorithm 3. Algorithm SymReach that checks the reachability of a target
location lT in a given abstract domain D.
Input: A = (L, Inv, �0, C, E), �T , D

1 ;
2 next := enc(l0) ∧ αD(∧x∈Cx = 0);
3 layers := [];
4 reachable := false;
5 while (¬reachable ∧ next) �= false do
6 reachable := reachable ∨ next;
7 next := ApplyEdges(Up(next)) ∧ ¬reachable;
8 layers.push(next);
9 if (next ∧ enc(lT )) �= false then

10 return ExtractTrace (layers);

11 return Not reachable;

4.3 Model-Checking Algorithm

Algorithm 3 shows how to check the reachability of a target location given an
abstract domain. The list layers contains, at position i, the set of states that
are reachable in i steps. The function ApplyEdges computes the disjunction of
immediate successors by all edges. It consists in looping over all edges e =
(l1, g, R, l2), and gathering the following image by e:

enc(�2) ∧ Resetrk
(Resetrk−1(. . . (Resetr1((((∃B.A(B,P) ∧ enc(�1)) ∧ αD(g))))))),

where R = {r1, . . . , rk}. We thus use a partitioned transition relation and do not
compute the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers)
returns a trace reaching the target location. This is standard and can be done by
computing backwards from the last element of layers, by finding which edge can
be applied to reach the current state. Since both reset and time successor opera-
tions are defined using relations, predecessors in our abstract system can be easily
computed using the operator preR. As it is standard, we omit the precise defini-
tion of this function (the reader can refer to the implementation) but assume that
it returns a trace of the form A1

σ1−→ A2
σ2−→ . . .

σn−1−−−→ An, where the Ai(B,P)
are minterms and the σi belong to the trace alphabet Σ = {up, r∅} ∪ {r(x)}x∈C ,
with the following meaning:

– if Ai
up−→ Ai+1 then Ai+1 = Up(Ai);

– if Ai
r∅−→ Ai+1 then Ai+1 = Ai;

– if Ai
r(x)−−→ Ai+1 then Ai+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.
The overall algorithm then follows a classical CEGAR scheme. We initialize D

by adding the clock constraints that appear syntactically in A, which is often
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a good heuristic. We run the reachability check of Algorithm 3. If no trace is
found, then the target location is not reachable. If a trace is found, then we check
for feasibility. If it is feasible, then the counterexample is confirmed. Otherwise,
the trace is spurious and we run the refinement procedure described in the next
subsection, and repeat the analysis.

4.4 Abstraction Refinement

Since we initialize D with all clock constraints appearing in guards, we can
assume that all guards are represented exactly in the considered abstractions.
Note that the algorithm can be easily extended to the general case; but this
simplifies the presentation.

The abstract transition relation we use is not the most precise abstraction of
the concrete transition relation. Therefore, it is possible to have abstract tran-
sitions A1

a−→ A2 for some action a while no concrete transition exists between
[[A1]] and [[A2]]. This requires care and is not a direct application of the standard
refinement technique from [11]. A second difficulty is due to incomplete reduction
of the predicates using reduce2D. In fact, some reachable states in our abstract
model will be unsatisfiable. Let us explain how we refine the abstraction in each
of these cases.

Consider an algorithm interp which returns an interpolant of given
zones Z1, Z2. In what follows, by the refinement of D by interp(Z1, Z2), we mean
the domain D′ obtained by adding (k,≺) to Dx,y for all constraints x − y ≺ k
of interp(Z1, Z2). Observe that αD′(Z1) ∩ αD′(Z2) = ∅ in this case.

We define concrete successor and predecessor operations for the actions in Σ.
For each a ∈ Σ, let Prec

a denote the concrete predecessor operation on zones
defined straightforwardly, and similarly for Postca.

Consider domain D and the induced abstraction function αD. Assume that
we are given a spurious trace π = A1

σ1−→ A2
σ1−→ . . .

σn−1−−−→ An. Let B1 . . . Bn be
the sequence of concrete states visited along π in A, that is, B1 is the concrete
initial state, and for all 2 ≤ i ≤ n, let Bi = Postcπi−1

(Bi−1). This sequence can
be computed using DBMs.

