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trait loci and accuracy of genomic predictions 
for resistance to columnaris disease in two 
rainbow trout breeding populations
Rafael M. O. Silva1,2,3, Jason P. Evenhuis1, Roger L. Vallejo1, Guangtu Gao1, Kyle E. Martin4, Tim D. Leeds1, 
Yniv Palti1*   and Daniela A. L. Lourenco2

Abstract 

Background:  Columnaris disease (CD) is an emerging problem for the rainbow trout aquaculture industry in the US. 
The objectives of this study were to: (1) identify common genomic regions that explain a large proportion of the addi-
tive genetic variance for resistance to CD in two rainbow trout (Oncorhynchus mykiss) populations; and (2) estimate 
the gains in prediction accuracy when genomic information is used to evaluate the genetic potential of survival to 
columnaris infection in each population.

Methods:  Two aquaculture populations were investigated: the National Center for Cool and Cold Water Aquacul-
ture (NCCCWA) odd-year line and the Troutlodge, Inc., May odd-year (TLUM) nucleus breeding population. Fish that 
survived to 21 days post-immersion challenge were recorded as resistant. Single nucleotide polymorphism (SNP) 
genotypes were available for 1185 and 1137 fish from NCCCWA and TLUM, respectively. SNP effects and variances 
were estimated using the weighted single-step genomic best linear unbiased prediction (BLUP) for genome-wide 
association. Genomic regions that explained more than 1% of the additive genetic variance were considered to be 
associated with resistance to CD. Predictive ability was calculated in a fivefold cross-validation scheme and using a 
linear regression method.

Results:  Validation on adjusted phenotypes provided a prediction accuracy close to zero, due to the binary nature 
of the trait. Using breeding values computed from the complete data as benchmark improved prediction accuracy 
of genomic models by about 40% compared to the pedigree-based BLUP. Fourteen windows located on six chromo-
somes were associated with resistance to CD in the NCCCWA population, of which two windows on chromosome 
Omy 17 jointly explained more than 10% of the additive genetic variance. Twenty-six windows located on 13 chromo-
somes were associated with resistance to CD in the TLUM population. Only four associated genomic regions over-
lapped with quantitative trait loci (QTL) between both populations.

Conclusions:  Our results suggest that genome-wide selection for resistance to CD in rainbow trout has greater 
potential than selection for a few target genomic regions that were found to be associated to resistance to CD due 
to the polygenic architecture of this trait, and because the QTL associated with resistance to CD are not sufficiently 
informative for selection decisions across populations.
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Background
Rainbow trout (Oncorhynchus mykiss) is an economically 
important aquaculture commodity. However, diseases 
have become one of the main constraints to sustain-
able aquaculture production and trade [1]. Parasites and 
infectious diseases cause significant losses in aquacul-
ture worldwide, accounting for 90% of the total loss of all 
trout intended for sale in the United States during 2016 
(USDA National Agricultural Statistics Service).

Columnaris disease (CD) is an emerging problem for 
rainbow trout aquaculture in the US, which is caused by 
the gram-negative bacterium Flavobacterium columnare. 
CD is distributed around the world and infects cultured 
and wild freshwater fish species, such as rainbow trout, 
tilapia and channel catfish. It can infect fish of all ages, 
but it is more frequent in young fish, and it can cause 
major losses [2, 3]. Transmission occurs often horizon-
tally and indirectly through the water column without 
fish-to-fish contact, and generally the severity and occur-
rence are greater at warmer water temperatures [2].

Currently there are no licensed vaccines against F. 
columnare for use in rainbow trout and regulations on 
the use of antibiotics in aquaculture are very restrictive. 
Hence, genetic improvement of resistance to the disease 
through selective breeding offers a sustainable and long-
term alternative approach for this problem. Recently, we 
have reported that resistance to CD is heritable and posi-
tively correlated with resistance to bacterial cold water 
disease (BCWD), which is caused by Flavobacterium psy-
chrophilum [4]. Two aquaculture-relevant rainbow trout 
breeding populations were used in this study: the odd-
year line of the National Center for Cool and Cold Water 
Aquaculture (NCCCWA; heritability = 0.23 and genetic 
correlation = 0.40), and the Troutlodge, Inc., May odd-
year (TLUM) nucleus breeding population (heritabil-
ity = 0.34 and genetic correlation = 0.39) [4]. Therefore, 
there is a great potential to genetically improve resist-
ance to CD in rainbow trout using selective breeding. 
In addition, recently we showed that genomic selection 
for resistance to BCWD holds great potential for rapid 
improvement in the same TLUM population [5]. How-
ever, a better understanding of the genetic architecture 
of this trait is needed to guide decisions on whether to 
apply genomic tools in selective breeding strategies, and 
to determine which genomic-assisted breeding approach 
is likely to be the most successful for this trait in both 
populations. The genomic-assisted breeding approaches 
can consider information from all the single nucleotide 
polymorphisms (SNPs) on a chip (i.e., genome-wide 
selection) or only from the quantitative trait loci (QTL) 
that explain a high proportion of the variance (i.e., 
genome-targeted selection) [6]. In the current study, 
we added genotype data to a subset of the population 

(year-class 2015) from the previous study, which included 
only pedigree and phenotype data [4]. The objectives of 
this study were: (1) to identify common genomic regions 
that explain a large proportion of the additive genetic 
variance for resistance to CD in a single generation of the 
NCCCWA and TLUM rainbow trout nucleus breeding 
populations; and (2) to estimate the gains in accuracy of 
prediction when genomic information is used to evaluate 
the genetic potential of surviving to columnaris infection 
in each population.

