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Abstract 
This paper proposes a new interpretation of type-2 fuzzy intervals (T2FIs) through the joint use of gradual 
intervals (GIs) and thick intervals (TIs). In this framework, a T2FI is viewed as a thick gradual interval (TGI). 
This new representation gives an original concept for the manipulation of T2FIs according to the thick gradual 
representation. Furthermore, this vision allows an extension of the interval arithmetic arsenal and reasoning to 
the framework of T2FIs. The proposed approach can be regarded as more computationally viable, which will 
make T2FIs computations more useful in applied scenarios. As an illustration, the proposed concept is used to 
implement the elementary arithmetic operations on T2FIs. The potentialities of the TGI approach have been 
validated in the frameworks of T2FI aggregation operators and T2FI regression.   

Keywords: Type-1 and Type-2 Fuzzy Intervals, Thick Intervals and Thick Gradual Intervals, Fuzzy 
Arithmetic and Gradual Arithmetic, Interval Arithmetic, T2FI Regression, T2FI Aggregation Operators. 

I. INTRODUCTION 

    Zadeh proposed fuzzy set theory [74], which provides original mathematical tools for dealing with 
vague or imprecise information in the form of membership functions. The vagueness is mostly due to 
the approximate characteristics that are expressed in a linguistic form through a natural language. For 
clarity, conventional fuzzy subsets (sets) will be referred to as type-1 fuzzy sets (T1FSs). In the fuzzy 
literature, a T1FS is sometimes called "type-1 fuzzy interval (T1FI)". Indeed, a T1FI is a T1FS such 
that all its -cuts are intervals. Furthermore, a T1FI can be considered as a stack of nested intervals 
that are defined by the concept of -cuts [4]. The term T1FS, which was initially proposed by Zadeh 
[74], is used to distinguish these sets from other fuzzy extensions, such as type-2 fuzzy sets (T2FSs), 
which were initially proposed in [75] and analyzed in, e.g., [39][40][41].  
    To extend standard interval arithmetic (SIA) [43][44] methods, which were initially proposed over 
conventional intervals (CIs), to T1FIs, the concept of gradual numbers (GNs) has been proposed 
[23][26]. A GN is defined by an assignment function that can represent the essence of graduality. In 
this context, a T1FI can be represented as a pair of GNs [23][26]. These lower and upper bounds are 
called left and right profiles. This approach provides a new outlook on T1FI representation, 
arithmetic and reasoning. More generally, according to the GN representation, the concept of a 
gradual interval (GI) has been proposed [7][8][23][26]. A CI is a GI if its boundaries are GNs. 
Conversely, a GI can be interpreted as a T1FI if its left and right profiles are injective and, 
respectively, nondecreasing and nonincreasing. Furthermore, if a T1FI is a particular case of a GI, 
the inverse is false insofar as no monotony constraint is associated with the GI bounds (the profiles). 
Therefore, the GI representation encompasses the T1FI representation [7][8][23][26]. 
    To deal with uncertainties in T1FSs, the concept of T2FSs was introduced by Zadeh [74] as an 
extension of T1FSs. A T2FS is a fuzzy set whose membership grades are T1FSs. They are highly 
useful in scenarios where it is difficult to determine the “exact” membership function of a T1FS. 
Furthermore, T2FSs possess many advantages over T1FSs because their membership functions are 
fuzzy, thereby making it possible to deal with the effects of uncertainty in T1FSs. Due to the 
computational complexity of T2FSs, most researchers have concentrated on interval T2FSs 
(IT2FSs). For simplicity and when no confusion is possible, in this paper, normalized IT2FSs are 
referred to as type-2 fuzzy intervals (T2FIs). Furthermore, according to Mendel et al. [40], T2FIs are 
practical due to their manageable computational complexity. 
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In the fuzzy literature, T2FSs and T2FIs are applied to numerous application domains, such as image 
processing and pattern recognition [27][38], multicriteria decision-making and aggregation operators 
[14][53][54][67][68][73][76], automatic control [10][11][13][55][56] and fuzzy regression 
[2][36][46][71]. In such applications, the computation over T2FIs is of paramount importance. 
Typically, fuzzy arithmetic is applied to mathematical models that include T2FIs by using one of the 
two approaches that have been introduced in the literature: the α-cut approach and the Zadeh 
extension principle. The main contribution of this paper is the proposal of a new interpretation of 
T2FIs and their arithmetic through a new kind of interval, namely, a thick gradual interval (TGI). 
Using this new type of interval, a T2FI is not represented by lower and higher T1FIs but by left and 
right GIs. Conceptually, the proposed computational method differs from existing methods in the 
literature and is distinguished by its ability to extend all approaches that are based on CIs and T1FIs 
to T2FIs in the fields of control, multicriteria decision making, regression and modeling, and 
aggregation operators, among others. 
To examine the TGI strategy, the standard operations {+,−,×,÷} are investigated. According to [45]: 
“these operations are of course a basis for more complicated problems of interval arithmetic. 
Therefore, they are very important. If the elementary operations are formulated imprecisely or 
incorrectly, then using them for solving problems can sometimes lead to controversial results”. 
Moreover, based on the TGI concept, all the SIA operations on CIs and T1FIs [43][44] can be 
extended to T2FIs. While the primary objective of this paper is to develop the concept of TGIs, 
potential applications in computing T2FI aggregation operators and in constructing T2FI regression 
models are proposed to demonstrate the applicability of the proposed concept, namely, we are 
clarifying that the TGI concept is not merely a theoretical challenge but has real-world applications. 
    The remainder of this paper is organized as follows: Section II discusses concepts regarding 
conventional intervals (CIs) and their arithmetic. Thick intervals (TIs) and their arithmetic are 
detailed in Section III. In Section IV, gradual intervals (GIs) and their associated arithmetic are 
presented. In Section V, thick gradual intervals (TGIs) are developed, thereby providing a direct 
extension of SIA operations to T2FIs. Section VI is devoted to a TGI computational example with 
comparative results according to the -plane methodology. In Section VII, potential applications of 
the TGI approach in the fields of T2FI aggregation operators and T2FI regression have been 
investigated. Finally, concluding remarks are presented in Section VII. 

II.    RELATED WORKS AND MOTIVATION 

    In the literature, systems that are based on T2FSs and T2FIs have stimulated a major interest in 
various application fields (see [10][11][13][14][27][38][55][56][57]). However, fuzzy arithmetic 
through T2FIs remains a little-studied field. In the fuzzy context, the extension of the typical 
arithmetic operations on real numbers to T1FIs is not a new problem. It is well known that the 
computation using the Zadeh’s extension principle is computationally expensive. Considering a T1FI 
as a collection of cuts is a conventional approach (e.g., [4][28][48][59]). While the extension 
principle leads to NP-hard computations, approximation via -cuts (and its hybridizations) provides 
a feasible method for computing. The literature contains extensive discussion on the mathematical 
aspects of the two fuzzy arithmetic implementation approaches (see [24] for a review). Due to its 
simplicity and to the availability of computational methods, fuzzy arithmetic that is based on the -
cut principle is the most common approach for implementing fuzzy arithmetic in various 
applications. However, the literature is unanimous in the fact that the -cut approach is time-
consuming and depends on the number of -cuts that are used. Conceptually, the -cut strategy for 
computation is simply a generalization of interval arithmetic, where rather than considering CIs at 
one level only, several levels are considered in [0, 1]. 
The computational philosophy over T1FIs has been extended to T2FIs. Zadeh [75] was the pioneer 
who defined operations for T2FIs using α-cuts. Since then, several new representations and 
computational methods have been proposed (e.g., [32][51][60][61][69][72][73]), such as the -plane 
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representation [51], the Zslices representation [69] and the conjoint use of -cuts and the extension 
principle [30]. For instance, in [72][73], an aggregation operation that uses the -cut principle is 
defined. In [29][30][32][51], the concepts of -cuts and -planes are applied for various operations. 
Simply, the -plane concept is a representation that is comparable to the α-cut concept for T1FSs. In 
[69], the Zslices principle has been proposed and used to compute the centroids of T2FSs. Based on 
the -plane and -cut concepts, Stefanini et al. [60][61] proposed operations on T2FIs according to 
the F-transform. For additional details on the -cut and -plane principles, see [32][51]. In this 
framework, regardless of which method is used, computing operations on T2FIs remains 
computationally expensive due to the complex 3D nature of the T2FIs. Although this strategy, 
namely, the -cut and -plane approaches and their associated discretization procedure, was sound 
and useful in various scenarios, it was computationally expensive and required significant 
preliminary computations. According to [31], the implementation of arithmetic operations on T2FIs 
sometimes requires the use of massively parallel processing units such as graphical processing units 
(GPUs). Moreover, methods such as the -plane approach underestimate the results and cannot 
always guarantee rigorous enclosures for the ranges of operations, namely, the T2FIs that are 
obtained via an operation do not always contain all possible values of the operands.  
    To provide an overview of the work that is presented here and to explain the reasoning behind our 
approach, we begin by detailing the motivation for the proposed approach. The developments that 
are inherent to our methodology will be detailed in the next sections. In this paper, for utilizing 
T2FIs in an analytically tractable way, a more computationally and analytically viable approach is 
proposed. Thus, as SIA operations on real numbers have been extended to T1FIs thorough the 
concept of GIs, our motivation is to extend these operations to T2FIs. To realize this objective, a new 
alternative T2FI representation is developed. This representation is based on the joint application of 
the GI [7][8][23][26] and TI [15][20][21] concepts. A TI is an interval for which the bounds are 
uncertain and are represented by CIs. As a T1FI is regarded as a pair of GNs (left and right profiles), 
a T2FI can be represented by a pair of left and right GIs. This approach, which utilizes the new 
concept of thick gradual intervals (TGIs), enables the extension of the mathematical arsenal of 
interval arithmetic and reasoning using CIs and T1FIs to T2FIs while avoiding the discretization 
procedure, which is necessary for implementing the -cut principle and its hybridizations. A T2FI is 
represented and manipulated as a TGI through the SIA. The TGI concept can be transposed in almost 
all applications based on T2FIs where guaranteed and analytical computations are possible. For 
instance, the TGI concept can be used in big-data clustering to model fuzzy uncertainties [57], in 
fuzzy multi-objective reliability–redundancy allocation problems [1], in the restricted Boltzmann 
machine (RBM) to model its uncertain parameters [58] and in automatic control applications to 
represent the inputs, outputs and/or parameters of dynamical systems [10][11][13]. Furthermore, the 
T2FI aggregation operator methods [53][54][67][68][76] and the T2FI regression approaches 
[3][5][12][16][25][36][46][71] can find a new breath thanks to the TGI strategy. The proposed 
strategy does not suffer from any restriction on the class of functions to which it can be applied and 
provides analytical definitions for efficiently computing functions of T2FIs. However, in this paper, 
the proposed method is restricted to normal T2FIs but can be generalized through thick gradual sets 
(see [20] for the definition of thick sets).  
Although this approach can take advantage of the flexibility, the rigor and the guaranteed results of 
interval arithmetic and reasoning, it can be sometimes criticized for its accumulation of fuzziness. 
This phenomenon causes overestimation of the uncertainties in the resulting T2FIs. This 
overestimation originates from the decorrelation phenomenon of the SIA, which is also known as the 
dependency problem. Indeed, because SIA guarantees the containment of the set of all possible 
results, the pessimistic independence property between the intervals is implicitly assumed. 
Furthermore, this overestimation problem can be reduced by implementing extensions and 
hybridizations of SIA, such as the arithmetic Kaucher [47] and Stefanini [59]. These arithmetic’s 
have been applied to T1FIs [7][8][59] and can be naturally extended to T2FIs via TGIs.   
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III. CONVENTIONAL INTERVALS (CIS) AND THEIR ARITHMETIC 

