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ABSTRACT We analyze two models of the maintenance of quantitative genetic vari-

ance in a mixed mating system of self-fertilization and outcrossing. In both models

purely additive genetic variance is maintained by mutation and recombination under

stabilizing selection on the phenotype of one or more quantitative characters. The

Gaussian Allele Model (GAM) involves a finite number of unlinked loci in an infinitely

large population, assuming a normal distribution of allelic effects at each locus within

lineages selfed for τ consecutive generations since their last outcross. The Infinitesimal

Finite-population Model (IFM) involves an infinite number of loci in a large but finite

population, assuming a normal distribution of breeding values in lineages of selfing age

τ , with no assumption on the distribution of allelic effects within loci. In both models

a stable equilibrium genetic variance exists, the outcrossed equilibrium, nearly equal to

that under random mating, for all selfing rates, r, up to critical value, r̂, the purging

threshold, which approximately equals the mean fitness under random mating relative

to that under complete selfing. In the GAM a second stable equilibrium, the purged

equilibrium, exists for any positive selfing rate, with genetic variance less than or equal

to that under pure selfing; as r increases above r̂ the outcrossed equilibrium collapses

sharply to the purged equilibrium genetic variance. In the IFM a single stable equilib-

rium genetic variance exists at each selfing rate; as r increases above r̂ the equilibrium

genetic variance drops sharply and then declines gradually to that maintained under

complete selfing. We discuss implications of the models for the evolution of selfing

rates, and their relevance to the classical view of Stebbins that predominant selfing

constitutes an “evolutionary dead end”.
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Many species of flowering plants, and some hermaphroditic animals, reproduce by

a mixture of self-fertilization and outcrossing, often evolving to predominant selfing

(Stebbins 1957, 1974; Harder and Barrett 2006; Igic and Kohn 2006; Jarne and Auld

2006). In such mixed mating systems inbreeding depression for fitness is a critical

determinant of mating system evolution (Lande and Schemske 1985; Charlesworth and

Charlesworth 1987; Charlesworth et al. 1990; Charlesworth and Willis 2009; Porcher

and Lande 2005; Devaux et al. 2014). Spontaneous deleterious mutations, as well as

standing genetic variation, contribute to inbreeding depression and display a strongly

bimodal distribution of allelic effects on fitness (Dobzhansky 1970; Fudala and Korona

2009; Bell 2010). Lethal and semi-lethal mutations in standing variation are on average

nearly recessive, whereas mildly deleterious mutations have slightly recessive to nearly

additive fitness effects (Simmons and Crow 1977; Willis 1999; Vassilieva et al. 2000;

Eyre-Walker and Keightley 2007).

Stabilizing selection on quantitative characters is thought to be prevalent in natural

populations and, although it may be weak or fluctuating on many characters (Wright

1969; Lande and Shannon 1996; Kingsolver et al. 2001; Lande 2007), it may create

a substantial component of the total inbreeding depression for fitness. Stabilizing

selection on a quantitative character produces allelic effects on fitness that are mildly

deleterious and slightly recessive (Wright 1935), in agreement with observations on

the mildly deleterious component of inbreeding depression (Simmons and Crow 1977;

Willis 1999).

Under stabilizing selection on a quantitative character, an allele with an additive

effect on the character may be either advantageous or deleterious depending on whether

the mean phenotype is above or below the optimum, and alleles at different loci with

opposite effects on the character may compensate for each other in their effects on

phenotype and fitness, even when the mean phenotype is at the optimum (Fisher 1930,

1958; Wright 1931, 1969). Charlesworth (2013) highlighted the difficulty of empiri-

cally distinguishing the relative contributions of unconditionally versus conditionally

deleterious mutations of small effect.

With respect to primary characters of morphology, physiology and behavior that

determine fitness, Wright (1921, 1969) showed for purely additive genetic variance in
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the absence of mutation and selection that inbreeding can increase the genetic variance

up to a factor of 2. Lande (1977) modelled the maintenance of quantitative genetic vari-

ance by mutation under stabilizing selection for regular systems of non-random mating,

including inbreeding with no variance in inbreeding coefficient among individuals. In

sharp contrast with Wright’s classical results, Lande (1977) found that a regular system

of non-random mating has no impact on the equilibrium genetic variance maintained

by mutation and stabilizing selection. Charlesworth and Charlesworth (1995) modelled

the maintenance of quantitative variation by mutation under random mating versus

complete selfing for different models of selection, concluding that complete selfing sub-

stantially reduces the genetic variance compared to random mating, but they did not

model mixed mating.

Mixed mating systems, such as combined selfing and outcrossing, introduce the se-

rious complication of zygotic disequilibrium (non-random associations of diploid geno-

types among loci) and variance of inbreeding coefficient among individuals (Haldane

1949; Crow and Kimura 1970). These complications are successfully encompassed only

by models of unconditionally deleterious mutations (Kondrashov 1985, Charlesworth

and Charlesworth 1998). A theory of the maintenance of quantitative genetic variance

does not currently exist for such mixed mating systems. To account for zygotic dise-

quilibrium in quantitative characters under mixed mating, we employ the selfing age

structure of the population, introduced by Kelly (2007) into the Kondrashov (1985)

model.

We analyze two models of the maintenance of quantitative genetic variance in a

mixed mating system of self-fertilization and outcrossing. In both models purely ad-

ditive genetic variance is maintained by mutation and recombination among unlinked

loci under stabilizing selection on the phenotype of one or more quantitative charac-

ters. The Gaussian Allele Model (GAM) involves a finite number of unlinked loci in

an infinitely large population, assuming a normal distribution of allelic effects at each

locus within lineages selfed for τ consecutive generations since their last outcross. The

Infinitesimal Finite-population Model (IFM) involves an infinite number of loci in a

very large but finite population, assuming a normal distribution of breeding values in

lineages of selfing age τ , with no assumption on the distribution of allelic effects within
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loci. Aspects of the results common to both models are considered to be robust, and

have fundamental implications for the evolution of plant mating systems.

Basic assumptions of the models

The diploid population is partially self-fertilizing such that each zygote has a proba-

bility r of being produced by self-fertilization and probability 1− r of being produced

by outcrossing to an unrelated individual. There is no genetic variation in the selfing

rate. Genetic variance in quantitative traits under stabilizing selection is assumed to

be purely additive. The population is measured in each generation before selection

on a (vector of) quantitative character(s), z. Under random mating the total additive

genetic variance (or variance-covariance matrix) can be partitioned into two additive

components G = V + C. Diagonal elements of V give the genic variances of each

character (twice the variance of allelic effects on each character summed over all loci),

and off-diagonal elements of V give the genetic covariances between characters due to

pleiotropy (twice the covariances of allelic effects between pairs of characters summed

over all loci with pleiotropic effects on the characters). C is the variance-covariance

matrix of twice the total covariance of allelic effects among loci within gametes due

to linkage disequilibrium (nonrandom association of alleles between loci within ga-

metes). In the absence of selection, inbreeding reduces heterozygosity, proportionally

reducing additive genetic (co)variance within families and increasing additive genetic

(co)variance among families (Wright 1921, 1969; Crow and Kimura 1970).