Methods
Data and disease challenge
Two important aquaculture populations were inves-
tigated: the National Center for Cool and Cold Water 
Aquaculture (NCCCWA; Leetown, WV) odd-year line 
(ARS-Fp-R), which has been under family-based selective 
breeding for improved resistance to BCWD for five gen-
erations [7, 8], and the Troutlodge, Inc., May-spawning 
odd-year (TLUM) nucleus breeding population, which 
has been subjected to at least six generations of selec-
tive breeding for growth-related traits, but is consid-
ered unselected for traits related to disease resistance. 
The TLUM odd-year line is one of eight domestic rain-
bow trout nucleus populations that are maintained by 
Troutlodge, Inc. (Sumner, WA), a major rainbow trout 
breeding company globally. Both populations have been 
closed to outside germplasm and are scheduled to pro-
duce approximately 100 nucleus families at each gen-
eration. The sampling structure for each population is 
illustrated in Fig. 1. The numbers of fish in the pedigree 
records were 54,350 and 36,265, for the NCCCWA and 
TLUM populations, respectively, with 8453 and 3986 fish 
recorded for resistance to CD, respectively. Genotype 
records with the 57 k SNP array (Affymetrix Axiom®) [9] 
were available for 1185 (197 parents and 988 phenotyped 
offspring) and 1137 (147 parents and 990 phenotyped off-
spring) fish from the NCCCWA and TLUM populations, 
respectively. The sampling scheme for genotyping aimed 
at including five mortalities and five survivors per fam-
ily, although fewer survivors or mortalities were available 
for sampling for some families. After SNP quality control, 
35,900 and 33,980 high-quality and informative SNPs 
were used in the analysis, respectively for the NCCCWA 
and TLUM populations.

All post-hatch rearing practices and disease challenges 
were conducted at the USDA, ARS, NCCCWA, as previ-
ously described [3]. The NCCCWA fish were spawned 
in February 2015 and the TLUM in May 2015. Nucleus 
TLUM families were shipped to the NCCCWA as eyed 
eggs and reared as separate families following standard 
NCCCWA culture practices until the time of disease chal-
lenge. Each family was challenged in two tank replicates 
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and the challenge counted for 40 and 20 fry per tank, 
respectively for NCCCWA and TLUM. Pathogen-naïve 
fry were challenged with CD by immersion during 1 h in 
a static bath of a virulent strain (CSF298-10) of F. colum-
naris. To ensure an equal dose of bacteria in all tanks, each 
tank was inoculated with 40 mL of liquid culture (using a 
graduated pipette) that had a final OD540 of ~ 0.7. Twelve 
individual tanks were sampled during the bath challenge 
and plated to quantify colony forming unit (CFU)/mL. No 
significant differences were found between tanks. The dis-
ease survival challenge for the NCCCWA and TLUM fish 
started at 66 days post-hatch (BW ~ 1.3 g) and 78 days post-
hatch (BW ~ 2.8 g), respectively. The target for the immer-
sion challenge dose was 2 × 108 CFU per mL of water, and 
the actual dose was 1.97 × 107 and 2.08 × 108 CFU for the 
NCCCWA and TLUM fish, respectively. Fry were reared 
in heated flow-through spring water (16 °C) for the dura-
tion of the 21-day CD challenge period and dead fish were 
removed and recorded daily for each tank. Fry was catego-
rized as 2 if it survived for the 21-day post challenge period 
or 1 otherwise. Inspections were conducted to confirm the 
presence of the target pathogen in dead fish that were col-
lected during the disease survival trial. The Institutional 
Animal Care and Use Committee (USDA-ARS, Leetown, 
WV) reviewed and approved all the protocols used for dis-
ease challenge.

Model and analyses
Identification of common genomic regions
The status of resistance to CD was considered categori-
cal and modelled using a threshold approach [10]. The 
model for the underlying liability of resistance to CD was: 

where U is the vector of the underlying distribution of 
resistance to CD; β is the vector of systematic effects (sys-
tem and row); a is the vector of additive direct genetic 
effects; f  is a vector of random family/tank effects; e is the 
vector of random residuals; X , Z , and W are the inci-
dence matrices for the effects contained in β, a, and f, 
respectively. It was assumed that the additive direct 
genetic, family/tank, and residual effects were normally 
distributed with a mean equal to 0 and variances given by 
var(a) = Kσ 2

a  , var
(
f
)
= Iσ 2

f  , and var(e) = Iσ 2
e  , respec-

tively, where K is A , the pedigree relationship matrix, in 
the best linear unbiased prediction (BLUP) and H , the 
realized relationship matrix, in single-step genomic 
BLUP (ssGBLUP); I is an identity matrix; σ 2

a  , σ 2
f  , and σ 2

e  
are the additive direct genetic, family/tank, and residual 
variances, respectively.