II.1. Conventional interval (CI) representation  

A real interval [a] is defined as a closed compact and bounded subset of  such that:  
   [a] = [a, a+] = {a aa a+}; where aa+                                                 (1) 

The real numbers a= inf([a]) and a+ = sup([a]) are regarded as the endpoints (the lower and upper 
bounds) of the interval [a]. Throughout this paper, the set = {[a, a+] | aa+; a, a+} denotes 
the set of proper intervals and represents the subset of intervals in   that contain zero in their 
interiors. In (1), the bracket notation can be regarded as an operator that associates to an unknown 
and crisp value a an interval domain [a] that contains it. Furthermore, as discussed by Kulpa in 
[49][50], the real interval [a] can be interpreted as an imprecise or uncertain real number, for which 
it is possible to guarantee that its precise value is located somewhere between the endpoints a and 
a+. Usually, the interval notation [a], which is typically used in the interval arithmetic literature, is of 
an epistemic nature and refers to an arbitrary real number a in the interval [a]. 

II.2. Conventional interval (CI) arithmetic  
 CIs are manipulated using the well-known SIA, which was developed by Sunaga, Warmus and 
Moore [43][44][64][70]. When considering two CIs, namely, [a] = [a, a] and [b] = [b, b], the four 
SIA operations of , ,and are defined by the following expressions: 

Addition:[a], [b]𝕀:a][b] = [abab 
Subtraction: [a], [b]𝕀:a][b] = [abab 

   Multiplication: [a], [b]𝕀:a][b] = [min(max(= {abababab} 
Division: [a]𝕀, [b]𝕀\ℤ:a][b] = a][b]); where [b] = [1/b, 1/b]                     (5) 

If 0[b], it is assumed that a][b] = . 

II.3. Example 1: Is the CI representation always sufficient? 

The literature is unanimous regarding the utility of and the interest in the CI representation and its 
associated arithmetic (SIA). This strategy has several advantages and it permits rigorous enclosures 
for the ranges of operations and functions. In this representation, what is imprecise (or uncertain) is 
not the interval [a] but the content of the information that is instantiated in [a]. Indeed, the interval 
[a] is “precise” and its bounds, namely, a and a+, are assumed to be known with certainty. However, 
in some practical applications, the interval bounds can be uncertain [15][20][21] and they cannot be 
expressed as crisp values.  
We present a simple example to illustrate this case. Let us consider a robot that is moving on a one-
dimensional path and is at position x. This robot can see for a distance d. The position x is acquired 
via GPS. Therefore, it is associated with an uncertainty. The robot vision system depends on the 
weather conditions and provides the distance d with an uncertainty. The visibility zone, which would 
be a conventional CI [z] = [x − d, x + d] if x and d were precise information, becomes a more 
complex piece of information since the bounds are themselves CIs. This phenomenon of uncertainty 
gives rise to the concept of thick intervals (TIs), of which the bounds are CIs. This concept of TIs, 
which extends the CI representation in an uncertain environment, is detailed in the next section [20]. 

IV. THICK INTERVALS (TIS) AND THEIR ARITHMETIC 

III.1. Thick interval (TI) representation 
To represent and manipulate intervals whose bounds are uncertain and are represented by CIs, the 
concept of thick intervals (TIs) has been proposed by Desrochers and Jaulin [20]. A TI, which is 
denoted⟦a⟧, is a subset of 𝕀 and can be expressed in the following form (see Fig. 1):  

                                       ⟦a⟧ = ⟦[a], [a]⟧[a] = [a, a+]𝕀 | a[a] and b[b]}                            (6) 

In (6), [a] and [a] are two CIs that contain the uncertain lower bound a and the uncertain upper 
bound a respectively. 
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Fig. 1: Representation of a thick interval ⟦a⟧ 

TI ⟦a⟧ represents all the CIs [a, a+], where a[a] and b[b] (see Fig. 1). A CI is a TI for which 
the bounds are certain, namely,  

[a] = [a, a+] = ⟦[a, a], [a+, a+]⟧ 

III.2. Thick interval (TI) arithmetic 

The SIA operations on CIs can be directly extended to TIs [20][21]. For instance, when considering 
two TIs ⟦a⟧ = ⟦[a], [a]⟧ and ⟦b⟧ = ⟦[b], [b]⟧, the thick operations , ,and can be obtained via 
an extension of SIA on CIs to TIs [20][21]. These operations are defined by the following 
expressions:                    

Addition: ⟦a⟧, ⟦b⟧𝕀: ⟦a⟧⟦b⟧ = ⟦[a], [a]⟧⟦[b], [b]⟧ = ⟦[a][b], [a][b]⟧             (7) 

         Subtraction: ⟦a⟧, ⟦b⟧𝕀: ⟦a⟧⟦b⟧ = ⟦[a], [a]⟧⟦[b], [b]⟧ = ⟦[a][b], [a][b]⟧             (8) 

           Multiplication: ⟦a⟧, ⟦b⟧𝕀: ⟦a⟧⟦b⟧ = ⟦[a], [a+]⟧⟦[b], [b+]⟧ = ⟦min(), max()⟧             (9)                   

where = {[a][b], [a][b], [a][b], [a][b]} and the min and max operators between two 
CIs [a] = [a, a] and [b] = [b, b] are expressed as follows: 

min([a], [b]) = [min(a, b), min(a, b)]; max([a], [b]) = [max(a, b), max(a, b)] 
Due to the commutative and associative properties of the min and max operators, in the presence of 
several CIs, the computational mechanism is applied to pairs of intervals. 

Division⟦a⟧, ⟦b⟧𝕀\ℤ: ⟦a⟧⟦b⟧ = ⟦[a], [a]⟧⟦[b], [b]⟧ = ⟦a⟧1⟦b⟧)            (10) 
where: 1⟦b⟧ = 1⟦[b], [b]⟧ = ⟦1[b], 1[b]⟧ 

In (7)-(10), each operation ⊙,,,} between TIs is interpreted as follows: if [a]⟦a⟧ and 
[b]⟦b⟧, then the interval [x] = [a]⊙[b] satisfies [x]⟦a⟧⊙⟦b⟧. Furthermore, each operation [a]⊙[b] 
is performed via conventional SIA operations (2)-(5).  
According to the definitions (7)-(10), the arithmetic operations over TIs are direct transpositions of 
SIA expressions (2)-(5), where the operations on real number bounds are replaced by operations on 
CI bounds. To show the methodology and the specificities of the computation over TIs, an 
illustrative computational example is presented in Appendix A.  

III.3. Example 2: Is the TI representation useful? 
Let us reconsider the robot example that was presented in Section II.2. When the position x and the 
distance d are crisp values, the visibility zone is specified by the CI:  

[z] = [z, z] = x + [d, d] = [xd, xd]  
However, as discussed in Section II.2, the position x and the distance d are assumed to be uncertain 
and are represented by their likelihood CIs, namely, x[x] = [7, 12] and d[d] [3, 5]. According to 
the TI representation, the robot visibility zone can be formulated as follows:  

⟦z⟧ = ⟦[z], [z]⟧ = [x] + ⟦[d], [d]⟧ = [7, 12] + ⟦[3, 5], [3, 5]⟧ 

Expressing the conventional interval [7, 12] as the TI ⟦[7, 7], [12, 12]⟧ yields the following: 
        ⟦z⟧ = ⟦[7, 7], [12, 12]⟧ + ⟦[3, 5], [3, 5]⟧ = ⟦[7, 7] [3, 5], [12, 12] + [3, 5]⟧ = ⟦[2, 4], [15, 17]⟧  
The concepts of CI and TI have been detailed. The next sections are devoted to their extension to the 
fuzzy case by introducing a vertical dimension, which is related to the relevance degrees and is 
limited to the unit interval [0, 1]. From a methodological perspective, a CI is extended to a GI (T1FI) 
and a TI is extended to a TGI (T2FI).  
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V.  GRADUAL INTERVALS (GIS) VERSUS T1FIS AND THEIR ARITHMETIC 

In the paper, for simplicity and without loss of generality, some examples are carried out using 
unimodal and linear GIs. However, the proposed concepts remain transposable regardless of the 
shape of the considered GIs. 