Individual environmental effects on the phenotype are assumed to be independent

among individuals, normally distributed with mean 0 and variance E, and additive and

independent of the selfing age or breeding value (total additive genetic effect summed

over all loci in an individual). In any generation before phenotypic selection a cohort

of selfing age τ has genetic and phenotypic variances respectively of

Gτ = (1 + fτ )(Vτ + Cτ ) (1a)

Pτ = Gτ + E (1b)

Here fτ is Wright’s (1921, 1969) biometrical correlation of additive effects of alleles

at the same locus within individuals, rather than Malécot’s probability of identity
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by descent. These two measures of f may be rather different since small mutational

changes in additive effects of alleles cause only a small decrease in the biometrical

correlation between alleles at the same locus, whereas mutation completely eliminates

allelic identity. Assumptions specific to each model guarantee that for all individuals

within a cohort of selfing age τ a single value of fτ applies to all loci affecting a

given character (GAM) or to all characters (IFM). The covariance of additive effects

of alleles from different gametes equals fτ multiplied by the variance of allelic effects

within gametes (or the covariance of allelic effects at different loci within gametes).

The genetic and phenotypic variances before selection in the population as a whole

are denoted without subscripts as

G =
∞∑
τ=0

pτGτ (1c)

P = G+ E (1d)

where pτ is the frequency of selfing age τ in the population before selection.

Multivariate stabilizing selection on the individual phenotype, z, is described by a

Gaussian function of the individual deviation from an optimum phenotype, θ,

W (z) = exp
{
−1

2
(z − θ)TΩ−1(z − θ)

}
(2)

where Ω is a symmetric matrix describing stabilizing and correlational selection (Lande

and Arnold 1983), with where superscripts T and −1 respectively denote vector or

matrix transpose and matrix inverse. Using the normal approximation for phenotypes

and breeding values, the mean fitness of a cohort of selfing age τ is then

w̄τ =

∫
φτ (z)W (z)dz =

√
|Ωγτ | exp

{
−1

2
(z̄ − θ)Tγτ (z̄ − θ)

}
where φτ (z) is the phenotypic distribution in the cohort of selfing age τ . Vertical bars

| | denote the determinant of a matrix and γτ = (Ω + Pτ )
−1. In subsequent formulas

diagonal elements of the Ω matrix are denoted as ω2, and for independently selected

characters the off-diagonal elements are 0. The general environment is assumed to be

constant such that the mean phenotype always remains at the optimum, z̄ = θ, so the
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mean fitness of a selfing age cohort simplifies to

w̄τ =
√
|Ωγτ | (3a)

and the population mean fitness is

¯̄w =
∞∑
τ=0

pτ w̄τ (3b)

For independently selected characters, the mean fitness within each selfing age class is

the product of the mean fitnesses of the characters, but this is not true for the popu-

lation as a whole.

Gaussian Allele Model (GAM)

Mutation-selection balance for one character

We employ the mutation model of Kimura (1965) and Lande (1975, 1977) with n loci

having completely additive effects on a particular character. Each allele at a given locus

mutates at a constant rate with the same distribution of changes in additive effect on

the character, with no directional bias. This produces a constant mutational variance

for the character, σ2
m, without changing the mean phenotype. Empirical estimates of

the mutational variance, scaled by the environmental variance (or as here using E = 1)

are typically about 10−3 to 10−4 (Lande 1975; 1995; Lynch 1996; Houle et al. 1996).

Assuming weak stabilizing selection and a high mutation rate per locus, the distribu-

tion of allelic effects at each locus is approximately Gaussian (Kimura 1965; Bürger

2000). This is consistent with empirical observations of high genomic mutation rates

per character, on the order of 10−1 to 10−2 observed for quantitative traits in maize

(Russell et al. 1963), and the assumption that n is much less than the total number

of genes in the genome, on the order of n = 10 to 100 for the effective number of loci

(Lande 1975, 1977).

For simplicity, we assume n unlinked loci with equal mutational variance, so that

a single inbreeding coefficient applies to all loci affecting a given character within a

given age class. Multiple characters are assumed to be genetically and phenotypically

independent and subject to independent stabilizing selection. For multiple characters
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that differ in their parameters (number of loci, mutational variance, and stabilizing

selection) a different set of recursions across the selfing age classes is required.

Gamete production from the selfing age classes

Summing the additive effects of alleles at exchangeable loci in Lande (1975, 1977),

the genetic covariance cτ and genic variance vτ of gametes produced by individuals in

selfing age class τ ≥ 1 are

cτ =
1

2

[
1 + fτ

2
Cτ −

(
1− 1

n

)
γτ
2
G2
τ

]
(4a)

vτ =
1

2

[
Vτ −

γτ
2n
G2
τ + σ2

m

]
(4b)

For the outcrossed class τ = 0, a straightforward way to derive the components of

genetic variance and gametic output is through a weighted average of gametes produced

by all selfing age classes. However, this approach mixes distributions with possibly

rather different genetic variances, creating substantial kurtosis within the outcrossed

class, particularly when large negative linkage disequilibrium builds up by selection of

different compensatory mutations in long-selfed lineages. The outcrossed class then

combines (1) a subclass produced by outcrossing between long-selfed individuals, with

about half the total genetic variance of their parents (since f0 = 0) and (2) subclasses

produced by matings with at least one outcrossed parent in which recombination halfs

the negative linkage disequilibrium inherited from their parents, increasing the total

genetic variance. We found that pooling these subclasses of outcrossed individuals into

a single class, ignoring kurtosis, can create artifactual oscillations of genetic variance

in the first two age classes. To eliminate this artifact, we analyze selection acting

separately on all possible types of outcrosses according to the selfing age of the parents.