The CD resistance status (y) was modelled with the fol-
lowing distribution:

where n is the number of records, t1 the threshold that 
defines the two survival categories and I is an indica-
tor function that takes value 1 if the fish died during the 
disease challenge, and 2 if it survived. The procedure is 
a nonlinear transformation of best linear unbiased esti-
mation (BLUE) and BLUP. Variance components were 
obtained using the Gibbs sampler applied to threshold 
models as implemented in THRGIBBSF90 [11].

U = Xβ+ Za +Wf + e,

f
(
y|U

)
=

n∏

i=1

I(Ui < t1)I
(
yi = 1

)
+ I(Ui > t1)I

(
yi = 2

)
,

Fig. 1  A Venn diagram for the number of fish included in the pedigree, phenotype and genotype datasets for each population. NCCCWA​ National 
Center for Cool and Cold Water Aquaculture, TLUM Troutlodge, Inc. USA May spawning nucleus population
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For the association analyses, we used the weighted 
single-step genomic BLUP approach for genome-wide 
association (wssGBLUP) [12]. This method is based 
on ssGBLUP [13], which has been widely adopted for 
genomic selection in livestock and aquaculture. Sin-
gle-step GBLUP combines pedigree and genomic rela-
tionships in a single realized relationship matrix (i.e., 
H ), and the inverse of H replaces the inverse of the 
pedigree-based relationship matrix ( A−1 ) in the BLUP 
mixed model equations.

SNP effects and variances were calculated using wss-
GBLUP, in an iterative process consisting of seven steps 
[12]:

1.	 Set D = I;
2.	 Construct the genomic relationship matrix G as 

MDM
′

2
∑

pj(1−pj)
;

3.	 Calculate genomic EBV (GEBV);
4.	 Calculate the SNP effect: û = �DM

′
G
−1

âg , where � 
is the ratio of SNP variance to additive genetic vari-
ances, D is a diagonal matrix of SNP weights, M is 
a matrix that relates animals to genotypes at each 
locus, and âg is the GEBV for genotyped animals;

5.	 Calculate the weight of each SNP: di = û
2
i 2pi

(
1− pi

)
 , 

where p is the minor allele frequency of the i th SNP;
6.	 Normalize D to keep a constant additive genetic vari-

ance;
7.	 Update D;
8.	 Iterate from step 2. Only three iterations were used 

in this study, and the GWAS results from iteration 2, 
which had the best predictive ability, are presented. 
As suggested by Wang et  al. [12], the iteration with 
the best predictive ability or greatest accuracy would 
be the best one to use for GWAS.

Results were summarized using 1-Mb sliding SNP 
windows. Selection of SNP windows was guided by 
mapping the genome sequences flanking the SNPs 
[9] to the new annotated rainbow trout reference 
genome assembly [14] (GenBank assembly Accession 
GCA_002163495). The percentage of genetic vari-
ance explained by the i th window was calculated as 
described by Wang et al. [15]:

where ai is the additive genetic effect for the i th window.
Genomic regions that explained more than 1% of the 

additive genetic variance were considered to be associ-
ated with resistance to CD.

var(ai)

σ 2
a

× 100% =
var

(∑
1Mb Mjūj

)

σ 2
a

× 100%,

The software THRGIBBS1F90 via the Gibbs sampler 
[11] was used to estimate GEBV, whereas POSTGSF90 
[11] was used to estimate SNP effects and variances.

Evaluation of the accuracy of traditional and genomic 
predictions
The ability to predict future performance (predictive 
ability) was calculated using a fivefold cross-validation 
scheme with five replicates to minimize errors due to 
single-fold sampling. Predictive ability was calculated 
for all three iterations of WssGBLUP, providing GEBV1, 
GEBV2, and GEBV3 for iterations 1, 2, and 3, respec-
tively. Usually when WssGBLUP is used, predictive ability 
is reported for all iterations. If SNP weighting is benefi-
cial, predictive ability is expected to increase over itera-
tions [12]. For the NCCCWA population, 988 genotyped 
fish with phenotypes for resistance to CD were available, 
therefore, fold sampling considered only those fish. For 
the three- and two-fold sampling, phenotypes were ran-
domly removed for 198 and 197 fish, respectively. For 
the TLUM population, 990 genotyped fish for resistance 
to CD were available, and each one of the five folds had 
phenotypes randomly removed for 198 fish. When phe-
notypes were removed for one fold (i.e., the validation 
group), the resulting EBV or GEBV were termed as par-
tial. In each cross-validation fold and replication, poste-
rior means and standard deviation were calculated based 
on 10,000 Gibbs samples (e.g., no burn-in and all samples 
were used).