VI.1. Gradual interval (GI) representation 
A CI [a] can be represented by an indicator function that takes the value 1 over the interval and 0 
anywhere else. To represent the graduality in CIs and to improve their specificity, the concept of 
GNs has been proposed [23][26]. In scenarios in which the bounds of a CI represent a gradual 
transition over this interval, they can be represented by GNs. A GN is a real-valued number that is 
parameterized by a degree of relevance (0,1]. Furthermore, it is modeled by a function from (0,1] 
to . In this framework, a CI [a] becomes a GI [a()] if its bounds are GNs [6][7][8][23][26]. 
Similar to a CI, a GI is represented by the ordered pair of its two bounds, which are called left and 
right profiles. The GI [a()] = [a(), a()], where a() a() and a() and a() are GNs. 
The latter are assumed to be continuous and their domains are extended to [0, 1], namely, a(0) and 
a(0) are defined. Via a similar approach, as for the T1FI representation, in the gradual 
representation two dimensions are considered. The horizontal dimension is similar to that in the CI 
representation. The vertical dimension is related to the relevance degrees and is limited to the unit 
interval [0,1]. For example, Fig. 2 shows two GIs, namely, [a()] and [b()], where no monotony 
constraint is necessarily imposed on the GNs (the profiles). 
GI [a()] can be interpreted as a T1FI if its profiles a() and a() are injective and respectively 
nondecreasing and nonincreasing [6][7][8][23][26]. If a T1FI is a particular case of a GI, the 
reciprocal is false insofar as no monotony constraint is associated with the GNs (the profiles). The 
concept of GIs is more general and encompasses that of T1FIs. For the remainder of this paper, a GI 
in which the profiles a() and a() are, respectively, nondecreasing and nonincreasing is called a 
monotone (consonant) GI (or T1FI). A nonmonotone (nonconsonant) GI that cannot be represented 
by a T1FI is called a "pure GI". Moreover, the set of GIs is denoted by . For instance, the GI 
[a()] in Fig. 2 is consonant and can be regarded as a T1FI. However, the GI [b()] is a pure GI and 
cannot be represented by a T1FI. Via a simplified approach, if an FI can be regarded as a stack of 
nested CIs, a pure GI is characterized by ill-nested CIs through the vertical dimension. 

 
Fig. 2: Two gradual intervals [a()] and [b()] 

VI.2. Gradual interval (GI) arithmetic 
The SIA operations on CIs can be extended to GIs where the CIs in (2)-(5) are replaced by gradual 
CIs. Thus, the arithmetic operations over the GIs are defined by the following expressions [7][8]:  

Addition[a()], [b()] :a()][b()] = [a()b()a()b()(11) 
Subtraction:[a()], [b()] :a()][b()] = [a()b()a()b() 

                 Multiplication:[a()], [b()] :a()][b()] = [min((), max(()]                   (13) 
where:() = {a()b()a()b()a()b()a()b() 
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Division:[a()] , [b()] \ℤ:a()][b()] = a()]1[b()])                    (14) 
where 1[b()] = [1/b(), 1/b()] 

As a T1FI is a special case of a GI, the operations on T1FIs can be implemented by using 
expressions (11)-(14) over GIs.  

IV.3. Example 3: Is the GI (or T1FI) representation always sufficient? 

We reconsider the robot example that was discussed in Section II.3. Let us assume that the position x 
and the distance d are still uncertain and are instantiated in their likelihood CIs, to which degrees of 
confidence are associated. In this case, x[x()] and d[d()], where [x()] and [d()] are 
distributions of possibility that are given by the T1FIs (monotone GIs): [x()] = [73, 122] and 
[d()] = [3, 5] (see Fig. 3).  

 
Fig. 3: T1FI representations of [x()] and [d()] 

According to this representation, the robot visibility zone when x[x()] and d[d()] cannot be 
correctly expressed as a single GI (T1FI) since its bounds are also GIs. In this case, a new kind of 
GIs, which can be qualified as thick, can be envisioned, where the bounds are not GNs but GIs. This 
concept of a TGI, which can represent a T2FI, is detailed in the next section. 

VI. THICK GRADUAL INTERVALS (TGIS) VERSUS T2FIS AND THEIR ARITHMETIC 

V.1. Thick gradual interval (TGI) representation 
To represent and manipulate GIs (or T1FIs) whose bounds (profiles) are uncertain, the concept of 
TGIs is proposed in this paper. This concept is useful in scenarios in which a GI is uncertain and it is 
difficult to determine its profiles with certainty (see Fig. 4). 

 
Fig. 4: TGI representation as an uncertain T1FI 
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In this case, according to the TI formalism, a GI [a()] becomes a TGI ⟦a()⟧ = ⟦[a()], [a()]⟧, 
where the bounds [a()] and [a()] are GIs. Thus, a TGI is defined by the following expression:  

⟦a()⟧ = ⟦[a()], [a()]⟧[a()] = [a(), a+()]  | a()[a()] and b()[b()]}                            
The TGI ⟦a()⟧ represents an uncertain GI [a()], where its profiles a() and a() are located in 
their likelihood GIs [a()] and [a()], respectively (see Fig. 4). By analogy with the GI formalism, 
the bounds [a()] and [a()] are respectively called left and right GIs. This new representation 
enables a direct extension of the thick SIA operations (7)-(10) to TGIs.  

The bounds [a()] and [a()] are pure GIs and cannot be represented by T1FIs, thereby giving the 
TGI concept its full meaning.  

V.2. Thick gradual interval (TGI) arithmetic  

The elementary operations over TGIs can be implemented via the following expressions:   

Addition: ⟦a()⟧, ⟦b()⟧ : ⟦a()⟧⟦b()⟧ = ⟦[a()][b()], [a()][b()]⟧                  (15) 

 Subtraction:⟦a()⟧, ⟦b()⟧ : ⟦a()⟧⟦b()⟧ = ⟦[a()][b()], [a()][b()]⟧                  (16) 
Multiplication: ⟦a()⟧, ⟦b()⟧ : ⟦a()⟧⟦b()⟧ = ⟦min(()), max(())⟧                    (17) 

where:() = {[c1()], [c2()], [c3()], [c4()]}; with: 
[c1()] = [a()][b()], [c2()] = [a()][b()], [c3()]= [a()][b()]; [c4()]= [a()][b()]} 
As for CIs, the min and max between two GIs [a()] and [b()] are expressed as follows: 

min([a()], [b()]) = [min(a(), b()), min(a(), b())];  

max([a()], [b()]) = [max(a(), b()), max(a(), b())]; 

Division: ⟦a()⟧ , ⟦b()⟧ \ℤ: ⟦a()⟧⟦b()⟧ = ⟦a()⟧1⟦b()⟧)                          (18) 
where: 1⟦b()⟧ = 1⟦[b()], [b()]⟧ = ⟦1[b()], 1[b()]⟧ 

From a methodological perspective, expressions (15)-(18) are gradual versions of expressions (7)-
(10). All the TIs are replaced by TGIs. However, from a practical perspective, there are various 
differences in the implementations of the multiplication and the division operations, where min and 
max operations between GIs are necessary. Indeed, in contrast to CIs, where only a single horizontal 
dimension is considered, GIs are represented by two dimensions (horizontal and vertical). In this 
framework, attention must be paid to the points of intersection between ascending (descending) 
profiles (see Fig. 5).  

 
Fig. 5: Example of min and max operations between two GIs 
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The break points that delimit areas on the vertical dimension must be determined beforehand to 
compute the min and max expressions. A point of intersection consists of a cross between two 
ascending (descending) profiles. By traversing  from 0 to 1, at each intersection between two left or 
right ascending (descending) profiles, the min and max expressions change (see Fig. 5 for an 
illustration). A more complete analysis with a generic expression for computing the min and max 
operators between GIs can be found in [6]. 

V.3. Example 4: Is the TGI representation useful? 
Here, the robot example of Section III.3 is considered again. The visibility zone is specified by the 
following TGI:  
                    [0,1]: ⟦z()⟧ = ⟦[z()], [z()]⟧ = [x()] + ⟦[d()], [d()]⟧ 

 = [73, 122] + ⟦[3, 5], [3, 5]⟧ 

The GI [73, 122] is a particular case of a TGI, namely,  
[73, 122] = ⟦[7, 7], [12, 12]⟧ 

Hence,                ⟦z()⟧ = ⟦[73, 7][3, 5], [122, 12]+[3, 5]⟧ 
                                        = ⟦[2+4, 4+2], [15, 17]⟧ 

The gradual visibility zone ⟦z()⟧ is illustrated in Fig. 6. 

 
Fig. 6: Visibility zone as a thick gradual interval  

V.4. T2FIs versus TGIs 
A T2FI is characterized by a type-2 membership function, which is represented by two type-1 
membership functions, namely, the lower function (inf) and the upper function (sup). In this context, 
a T2FI, which is denoted Ã, is completely defined by these two T1FIs Ainf and Asup, which are 
defined by their membership functions A

inf(x) and A
sup(x) subject to the constraint A

inf(x) < A
sup(x) 

(see Fig. 7).   

 
Fig. 7: Conventional representation of a T2FI  
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If this conventional representation remains useful, its manipulation through fuzzy arithmetic 
operations is relatively difficult. For instance, according to the -plane principle, it is possible to 
define a T2FI as a collection of CI sets. Each of these CI sets may be independently processed for 
implementing the arithmetic operations. However, this is computationally expensive and sometimes 
requires the use of massively parallel processing units such as graphical processing units (GPUs) 
[31]. This high computational cost has hindered the progress of T2FI arithmetic. Furthermore, the -
plane concept underestimates the results and cannot always guarantee rigorous enclosures for the 
ranges of T2FI operations. In this paper, through the GI and TI concepts, a new interpretation of 
T2FIs is proposed. Thus, a T2FI is composed of two pure GIs, namely, [a()] and [a()]: one that 
represents the left part and the other the right part (see Fig. 8). In this framework, according to the TI 
formalism, a T2FI can be regarded as a TGI (and vice versa): ⟦a()⟧ = ⟦[a()], [a()]⟧. The 
passage between the GI and membership function representations is straightforward via the inverse 
functions.  