Outcrossing by random mating among selfing age classes implies that for pairs of

parents with selfing ages i and j the frequency of the ij subclass of the outcrossed class

0, denoted as p0ij, is simply the product of the frequencies of parental age classes at

the adult stage, after selection in the previous generation denoted by subscript (t− 1),

p0ij =
w̄i(t−1)
¯̄w(t−1)

pi(t−1)
w̄j(t−1)
¯̄w(t−1)

pj(t−1) (5)
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The mean fitness of the outcrossed class as a whole is then

w̄0 =
∞∑
i=0

∞∑
j=0

p0ijw̄0ij (6)

The mean fitness of each outcrossed subclass, w̄0ij, depends only on its total genetic

variance, but selection acts differently on unequal gametic contributions to the genic

variance and covariance by parents of different selfing age. Gametes produced by the

outcross class, averaged over all subclasses, have genic variance and covariance

c0 =
1

2w̄0

∞∑
i=0

∞∑
j=0

p0ijw̄0ij

[
ci(t−1) + cj(t−1)

2
(7a)

−γ0ij
(

1− 1

n

)(
[ci(t−1) + vi(t−1)]

2 + [cj(t−1) + vj(t−1)]
2
)]

v0 =
1

2w̄0

∞∑
i=0

∞∑
j=0

p0ijw̄0ij

[
vi(t−1) + vj(t−1)

−γ0ij
n

(
[ci(t−1) + vi(t−1)]

2 + [cj(t−1) + vj(t−1)]
2

)]
+
σ2
m

2
(7b)

where subscript (t− 1) denotes the grandparental generation. The relative frequencies

and mean fitness of class 0ij are obtained using the components of genetic variance for

the outcrossed progeny of a mating between individuals of selfing age classes i and j,

with a prime denoting the next generation,

C ′0ij = ci + cj (8a)

V ′0ij = vi + vj (8b)

f ′0ij = 0. (8c)

These yield the total genetic and phenotypic variance (using eqs. 1), and hence the

mean fitness w̄0ij (eqs. 3) of the subclass.

Recursions for components of genetic variance
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All selfing age classes after the first obey the recursions, for τ ≥ 1,

C ′τ+1 = 2cτ =
1 + fτ

2
Cτ −

(
1− 1

n

)
γτ
2
G2
τ (9a)

V ′τ+1 = 2vτ = Vτ −
γτ
2n
G2
τ + σ2

m (9b)

f ′τ+1 =
1

2vτ

(
1 + fτ

2
Vτ −

γτ
2n
G2
τ

)
(9c)

In the absence of selection and mutation eq. (9c) reduces to the recursion of Wright

(1921, 1969) for the inbreeding coefficient under continued selfing, fτ+1 = (1 + fτ )/2.

The genetic variance components of the outcrossed class are twice the weighted

average of gametic outputs from all selfing age classes:

C ′0 = 2
∞∑
τ=0

pτ w̄τ
¯̄w

cτ (10a)

V ′0 = 2
∞∑
τ=0

pτ w̄τ
¯̄w

vτ (10b)

f ′0 = 0 (10c)

Finally, for the first selfing age class τ = 1,

C ′1 = 2c0 (11a)

V ′1 = 2v0 (11b)

f ′1 =
1

2v0

∞∑
i=0

∞∑
j=0

p0ijw̄0ij

w̄0

[
vi(t−1) + vj(t−1)

2

−γ0ij
n

(
[ci(t−1) + vi(t−1)]

2 + [cj(t−1) + vj(t−1)]
2

)]
(11c)

Age distribution of selfing lineages

After stabilizing selection, mating and reproduction, the distribution of selfing ages in

the population is

p′0 = 1− r (12a)

p′τ+1 = r
w̄τ
¯̄w
pτ (12b)
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Eqs. (1)−(12) constitute the complete recursion system for the evolution of quan-

titative genetic variance. For numerical computation it is necessary to truncate the

age distribution of selfing lineages at some upper limit. This approach is often used

in analyzing the demography of age-structured populations (Caswell 2001). Recursion

formulas for the frequency and genetic composition of the terminal selfing age class are

given in Appendix 1. The number of classes retained for numerical analysis should be

sufficiently large that substantially increasing it does not appreciably affect the results.

Numerical analysis of the GAM for multiple genetic independent characters un-

der independent stabilizing selection showed that the results had a low sensitivity to

substantial differences in stabilizing selection or mutational variance among characters

(unpublished results).

Infinitesimal Finite-Population Model (IFM)

To relax the critical but controversial assumption in the GAM of a normal distribution

of allelic effects within loci (Turelli 1984; Turelli and Barton 1994), and to facilitate

analysis of correlated characters, we extend Fisher’s (1918) infinitesimal model to en-

compass mixed mating. Our infinitesimal model involves an infinite number of loci,

with no assumption on the distribution of allelic effects within loci. It does, however,

assume a Gaussian distribution of breeding values within each cohort of a given selfing

age (justified by the Central Limit Theorem as for the classical infinitesimal model un-

der random mating). The accuracy of this assumption is monitored numerically using

the kurtosis of breeding values in the population.

Fisher’s (1918) infinitesimal model concerns an infinite population with an infinite

number of loci each having an infinitesimal effect on a quantitative character. Selection

then causes no change in allele frequencies at any locus, although it can change the mean

phenotype, and the linkage disequilibrium among loci (Bulmer 1971). The total genic

variance, V , in the population thus remains constant, but the total genetic variance,

G evolves because selection and recombination change the total linkage disequilibrium

variance among loci, C. Fisher’s infinitesimal model for an infinite population thus

does not require mutation to maintain genetic variance.

An unrealistic feature of the classical infinitesimal model of Fisher (1918) and
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Bulmer (1971) for an infinite population is that the equilibrium inbreeding depression

due to stabilizing selection increases with the selfing rate of a population, until at

sufficiently high selfing rates stabilizing selection finally creates enough negative linkage

disequilibrium to purge the genetic variance (unpublished results). This unrealistic

feature of the classical infinitesimal model for an infinite population can be understood

from the classical result of Wright (1921, 1969) for an infinite population with no

selection or mutation, in which the equilibrium genetic variance increases as a linear

function of the population inbreeding coefficient.

To obtain a more realistic infinitesimal model for partial selfing, we introduce the

Infinitesimal Finite-population Model (IFM), in which the genic variance, V , is main-

tained by a balance between mutation and random genetic drift. The IFM can then

incorporate the well-known influence of inbreeding in changing the effective population

size and hence the genic variance maintained by mutation.