The main interest in salmonid fish breeding is to pre-
dict more accurately future performance of young ani-
mals; therefore, validation is usually performed on young 
animals (i.e., forward prediction). However, in our study, 
most of the genotyped animals were from the same gen-
eration, precluding the use of forward prediction. The 
benchmarks for investigating the ability to predict fish 
performance were either the phenotypes adjusted for all 
fixed effects in the model ( y− Xb ) or breeding values 
using complete data (i.e., using data from all five folds). 
Although the k-fold cross-validation may provide opti-
mistic results because sibs coexist in training and valida-
tion populations, this coexistence reflects what happens 
in real trout breeding programs.

When the benchmark was phenotype adjusted for fixed 
effects ( y− Xb ), the predictive ability ( r ) was calculated 
as the correlation between: y− Xb and (G)EBVp , where 
(G)EBVp is partial EBV or GEBV. Some authors have 
already shown predictive ability for binary traits (e.g., 
disease resistance) as the correlation between adjusted 
phenotypes and EBV or GEBV [16, 17]; however, in such 
cases the phenotypes are on the observed binary scale 
and the EBV and GEBV are on the liability scale, mak-
ing comparisons difficult and results nonsensical. To 
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avoid such problems, we used an alternative method to 
evaluate the predictive ability of genomic models, which 
was described by Legarra and Reverter [18] as the LR 
method. This method compares complete EBV (EBVc) or 
GEBV (GEBVc), when all data are available, with partial 
EBV (EBVp) or GEBV (GEBVp), when phenotypes for 
selection candidates are removed for each fold. This LR 
method is suitable for models with binary or categorical 
traits, maternal models, and traits with a low heritability 
[18]. If the comparison is EBVc with EBVp and GEBVc 
with GEBVp, we can see how much the breeding values 
change in the traditional and genomic evaluations when 
data are added for the validation animals. If the correla-
tion between the partial and complete estimates is higher, 
the change in breeding value is smaller and the partial 
data predicts the complete data better. Therefore, the 
correlation between complete and partial data is a func-
tion of the accuracy of prediction. It gives the relative 
increase in accuracy from one evaluation to the next (i.e., 
consistency between subsequent evaluations).

Legarra and Reverter [18] proved that ρEBVp,EBVc is a 
direct estimator of the increase in accuracy from adding 
data because its expectation is:

where PEV  is prediction error variance or a measure of 
variance of the estimated minus true breeding value, PEC 
is the prediction error covariance, 

(
1+ F̄ − 2f̄

)
 is the 

reduction in variance in a selected population due to 
relationships σ 2

u,∞ is the genetic variance at equilibrium 
in a population under selection, F̄  is the average inbreed-
ing, and 2f̄  is the average relationship between animals. 

The term 
√
1−

PEVp−PECp(
1+F̄−2f̄

)
σ 2
u,∞

 is similar to the formula 

presented by Henderson [19] and later by Van Vleck [20] 
to compute the accuracy of an EBV:

where F  is the inbreeding coefficient of the individual 
and σ 2

u is the additive genetic variance. Therefore, this 
shows that ρEBVp,EBVc and ρGEBVp,GEBVc are functions of 
accuracies of EBV.

The regression coefficient ( b1 ) of complete on partial 
breeding values (i.e., (G)EBVc = b0 + b1 × (G)EBVp) 
was used as a measure of inflation. In the same way, when 

E
(
ρEBVp,EBVc

)
=

√
1−

PEVp−PECp(
1+F̄−2f̄

)
σ 2
u,∞

√
1− PEVc−PECc(

1+F̄−2f̄
)
σ 2
u,∞

,

Acc(EBV ) =

√

1−
PEV

(1+ F)σ 2
u

,

adjusted phenotypes were used as benchmark, the regres-
sion coefficient of adjusted phenotype on partial breed-
ing value (i.e., y− Xb = b0 + b1 × (G)EBVp ) was used to 
investigate inflation. A value of b1 close to 1 means EBV 
or GEBV are not inflated/over-dispersed [21], because a 
change of one unit in (G)EBV corresponds to a similar 
change in adjusted phenotypes.

Results
Estimated heritability for resistance to CD
The estimated heritabilities for resistance to CD were 
0.32 and 0.51 for the NCCCWA and TLUM popula-
tions, respectively, which indicate a moderate to high 
additive genetic component for the trait. These estimates 
are higher than our previously reported heritabilities of 
0.23 and 0.34 in the NCCCWA and TLUM populations, 
respectively [4]. Those estimates were based on data 
combined from the 2013 and 2015  year-classes of each 
population, while the current heritability estimates were 
calculated using only data from the 2015 year-class and 
with a simpler model that did not include the year-class 
effect.