 
Fig. 8: Representation of a T2FI as a TGI 

The quantities [a()] and Ainf are not equivalent; [a()] and Asup are also not equivalent. For 
instance, the TGI ⟦z()⟧ that represents the visibility zone (see Fig. 6) can be regarded as a T2FI, 
which is denoted as Z̃ and represented by its type-1 membership functions Z

inf(x) and Z
sup(x): 

supinf

( 4) / 2 ;  4 6 ( 2) / 4 ;  2 6
( ) 1 ;                6 14 ;   ( ) 1 ;                6 14

( 15) ;  14 15 ( 17) / 3 ;  14 17
Z Z

x x x x
μ x x μ x x

x x x x

     
     

       

  
 
  

 

Fig. 9 interprets the TGI ⟦z()⟧, which is represented in Fig. 6, as a T2FI with its type-2 membership 
function.  

 
Fig. 9: T2FI representation and equivalence 

This new TGI approach enables the extension of the interval arithmetic arsenal to T2FIs. Moreover, 
it renders the T2FIs computations more tractable and guarantees rigorous enclosures for the ranges of 
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operations and functions. The proposed approach is analyzed in the next section through an 
illustrative example.  

 VI. Illustrative example of the use of TGI arithmetic 

In this section, a computational example is presented to emphasize important points and show the 
advantages of the proposed concepts. Furthermore, comparative results between our approach and 
the -plane methodology are presented. 

VI.1. Thick gradual interval arithmetic 
Let us consider two triangular T2FIs: Ã and B̃. Each T2FI is completely defined by its two upper 
(sup) and lower (inf) T1FIs (see Fig. 10).  

 
Fig. 10: T2FIs Ã and B̃ 

For example, T2FI Ã is defined by Ainf and Asup, which are characterized by their membership 
functions A

inf(x) and A
sup(x) subject to the constraint A

inf(x) < A
sup(x). T2FI B̃ is defined similarly 

(see Fig. 9): 

sup inf
( 2) / 4 ;  2 2 1 ;  1 2

( 5) / 3 ;  2 5 3 ;  2 3
( )  ;   ( )A A

x x x x

x x x x
μ x μ x

      
       

  


; and: 

 sup inf
( 1) / 2 ;  1 3 2 ;  2 3

( )  ;   ( )
( 6) / 3 ;  3 6 4 ;  3 4B B

x x x x
μ x μ x

x x x x
             

 

T2FIs Ã and B̃ can be expressed as TGIs ⟦a()⟧ and ⟦b()⟧, as illustrated in Fig. 11 and expressed as 
follows:  

⟦a()⟧ = ⟦[a()], [a()]⟧ = ⟦[-24, 1], [3, 53]⟧; and: 
 ⟦b()⟧ = ⟦[b()], [b()]⟧ = ⟦[12, 2], [4, 63]⟧ 

 
Fig. 11: TGIs ⟦a⟧ and ⟦b⟧ 
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The SIA operations over the TGIs are expressed as follows: 
 Addition: ⟦a()⟧⟦b()⟧ = ⟦[-24, 1]+[12, 2], [3, 5]+[4, 63]⟧ 

                                          = ⟦[-16, 32][72, 11]⟧ 

 Subtraction: ⟦a()⟧⟦b()⟧ = ⟦[-24, 1][4, 63], [3, 53][12, 2]⟧                                           
                                              = ⟦[-87, -32], [12, 4]⟧ 

The TGIs that result from addition and subtraction of TGIs ⟦a()⟧ and ⟦b()⟧ are illustrated in Fig. 12. 

 
Fig. 12: Addition and subtraction results between ⟦a()⟧ and ⟦b()⟧ 

 Multiplication: ⟦a()⟧⟦b()⟧ = ⟦min(1()), max(1())⟧;1()={[c1()], [c2()], [c3()], [c4()]} 
The computation of the GIs [c1()], [c2()], [c3()] and [c4()] yields the following: 

 [c1()] = [(-2 4λ)(2 λ), (1 λ)(2 λ)];  if: 0 λ 0.5
[ (λ)] [ (λ)]

[(-2 4λ)(1 2λ), (1 λ)(2 λ)];  if: 0.5 λ 1
a b              

 

[c2()] = [(-2 4λ)(6 3λ), (1 λ)(6 3λ)];  if: 0 λ 0.5
[ (λ)] [ (λ)]

[(-2 4λ)(4 λ), (1 λ)(6 3λ)];  if: 0.5 λ 1
a b              

 

[c3()] =[ (λ)] [ (λ)] [(3 λ)(1 2λ), (5 3λ)(2 λ)]a b        

[c4()] = [ (λ)] [ (λ)] [(3 λ)(4 λ), (5 3λ)(6 3λ)]a b        
The operation min(1()) is computed as follows: 

min(1()) = min(min([c1()], [c3()]), min([c2()], [c4()])) 
According to Fig. 13,  

min([c1()], [c3()]) = [c1()]; and min ([c2()], [c4()]) = [c2()]. 

 
Fig. 13: GIs [c1()], [c2()], [c3()] and [c4()] 

In this scenario, the computational principle of min(1()) between GIs [c1()] and [c2()] is shown 
in Fig. 14 and leads to the following expression: 
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min(1()) = min([c1()], [c2()]) = 2 1

1 1

[ , ] [(-2 4λ)(6 3λ), (1 λ)(2 λ)];  if: 0 λ 0.5
[ , ] [(-2 4λ)(2 λ), (1 λ)(2 λ)];  if: 0.5 λ 1
c c
c c

 

 

      
       

 

 
Fig. 14: Computational principle of min(1()) 

By adopting the same principle as for the min operator, max(1()) is expressed as follows (see Fig. 
15.a.): 

max(1()) = max(max([c1()], [c3()]), max([c2()], [c4()]) = max([c3()], [c4()] = [c4()] 
                          = 4 4[ , ] [(3 λ)(4 λ), (5 3λ)(6 3λ)];   0 λ 1c c          

Finally, the TGI that results from the application of the multiplication operator is illustrated in Fig. 
15.b. 

 
Fig. 15: max(1()) and the product ⟦a()⟧⟦b()⟧   

 Division: ⟦a()⟧⟦b()⟧ = ⟦a()⟧⟦b()⟧)  
                                          = ⟦[a()], [a()]⟧⟦1[b()], 1[b()]⟧
                                          = ⟦[-24, 1], [3, 53]⟧⟦1[4, 63], 1[12, 2]⟧ 

                                          = ⟦[-24, 1], [3, 53]⟧⟦[1/(6, 1/(4], [1/(2, 1/(1]⟧ 

⟦min(2()), max(2())⟧;2() = {[c11()], [c22()], [c33()], [c44()]};  
where:                                    [c11()] = [-24, 1][1/(6, 1/(4]

[c22()] = [-24, 1][1/(2, 1/(1]
[c33()] = [3, 53][1/(6, 1/(4]
[c44()] = [3, 53][1/(2, 1/(1]

As [c11()] ⪯ [c33()] and [c22()]⪯ [c44()],min and max can be computed as follows: 
min(2()) = min(min([c11()], [c33()]), min([c22()], [c44()])) = min([c11()], [c22()]) 
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= 22 11

11 11

[ , ] [(-2 4λ) / (1 2λ), (1 λ) / (4 λ)];  if: 0 λ 0.5
[ , ] [(-2 4λ) / (6 3λ), (1 λ) / (4 λ)];  if: 0.5 λ 1
c c
c c

 

 

      
       

 

max(2()) = max(max([c11()], [c33()]), max([c22()], [c44()])) = max([c33()], [c44()]) = [c44()] 
                     = 44 44[ , ] [(3 λ) / (2 λ), (5 3λ) / (1 2λ)];   0 λ 1c c          

Finally, the TGI that results from the application of the division operation is illustrated in Fig. 16.  

 
Fig. 16: Result of the division operator 

VI.2. Arithmetic operations that use -planes: comparison and discussion 
The -cut principle enables the representation of T1FIs Ainf and Asup as follows (see Fig. 17):  

inf sup
1 2 1 2

[0,1] [0,1]
[ , ];  and: [ , ]α α α α

α α
A α a a A α a a

 
       

In this context, the arithmetic operations on T1FIs can be implemented using SIA over CIs. For 
example, when T1FIs Ainf and Binf are considered, the arithmetic operations are expressed as follows:  

inf inf inf
1 2 1 2

[0,1]
([ , ] [ , ]); { , , , }α α α α

α
C A B α a a b b


            

 
Fig. 17: -plane principle on T2FI Ã 

This representation approach has been extended to T2FIs through the concept of -planes. Thus, a 
T2FI Ã can be defined by the following -plane representation [29] (see Fig. 17): 

1 1 2 2
[0,1]

([ , ],[ , ])α α α α

α
A α a a a a


    

Furthermore, T2FI Ã is defined by the union of all its -T2FIs cuts. This representation is interesting 
because, for each level α, the T2FI can be characterized by two CIs (left and right CIs). This suggests 
that the operations on T2FIs can be performed using available operations over CIs. For instance, the 
application of the -plane principle on T2FIs Ã and B̃ with a sampling step size of 0.01 is illustrated 
in Fig. 18. This small sampling step size is selected with the objective of obtaining accurate results.  
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Via this approach, the arithmetic operations on T1FIs are extended to T2FIs. The elementary 
arithmetic operations of two T2FIs Ã and B̃ are expressed as follows:  

1 1 1 1 2 2 2 2
[0,1]

([ , ] [ , ],[ , ] [ , ]) ; { , , , }α α α α α α α α

α
C A B α a a b b a a b b


               

 
Fig. 18: -plane representations of Ã and B̃ 

Let us demonstrate this method and compare it with the proposed approach. For concision and 
without loss of generality, the illustrations are presented only for the multiplication operator. Thus, 
the result of the multiplication operator between Ã and B̃ that uses the -plane principle is illustrated 
in Fig. 19.a. For comparison, Fig. 19.b illustrates the multiplication result that is obtained via the TGI 
approach. 