The IFM is derived from the GAM by letting the number of loci approach infinity,

n→∞, and, simultaneously letting the effective population size under random mating

become very large and the mutational variance become very small, Ne(0) → ∞ and

σ2
m → 0, such that Ne(0)σ2

m remains constant. Under random mating the IFM has

the same dynamics in response to selection as in the classical infinitesimal model of

Fisher (1918) and Bulmer (1971), but more generally the IFM also allows the genic

variance to adjust to changes in the selfing rate as follows. With these assumptions

the recursions for the inbreeding coefficient as a function of selfing age, eqs (9c), (10c)

and (11c) reduce to Wright’s classical formula for continued selfing

f ′τ+1 = (1 + fτ )/2 (13a)

The genic variance in the total population (or in any selfing age class) obeys the

recursion

V (r)′ =

(
1− 1

2Ne(r)

)
V (r) + σ2

m

where Ne(r) is the effective population size at selfing rate r. It is well-known that

a completely selfing population has an effective size half that under random mat-

ing (Charlesworth and Charlesworth 1995). More generally, using methods of Wright
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(1931, 1969), the effective size of a population with inbreeding coefficient f is Ne(r) =

Ne(0)/(1 + f). Substituting this into the recursion for the genic variance and using

Wright’s (1921, 1969) formula for the equilibrium inbreeding coefficient in a partial

selfing population with no selection or mutation, f = r
2−r , gives, asymptotically, the

equilibrium genic variance maintained by mutation-drift balance in a large partially

selfing population,

V (r) = (1− r/2)V (0) (13b)

where V (0) = 2Ne(0)σ2
m in agreement with previous results on mutation-selection

balance under random mating (Clayton and Robertson 1955; Lande 1980). For any

given selfing rate, this equilibrium genic variance replaces the recursions (9b), (10b)

and (11b). It is half as large for complete selfing as under random mating.

Formula (13b), with eqs. (1a) and (1c) and Wright’s relation f = r
2−r , implies

that at equilibrium in the absence of selection (for which C = 0) the genetic variance

maintained in the population is actually independent of the selfing rate, G(r) = V (0).

This occurs because the reduction of genic variance with larger selfing rate (and smaller

effective population size) is exactly compensated by the increased inbreeding coefficient

in the population. As we show below, this allows stabilizing selection to purge quantita-

tive genetic variance from the population at high selfing rates, and produces a realistic

equilibrium inbreeding depression which always decreases with increased selfing rate.

A great advantage of the IFM is that it can readily model the maintenance of

genetic variability in correlated characters under multivariate selection, with genetic

correlations between characters due to a combination of pleiotropic mutation and cor-

relational selection. A key ingredient of this generality is that in the IFM Wright’s

recursion for the inbreeding coefficient under continued selfing (eq. 13a) applies to all

loci in the genome regardless of their pleiotropic effects on different characters.

The IFM was used to investigate how pleiotropic mutation and correlational selec-

tion changed the results. With many loci of low mutability, in the limit as n→∞ with

very large effective population size, such that V (0) remains constant, the GAM can be

converted to a general multivariate IFM by interpreting various quantities as matrices

rather than scalars, e.g. in eqs. (4) rewriting γτG
2
τ as GτγGτ (Lande 1980, Lande

and Arnold 1983). In the IFM, mutational and genic variance-covariance matrices can
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be simply transformed by rotation of axes to produce either selectively or genically

independent characters (using eigenvectors of the correlational selection matrix γ, or

the genic variance-covariance matrix V (0). Our numerical analysis of the IFM there-

fore focused on mutationally and genically independent characters under correlational

selection.

In both models deviation from the assumption of a Gaussian distribution for either

the allelic effects (GAM) or breeding values (IFM) within selfing age chorts, occurs

due to mixing of genetic contributions among all selfing ages upon outcrossing. We

considered the models to have good accuracy when the equilibrium kurtosis in the

population remained close to that for a normal distribution (κ = 3). For compari-

son to the numerical results we derived the equilibrium kurtosis of breeding values in

Wright’s (1921, 1969) neutral model of partial selfing in an infinite population with no

selection or mutation, assuming normality of breeding values within selfing age cohorts,

κ = 3(1−r
2/4

1−r/4 ) (Appendix 2). Under random mating or complete selfing the breeding

value in the population is normal. The maximum kurtosis of 3[1 + (2−
√

3)2] ≈ 3.215

occurs at selfing rate r = 2(2−
√

3) ≈ 0.536. Thus in Wright’s neutral model of partial

selfing in an infinite population the deviation from normality of breeding values at

equilibrium must be rather small.

Analytical and Numerical Results

Purging genetic variance by stabilizing selection under continued selfing

In both the GAM and the IFM under continued selfing, stabilizing selection purges

the genetic variance, but the details of how this happens and the extent of the purging

differ in the two models, as shown below.

Continued selfing

In the GAM, assuming weak selection (ω2 � Pτ so that γτ ≈ 1/ω2) and small mu-

tational variance (σ2
m � E) eq. (9c) can be expanded as a Taylor series to first

order in small terms and solved for a slowly changing quasi-equilibrium, which gives

fτ ≈ 1 − 2σ2
m/Vτ . This can be used with eqs. (9a), (9b) and (1) to find a first-order

approximation for the asymptotic dynamics of the genetic variance and its components
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for large selfing age, G′τ+1−Gτ ≈ −G2
τ/ω

2 + 4σ2
m. Thus under continued selfing in the

GAM the genetic variance approaches an equilibrium

G∞ ≈ 2
√
σ2
mω

2 (14a)

This is smaller by a factor of
√

2/n than the weak selection approximation for the

equilibrium genetic variance under random mating G0 ≈
√

2nσ2
mω

2 (Kimura 1965;

Lande 1975, 1977).

For the GAM the above results with eq. (9a) show that with continued selfing,

although Gτ approaches a constant, both Vτ and −Cτ continue to increase indefinitely

at the asymptotic rate

lim
τ→∞

(V ′τ+1 − Vτ ) = − lim
τ→∞

(C ′τ+1 − Cτ ) = (1− 2

n
)σ2

m (14b)

In view of the dynamics of fτ above eq. (14a), this confirms that with increasing

selfing age the inbreeding coefficient approaches 1.

For the IFM, a similar analysis produces the asymptotic recursion for the genetic

variance under continued selfing, G′τ+1 −Gτ ≈ −G2
τ/ω

2, the only solution of which is

G∞ = 0. (15)

Under continued selfing, purging of genetic variance in the IFM occurs solely by the

buildup of negative linkage from stabilizing selection; as fτ → 1, increasing homozy-

gosity reduces the effective recombination in proportion to 1 − fτ (Lande 1977) so

that Cτ → −V . By comparison, under random mating in the IFM, assuming weak

stabilizing selection (γV � 1), the equilibrium genetic variance is approximately

G0 ≈ (1− γV )V .

These analytical results concerning the genetic variance and its components as

functions of selfing age were confirmed numerically. Fig. 1A shows for the GAM the

indefinite increase of the genic variance and the negative linkage disequilibrium variance

with increasing selfing age, due to the buildup of associations between compensatory

mutations (eq. 14b) while the genetic variance approaches a constant (eq. 14a). For
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populations with a high selfing rate the accumulation of a large negative linkage dise-

quilibrium in the GAM leads to recombination and segregation in the second generation

after outcrossing (τ = 1) producing a high genetic variance and low mean fitness (Fig.

1B, D). Similar effects occur in the IFM, but with restricted magnitude (Fig. 2B,D).

