
HAL Id: hal-02265788
https://hal.science/hal-02265788

Submitted on 12 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupling between adsorption and mechanics (and vice
versa)

Matthieu Vandamme

To cite this version:
Matthieu Vandamme. Coupling between adsorption and mechanics (and vice versa). Current Opinion
in Chemical Engineering, 2019, 24, pp.12-18. �10.1016/j.coche.2018.12.005�. �hal-02265788�

https://hal.science/hal-02265788
https://hal.archives-ouvertes.fr


1 
 

Coupling between adsorption and 1 

mechanics (and vice versa) 2 

Matthieu VANDAMME 3 

Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, École des Ponts ParisTech, IFSTTAR, 4 

Marne-la-Vallée F-77455, France 5 

 6 

Abstract 7 

Adsorption can deform porous solids, and mechanical stresses or strains can impact the 8 

adsorption process: this mini-review is dedicated to this coupling. After introducing some frameworks 9 

used to predict adsorption-induced strains, the question of how important it is to take into account 10 

the impact of mechanics on the adsorption process is addressed. Finally, some specific complexities 11 

(e.g., of the microstructure, or of the mechanical behavior of the adsorbent) that the community aims 12 

at integrating into the prediction of adsorption-induced strains are addressed. 13 

1. Introduction 14 

The fact that adsorption can deform solids has been known for centuries, but has been the 15 

subject of renewed interest in the last decade or so, since the discovery that some metal-organic 16 

frameworks (MOFs) can exhibit large deformations upon adsorption. As I will try to address in this 17 

mini-review, not only does adsorption impact the mechanical response of the adsorbent, also does the 18 

mechanical response of the adsorbent impact the adsorption process: the coupling between 19 

adsorption and mechanics is a two-way coupling. 20 

Depending on the size of their pores, porous bodies are referred to as microporous (i.e., with a 21 

pore size below 2nm), mesoporous (i.e., with a pore size between 2nm and 50nm), or macroporous 22 

(i.e., with a pore size greater than 50nm). The physics through which in-pore fluid can deform a porous 23 

body depends on this pore size: capillary effects (i.e., effects due to the presence of menisci between 24 

various phases of the in-pore fluid) and Gibbs-Bangham-like effects (i.e., deformations induced by 25 

adsorption on solid surfaces) in mesoporous materials, or pore filling (rather than surface covering) in 26 

microporous solids. Note that, even in macroporous solids (in which fluid is not adsorbed but behaves 27 

like a bulk phase), in-pore fluids can deform the body, through their pressure variations (see, e.g., [1]). 28 

One can already find in the recent literature an extensive review of adsorption-induced 29 

deformations in porous solids [2], which I will partly complement with some most recent works. I also 30 

want to mention a recent review on the computational chemistry of soft porous crystals [3]. 31 

In this mini-review, I will first introduce some frameworks used to estimate adsorption-induced 32 

strains, before tackling the notion of the two-way coupling between adsorption and mechanics, and 33 

moving to specific complexities incorporated in the modeling of adsorption-induced deformations.  34 

2. Some frameworks to predict adsorption-induced strains 35 

The discussion in this section is quite generic and disregards specific complexities of the material, 36 

which will be addressed later in the manuscript. 37 

A first pore-scale approach to predict adsorption-induced strains is a thermodynamic one, which 38 

consists in identifying the energy to minimize in the so-called osmotic ensemble, which is the right 39 

thermodynamic ensemble to address adsorption-induced deformations [4]. Through this approach, 40 

Ravikovitch and Neimark [5] first showed that adsorption induces a mechanical stress (sometimes 41 
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called ‘adsorption stress’) whose magnitude is equal to the solvation pressure and can be obtained 42 

from the grand potential of the adsorbed fluid. For mesoporous materials, an alternative pore-scale 43 

approach, more mechanistic, consists in considering the concept of surface stress, which is being 44 

successfully used in electro-chemistry in particular (see, e.g., [6]). 45 

To estimate the adsorption-induced deformations of an anisotropic mesoporous silica body 46 

made of parallel cylindrical channels, both the thermodynamic approach [7] and the surface stress 47 

approach [8] were used recently. The two approaches are compared in [8]: above capillary 48 

condensation, they yield identical results, while, below capillary condensation (i.e., in the film regime), 49 

they provide qualitatively similar but quantitatively different responses. To me, this difference might 50 

at least partly be due to the fact that the input parameters for the two works are different: for instance, 51 