 
Fig. 19: Multiplication results of T2FIs that were obtained using the -plane and the TGI approaches 

The two approaches do not produce the same result. Indeed, in the -plane approach, at each level , 
a T2FI is not regarded as a unique interval with uncertain bounds but as two independent left and 
right CIs. In this context, the operations are performed between left (and right) CIs separately. This 
computing approach underestimates the results and does not permit rigorous enclosures for the 
ranges of operations. Let us present an example of this phenomenon. Consider two T1FIs A and B 
that are defined by their membership functions A(x) and B(x) such that A

inf(x) A(x)A
sup(x) 

and B
inf(x) B(x)B

sup(x) (see Fig. 20): 

 (4 7) /15 ;  1.75 2 (2 3) / 3 ;  1.5 3
( )  ;   ( )

( 4) / 2 ;  2 4 ( 2 11) / 5 ;  3 5.5A B

x x x x
μ x μ x

x x x x
              

 

In this case, the T2FIs are regarded as uncertain representations of T1FIs. Indeed, A and B are 
regarded as possible realizations of T1FIs in their likelihood T2FIs. The computations of the 
multiplication operation between T1FIs A and B according to the -cut and gradual arithmetic 
approaches are illustrated in Fig. 21. 
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Fig. 20: Representations of T1FIs A and B 

Although the discretization procedure requires a longer computing time, the two approaches yield 
strictly equivalent results. We recall here that in the GI arithmetic, T1FI A can be regarded as a 
monotone GI [a()] = [a(), a()], where its GNs bounds a() and a() are computed such that 

λ (4 7) /15 (λ) 1.75 3.75λ
λ (4 ) / 2 (λ) 4 2λ

x a
x a





     
    

  

The same principle is applied to T1FI B, which leads to [b()] = [1.5+1.5, 5.52.5]. 

 
Fig. 21: Multiplication results between T1FIs using the -cut and GI approaches  

When the T1FIs of Fig. 21 are positioned in the T2FIs that result from the multiplication operations, 
the results that are presented in Fig. 22 are obtained. 

 
Fig. 22: Results of multiplication between T1FIs and T2FIs  
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According to the results of Fig. 22, although AÃ and BB̃, C = A C̃= ÃB̃. Thus, the -plane 
arithmetic does not guarantee the containment of the set of all possible results, namely, the T2FI C̃= 
ÃB̃ that was obtained via the -plane method is not guaranteed to contain the multiplication result 
of the two T1FIs AÃ and BB̃. Furthermore, this approach may lead to the exclusion of 
information in the realized operation (the underestimation problem). This phenomenon can degrade 
the relevance and the performance of this approach. In real applications, special attention must be 
paid to this phenomenon prior to the validation of the arithmetic operations. In contrast to the -
plane approach, the proposed methodology, which is based on SIA operations over TGIs, ensures 
rigorous enclosures for the ranges of operations since the results are TGIs in which the uncertain GI 
(T1FIs) results must lie. 

VI.3. Remarks and discussion  

 Based on its computational mechanism, the -plane approach can lead to counterintuitive or 
incorrect results, especially if the T2FIs are negative or differ in sign. Indeed, as illustrated in Fig. 
23, the product of two negative T2FIs, namely, C̃= ÃÃ, leads to a quantity where the Cinf and Csup 
bounds are permuted. Thus, C̃ is not a T2FI. 

 
 Fig. 23: Multiplication of two negative T2FIs   

 More generally, a reflection on the relevance of the -plane method can lead to the proposal of a 
new formulation of its representation to correct its anomalies. Furthermore, at a level , the T2FI 
will not be represented by two separate and independent CIs, but by a single TI for which the left and 
right CIs become its uncertain bounds. In this case, an alternative to the conventional -plane 
representation can be reformulated as follows:  

   1 1 2 2
[0,1] [0,1]

[ , ],[ , ] [ ],[ ]( ) ( )α α α α
α α

α α
A α a a a a α a a 

 
       

Thus, at each level , the operations between T2FIs can be implemented through the arithmetic over 
TIs. It is concluded that this alternative formulation of the -plane principle can be regarded as a 
discrete version of the TGI approach.  
 For T2FIs with nonlinear shapes, the sampling step must be small to preserve the form of the 
resultant T2FIs. This mechanism can substantially increase the computation time and, thus, weaken 
the applicability of the methods that are based on discretization procedures (e.g., -planes, F-
transform, and Zslices). The proposed method can overcome this constraint of discretization to 
obtain an analytical formulation of the results. 

VII. Potential applications of TGI computations 

VII.1. Potential use in computing T2FI aggregation operators  

Crisp aggregation operators for real numbers were extended to aggregation operators for intervals 
and T1FIs (see, for example, [19][42][52]). Although the research on aggregation methods that are 
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based on T1FIs has expanded substantially, the research on type-2 fuzzy methods is scant. 
Furthermore, interesting methodologies have been proposed in the literature 
[53][54][67][68][73][76]. An interesting analysis of aggregation operators in the type-2 fuzzy 
framework is presented in [68]. For instance, in [67], Zadeh’s extension principle has been used to 
extend type-1 aggregation operators to T2FSs. In [73], the concept of the linguistic weighted average 
has been proposed. In [53][54], aggregation operators, such as weighted aggregation operators and 
geometric aggregation operators, are used in multiple-attribute group decision-making problems. A 
type-2 OWA operator is proposed in [76] for aggregating linguistic opinions in decision-making 
problems. All the above type-2 aggregation operators are based on the -cut decomposition or 
Zadeh’s extension principle. The main difference between the existing approaches and the proposed 
approach is that the aggregation operators are computed based on the TGI concept, where the 
obtained results are exact and purely analytical. Furthermore, the flexibility and the rigor of IA 
computations are preserved.  
The TGI arithmetic and reasoning can be used to implement all aggregation operators (conjunctive 
and disjunctive operators, weighted average and ordered weighted average operators, the Choquet 
integral, etc.). Using an example, this section aims at demonstrating the potential application of our 
computational methodology to the 2-additive Choquet integral (2-ACI) [42].  
Let us consider a set of crisp alternatives {a1, …, an} to be aggregated and associated with a set of n 
criteria. The 2-ACI is expressed as follows:  

                 0 0 1

1
( , ) ( , ) | | ( | |)

2ij ij

n
i j ij i j ij i i ijI I i j iCI min a a I max a a I a v I                        (19) 

In (19), the coefficient Iij represents the mutual interaction between criteria i and j and can be 
interpreted as follows: 
• Positive Iij corresponds to complementary criteria (positive synergy); 
• Negative Iij corresponds to redundant criteria (negative synergy); 
• Null Iij corresponds to no interaction between the criteria (the criteria are independent). 
The coefficients vi in (19) are the Shapley indices, which represent the relative importance of each 
elementary criterion relative to all the others, with 1Σ 1.n

i iv   The 2-ACI has been extended to the 
fuzzy context, where the alternatives are represented by T1FIs (GIs) [9][42]. This extension led to 
the following formulation:  

   
0 0 1

λ λ λ λ λ λ
1

[ ( )]= ([ ( )],[ ( )])× ([ ( )],[ ( )])× + [ ( )] ( )
2ij ij

n

i j ij i j ij i i ij
I I i j i

CI min a a I max a a I a v I
   

        (20) 

In (20), [a1()], …, [an()] are T1FI alternatives. Now, our objective is to extend (20) to the scenario 
in which the alternatives are uncertain and are represented by T2FIs. In this context, the 2-ACI that is 
specified by (20) becomes  

          
0 0 1

λ , λ ,λ λ λ λ
1

= ( ( ) ( ) )× + ( ( ) ( ) )× + ( ) × )
2

( ) (
ij ij

n

i j ij i j ij i ij
I I i j i

iCI min a a I min a a I a Iv
   

      (21) 

In (21), ⟦a1()⟧, …, ⟦an()⟧ are TGI (T2FI) alternatives. In the implementation of the 2-ACI that is 
expressed in (21), min and max between two TGIs ⟦a()⟧ and ⟦b()⟧) are computed as follows: 

min(⟦a()⟧, ⟦b()⟧) = ⟦min([a()], [b()]), min([a()], [b()])⟧;  
max(⟦a()⟧, ⟦b()⟧) = ⟦max([a()], [b()]), max([a()], [b()])⟧;  

where the min and max operators between GIs are computed using the methodology of Section V.2.  
Let us illustrate the computation of the TGI 2-ACI for aggregating the four alternatives ⟦a1()⟧,…, 
⟦a4()⟧ that are illustrated in Fig. 24 and listed in Table 1, with 1 = 0.4, 2 = 0.35, 3 = 0.1, 4 = 0.15, 
I14 = -0.35, I34 = -0.3, I13 = 0.15, and I23 = 0.6. According to these data values, the TGI 2-ACI is 
expressed as follows: 
⟦CI()⟧ = 0.15 min(⟦a1()⟧, {⟦a3()⟧) + 0.6 min(⟦a2()⟧, {⟦a3()⟧) + 0.35 max(⟦a1()⟧, {⟦a4()⟧) 

+ 0.3 max(⟦a3()⟧, ⟦a4()⟧) +  1 (λ) 0.5 )(n
ii

j i
i ija v I
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⟦a1()⟧ ⟦[2[4⟧ 
⟦a2()⟧ ⟦[2+32[8⟧ 
⟦a3()⟧ ⟦[1+5[7⟧ 

⟦a4()⟧ ⟦[32[4⟧ 
Table 1: Expressions of the four TGI alternatives 

The min and max operators between the TGIs are computed as follows: 
min(⟦a1()⟧, ⟦a3()⟧) = ⟦a1()⟧; because ⟦a1()⟧ ⪯ ⟦a3()⟧  

In this case, the TGIs ⟦a1()⟧ and ⟦a3()⟧) are totally ordered. Indeed, the order relation ⪯ between 
two TGIs ⟦a()⟧ and ⟦b()⟧ is defined as follows:  