[Fig. 1 and Fig. 2 about here]

Mixed mating and the distribution of selfing ages

With partial selfing, the distribution of selfing ages in the population plays an crucial

role in the dynamics of genetic variance. At a stable equilibrium the distribution of

selfing ages is pτ = (1−r)rτ lτ where (1−r)rτ is the probability of selfing τ generations

in a row, and lτ = ¯̄w−τ
∏τ−1

i=0 w̄i for τ ≥ 1 is the relative survival of selfed lineages to

selfing age τ , with l0 = 1.

Despite continued selfing and stabilizing selection eventually purging the genetic

variance in both models, at any given selfing rate in the population, the distribution of

selfing ages determines the extent of purging of the genetic variance in the population

as a whole. This occurs because shifts in the selfing age distribution change the balance

of contributions of young and old selfing ages to the genetic variance at outcrossing (eq.

9) which is then transmitted through the selfing ages (eqs. 8, 10). A low or moderate

r shifts the selfing age distribution to the left, toward younger ages; a high r shifts

the selfing age distribution right, toward older ages. A crucial property of the relative

survival function of selfed lineages is that the mean fitness at each selfing age depends

on selection on the whole organism rather than just a single character (eq. 11); this

explains why selection on multiple characters affects the purging of genetic variance in

each character, as illustrated in the numerical results.

Numerical examples of the mean fitness as a function of selfing age, and the selfing

age distribution, are illustrated in Fig. 1C-F and Fig. 2C-F for the GAM and the

IFM respectively. At high selfing rate in the GAM the long-selfed lineages become

reproductively isolated from the outcrossed lineages, as shown by the very low fitness

of intermediate selfing ages and the nearly disjunct bimodal distribution of selfing ages

(Fig. 1D,F). Similar effects occur in the IFM at high selfing rate, but to a lesser extent

(Fig. 2D,F).
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Equilibrium genetic variance in the population as a function of r

For intermediate selfing rates the complexity of the models precludes analytical solu-

tion. Recursions for the GAM and IFM were iterated numerically to characterize the

equilibrium genetic variance in the population as a function of population selfing rate

for a wide range of parameter values. Below we describe the salient similarities and dif-

ferences between the GAM and IFM, emphasizing the robust results common to both

models. The accuracy of the assumption of a normal distribution of breeding values

within selfing age cohorts in both models was assessed using the kurtosis of breeding

values for the population as a whole, κ. To elucidate patterns in the equilibrium ge-

netic variance, we computed for the population as a whole the mean fitness (eq. 3b),

the inbreeding depression, δ (loss of mean fitness upon selfing vs. outcrossing), and the

genetic variance after selection within a generation, G∗ (Appendix 2).

In the GAM, two types of stable equilibrium exist for the total genetic variance in

the population. Outcrossed equilibrium: Over a wide range of selfing rates from 0 up to

a critical selfing rate, r̂, termed the purging threshold, the genic variance, V , and linkage

disequilibrium, C, evolve to nearly compensate for non-random mating, maintaining

nearly the same total genetic variance, G, as under random mating. At selfing rates

above r̂ the stable outcrossed equilibrium collapses to the purged equilibrium. Purged

equilibrium: Selfing rates even slightly above the purging threshold cause a collapse of

the equilibrium genetic variance after selection within a generation, G∗, to values equal

to or less than under pure selfing (eq. 14a). A stable purged equilibrium exists for all

selfing rates.

The purged equilibrium exists and is stable at any selfing rate (r > 0), but its

stability becomes weaker and its domain of attraction smaller for lower selfing rates.

At selfing rates below the purging threshold, r < r̂, the initial condition of genetic

monomorphism always leads to the outcrossed equilibrium; the purged equilibrium is

attained from initial conditions with large negative linkage disequilibrium and small

total genetic variance. At low selfing rates the rate of convergence to the purged

equilibrium may be slow and its domain of attraction small.

[Fig. 3 and Fig. 4 about here]

Fig. 3 illustrates for the GAM that at selfing rates below the purging threshold,
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under weak stabilizing selection the equilibrium genetic variance after selection within

a generation, G∗, is only slightly smaller than that before selection, G. For selfing rates

above the purging threshold, the equilibrium genetic variance before selection, G, blows

up to infinity. This occurs because of the unlimited negative linkage disequilibrium

(compensatory mutations) and genic variance built up under continued selfing, which

segregates in the second generation after outcrossing and recombination. However, the

F2 recombinants among long-selfed lineages are strongly selected against because of

their large phenotypic deviations from the optimum. For this reason, at selfing rates

above the purging threshold, the equilibrium genetic variance after selection within a

generation, G∗, collapses to G∗purged, the purged equilibrium after selection. For the

same reason, at selfing rates above the purging threshold the equilibrium kurtosis of

breeding value in the population, κ, blows up, but the kurtosis after selection κ∗ nearly

equals that for Wright’s neutral model. Thus, under the basic assumptions of the

GAM, we consider the numerical results to be reasonably accurate at all selfing rates.

Fig. 4 shows that for the IFM the equilibrium genetic variance in the population,

G, also nearly equals that under random mating for selfing rates up to a purging thresh-

old. Just above the purging threshold the equilibrium genetic variance dips sharply

and then declines gradually with increasing r. The IFM displays only a single stable

equilibrium genetic variance at every selfing rate. The kurtosis of breeding value in

the population, both before and after selection, becomes large at selfing rates substan-

tially above the purging threshold. Because excess kurtosis increases the strength of

selection on the variance (Turelli and Barton 1987), the IFM overestimates the ge-

netic variance maintained at selfing rates above the purging threshold. Qualitative

differences between the models at high selfing rates arise from constancy of the genic

variance at any given selfing rate in the IFM, which limits the buildup of negative

linkage disequilibrium under continued selfing (compare Fig. 1A to Fig. 2A).

[Fig. 5 and Fig. 6 about here]

Fig. 5 and Fig. 6 depict, respectively for the GAM and IFM, how stabilizing

selection on multiple independent characters acts synergistically to reduce the purging

threshold, and, especially in the GAM, to sharpen the threshold in comparison to that

for a single character under the same intensity of stabilizing selection per character.
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These figures also display the equilibrium inbreeding depression, δ, and the mean fitness

in the population, as functions of the selfing rate. For both models the mean fitness of

the population at high selfing rates exceeds that at low selfing rates, consistent with

the purging of genetic variance at high selfing rates.

Fig. 7 shows analogous results for the IFM with multiple characters with no

pleiotropy but under correlational selection on independent pairs of characters. The

genetic covariance between pairs of mutually selected characters, B, is then caused

solely by linkage disequilibrium, and at high selfing rates their equilibrium genetic cor-

relation, B/G, makes the multivariate distribution of breeding values conform closely

to the shape of the fitness surface.