the relation between thickness of adsorbed film and relative pressure is given by the BET model in [8], 52 

while it is given by the DBdB theory in [7]. 53 

There exist other approaches, at a macroscopic scale, aiming at predicting adsorption-induced 54 

strains through adaptation of the poromechanical framework. Here again, one can divide those 55 

approaches into more thermodynamic ones (e.g., [9–11] ) or more mechanistic ones (e.g., [12], in the 56 

sense that it introduces an apparent porosity). For this type of approaches again, as explained in [8], 57 

with different approaches, similar predictions can be obtained. 58 

 59 

a. Notion of pore-load modulus 60 

With most pore-scale approaches, the effect of adsorption is translated into a stress, which then 61 

needs to be translated into a strain, for which purpose an elastic modulus is needed. To this effect, 62 

there exists the notion of pore-load modulus 𝑀, which relates a strain 𝜀 to a pressure 𝑃 of fluid in the 63 

pore through: 𝑀 = 𝑑𝑃/𝑑𝜀. A pore-load modulus is only valid for a specific direction and a specific 64 

loading [8]. For transverse isotropic membranes of porous silicon exhibiting a random honeycomb 65 

structure, by using n-heptane above capillary condensation, Rolley et al. [13] measured pore-load 66 

moduli and showed that their magnitudes are consistent with elastic properties measured by direct 67 

stretching of the membrane: pore-load moduli can be used to measure elastic properties of the porous 68 

material. 69 

With finite-element modeling (FEM), Rolley et al. [13] showed that, to retrieve the correct elastic 70 

properties of those same membranes, the elastic modulus of the solid walls must be about 2 to 6 times 71 

smaller than the bulk modulus of bulk silicon, depending on the direction considered: they attributed 72 

this discrepancy to finite-size effects and defects of the solid walls. In contrast, based on adsorption 73 

measurements with argon and n-hexane on Vycor (i.e., an amorphous mesoporous silica glass with 74 

worm-like channels), Gor et Gurevich [14] succeeded in calculating the response of their porous 75 

material by considering that the bulk modulus of the solid skeleton is close to the bulk modulus of a 76 

solid Vycor matrix, as back-calculated from the dry moduli of Vycor using an elastic effective medium 77 

theory. How to translate elastic properties of the solid skeleton into pore-load modulus or elastic 78 

properties of the porous material in presence of fluid, although well established for macroporous 79 

materials, appears, for nanoporous materials (i.e., for materials with a pore size below 100nm [15]), 80 

to be system-dependent [13]. 81 

Recently, Puibasset [16] found out that, in presence of fluid, the apparent pore-load modulus 82 

can differ from the one expected by considering the properties of the solid wall to be those of the bulk 83 

non-porous solid, even though, on the dry material, a correct value is retrieved. The difference is 84 

attenuated if the fluid-wall interaction is attenuated. He attributes the discrepancy to a surface effect, 85 

namely a variation of the surface stress in presence of fluid, which he correlates to surface ordering. 86 

Therefore, I would not rule out that relating pore-load modulus to properties of the solid skeleton in 87 

the generic case could be improved through a better understanding of the solid-fluid interactions at 88 

the solid surfaces. 89 
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3. Impact of mechanics on the adsorption process 90 

If adsorption can deform a solid, deformations can also impact the sorption process, as already 91 

observed experimentally with porous membranes [17]. Consequently, in the generic case, the 92 

adsorbed amount 𝑛 of adsorbate should be considered to depend not only on the chemical potential 93 

𝜇 of the adsorbate and the temperature 𝑇, but also on mechanical stresses or strains. Whether 94 

considering this dependence is important is the topic of the next two sections (for what concerns 95 

estimations of adsorption-induced strains or of adsorbed amounts) before moving to other topics 96 

relevant to this coupling. 97 

 98 

a. Importance of considering how adsorption depends on strains to 99 

estimate adsorption-induced strains 100 

When adsorption occurs on surfaces, the surface stress 𝜎𝑠, which deforms the solid surface, is 101 

related to the excess adsorbed amount Γ through Shuttleworth’s equation [18]: 102 

(
𝜕𝜎𝑠

𝜕𝜇
)

𝑇

= (
𝜕Γ

𝜕𝜀𝑠
)

𝑇
 103 

where 𝜀𝑠 is the surface strain of the solid surface. In a generic case (i.e., valid for micropores, 104 

mesopores, or macropores), the volumetric stress 𝜎 induced by the presence of the fluid is related to 105 

the amount  𝑛 of fluid in the body through [9]:  106 

(
𝜕𝜎

𝜕𝜇
)