⟦a()⟧ ⪯ ⟦b()⟧ [a()] ⪯ [b()] and [a()] ⪯ [b()] 
Via the same approach, the order relation ⪯ between two GIs [a()] and [b()] is defined as follows: 

[a()] ⪯ [b()] a() b() and b() b() 

 
Fig. 24: Shapes of the four TGI alternatives 

The order relation between ⟦a2()⟧ and ⟦a3()⟧ is not total and they cannot be well totally ordered. In 
this case, the min operator is computed as follows (see Fig. 25): 

min(⟦a2()⟧, ⟦a3()⟧) = ⟦c()⟧ = ⟦[c()], [c()]⟧; with: 

2 3(λ)], (λ)])[ (λ)] ([ [c min a a   
[1 5λ,3 2λ];if: 0 λ 0.5
[2 3λ,3 2λ];if: 0.5 λ 1
   

    
;  

2 3(λ)], (λ)])[ (λ)] ([ [c min a a   
[7 λ,8 2λ];if: 0 λ 0.5
[8 3λ,9 4λ];if: 0.5 λ 1
   

    
 

 
Fig. 25: min operator between ⟦a2()⟧ and ⟦a3()⟧ 

By applying the same methodology, the max operator is computed as follows: 
max(⟦a3()⟧, ⟦a4()⟧) = ⟦a3()⟧; since ⟦a4()⟧ ⪯ ⟦a3()⟧; and: 
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max(⟦a1()⟧, ⟦a4()⟧) = ⟦d()⟧; where: 

1 4 4(λ)], (λ)]) (λ)][ (λ)] ([ [ [d max a a a     = [32; because: 1 (λ)][a ⪯ 4 (λ)][a  

1 4(λ)], (λ)])[ (λ)] ([ [d max a a   
[4 λ,6 4λ];if: 0 λ 0.5
[4 λ,5 2λ];if: 0.5 λ 1
   

    
 

The results of max between ⟦a1()⟧ and ⟦a4()⟧ are illustrated in Fig. 26.  

 
Fig. 26: max operator between ⟦a1()⟧ and ⟦a4()⟧ 

Using the TGI arithmetic, the final 2-ACI uncertain aggregation operator is defined by the following 
analytical expression (see Fig. 27):  

⟦CI()⟧ = 
 
 

0.9 6.25λ,3.35 3.2λ[ ],[9.2 2.05λ,11.5 4.7λ] ;if: 0 λ 0.5

[1.5 5.05λ,3.35 3.20λ],[9.8 3.25λ,11.75 5.2λ] ;if: 0.5 λ 1

     
      

 

 
Fig. 27: TGI 2-ACI result 

All remarks and advantages discussed in the illustrative example (refer to section VI) remain valid in 
this application example. 
In the 2-ACI computation, the multiplication of a GI by a scalar is implemented by directly 
extending the multiplication of a CI by a scalar. At the same time, the multiplication of a TGI by a 
scalaris implemented by directly extending the multiplication of a GI by a scalar:  

[a()] = 
[ω (λ),ω (λ)];  if: ω 0
[ω (λ),ω (λ)];  if: ω 0 

a a
a a

 

 

  
   

; ⟦a()⟧ = 
 
 
ω [ (λ)],ω [ (λ)] ;  if: ω 0
ω [ (λ)],ω [ (λ)] ;  if: ω 0 

a a
a a

 

 

  
   

 

VII.2. Potential use in T2FI regression 
The regression problem with type-1 fuzzy data has been previously addressed from various 
perspectives and has been successfully solved in several applications. Type-1 fuzzy regression has 
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often been implemented as a regression by intervals (CIs via the concepts of -cuts and/or GIs). Two 
main regression methodologies are considered: the possibilistic methods, which were introduced by 
Tanaka [66], and the least squares (LS) methods, which were proposed by Diamond [22]. Since the 
pioneering works of Tanaka and Diamond, research on T1FI regression has expanded substantially 
and various extensions have been proposed [3][5][12][16][25]. In this paper, the possibilistic 
approach is adopted. From a practical perspective, although T1FI regression has been of substantial 
interest, the T2FI remains poorly explored. In the literature, few researchers have investigated this 
problem [2][36][46][71]. For instance, in [71], a 0-cut possibilistic type-2 fuzzy qualitative 
regression model is proposed. In [46], a regression model that uses T2FIs and is based on the LS 
approach is developed. In [36], a weighted goal programming approach for T2FI linear regression is 
investigated. An h-cut piecewise possibilistic regression approach is proposed in [2]. These 
regression methods are often based on the -cut principle, where the inclusion property between the 
observed and the predicted data is only ensured at an h-level. Moreover, although most of these 
methods could well model the T2FI regression, the models were reduced to a subset of the points of 
T2FIs. These methods involve many parameters and the associated computing remains expensive 
and difficult to generalize to any fuzzy interval shape and/or regression model. In this paper, we 
demonstrate that T2FI regression can be naturally extended from the CI and T1FI interpretations 
according to the TGI interpretation. All the T1FI regression methods (linear and nonlinear) can be 
extended to the T2FI framework, where the inputs, outputs and/or parameters can be represented by 
TGIs. Regarding the T2FI regression that is proposed in the literature, our extension does not depend 
on the model form, ensures the inclusion property and preserves the flexibility and the rigor of IA 
computations in the propagation of the T2FIs and their manipulation.  
To demonstrate the development, the representation and the construction of a TGI model, the 
possibilistic regression approach is implemented on a univariate synthetic dataset with a 
heteroscedastic uncertainty structure [33]. In this dataset, the inputs are crisp and the outputs are 
symmetrical triangular T1FIs. The spread of T1FI outputs depends strongly on the input x. The data 
set λ{( [ },, ]obs

i ix y i = 1,…, M; where xi is the ith input and λ[ ] [ (1 λ) , (1 λ) ]obs
i i i iiy y e y e     is the 

corresponding triangular T1FI output at xi, is generated as follows:  

                                 
2

2

0.02( 1), 1, 2, ,51;   (2.7 0.2) 4.5

1.7 exp( 49( 0.5) ) 1.7 1.2
i i i i

i i i

x i i y x err

e x x

      
    





                              (22) 

The noise erri in (22) has been drawn from a uniform distribution over the interval [−0.4, 0.4]. Due 
to the complexity of the data, a nonlinear model that is based on B-spline formalism is used 
[17][18][37] (see Appendix C for the B-spline mathematical formalism). This choice is also 
motivated by the applicability of the TGI approach regardless of the model form. Other model forms 
can be used in a similar manner. First, a T1FI regression approach is detailed. Next, a T2FI 
regression methodology is presented to justify its utility. 

A. T1FI B-spline model construction 
The regression objective is to find a T1FI (GI) B-spline model of the following form: 

   ,

1
0 (λ)] ( )[ ( )] [ ( ), ( )] [ j j k

n
j B xy x y x y x c 

  

                                          (23) 

In (23), [ ( )]y x  is the model output, [cj()]; j = 0,…, n-1 are the T1FI control coefficients and Bi,k(x) 
are crisp basis functions. In this application, cubic splines with equidistant knots are used. Thus, 
assuming a set of knots, the B-spline regression problem is reduced to the estimation of the control 
coefficients. In this framework, the possibilistic regression aims at determining the coefficients 
[cj()] such that the observed outputs λ[ ]obs

iy  are included in the outputs that are predicted by the 
model, namely, λ λ[ ] [ ]obs

i iy y ( λ[ ]iy  denotes the model output at xi). To ensure the satisfaction of the 
inclusion constraints, a B-spline model with trapezoidal control coefficients is employed (for a 
trapezoidal model, see [3]). The possibilistic T1FI B-spline regression corresponds to the following 
optimization problem under constraints (UC): 
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λ1[ (λ)]

λ λ ([ ) 0 ; 0, , 1

Min ([ ( )])

             UC.:[ ] [ ]  ; 1, , ; (λ)]
j

M

iic

i i jR c j n

J R y x

y y i M



  



 


obs

                        (24) 

In (24), ([ ( )])iR y x represents the radius of [ ( )]iy x . The constraints are imposed to ensure that all 
observed data are included in the predicted outputs. Moreover, the identification of proper control 
coefficients requires the radius of each output to be positive. In the optimization problem (24), the 
vagueness of the model is represented by the sum of the radii of the outputs. Since the inputs are 
crisp, which implies that the basis splines are also crisp, the imprecision of the outputs corresponds 
to the imprecision of the control coefficients (the radius of [cj()]). Thus, the optimization objective 
is to estimate the control coefficients [cj()]; j = 0,…, n-1 that minimize the criterion J.  
As the inputs are crisp and the control coefficients have trapezoidal shapes, the model outputs are 
also trapezoidal T1FIs. Moreover, the trapezoidal shapes of the T1FIs enable us to express them in 
terms of only their levels =0 and =1. In this scenario, the optimization problem (24) is reduced to 
its implementation on levels  = 0 and  = 1. Moreover, additional inclusion constraints on level =1 
in level =0 for obtaining well-defined T1FIs are necessary ( 1 0[ ] [ ] , 1, , )i iy y i M  : 

0 11[ (0)],[ (1)]

0 0 1 1 1 0

                            ([ (0) ) 0 ; ([ (1)  ; 0, , 1

Min ([ ( )]) ([ ( )])

                 UC.:[ ] [ ]  ;  [ ] [ ] ;  [ ] [ ] ; 1, , ;
] ]

j j

M

i iic c

i i i i i i

j jR c R c j n

J R y x R y x

y y y y y y i M



  

 

   




obs obs                   (25) 

In the implementation of (25), the number of control intervals is set to n = 7 based on the Akaike 
information criterion (AIC), which was proposed in [34]. The regression method led to a B-spline 
model of the form (23), in which the control coefficients [cj()], j = 0, …, 6 are T1FIs. The model 
outputs are illustrated in Fig. 28. 