The trace is realizable if Bn �= ∅, in which case the counterexample is con-
firmed. Otherwise it is spurious. We show how to refine the abstraction to elim-
inate a spurious trace π.

Let i0 be the maximal index such that Bi0 �= ∅. There are three possible
reasons explaining why Bi0+1 is empty:

1. first, if the abstract successor Ai0+1 is unsatisfiable, that is, if it contains
contradictory predicates; in this case, [[Ai0+1]] = ∅, and the abstraction is
refined by Lemma 8 to eliminate this case by strengthening reducek

D.
2. if there are predecessors of Ai0+1 inside Ai0 but none of them are in Bi0 , i.e.,

Prec
πi0

([[Ai0+1]]) ∩ [[Ai0 ]] �= ∅; in this case, we refine the domain by separating
these predecessors from the rest of Ai0 using interp(Prec

πi0
([[Ai0+1]]), Bi0−1),

as in [11].
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3. otherwise, there are no predecessors of Ai0+1 inside Ai0 : we refine the abstrac-
tion according to the type of the transition from step i0 to i0 + 1:
(a) if πi0 = up: refine D by interp([[Ai0 ]]↑, [[Ai0+1]]↓).
(b) if πi0 = r(x): refine D by interp(Freex([[Ai0 ]]),Freex([[Ai0+1]])).

Note that the case πi0 = r∅ is not possible since this induces the identity
function both in the abstract and concrete systems.

Given abstraction αD and spurious trace π, let refine(αD, π) denote the
refined abstraction αD′ obtained as described above.

The following two lemmas justify the two subcases of the third case above.
They prove that the detected spurious transition disappears after refinement.
The reset and up operations depend on the abstraction, so we make this depen-
dence explicit below by using superscripts, as in Resetαx and Upα, in order to
distinguish the operations before and after a refinement.

Lemma 12. Consider (A1, A2) ∈ Upα with [[A1]]↑ ∩ [[A2]] = ∅. Then [[A1]]↑ ∩
[[A2]]↓ = ∅. Moreover, if α′ is obtained by refinement of α by interp([[A1]]↑, [[A2]]↓),
then for all (A′

1, A
′
2) ∈ Upα′

, [[A′
1]] ⊆ [[A1]] implies [[A′

2]] ∩ [[A2]] = ∅.

Lemma 13. Consider x ∈ C, and (A1, A2) ∈ Resetαx such that [[A1]][x ← 0] ∩
[[A2]] = ∅. Then Freex([[A1]]) ∩ Freex([[A2]]) = ∅. Moreover, if α′ is obtained
by refinement of α by interp(Freex([[A1]]),Freex([[A2]])), then for all (A′

1, A
′
2) ∈

Resetα
′

x with [[A′
1]] ⊆ [[A1]], we have [[A′

2]] ∩ [[A2]] = ∅.

5 Experiments

We implemented both algorithms. The symbolic version was implemented in
OCaml using the CUDD library2; the explicit version was implemented in C++
within an existing model checker using Uppaal DBM library. Both prototypes
2 http://vlsi.colorado.edu/∼fabio/.

http://vlsi.colorado.edu/~fabio/
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take as input networks of timed automata with invariants, discrete variables,
urgent and committed locations. The presented algorithms are adapted to these
features without difficulty.

We evaluated our algorithms on three classes of benchmarks we believe are
significant. We compare the performance of the algorithm with that of Uppaal [7]
which is based on zones, as well as the BDD-based model checker engine of
PAT [25]. We were unable to compare with RED [30] which is not maintained
anymore and not open source, and with which we failed to obtain correct results.
The tool used in [16] was not available either. We thus only provide a comparison
here with two well-maintained tools.

Two of our benchmarks are variants of schedulability-analysis problems
where task execution times depend on the internal states of executed processes,
so that an analysis of the state space is necessary to obtain a precise answer.