𝑇

= (
𝜕𝑛

𝜕𝜀
)

𝑇
 107 

where 𝜀 is the volume strain of the body. Those (Lagrangian) equations clearly show that, if the fluid 108 

induces a stress and deforms the porous body, this is because the adsorbed amount depends on the 109 

volume/surface strain. Consequently, how adsorption depends on strains is of prime interest to 110 

correctly estimate adsorption-induced strains. 111 

For what concerns adsorption on solid surfaces, the celebrated Bangham model [19], which is 112 

valid for a wide variety of cases, states that: 113 

𝜀 ∝ ∆𝛾 114 

such that strains should be proportional to variations ∆𝛾 of surface energy. However, theoretically, 115 

strains should be proportional to variations of surface stress. Recently, this discrepancy was explained, 116 

and is in fact rooted in how adsorption depends on strains: in the framework of the BET model, Gor 117 

and Bernstein [20] showed that, if the energy of adsorption of first layer does not depend on the 118 

stretch of the surface, then variations of surface energy and of surface stress are equal, thus making it 119 

possible to retrieve Bangham’s law. Their results suggest that Bangham’s law should be verified for 120 

small strains and small molecules with non-specific interactions. In contrast, if this energy of adsorption 121 

of the first layer depends on the stretch of the surface, the authors show that you can predict 122 

contractions at low gas pressures, which are indeed observed experimentally. 123 

To capture non-trivial dependency of the adsorbed amount on strain and its consequences on 124 

strains, Kolesnikov et al. [21], who calculate adsorption and deformation of a mesoporous film with 125 

cylindrical pores from a direct minimization of the appropriate thermodynamic potential in the osmotic 126 

ensemble, consider that the interaction between solid and fluid can depend on the pore radius. Like 127 

Gor and Bernstein [20], they conclude that taking into account this dependence is necessary to capture 128 

non-monotonic strain isotherms. 129 

 130 



4 
 

b. Importance of taking into account how adsorption depends on strains to 131 

estimate adsorption 132 

Reversely, taking into account the dependence of adsorption on strains/stresses can be 133 

important to correctly estimate adsorbed amounts, with qualitatively significant impacts: 134 

deformations are shown to be the reason for observed negative adsorptions [22,23], and in presence 135 

of fluid mixtures the deformability of the adsorbent can impact the selectivity (e.g., [24]). 136 

Quantitatively, Kolesnikov et al. [21] showed that, in a mesoporous material, taking into account the 137 

flexibility of the adsorbent is necessary to explain why, above capillary condensation, increasing the 138 

relative pressure still makes it possible to increase the adsorbed amounts: adsorbed amounts increase 139 

not only by pore filling, but also by deformation of already-filled pores. Experimentally, on microporous 140 

carbons, micropores were shown to contribute to the adsorption isotherm on the full range of vapor 141 

pressures, even when micropores are already filled [25]. 142 

In a converse manner, stresses applied to the adsorbent can also impact adsorbed amounts: 143 

experiments show that, on compacted coal powders [26], applying effective stresses up to 35MPa can 144 

expel from 5% to 50% of the CO2 initially present in the sample. Even if most of the fluid was expelled 145 

from in-between the coal grains, subsequent analysis confirmed that the stresses indeed expelled 146 

some fluid that was adsorbed in the coal matrix [27]. 147 

Whether taking into account this effect is required to properly estimate the adsorbed amounts 148 

depends on the magnitude of the applied stresses or of the adsorption-induced strains. Just to provide 149 

an order of magnitude, typically for a microporous solid such as coal, the relative variation of adsorbed 150 

amount is estimated to be equal to about 10 times the strain [28]. 151 

 152 

c. Impact of adsorption on mechanical properties 153 

Adsorption can modify the apparent elastic properties of the adsorbent and lead to either an 154 

apparent stiffening or an apparent softening of the adsorbent [29,30]. The apparent stiffness of the 155 

adsorbent is a function of the stiffness of the dry adsorbent and of how the adsorption isotherm 156 

depends on both the strain of the adsorbent and the chemical potential of the adsorbate [9]. 157 