Identification of common genomic regions affecting 
resistance
Descriptive statistics of the family-survival phenotypes 
and the number of genotyped SNPs that were located 
in each 1-Mb sliding windows are in Table 1. The mean 
survival (± SD) was 74.9% (± 13.7%) and 38.6% (± 24.1%), 
in the NCCCWA and TLUM populations, respectively, 
which clearly indicate a substantially higher survival 
rate in the NCCCWA CD challenge. The average num-
ber of SNPs per window (± SD) was 27.9 (± 6.2) and 
22.2 (± 8.9) for the NCCCWA and TLUM populations, 
respectively, which means that the genome coverage was 
better for the NCCCWA population. However, given our 
recent estimate of strong linkage disequilibrium (LD) 
(r2 ≥ 0.25) that spans on average over 1  Mb across the 
rainbow trout genome [22], this difference in genome 

Table 1  Descriptive statistics of family-survival phenotypes 
and number of SNPs located in the 1-Mb windows

N number of SNPs located in the 1-Mb long windows

NCCCWA​ TLUM

Survival (%) N Survival (%) N

Min 26.58 14 2.44 6

Median 76.44 29.50 35 23

Mean 74.90 27.86 38.60 22.15

SD 13.74 6.19 24.11 8.87

Max 100 39 90.24 42
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coverage was likely not sufficient to substantially impact 
the LD between genotyped SNPs and neighbouring QTL 
in the sliding 1-Mb windows.

There were 14 windows associated with resistance to 
CD across six chromosomes in the NCCCWA popula-
tion, and 26 windows across 13 chromosomes in the 

TLUM population (Table  2). The percentage of additive 
genetic variance explained by the SNP windows for each 
chromosome in each of the two populations is shown in 
Fig. 2. Only one major QTL (> 10%) was detected in the 
NCCCWA population, which was revealed by two win-
dows that were located respectively at 59–60  Mb and 

Table 2  Chromosomes, regions, and additive genetic variance explained by significant (> 1% of genetic variance) sliding 
1-Mb SNP windows for resistance to CD in two rainbow trout aquaculture breeding populations from the National Center 
for Cool and Cold Water Aquaculture (NCCCWA) and Troutlodge, Inc. (TLUM)