 
Fig. 28: T1FI (GI) B-spline model and comparative results 

For example, when considering the control coefficient [c3()], the optimization procedure leads to 
the following CIs: [c3(0)] = [3.36, 5.60] (at = 0) and [c3(1)] = [4.39, 4.82] (at 1). Via linear 
interpolation between levels 0 and 1, the T1FI control coefficient [c3()] is obtained (see Fig. 29.a): 

[ ( )] [3.36 1.03λ,5.60 0.78λ]c      

At each input x, the T1FI output [ ( )]y x  can be expressed analytically via (23). For instance, the 
T1FI output at input x = 0.28 is illustrated in Fig. 29.b. and expressed as follows: 
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,
6

0[ ( 0.28)] ( )] (0.28) [2.53 1.96λ,7.02 1.84λ] [ j kjy x Bc        i  

 
Fig. 29: T1FIs (GIs) for the control coefficient [c3()] and the output [ (0.28)]y  

The proposed regression approach has been compared with Tanaka’s [65], Hong’s [35] and Hao’s 
[33] T1FI regression methods according to the vagueness criterion (on level  = 0):  

01
Vagueness (1/ ). ([ ( )])

M

ii
M R y x


   

According to the results (see Fig. 28.b), the obtained B-spline model is less imprecise (vague) than 
the models that are obtained via the other methods. Moreover, the proposed method is better 
equipped to fit the data and the associated imprecision. The result of Tanaka’s method is less 
efficient because only one polynomial model of degree 3 is used. The performance of the B-spline 
model is explained by its use of four polynomials of degree 3 (cubic-splines) instead of a single 
third-order polynomial model (see Appendix C for additional details). Moreover, if the proposed 
approach is similar in its design philosophy to regression that is based on SVM, its performance is 
better. The proposed methodology is effective for dealing with the vagueness of the data using 
T1FIs. However, the uncertainty phenomenon in the T1FI representation is not captured in the 
model. Indeed, if the process (data generation by (22)) is repeated P times, each time a different 
model with different T1FI control coefficients is obtained. This is due to the uncertain nature of the 
data. For instance, the output [ (0.28)]y  and the control coefficient [c3()] that are obtained by 
repeating the process 10 times are presented in Fig. 30 (see Table 2 for the vaguenesses of the 10 
models).  

 
Fig. 30: T1FIs of [c3()] and [ (0.28)]y (10 repetitions) 
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Process 1 2 3 4 5 6 7 8 9 10 
Model Vagueness 2.801 2.845 2.833 2.774 2.818 2.827 2.786 2.766 2.807 2.814 

Table 2: Vagueness of the models obtained over 10 repetitions  

Our current objective is to propose a possibilistic TGI (T2FI) regression approach that can integrate 
all the uncertain behaviors of the T1FIs into the TGI model. T2FI models provide an extensive 
knowledge representation compared to T1FI models.   

B. TGI (T2FI) B-spline model construction 

Let us consider a set of observed trapezoidal T1FIs that are obtained by model (23) through P 
process repetitions, namely, λ ( , )[ ]obs

i py , i = 1, …, M; p = 1, …, P (for each input xi, P outputs are 
considered). By analogy with (23), the regression objective is to construct a TGI B-spline model of 
the following form: 

      ,
1
0 (λ)( ) [ ( )],[ ( )] ( ) j j k

n
j cy x y x y x B x 

  

                                    (26) 

In (26),  ( )y x is the TGI output and  (λ)jc  denotes the TGI control coefficients. Similar to the 
T21FI possibilistic regression, the TGI regression can be reduced to an estimation problem of the 
TGI control coefficients such that all the observed data will be encapsulated in the TGI model. To 
satisfy the inclusion constraints, a trapezoidal B-spline model with trapezoidal TGI control 
coefficients is employed. Similar to the T1FI regression, the optimization problem is considered only 
at levels =0 and =1. In this context, for a specified set of observed trapezoidal T1FIs, the TGI 
regression is expressed as the following optimization problem under constraints: 

   
, 

0 0 1 11

1 ( , ) 0 ( , ) 0

(0) (1)

1, , ; 1, , ; 

Min ([ ( )]) ([ ( )]) ([ ( )]) ([ ( )])

                  UC.:[ ]  ;  [ ] ;  
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 obs obs
 

                                              0[ ( )]jc
≦ 0[ ( )]jc ; [ (1)]jc

≨[ (1)]jc ; 0, , 1;j n                                 (27)       

                                                 ([ (0) ) 0 ; ([ (1) ) ; ([ (0) ) 0; ([ (1) ) 0; 0, , 1    ] ] ] ]j j j jR c R c R c R c j n          

For two intervals [a] = [a, a+] and [b] = [b, b+], the relations ≦ and ≨ are defined as follows:  
[a] ≦ [b] a+ b and[a] ≨ [b] a+ b

and the relation is interpreted as follows:  
[a] = [a, a+] ⟦a⟧ =⟦[a], [a]⟧ a[a] and a[a] 

In the optimization problem (27), the criterion considers the sum of the radii of the TGI left and right 
profiles at levels 0 and 1. The constraints    1 ( , ) 0 ( , ) 0[ ] ;  [ ]i p i pi iy y y y obs obs ensure the inclusion of 
the observed data in the TGI model outputs. The constraints [ (0)]jc

≦[ (0)]jc  and [ (1)]jc
≨[ (1)]jc  are 

used to ensure well-defined TGI control coefficients. Indeed, [ (0)]jc
≦ [ (0)]jc  guarantees that 

[ (0)]jc  is always before [ (0)]jc with no intersection between them and [ (1)]jc
≨[ (1)]jc  ensures that 

[ (1)]jc is always before [ (1)]jc  with a possible meeting intersection between them. The positivity of 
the radii of the left and right profiles of the TGI control coefficients at levels 0 and 1 is also required. 
Similar to before, a B-spline model with 7 control coefficients is employed. The proposed regression 
method led to a TGI B-spline model of the form (26), in which the coefficients ⟦cj()⟧, j= 0, …, 6 are 
TGIs. For example, the optimization problem yields the following control coefficient ⟦c3()⟧: 

     3 3 3[ (0) [ (0) [ (0)] 3.26,3.43 5.33, 6.01] ], [ ],[ ]c c c   : at the level  = 0 

     3 3 3[ (1) [ (1) [ (1)] 4.16, 4.45 4.88,5.09] ], [ ],[ ]c c c   : at the level  = 0 

A linear interpolation between levels 0 and 1 yields the TGI control coefficient [c3()], which is 
illustrated in Fig. 31 and expressed as follows: 

     3 3 3[ ( ) [ ( ) [ ( )]] ], [3.26 0.9 ,3.43 1.02 ],[5.33 0.45 ,6.01 0.92 ]c c c             
For each input, the TGI output can be expressed analytically by the model (26). For instance, the 
output at x = 0.28 corresponds to the following expression (see Fig. 32):  
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Fig. 31: TGI control coefficient ⟦c3()⟧ 

 
Fig. 32: TGI model output  (0.28)y  

According to Fig. 32, all the observed T1FIs are included in the TGI model.  

C. Remarks and discussion 

 In the proposed strategy, as the B-spline model is a linear combination of the basis functions and 
the control coefficients, the criterion expression J is linear with respect to the control intervals. In 
this context of B-spline regression, the originality of the proposed approach is that the optimization 
methodology is regarded as a conventional LP optimization problem, as is often the case in the 
possibilistic T1FI regression literature. In this paper, the interior-point method of MATLAB-R2017a 
from MathWorks is employed. 
 The TGI regression has been implemented using trapezoidal T1FIs and TGIs, where the 
optimization computations are performed only on levels 0 and 1. Moreover, this methodology 
remains valid and can be adapted to any shapes of the considered T1FIs and TGIs. However, for a 
nonlinear TGI shape, the proposed method will be implemented as an interval or TI regression by 
discretizing the vertical dimension . In this scenario, the optimization must balance the computation 
time and the quality of the approximation.  
 The proposed method has been developed in a possibilistic framework; however, it can also be 
naturally applied in LS-based regression. In this framework, the optimization criterion can be 
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expressed in terms of distances between intervals and the inclusion constraints between the observed 
data and the predicted data must be relaxed. Furthermore, although the regression method has been 
demonstrated using crisp inputs, it can be adapted for dealing with fuzzy inputs. 
 For illustrative purposes and to explain the interest in and the relevance of TGI regression, the 
approach was presented initially for T1FIs and subsequently for T2FIs. However, the method can be 
applied directly to determine the TGI (T2FI) model without going through a T1FI model. 

VII. CONCLUSIONS 

In this paper, a new interpretation of T2FIs is proposed. In this interpretation, a T2FI is regarded as a 
TGI. This interpretation enables the extension of SIA for computing with T2FIs. This extension, 
which preserves the flexibility of interval arithmetic and reasoning as major objectives, yields a 
revision and a new interpretation of the type-2 fuzzy arithmetic according to the concept of TGIs. 
The obtained results demonstrate the relevance and the applicability of the proposed strategy, via 
which analytic expressions are obtained. The proposed method has been demonstrated using linear 
T2FIs; however, it can be applied to any analytical form of the TGIs (see the example in Appendix B 
where the T2FIs have nonlinear shapes). Potential applications of our approach have been 
demonstrated in the frameworks of type-2 aggregation operators and type-2 fuzzy regression. Many 
other potential uses of the TGI approach can be envisioned in type-2 fuzzy modeling, type-2 fuzzy 
control applications and type-2 fuzzy decision-making strategies. For instance, the inverse model 
control strategy that is proposed in [7] for GIs can be naturally extended to TGIs. Furthermore, the 
proposed formalism is useful for solving type-2 fuzzy equations. For example, TGI equations 
⟦a()⟧=⟦b()⟧+⟦x()⟧ and ⟦a()⟧=⟦b()⟧⟦x()⟧ can be regarded as new formulations of the T2FI 
equations. These new formulations enable us to solve these type-2 equations analytically, namely, 
⟦x()⟧=⟦a()⟧⟦x()⟧ and ⟦x()⟧=⟦b()⟧⟦x()⟧. In this paper, all the fuzzy computations are 
performed on normal T2FIs. This approach can be generalized through the concept of thick gradual 
sets [20]. Future papers will be devoted to these interesting research directions. 
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APPENDIX A: Computational example over TIs 