Confinement also modifies the mechanical properties of the fluid, as observed experimentally [31] or 158 

theoretically [32]. 159 

A way through which adsorption can modify the mechanical properties of the adsorbent is 160 

through its impact on the microstructure: Perrier et al. [33] showed that, in microporous materials, the 161 

apparent porosity can vary significantly upon the adsorption, and hence impact the poroelastic 162 

properties of the material. For a sandstone, whose dry mechanical behavior is nonlinear, variations of 163 

the elastic moduli with relative humidity could be explained by the impact of the variation of relative 164 

humidity on solvation pressure and hence effective stress [34]. Note however that, even in absence of 165 

nonlinearity or rearrangement of the microstructure, adsorption can impact the drained moduli of the 166 

porous material [29]. 167 

 168 

d. Modeling the coupling between adsorption and mechanics 169 

Since adsorption induces strains, and since strains impact adsorption, one should take into 170 

account this two-way coupling into the modeling. Such coupling can be particularly significant in 171 

microporous solids, in which the adsorption stress depends strongly on the pore size [35]. One way to 172 

capture this coupling, when employing a thermodynamic approach, is to minimize the appropriate 173 

thermodynamic potential ensemble with respect to both parameters characterizing the adsorption 174 

process and parameters characterizing the deformation process. Such approach was adopted for a 175 

mesoporous material made of cylindrical pores [21], for MOFs [36] or for cellular solids [37]. This last 176 

work, formulated at a mesoscopic scale, shows that the solid-fluid interaction can lead to a hysteresis 177 
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of the adsorption strain isotherm. For nanoporous crystalline materials with rotatable ligands shared 178 

between neighboring cages, a statistical mechanical model that captures the coupling was developed 179 

[38], which includes energy penalization for the rotation of a ligand and an energy of an adsorbed 180 

molecule that depends on the rotation of the ligands: the model captures inflections, steps, and 181 

hysteresis. 182 

4. Specific complexities for prediction of adsorption-induced strains 183 

In this section I address recent complexities that the community aims at integrating into models 184 

to predict adsorption-induced strains. 185 

 186 

a. Complexity of the pore space: size, morphology 187 

Porous materials are characterized by a pore size distribution (PSD). Since the solvation pressure (and 188 

hence the adsorption-induced strains) depends on the pore size, using strain isotherms as an additional 189 

input to adsorption isotherms to back-calculate PSDs was proposed [35,39]. Another question relevant 190 

to the adsorption-induced deformation of generic materials is that of the shape of the pores, which 191 

can be more complex than slit, spherical, cylindrical, or hexagonal pores. To this respect, adsorption-192 

induced deformations were recently studied in wedge-shaped graphitic pores [43]. 193 

The PSD can evolve in a complex manner upon adsorption, due to the inhomogeneity of the 194 

microscopic deformations, as was shown numerically for a microporous carbon in presence of 195 

methane [40].  The PSD being in fact stress-dependent, Siderius et al. [41] showed that how the PSD 196 

evolves over the adsorption process theoretically contains information related to the flexibility and 197 

deformation characteristics of the adsorbent. One question that arises when adsorption occurs in a 198 

material in which pores are sufficient close to each other is whether the deformation of (or adsorption 199 

in) one pore occurs independently of what happens in the neighboring pores: indeed, some adsorption 200 

superlattice formation of the adsorbate in a metal-organic framework was observed [42]. 201 

 202 

b. Anisotropy 203 

The stress induced by adsorption can be anisotropic (e.g., in a cylindrical pore, adsorption-204 

induced stresses are not identical in the axial and in the radial directions [7,8]). Also, pores can be 205 

organized in an anisotropic manner, or the mechanical behavior of the material can also be anisotropic. 206 

Consequently, there exist various potential sources of anisotropy because of which adsorption at the 207 

microscopic scale can lead to a macroscopically anisotropic deformation. In coal for instance, the 208 

anisotropy of the adsorption-induced strains was shown to be mostly due to the anisotropy of the 209 

mechanical behavior, while the adsorption stress itself is mostly isotropic [44]. Anisotropic effects can 210 

also add or counterbalance each other: in silica struts containing parallel cylindrical mesopores [7], the 211 

cylindrical pore geometry makes the axial adsorption-induced stress about 3 times larger than the 212 

radial one but, as consequence of the anisotropy of the mechanical properties of the porous struts, 213 

deformations at the scale of a strut are roughly isotropic. 214 

 215 

c. Beyond the linearity of the mechanical behavior of the solid 216 

The simplest elastic behavior of a solid material is a linear one: stresses and strains are linearly 217 

related, following Hooke’s law. But many materials do not follow Hooke’s law, as is the case for 218 