[Fig. 7 about here]

General approximation for the purging threshold

For selfing rates below the purging threshold, in both the GAM and IFM the equilib-

rium mean fitness in the population at the outcrossed equilibrium remains nearly the

same as under random mating, W̄out. More remarkably, in both models at selfing rates

above the purging threshold the mean fitness nearly equals the product of the selfing

rate, r and the equilibrium mean fitness under completely selfing, W̄self . This can be

seen most explicitly from the dotted lines for the purged equilibrium in Fig. 5C, and

by extrapolation of the corresponding lines in Fig. 6C and Fig. 7D from their values

at complete selfing back to the origin. The simplicity of these results indicate that

in both models the purging threshold, r̂ can be accurately located by the intersection

of these two lines, W̄out ≈ r̂W̄self . Remarkably, the purging threshold can thus be

accurately approximated as the ratio of mean fitnesses at equilibrium under random

mating versus pure selfing,

r̂ ≈ W̄out

W̄self

. (16)

With many characters, the numerical analysis indicates a sharp purging threshold, and

the analytical approximation is fairly accurate. A small inaccuracy arises, most notice-

ably in the GAM for m = 5 or 10, because W̄out as a function of r dips slightly near

the intersection with rW̄self .
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Discussion

Wright (1921, 1969) showed that for a neutral model of additive genetic variance,

inbreeding increases the equilibrium genetic variance in proportion to the average in-

breeding coefficient in the population, so that complete selfing doubles the equilibrium

genetic variance in comparison to random mating. Lande (1977) found for regular

systems of mating, in which every individual performs the same type of non-random

mating, that the equilibrium genetic variance maintained by mutation and stabiliz-

ing selection is independent of the mating system. In contrast, Charlesworth and

Charlesworth (1995) compared maintenance of quantitative genetic variance by mu-

tations under stabilizing or purifying selection, concluding that selfing substantially

reduces the equilibrium genetic variance compared to random mating. These disparate

results are reconciled in our models of mixed mating, showing that in both the GAM

and IFM the equilibrium genetic variance remains nearly the same as under random

mating for selfing rates up to the purging threshold, above which a qualitative change

occurs. Our asymptotic analysis of the total genetic variance under complete selfing

agrees qualitatively with Charlesworth and Charlesworth (1995), although their models

neglected linkage disequilibrium which plays an important role in purging quantitative

variance in both the GAM and IFM.

In the GAM two possible stable equilibria exist for the genetic variance as a func-

tion of the population selfing rate, r, with regions of sharply distinct dynamics sepa-

rated by a purging threshold, r̂. The outcrossed equilibrium has genetic variance nearly

equal to that under random mating, and exists only for selfing rates below the purg-

ing threshold. The purged equilibrium has lower genetic variance in the highly selfed

stable core of the population, and exists for all selfing rates; in the highly selfed core,

the total genetic variance remains constant but the total genetic variance in the pop-

ulation blows up because the genic variance and (negative) linkage disequilibrium in

the core increase indefinitely. Initial outcrossing between long-selfed lineages decreases

the genetic variance by half (since f0 = 0), resulting in outcrossed F1 hybrid vigor

(“heterosis”); subsequent selfing or outcrossing of these F1 allows recombination to ex-

press the built-up genic variance previously hidden by negative linkage disequilibrium,

producing F2 breakdown in fitness. Thus, the highly selfed core of a population at a
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purged equilibrium becomes reproductively isolated from its outcrossing relatives. This

mechanism for speciation by predominant selfing accords with the finding of Goldberg

and Igic (2012) that phylogenetic transitions to predominant selfing often coincide with

species originations.

In the IFM only a single stable equilibrium for the genetic variance exists at any

selfing rate. This qualitative difference between the two models occurs because in the

IFM the genic variance at any given selfing rate remains constant, which limits the

buildup of linkage disequilibrium variance under continued selfing; this also limits the

magnitude of F2 breakdown following outcrossing of a long-selfed lineage.

Another feature common to both the GAM and IFM is that the purging threshold

approximately equals the ratio of the equilibrium mean fitness under random mating

relative to that under pure selfing. In a constant environment stabilizing selection of

multiple quantitative characters toward a joint optimum phenotype always produces a

higher mean fitness for the population with the lowest genetic variance, which here is

that under pure selfing. A further advantage of selfing is that it also increases mean

fitness by building adaptive genetic correlations between characters under correlational

selection as shown in Fig. 7 (as in Lande 1984 for a symmetric GAM under a regular

system of inbreeding). The complexity of the phenotype, and the overall strength

of stabilizing selection on it, are thus of paramount importance in determining the

purging threshold. For a single character under moderately strong stabilizing selection

the purging threshold occurs at a very high selfing rate (Fig. 2A), but for a complex

phenotype with many characters under independent stabilizing selection, the purging

threshold is substantially reduced (Fig. 7A).

These results are consistent with limited available data on genetic variance in quan-

titative characters and inbreeding depression as a function of r (Charlesworth and

Charlesworth 1995). They also have important implications for evolution of the selfing

rate, discussed below. In this regard it is important to note that within any very large

population different sets of quantitative characters will conform more closely to the

assumptions of either the GAM or IFM. Even if only a single character conforms to

the GAM, a stable purged equilibrium will exist at all positive selfing rates (Fig. 4A).

However, finite population must eventually limit the buildup of linkage disequilibrium
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variance; the IFM is therefore likely to be more realistic for most quantitative charac-

ters, especially in populations with effective sizes that are not very large.

Genetic variance and inbreeding depression

Inbreeding depression is generally thought to be the main genetic factor counteract-

ing Fisher’s automatic advantage of selfing, and preventing the evolution of complete

selfing in self-compatible species (Fisher 1941; Lande and Schemske 1985; Porcher and

Lande 2005; Devaux et al. 2014). Previous theory indicates that inbreeding can cause

rapid purging of inbreeding depression due to nearly recessive lethals, and that purg-

ing of inbreeding depression due to slightly dominant nearly additive mildly deleterious

mutations is more difficult, and occurs to a lesser extent (Lande and Schemske 1985;

Charlesworth et al. 1990; Lande et al. 1994; Charlesworth and Willis 2009; Porcher

and Lande 2013). Consistent with this is the observation that highly selfing species

show substantially reduced inbreeding depression (Husband and Schemske 1996).

Winn et al. (2011) found that species with intermediate selfing rates maintain a

substantial inbreeding depression. As they suggest, this may in part be due to selective

interference with the purging of lethals that occurs at a high total inbreeding depres-

sion (Lande et al. 1994), especially if the average inbreeding depression estimated for

species with intermediate selfing rates, δ = 0.58, substantially underestimates actual

inbreeding depression, due to common omission of the final growth-to-flowering com-

ponent of the life cycle. Porcher and Lande (2013) showed that a larger constant back-

ground inbreeding depression produces elevated selective interference among lethals.