Omy Positions (bp) Var (%) Start SNP End SNP

NCCCWA​ 8 12,432,114–13,425,593 1.10 Affx-88914007 Affx-88948574

8 71,329,529–72,150,736 1.14 Affx-88923706 Affx-88916609

9 49,518,971–50,513,124 1.17 Affx-88933418 Affx-88932687

9 54,751,745–55,726,546 3.22 Affx-88919315 Affx-88950719

10 29,581,097–30,577,995 1.24 Affx-88920532 Affx-88916735

10 35,177,214–36,166,546 2.36 Affx-88941227 Affx-88904550

14 21,882,519–22,880,243 1.34 Affx-88942677 Affx-88914952

17 30,443,799–31,246,426 1.21 Affx-88915578 Affx-88951951

17 51,692,366–52,657,204 1.38 Affx-88951951 Affx-88917463

17 54,077,677–55,070,553 1.07 Affx-88941723 Affx-88930918

17 57,087,593–58,071,730 1.38 Affx-88928607 Affx-88956489

17 59,030,557–59,975,343 12.45 Affx-88934715 Affx-88947595

17 61,685,815–62,683,690 11.17 Affx-88932531 Affx-88933611

21 11,636,165–12,635,637 1.19 Affx-88924627 Affx-88961166

TLUM 1 2,301,207–3,237,107 1.93 Affx-88920221 Affx-88954173

1 9,431,533–10,407,809 7.17 Affx-88952286 Affx-88911654

2 37,586,371–38,445,257 2.00 Affx-88912711 Affx-88941285

2 66,211,405–67,186,468 3.62 Affx-88959474 Affx-88916549

4 7,413,629–8,260,785 5.02 Affx-88907515 Affx-88957694

6 4,230,508–5,197,305 1.76 Affx-88918979 Affx-88930111

8 27,954,167–28,911,002 1.07 Affx-88910195 Affx-88955224

8 63,842,515–64,766,638 2.73 Affx-88927151 Affx-88958769

8 72,702,968–73,532,230 4.92 Affx-88919407 Affx-88912966

8 73,780,383–74,651,500 2.73 Affx-88940010 Affx-88942756

9 62,803,755–63,600,917 2.63 Affx-88923649 Affx-88923401

11 10,741,327–11,703,113 1.04 Affx-88925342 Affx-88919279

11 19,987,730–20,963,900 3.31 Affx-88942955 Affx-88952300

11 24,003,333–24,980,010 1.08 Affx-88915068 Affx-88937020

12 45,554,341–46,523,458 2.63 Affx-88918831 Affx-88918749

12 49,164,838–50,133,047 1.73 Affx-88916873 Affx-88961655

14 17,503,583–18,499,177 1.04 Affx-88911639 Affx-88934688

14 22,775,910–23,775,341 1.90 Affx-88955373 Affx-88908365

14 79,211,475–79,941,269 1.55 Affx-88904616 Affx-88917061

17 60,281,825–61,260,250 1.01 Affx-88944127 Affx-88956686

17 61,789,296–62,742,113 1.37 Affx-88923456 Affx-88919735

21 14,178,714–15,156,045 1.02 Affx-88954133 Affx-88959956

23 7,188,750–8,154,673 2.77 Affx-88944584 Affx-88906618

23 9,817,471–10,809,676 1.13 Affx-88925895 Affx-88930453

28 30,120,286–31,120,043 3.25 Affx-88955437 Affx-88906826

28 35,759,045–36,743,773 2.43 Affx-88909402 Affx-88914851
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61–62  Mb on chromosome Omy 17 (Omy for Onco-
rhynchus mykiss), and explained 12.5 and 11.2% of the 
genetic variance for resistance to CD, respectively. No 
major QTL was detected in the TLUM population, but 
three moderate-effect QTL (≥ 5%) were identified on 
chromosomes Omy 1, 4, and 8. The genomic distribution 
and location of windows that were associated with resist-
ance to CD in each population are plotted in Fig. 3. Four 
QTL regions with co-localized or overlapping windows 
from both populations were detected on chromosomes 
Omy 8, 14, 17, and 21 when we used a QTL significance 
threshold of 1% of the additive genetic variance. Three 
additional regions of possibly co-localized QTL on Omy 
9, 10 and 12 were identified when we used a suggestive 
threshold of 0.5% of the additive genetic variance (see 
Additional file 1: Figure S1).

Comparison of pedigree‑based and genomic predictions 
of breeding values
Predictive abilities and inflation for the validation 
using adjusted phenotypes as benchmarks, and rela-
tive increases in accuracy and inflation using (G)EBV as 
benchmarks are in Figs.  4 and 5 for the NCCCWA and 
TLUM populations, respectively. For the NCCCWA 
population, the predictive ability was negative (− 0.02) 
for EBV, but addition of genomic information increased 

the predictive ability by up to 0.11 when using the sec-
ond iteration of weights (GEBV2). Although there was an 
increase in predictive ability, the predictive abilities were 
lower than expected for a trait with a heritability between 
0.18 and 0.35. For the TLUM population, the predictive 
ability for EBV and GEBV2 was 0.06 and 0.22, respec-
tively. Both EBV and GEBV were over-dispersed since b1 
was much lower than 1; the largest values were 0.34 and 
0.45 for GEBV1 in the NCCCWA and TLUM popula-
tions, respectively.

When the LR validation method was applied, i.e. the 
complete (G)EBV was used as the benchmark for (G)
EBV in each iteration, the relative increase in accuracy 
from adding phenotypes for selection candidates was 
greater than 0.5 for EBV and greater than 0.78 for GEBV1 
in both populations. Although these values seem to be 
overestimated, they were close to the accuracy based on 
PEV, averaged over fold and replication, which were 0.72 
and 0.77 for the NCCCWA, and 0.74 and 0.81 for the 
TLUM populations, for BLUP and ssGBLUP, respectively. 
Predictive ability and the relative increase in accuracy 
decreased along the iterations of wssGBLUP, whereas 
inflation increased. Similar trends have been described by 
Lourenco et al. [23] as resulting from an excessive shrink-
age of SNP weights over iterations, i.e. SNPs that contrib-
ute some accuracy are disregarded because they receive 

Fig. 2  Additive genetic variance for resistance to columnaris disease in two rainbow trout breeding populations explained by 1-Mb sliding SNP 
windows. The results shown are from iteration 2 of the weighted single-step genome-wide association study (wssGWAS). The year-class 2015 
populations are from the USDA-ARS national center for cool and cold water aquaculture (NCCCWA) and from the Troutlodge, Inc. USA May 
spawning nucleus population (TLUM)
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a near-zero weight. Less inflated (G)EBV were observed 
when the benchmark was complete (G)EBV, compared to 
adjusted phenotypes; values for b1 was 0.74 and 0.65 for 

EBV, and was 0.87 and 0.82 for GEBV1 for the NCCCWA 
and TLUM populations, respectively.

The overall gain in accuracy by using genomic infor-
mation to predict breeding values, based on the LR 

Fig. 3  SNP windows that explained more than 1% of the additive genetic variance for resistance to CD in the year-class 2015 populations of TLUM 
and NCCCWA. Co-localized QTL are marked by a red rectangle

Fig. 4  Predictive ability and inflation for validation using adjusted phenotypes (a), and relative increase in accuracy and inflation for validation using 
the LR method (b) for the NCCCWA population. EBV is from the traditional evaluation; GEBV1, GEBV2, and GEBV3 are genomic EBV from iterations 1 
to 3 of wssGBLUP
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validation, was 37 and 46% for the NCCCWA and TLUM 
populations, respectively. Based on adjusted phenotypes, 
the gains in accuracy were larger than 100%; but the mag-
nitude of the predictive ability was very small and EBV 
were inflated.