instance for cracked media (upon compression, cracks close so that the stiffness of the material 219 

increases), or for polymeric solids. For wood for instance, whose elastic behavior is also nonlinear, 220 

adsorption-induced strains were modeled by taking explicitly into account the complexity of the free 221 

energy of the dry porous solid [10]. Molecular simulations can help explore the complexity of the free 222 

energy landscape: for another mechanism inducing flexibility in a MOF, namely the swing effect in ZIF-223 
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8, Coudert [47] showed with the help of quantum chemistry calculations and first-principles molecular 224 

dynamics that the flexibility is not a bistable system, but that the deformation evolves continuously 225 

with the pore loading. 226 

For some MOFs like MIL-53, depending on the environmental conditions (temperature, stress, 227 

partial pressure of the adsorbate), two configurations of the adsorbent with very distinct strains can 228 

be observed (sometimes called ‘large pore’ and ‘narrow pore’ configurations), around which the 229 

material behaves in a linear elastic manner. The osmotic framework was adapted to such cases [45], 230 

under the assumption that each configuration is rigid. For the same family of materials, by considering 231 

a free energy of the dry porous material which exhibits two wells, the features of the energy landscape 232 

(i.e., the depth of the two wells) were shown to impact the transitions between the two configurations 233 

and the phase transitions of the pore fluid [46]. 234 

 235 

d. Upscaling 236 

Upon adsorption, the porous adsorbent deforms at several scales: for instance, in a monolithic 237 

silica sample with hierarchical porosity, strains at the scale of the pore lattice and at the macroscopic 238 

scale of the sample can both be measured [48] and differ from each other. In a material containing 239 

pores with a variety of sizes, deformations should vary from pore to pore. Since many models to predict 240 

adsorption-induced strains are formulated at the pore scale, the question arises of how to translate 241 

strains at this scale into strains at the macroscopic scale of the sample. 242 

Even though the variations of the volume of the sample are sometimes assumed to be equal to 243 

the variation of volume of the pores (e.g., in [21]), note that it is generally not the case, as the volume 244 

of the solid skeleton can vary as well. When the geometry of the pores is well defined, one can find 245 

out how stresses/strains at the pore scale translate into strains at a larger scale by using the finite 246 

element method (FEM), as was done for an anisotropic mesoporous silica body made of parallel 247 

cylindrical channels [7,8]. For the nanoporous crystalline MIL-53, to upscale information on the 248 

breathing transition from the scale of the individual cage to the scale of a whole crystal, a Hamiltonian-249 

based model was proposed [49]. When some information is known about the microstructure, one can 250 

try to inject this information in the prediction of the adsorption-induced strains: such was done for 251 

instance for a synthetic activated carbon with a bi-modal distribution of pore sizes, for which models 252 

of adsorption-induced deformations were derived, that take explicitly into account the fact that the 253 

sample contains both nanopores that adsorb fluids and macropores that contain bulk fluid [50]. 254 

In practice, many materials are composite or heterogeneous. As a consequence of this 255 

heterogeneity, an additional complexity in the upscaling process is that adsorption-induced 256 

deformations can be heterogeneous, as was observed for coal in presence of methane, through 3D 257 

digital image correlation of X-ray microtomography images [51]. On composite materials with a core-258 

shell microstructure, in which an adsorbing core is surrounded by an elastic binder, the presence of 259 

the binder was shown to decrease the magnitude of the adsorption-induced stresses and strains [52]. 260 

Also, if the adsorbing core can be subjected to adsorption-induced structural transitions, the presence 261 

of the binder impacts the pressures at which those transitions occur [52]. One way to decipher how 262 

adsorption-induced strains at the scale of the microscopic phases translate macroscopically into a 263 

strain of the macroscopic composite sample is to use FEM, as shown in [53] on composite microporous 264 

materials. 265 

5. Concluding comments 266 

In this mini-review, I covered not only how adsorption impacts the mechanical behavior of the 267 

adsorbent and deforms it, but also how mechanics (i.e., strains or stresses) impacts the adsorption 268 

process and the importance of taking into account this coupling. There exist several well-established 269 
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frameworks to model adsorption-induced strains, and a trend in the modeling of adsorption-induced 270 

deformations is to take into account as much as possible of the complexity of actual materials, in terms 271 

for instance of microstructure (pore size distribution, pore morphology, heterogeneity,…) or of 272 

mechanical behavior of the adsorbent (anisotropy, non-linearity,…). 273 
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