The constancy of quantitative genetic variance and inbreeding depression maintained

across a wide range of selfing rates below the purging threshold in the present theory

is qualitatively consistent with these observations.

Charlesworth and Charlesworth (1995) reviewed limited available evidence indicat-

ing that predominantly selfing populations maintain lower quantitative genetic variance

than predominant outcrossers on average. This accords with the reduced genetic vari-

ance after selection maintained at selfing rates above the purging threshold in the

long-selfed core of the population, and in the population as a whole after selection. In

the GAM, at the purged equilibrium after F2 breakdown to near zero fitness implies

23



that the genetic variance after selection nearly equals the weighted average of that in

the long-selfed core and their F1 outcrossed progeny (Fig. 7A).

In this context it is important to distinguish the purging threshold for recessive

lethal mutations (Lande et al. 1994) from that for quantitative genetic variance de-

scribed here. Although both thresholds involve the reduction of an equilibrium genetic

variance at higher selfing rates, they arise under different conditions by different mecha-

nisms, and occur at different selfing rates. Selective interference among lethal mutations

depends on a high total inbreeding depression to produce a sharp purging threshold

for lethals. In contrast, the purging threshold for quantitative genetic variance exists

even under weak stabilizing selection on a single character with consequently small in-

breeding depression. The mechanism creating the purging threshold for lethals is that

at selfing rates below the threshold nearly all products of selfing are lethal (Ganders

1972; Lande et al. 1994). In contrast, at selfing rates above the purging threshold

for quantitative variance, the only stable state is the purged equilibrium, characterized

by F1 hybrid vigor in crosses between highly inbred lineages at the population’s core,

followed by F2 breakdown to relatively low fitness (delayed outbreeding depression);

these effects are more extreme in the GAM than in the IFM.

It should also be noted that F2 breakdown among long-selfed lineages at a purged

equilibrium makes them reproductively isolated from each other as they are from their

outcrossed ancestors or offspring. This would happen if even a single character con-

forms to the assumptions of the GAM, with the rest more nearly obeying the IFM.

Predominantly selfing species that exist for long may therefore undergo the progression

of reproductive isolation classically observed between young species compared to that

between old species, beginning with F1 heterosis with F2 breakdown and culminating

in F1 and F2 sterility and inviability (Dobzhansky 1970; Coyne and Orr 2004).

Evolution of selfing rate near outcrossed and purged equilibria

At selfing rates below the purging threshold, r < r̂, inbreeding depression is an im-

portant genetic constraint which, in combination with ecological constraints, controls

evolution of the selfing rate by small genetic steps (Lande and Schemske 1985; John-

ston et al. 2009; Porcher and Lande 2013; Devaux et al. 2013). Both the GAM and
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IFM conform then to the rule that in the absence of ecological constraints selection

favors small genetic changes that decrease the selfing rate when the total inbreeding

depression exceeds 0.5.

In contrast, in both models inbreeding depression is misleading for understanding

evolution of selfing rates above the purging threshold, r > r̂ (or at any purged equi-

librium in the GAM). At selfing rates just above the purging threshold the inbreeding

depression is reduced or even negative (as in the GAM in Fig 5B) because most out-

crossed survivors are F1 hybrids between long-selfed lineages (with about half the total

genetic variance of their long-selfed parents since f0 = 0). The progeny of these F1

outcrosses suffer F2 breakdown (or delayed outbreeding depression) to low fitness; this

strongly selects against outcrossing and favors increased selfing. The models therefore

indicate that in a large population the evolution of predominant selfing, with purged

quantitative genetic variance, is an irreversible evolutionarily absorbing state (Bull and

Charnov 1985; Charlesworth and Charlesworth 1998; Galis et al. 2010), supporting

the view of Stebbins (1957, 1974) that predominantly selfing plant species generally

occupy terminal branches in plant phylogenies.

Stebbins also inferred that highly selfing species have an increased extinction rate

and do not persist long in phylogenetic time. The present theory shows that at a purged

equilibrium the long-selfed core of the population has less genetic variance than for a

population at the outcrossed equilibrium. This implies that in a constant environment

highly selfing populations have a higher mean fitness at equilibrium than under ran-

dom mating. Extreme environments, such as on the edge of a species range where new

selfing species often arise from outcrossers (Wright et al. 2013), may exert stronger

stabilizing and/or directional selection. Under this scenario, or in a changing envi-

ronment with high temporal variance and predictability of the optimum phenotype,

highly selfing (purged) populations with less genetic variance than at the outcrossing

equilibrium will have lower mean fitness through time and thus a higher extinction rate

(Lande and Shannon 1996; Lande et al. 2003). Our model thus provides a theoretical

foundation for the classical view of Stebbins’ (1957, 1974) confirmed by recent empir-

ical findings (Takebayashi and Morrell 2001; Goldberg et al. 2010; Goldberg and Igic

2012; Wright et al. 2013; Igic and Busch 2013) that predominant selfing constitutes an
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“evolutionary dead end”.
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Appendix 1

Truncation of the selfing age distribution

For selfing ages larger than some value L, the genetic parameters within age classes

should be nearly equivalent, so that all selfing age classes can be lumped into a single

terminal class of age L or larger, which then becomes the upper limit instead of ∞

in numerical summations. Additional recursion formulas are then required for the

frequency and genetic composition in the terminal age class.

Recursions for the genic variance and covariance (due to linkage disequilibrium),

and the inbreeding coefficient, in the terminal selfing age class are

C ′L =
p∗L−12cL−1 + p∗L2cL

p∗L−1 + p∗L

V ′L =
p∗L−12vL−1 + p∗L2vL

p∗L−1 + p∗L

f ′L =
p∗L−1(

1+fL−1

2
VL−1 − γL−1

2n
G2
L−1) + p∗L

(
1+fL

2
VL − γL

2n
G2
L

)
p∗L−1V

′
L−1 + p∗LV

′
L

The recursion for the terminal age class frequency is

p′L = r(p∗L−1 + p∗L)

where p∗τ = w̄τpτ/ ¯̄w and ¯̄w =
∑L

τ=0 pτ w̄τ .
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Appendix 2

Population statistics

Kurtosis. By assumption each selfing age cohort, and the population as a whole,

has its mean breeding value at the optimum, so there is no skew (asymmetry) in the

population. However, because the genetic variance within selfing age cohorts varies

among selfing ages, τ , the breeding value in the population will be leptokurtic. The

standardized kurtosis of breeding value in the population is the weighted average fourth

central moment within cohorts, divided by the square of the population variance in

breeding value. For a normal distribution with variance σ2 the fourth central moment

is 3σ4, with a standardized kurtosis of κ = 3. Assuming that the distribution of

breeding value within each selfing age (and within subclasses of the outcrossed class)

is normal, the standardized kurtosis of breeding value in the population is

κ = 3

{
1 +

Var[Gτ ]