Let us consider the two TIs ⟦a⟧ and ⟦b⟧, which are defined as follows:  
⟦a⟧=⟦[a], [a]⟧ = ⟦[-2, 1], [3, 5]⟧ and ⟦b⟧=⟦[b], [b]⟧ = ⟦[1, 2], [4, 6]⟧ 

The thick operations (7)-(10) are expressed as follows:  
 Addition: ⟦a⟧⟦b⟧ = ⟦[-2, 1][1, 2], [3, 5][4, 6]⟧ = ⟦[-1, 3], [7, 11]⟧ 

 Subtraction: ⟦a⟧⟦b⟧ = ⟦[-2, 1][4, 6], [3, 5][1, 2]⟧ = ⟦[-8, -3], [1, 4]⟧ 
 Multiplication: ⟦a⟧⟦b⟧ = ⟦min(1), max(1)⟧; where: 
1 = {[-2, 1][1, 2], [-2, 1][4, 6], [3, 5][1, 2], [3, 5][4, 6]} = {[-4, 2], [-12, 6], [3, 10], [12, 30]} 

Let us compute the result of min(1): 
min(1) = min{[-4, 2], [-12, 6], [3, 10], [12, 30]}= min(min([-4, 2], [-12, 6]), min([3, 10], [12, 30])) 
In this scenario,  

min([3, 10], [12, 30]) = [3, 10] and min([-4, 2], [-12, 6]) = [-12, -4] 
Finally,  

min(1) = min([3, 10], [-12, -4]) = [-12, -4] 
The same principle is applied to compute max(1), thereby leading to the final multiplication result:   

⟦a⟧⟦b⟧ = ⟦min(1), max(1)⟧ = ⟦[-12, -4], [12, 30]⟧ 
 Division: ⟦a⟧⟦b⟧ = ⟦[-2, 1], [3, 5]⟧⟦1[4, 6], 1[1, 2]⟧  
                                 = ⟦[-2, 1], [3, 5]⟧⟦[1/6, 1/4], [1/2, 1]⟧ = ⟦min(2), max(2)⟧; where: 

2 = {[-2, 1][1/6, 1/4], [-2, 1][1/2, 1], [3, 5][1/6, 1/4], [3, 5][1/2, 1]} 
                           = {[-1/2, 1/4], [-2, 1], [1/2, 5/4], [3/2, 5]} 
The computation of min(2) and max(2) leads to the following:  

min(2) = min(min([-1/2, 1/4], [-2, 1]), min([1/2, 5/4], [3/2, 5])}) 
                                              = min([-2, -1/3], [1/2, 5/4]) = [-2, -1/3] 

max(2) = max(max([-1/2, 1/4], [-2, 1]), max([1/2, 5/4], [3/2, 5]))  
                                            = max([1/4, 1], [3/2, 5]) = [3/2, 5] 
Finally, the division operation is expressed as follows: 

⟦a⟧⟦b⟧ = ⟦[-2, -1/3], [3/2, 5]⟧ 
 

APPENDIX B: Computational example using that uses TGIs with nonlinear shapes 

Let us consider two TGIs ⟦a()⟧ and ⟦b()⟧, which are illustrated in Fig. 33 and expressed as 
follows:  

⟦a()⟧ = ⟦[a()], [a()]⟧ = ⟦[10e, 10 e], [10e10e]⟧; and 

 ⟦b()⟧ = ⟦[b()], [b()]⟧ = ⟦[6e, 6 e], [6e, 6.e⟧ 
The SIA operations over the TGIs are defined by the following expressions and illustrated in Fig. 34:  

 Addition: ⟦a()⟧⟦b()⟧ = ⟦[a()][b()], [a()][b()]⟧  
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                                          = ⟦[16e, 163.e][163.e, 167.e]⟧ 
 Subtraction: ⟦a()⟧⟦b()⟧ = ⟦[a()][b()], [a()][b()]⟧  

                                              = ⟦[4e, 4e]+[4e, 4e]⟧ 

 
Fig. 33: Two TGIs ⟦a()⟧ and ⟦b()⟧ 

 
Fig. 34: Four arithmetic operations over TGIs ⟦a()⟧ and ⟦b()⟧ 

 Multiplication: ⟦a()⟧⟦b()⟧ = ⟦min(1()), max(1())⟧; where:  
1() = {[c1()], [c2()], [c3()], [c4()]}; 

[c1()] = [a()][b()] = [(10e)(6e), (10 e)(6 e)] 
[c2()] = [a()][b()] = [(10e)(6e), (10 e)(6.e)] 
[c3()] = [a()][b()] = [(10e)(6e), (10e)(6 e)] 
[c4()] = [a()][b()] = [(10e)(6e), (10e)(6.e)] 

In this case,  
min(1()) = [c1()]; and: max(1()) = [c4()]. 
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Finally,  
⟦a()⟧⟦b()⟧ = ⟦[(10e)(6e), (10e)(6e)],  
                            [(10e)(6e), (10e)(6e)]⟧ 

 Division: ⟦a()⟧⟦b()⟧ = ⟦a()⟧⟦b()⟧)  
Since 1⟦b()⟧ = ⟦1[6e, 6.e, 1[6e, 6 e]⟧  
                                     = ⟦[1/(6.e16e], [1/(6 e, 1/(6e]⟧ 
applying the same approach as for the multiplication operator yields  

⟦a()⟧⟦b()⟧ = ⟦[(10e)/(6e), (10.e)/(6e)],  
                                                             [(10e)/(6e), (10e)/(6e)]⟧ 

The four operations over the TGIs are illustrated in Fig. 25.  

APPENDIX C: Brief review of the B-spline mathematical formalism 

For simplicity, the mathematical formalism is presented for a univariate regression model. Let us 
consider a set of crisp input-output data of an unknown function. The regression objective is to 
identify a model of the following form: 

( )y f x   
where x is the input, y is the output, and f(x) is represented by a B-spline function. The B-spline 
formalism attempts to represent the input-output behavior with a piecewise polynomial function that 
interpolates the given data. Let us assume that x is contained in a finite interval domain [x0, xf]. The 
values x = tj, j = 0, …, n+k-1 are known as the knots, where n represents the number of control 
coefficients and k denotes the B-spline order. The B-spline f(x) of order k is a piecewise polynomial 
function of degree k-1. The following non-decreasing sequence is called the knot sequence:  

0 1 10{ , , , , , , , }k k n n k fT x t t t t t x        

A knot has multiplicity r if it appears r times in the knot sequence. For obtaining clamped B-splines, 
the first and last knots are of multiplicity k and the sequence T becomes 

0 1 1 10{ , , , , }k k n n n k fT x t t t t t t x             

The B-spline function is defined as follows:  

                                               ,
1
0 0 1( ) ( ) ( );   [ , ]j j k

n
j n ky x f x c B x x t t
                                                   

The Bj,k(x)s are defined by the following recursive expression [17][18]:  
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The function f(x) is a linear combination of the basis functions Bj,k(x) that are defined on the knot 
sequence T with n control coefficients cj, j = 0,…, n-1. In the B-spline construction, two main 
problems are considered: knot specification and the estimation of the control coefficients. The first 
problem consists of selecting suitable knots for a data set. This problem can be approached a priori. 
In the literature, various automatic numerical methods are available for optimizing the positions of 
the knots. For simplicity, B-splines with equidistant knots are used in this paper. In this case, when 
assuming a set of specified knots, the B-spline approximation problem is reduced to the estimation of 
the control coefficients. This mathematical formalism can be extended to interval and fuzzy interval 
frameworks. For example, in an imprecise environment, the crisp B-spline model can be transformed 
into an interval B-spline as follows: 

,
1
0[ ( )] [ ( ), ( )] [ ( ), ( )] ] ( ) [ i j k

n
jy x y x y x f x f x c B x    
     

where [cj] denote the control intervals and [f(x)] is the interval B-spline. 
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Let us illustrate the B-spline principle using crisp input-output data. Fig. 35.a. illustrates a crisp 
model in which the objective is to identify a function f(x) that fits the input-output data. In this 
illustration, the number of control coefficients is 5 and the knot sequence is T = {1, 1, 1, 1, 15.5, 30, 
30, 30, 30}. The control coefficients are crisp values (see Fig. 35.a). The first and last knots are of 
multiplicity 4 (k = 4 for cubic B-splines). Thus, 2 interval regions on the abscissa axis are 
considered: [1, 15.5] and [15.5, 30]. On each region, a polynomial of degree 3 (cubic spline) is used 
and the polynomials are constrained such that they join smoothly at the knots (at the region 
boundaries). 
Fig. 35.b. illustrates a possibilistic interval B-spline function [f(x)], where the objective is to envelop 
the data, namely, the measured outputs are included in the model outputs. In contrast to the scenario 
in Fig. 35.a, the control coefficients and the model outputs are CIs.  

 
Fig. 35: B-spline model illustration (5 control coefficients) 

If the control coefficients are T1FIs and are represented by [cj()], the B-spline model can be 
expressed by the following T1FI expression:  

,

1
0 (λ)] ( )[ ( )] [ ( ), ( )] [ ( ), ( )] [ j j k

n
j B xy x y x y x f x f x c   

    

      

where [ ( )]y x  is the T1FI (GI) model output.  

In the application that is proposed in Section VII.2., the number of control coefficients is selected as 
7. In this case, as the domain of inputs x is [0, 1], the equidistant sequence of knots is {0, 0, 0, 0, 
0.25, 0.5, 0.75, 1, 1, 1, 1}. Therefore, the B-spline uses four polynomials of degree 3 (cubic splines). 
Indeed, according to the knot sequence, we have 4 interval regions on the abscissa axis: [0, 0.25], 
[0.25, 0.5], [0.5, 0.75] and [0.75, 1]. On each interval region, a polynomial of degree 3 is used.  

 

 

 
 