Monoprocess Scheduling Analysis. In this variant, a single process sequen-
tially executes tasks on a single machine, and the execution time of each cycle
depends on the state of the process. The goal is to determine a bound on the
maximum execution time of a single cycle. This depends on the semantics of the
process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined
by synchronous circuit models taken from the Synthesis Competition (http://
www.syntcomp.org). We assume that each latch of the circuit is associated with
a resource, and changing the state of the resource takes some amount of time.
So a subset of the latches have clocks associated with them, which measure
the time elapsed since the latest value change (latest moment when the value
changed from 0 to 1, or from 1 to 0). We provide two time positive bounds �0
and �1 for each latch, which determine the execution time as follows: if the value
of latch � changes from 0 to 1 (resp. from 1 to 0), then the execution time of the
present cycle cannot be less than �1 (resp. �0). The execution time of the step is
then the minimum that satisfies these constraints.

Multi-process Stateful Scheduling Analysis. In this variant, three processes
are scheduled on two machines with a round-robin policy. Processes schedule
tasks one after the other without any delay. As in the previous benchmarks,
a process executing a task (on any machine) corresponds to a step of the syn-
chronous circuit model. Each task is described by a tuple (C1, C2,D) which
defines the minimum and maximum execution times, and the relative deadline.
When a task finishes, the next task arrives immediately. The values in the tuple
depend on the state of the process. The goal is to check the absence of any dead-
line miss. Processes are also instantiated with AIG circuits from http://www.
syntcomp.org.

Asynchronous Computation. We consider an asynchronous network of
“threshold gates”, defined as follows: each gate is characterized by a tuple
(n, θ, [l, u]) where n is the number of inputs, 0 ≤ θ ≤ n is the threshold, and l ≤ u
are lower and upper bounds on activation time. Each gate has an output which
is initially undefined. The gate becomes active during the time period [l, u].

http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org
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During this time, if all inputs are defined, and if at least θ of the inputs have
value 1, then it sets its output to 1. At the end of the time period, it becomes deac-
tivated and the output becomes undefined again, until the next period, which
starts l time units after the deactivation. The goal is to check whether the given
gate can output 1 within a given time bound T .

Results. Figure 3 displays the results of our experiments. All algorithms were
given 8 GB of memory and a timeout of 30 min, and the experiments were run
on laptop with an Intel i7@3.2 Ghz processor running Linux. The symbolic algo-
rithm performs best among all on the monoprocess and multiprocess scheduling
benchmarks. Uppaal is the second best, but does not solve as many benchmarks
as our algorithm. Our enumerative algorithm quickly fails on these benchmarks,
often running out of memory. On asynchronous computation benchmarks, our
enumerative algorithm performs remarkably well, beating all other algorithms.
We ran our tools on the CSMA/CD benchmarks (with 3 to 12 processes); Uppaal
performs the best but our enumerative algorithm is slightly behind. The symbolic
algorithm does not scale, while PAT fails to terminate in all cases.

The tool used for the symbolic algorithm is open source and can be found at
https://github.com/osankur/symrob along with all the benchmarks.

Fig. 3. Comparison of our enumerative and symbolic algorithms (referred to as Abs-
enumerative and Abs-symbolic) with Uppaal and PAT. Each figure is a cactus plot for
the set of benchmarks: a point (X, Y ) means X benchmarks were solved within time
bound Y .

https://github.com/osankur/symrob
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6 Conclusion and Future Work

There are several ways to improve the algorithm. Since the choice of interpolants
determines the abstraction function and the number of refinements, we assumed
that taking the minimal interpolant should be preferable as it should keep the
abstractions as coarse as possible. But it might be better to predict which inter-
polant is the most adapted for the rest of the computation in order to limit
future refinements. The number of refinement also depends on the search order,
and although it has already been studied in [23], it could be interesting to study
it in this case. Generally speaking, it is worth noting that we currently cannot
predict which (variant of) our algorithms is better suited for which model.

Several extensions of our algorithms could be developed, e.g. combining our
algorithms with other methods based on finer abstractions as in [22], integrating
predicate abstraction on discrete variables, or developing SAT-based versions of
our algorithms.
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