(E[Gτ ])2

}
=

3
(∑∞

τ=1 pτG
2
τ + p0

∑∞
i=0

∑∞
j=0 p0ijG

2
0ij

)
(
∑∞

τ=0 pτGτ )
2

For comparison, the kurtosis of breeding value in the population can be derived

for Wright’s (1921, 1969) classical model of partial selfing with no selection and no

mutation. The recursion for the inbreeding coefficient (eq. 13a) with f0 = 0 has

the solution fτ = 1 − (1/2)τ . In the absence of selection the equilibrium selfing age

distribution is pτ = (1 − r)rτ . The average inbreeding coefficient in the population is

then f̄ =
∑∞

0 pτfτ = r
2−r in agreement with Wright (1921, 1969). With no selection

under any amount of outcrossing (r < 1), the population eventually approaches linkage

equilibrium, Cτ = 0. The equilibrium kurtosis of breeding value in the population is

κ = 3(1−r
2/4

1−r/4 ). In Wright’s neutral model, as in the GAM, at r = 0 or 1 the breeding

value in the population is normal (κ = 3). But in the IFM at r = 1 G = 0 (eq. 15) so

κ is not defined.

Inbreeding depression. The total inbreeding depression in the population caused

by selfing, δ, is one minus the ratio of mean fitness of selfed individuals divided by the

mean fitness of outcrossed individuals,

δ = 1−
∑∞

τ=1 pτ w̄τ
(1− p0)w̄0
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This formula can be evaluated from the model only for partial selfing, 0 < r < 1. For

random mating and complete selfing, r = 0 and r = 1, the equilibrium inbreeding

depression can be obtained by calculating the phenotypic distributions of offspring

that would be produced by experimental selfing and outcrossing. The F1 outcross

between two long-selfed parents has a total genetic variance about half that of its

parents (because f0 = 0), hence a higher mean fitness than any selfed age class or any

other outcrossed subclass. However, any of their (outcross or selfed) F2 progeny will

have increased genetic variance (due to reduction of negative linkage disequilibrium by

recombination), substantially diminishing their mean fitness.

Genetic variance after selection. With multiple loci and a high selfing rate, the

average genetic variance in the population G blows up due to a bimodal distribution of

selfing ages, with long-selfed lineages dominating. This blow up is caused by accumu-

lation of linkage disequilibrium in the long-selfed lineages. The large genetic variance

expressed by recombination and the decay of linkage disequilibrium in the early self-

ing age classes greatly reduces their mean fitness. With sufficiently high selfing rates

the first few selfing age classes are rare, because of the low outcrossing rate and their

greatly reduced fitness. The early selfing ages are largely eliminated by selection, and

the genetic variance in the population as a whole after selection is

G∗ =
1
¯̄w

[
∞∑
τ=1

pτ w̄τ
(
Gτ − γτG2

τ

)
+ p0

∞∑
i=0

∞∑
j=0

p0ijw̄0ij

(
G0ij − γ0ijG2

0ij

)]

where the mean fitness in the population is the same as in eq. (3b).
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Figure captions

Figure 1: Purging of genetic variance under continued selfing in the GAM for each of

25 identical independent characters under stabilizing selection: components of genetic

variance (top) and mean fitness (middle) as functions of selfing age, and distribution

of selfing ages (bottom) for population selfing rates below (r = 0.78, left) or above

(r = 0.8, right) the purging threshold. Note the different scales in panels A and B.

In panel B the genetic variance G at young selfing ages, and genic variance V and

covariance C, are not at equilibrium; their values depend on the number of genera-

tions simulated (here 500,000). In panels E-F dotted lines represent the distribution of

selfing age classes in Wright’s neutral model. Other parameters: E = 1, σ2
m = 0.001,

n = 10 and ω2 = 20.

Figure 2: Purging of genetic variance under continued selfing in the IFM for each

of 25 identical independent characters under stabilizing selection. A. Total genetic

variance before and after selection. Panels and parameters as in Fig. 1 but for the

IFM with V (0) = 1. At selfing rates above the purging threshold, r > r̂, the IFM shows

smaller changes in genetic variance and mean fitness as a function of selfing age than

in the GAM (Fig. 2. B,D compared to Fig. 1B,D) but still displays similar patterns

of selfing age distribution (Fig. 2E,F compared to Fig. 1E,F).

Figure 3: Equilibrium genetic variance as a function of selfing rate for each of 25 iden-

tical uncorrelated characters under stabilizing selection in the GAM. A. Total genetic

variance before and after selection, G and G∗. B. Kurtosis of breeding values, κ, before

and after selection at the outcrossed equilibrium for r below the purging threshold,

at the purged equilibrium for r above the purging threshold, and in Wright’s neutral

model. Other parameters as in Fig. 1.

Figure 4: Equilibrium genetic variance as a function of selfing rate for each of 25

identical uncorrelated characters under stabilizing selection in the IFM. A. Total ge-

netic variance before and after selection. B. Kurtosis in breeding value, κ, before and

after selection, and in Wright’s neutral model. Other parameters as in Fig. 2.
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Figure 5: Equilibrium genetic variance after selection, inbreeding depression and pop-

ulation mean fitness, as a function of population selfing rate, for different numbers

of characters in the GAM. When the selfing rate is below the purging threshold, two

stable equilibria exist. The outcrossed equilibrium has relatively large genetic variance

and inbreeding depression nearly independent of selfing rate (solid lines); it is reached

when the population has initially low genetic variance and low linkage equilibrium.

The purged equilibrium (dashed lines) has lower genetic variance, independent of the

number of characters, and negative inbreeding depression for r just above the purging

threshold. Other parameters as in Fig. 1.

Figure 6: Equilibrium genetic variance before selection in the IFM, along with in-

breeding depression and population mean fitness, as functions of population selfing

rate, for different numbers of characters m. Other parameters as in Fig. 2.

Figure 7: Equilibrium genetic variance before selection in the IFM, inbreeding depres-

sion and population mean fitness, as a function of population selfing rate, for different

numbers of characters m with no pleiotropy subject to correlational selection between

m/2 independent pairs of characters. In the selection matrix (eq. 2) off-diagonal el-

ements for pairs of characters under correlational selection are 0.5 times the diagonal

elements (ω2). The equilibrium genetic covariance between pairs of characters under

correlational selection is caused by linkage disequilibrium, and B/G represents their

genetic correlation. Other parameters as in Fig. 2.
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Figure 5
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Figure 6 
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Figure 7 
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