Discussion
Differences in survival response to columnaris disease 
challenge
The observed higher survival rate in the CD challenge of 
families from the NCCCWA, compared to the TLUM 
population might be the result of the intensive genetic 
selection for resistance to BCWD applied during the last 
five generations in the NCCCWA breeding population. 
The variance components estimated in our recent study 
[4] indicated that resistance to CD is moderately herit-
able in both populations (heritability estimates of 0.23 in 
NCCCWA and 0.34 in TLUM), and that both populations 
also have a moderate positive genetic correlation between 
resistance to CD and resistance to BCWD (0.39–0.40). 
This suggests that both traits might have been genetically 
improved simultaneously when the NCCCWA popula-
tion was selected for resistance to BCWD. Conversely, 
the TLUM population has been under selective breeding 
pressure for growth, which is likely not genetically cor-
related with bacterial disease resistance in these aquacul-
ture rainbow trout breeding populations [3, 8]. However, 
variation in survival rate exists between consecutive chal-
lenges even when fish from the same genetic background 
are evaluated. The higher F. columnaris immersion dose 
(2.08 × 108 CFU for TLUM versus 1.97 × 107 CFU for 
NCCCWA) might have also contributed to the lower 
survival rate in the TLUM challenge. However, environ-
mental factors that were expected to improve the survival 
rate of TLUM fish included age (older by 12  days) and 
size (bigger) at the start of the disease challenge, and they 

were also reared at a lower density per tank throughout 
the challenge.

Identification of common QTL in two breeding populations
The fact that each population has been under selective 
pressure for different purposes might have contributed to 
the detection of different QTL regions for resistance to 
CD in the two populations. Comparison of the genomic 
distribution and location of SNP windows associated 
with resistance to BCWD in the TLUM 2013 year-class 
from our previous study [24] with the current windows 
that we identified for resistance to CD in the TLUM 
2015 year-class (see Additional file 2: Figure S2), allowed 
us to identify co-localized QTL on Omy 8, which includes 
a major QTL for resistance to BCWD and a moderate 
QTL window for resistance to CD. This supports the 
notion that selection pressure on one trait might also 
impact the co-localized QTL for the other trait, and 
hence selection pressure for resistance to BCWD in pre-
vious generations of the NCCCWA population might 
have affected the allelic distribution of some of the QTL 
for resistance to CD in that population. A similar com-
parison of the genome locations of the QTL for resistance 
to BCWD that were detected among some of the families 
of the founding generation of the NCCCWA population 
[24] with those of the QTL for resistance to CD detected 
in this study after five generations of selective breeding 
for BCWD resistance is shown in Additional file 3: Fig-
ure S3. The two studies share one QTL with a small effect 
on Omy 10, and also two co-localized or neighbouring 
QTL on Omy 8. Interestingly, the two QTL on Omy 8 
are located near the overlapping QTL for resistance to 
BCWD and CD in the TLUM population. However, all 
the other QTL detected for resistance to the two dis-
eases are not shared or co-localized, including the major 
QTL for resistance to BCWD on Omy 25 and to CD on 
Omy 17. Considering that the two bacterial species that 

Fig. 5  Predictive ability and inflation for validation using adjusted phenotypes (a), and relative increase in accuracy and inflation for validation using 
the LR method (b) for the TLUM population. EBV is from the traditional evaluation; GEBV1, GEBV2, and GEBV3 are genomic EBV from iterations 1 to 3 
of wssGBLUP
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cause BCWD and CD are both from the Flavobacterium 
genus, it is likely that a certain proportion of common 
host genes with pleiotropic effects act on the resistance 
to either pathogen, which might explain the co-localized 
QTL and the genetic correlation between resistance to 
these two diseases. However, it is also possible that the 
genetic correlation is caused in part by physical linkage 
of QTL that affect each trait separately, as was previously 
found for resistance to BCWD and spleen size in rainbow 
trout [25, 26].

Fragomeni et  al. [27] showed that the proportion of 
genetic variance explained by windows and the location 
of the windows with the largest effect were not consist-
ent across different generations of the same population of 
a selected commercial broiler line. The fact that the top 
windows are dynamic in populations under selection and 
that the variance explained by the windows is not large, 
suggest that using whole-genome selection instead of 
region-specific selection would be advantageous in those 
populations. When windows that explain a certain pro-
portion of variance are identified, a genome-wide selec-
tion method that prioritizes or assigns different weights 
for such windows can help to improve genomic predic-
tions [28], especially in populations with a relatively small 
number of genotyped animals [23].

It is not surprising that different genome regions are 
found to affect resistance to CD in the two populations 
in this study, because bacterial disease resistance is typi-
cally a multi-factor trait that is controlled by a complex 
inheritance system with multiple genes and alternative 
immunological and physiological pathways, although we 
cannot exclude the possibility that with better sample size 
we would have detected more overlapping QTL between 
the two populations. Of particular interest in this study, 
are the moderate-major QTL identified on Omy 17 for 
resistance to CD in the NCCCWA population and the 
co-localized QTL for resistance to CD and BCWD iden-
tified on Omy 8 in the TLUM population.

Evaluation of the candidate genes for the strongest QTL
We investigated the annotated protein coding genes 
in RefSeq (NCBI genome annotation of predicted pro-
tein coding genes; Accession GCA_002163495.1) 
for the QTL region with the largest effect on resist-
ance to CD in the NCCCWA population on Omy 17 
(59,030,557 bp–59,975,343 bp; Table 2). Overall, 10 cod-
ing genes and one pseudogene were identified in this 
region (see Additional file 4: Table S1), among which only 
semaphorin-3F-like (regulator of T cell precursor migra-
tion and of inflammatory response) might be directly 
implicated in immune response [29, 30]. However, some 
of the other proteins may be involved in other impor-
tant metabolic processes, cell signalling and localisation, 

maintenance of water homeostasis, or protein synthesis; 
and hence cannot be overlooked as potentially involved 
in disease resistance or susceptibility without further 
investigation. Overall, little is known about the actual 
function of those proteins in rainbow trout. In addi-
tion, we cannot rule out the possibility that other neigh-
bouring genes or sequences that are important for gene 
expression regulation and in strong LD with the SNPs in 
that window are the actual causative factor for the strong 
QTL signal in this region of Omy 17. Clearly, further 
investigation that is beyond the scope of this report is 
needed to identify candidate genes for resistance to CD 
from this QTL region.

Comparison of pedigree‑based and genome‑enabled 
breeding value predictions
In our study, the results obtained for predictive ability 
and b1 from the validation using adjusted phenotypes 
showed that this is not an appropriate benchmark for 
binary traits under a threshold model. When this model 
is applied, the breeding values are estimated on a lin-
ear normalized scale, which means that phenotypes or 
adjusted phenotypes are not on the same scale and do not 
follow the same distribution as breeding values, reducing 
the prediction efficiency and increasing bias (i.e., b1 much 
lower than 1). In some other studies [17], the correla-
tion with phenotypes was also divided by the square root 
of heritability ( h ) to bring it to the accuracy scale. This 
can produce values that are outside the parameter space 
(i.e., from 0 to 1). According to Legarra and Reverter 
[31], even after adjusting phenotypes for fixed effects, a 
covariance structure across y− Xb can remain, especially 
when fixed effects are not well estimated, resulting in 
overestimated accuracy after predictive ability is divided 
by h . In addition, when correlations are divided by h to 
obtain accuracy, this accuracy is prone to errors if herit-
ability is not well estimated. Although Yoshida et al. [17] 
reported reasonable values for predictive ability for dis-
ease resistance against Piscirickettsia salmonis in rainbow 
trout under ssGBLUP, b1 was equal to 0.27, which is close 
to what we found and is not acceptable under the BLUP 
assumptions.

One way to circumvent this issue of inappropriate 
benchmark for binary traits could be to compare family 
mid-parent (G)EBV on a probability scale with within-
family survival probability when progeny of validation 
fish or selection candidates are challenged with CD path-
ogens. However, such progeny performance data were 
not available for the current study. Another way would be 
to use complete EBV as benchmark for both partial EBV 
and partial GEBV [32]. However, when the amount of 
information added from partial to complete data is small, 
as in our study, complete EBV will be correlated more to 
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partial EBV than to partial GEBV. A third way is to use 
days to death as a continuous trait instead of a binary 
mortality trait, which would make comparisons between 
adjusted phenotypes and (G)EBV more reasonable [5].

Another way to deal with the different scales between 
phenotypes and (G)EBV is to use an alternative method 
to assess accuracy and bias/inflation of predictions. We 
found that the LR method [18] is a promising approach, 
for binary traits. In the LR approach, both dependent and 
independent variables are on the same scale because both 
are (G)EBV that are estimated by the same method using 
phenotypes. On average, the increase in accuracy from 
adding phenotypes for validation animals were 0.58, 0.80, 
0.73, and 0.70 for EBV, GEBV1, GEBV2, and GEBV3, 
respectively. The fact that this increase was greater for 
GEBV than for EBV, means that the partial data predicted 
the complete data better when genomic information was 
used. As one of the objectives in animal breeding and 
genetics is to find models that better predict breeding 
values and minimize possible changes when phenotypes 
for selection candidates are included, the LR method may 
be a reasonable option because it can measure the ade-
quacy of the models. Legarra and Reverter [18] showed 
that the correlation between complete and partial (G)
EBV is a function of accuracies of predictions and reflects 
the relative increase in accuracy when more phenotypic 
information is added.

Lourenco et  al. [16] reported a small gain of 0.08% in 
predictive ability by including genomic information in 
the evaluation for calving ease, a binary trait, in Ameri-
can Angus. This small gain may be due to the result of 
the small proportion of the genotyped animals hav-
ing difficult calving (failure) and of the predictive ability 
being computed as the correlation between a binary phe-
notype and a normalized estimated breeding value. In a 
study on heat stress in pigs using reaction norm models, 
Fragomeni et  al. [33] reported a higher accuracy when 
the benchmark for partial GEBV was the complete GEBV. 
We observed that inflation and gain in accuracy of pre-
dictions from pedigree-based to genomic evaluations 
can be better assessed when a method is used that allows 
the comparison of dependent and independent variables 
on the same scale. This gain in accuracy of predictions 
was on average 42% in our study, which gives genome-
wide selection a great advantage over traditional pedi-
gree-based selection and encourages the application of 
genomic selection for resistance to CD in rainbow trout 
breeding populations.

In addition to the LR validation applied in this study, 
other methods are available to test model fit when using 
binary data, especially on disease. One method is the 
odds-ratio (OR) of case–control status and the other is 
the area under the receiver operating characteristic curve 

(AUC) [34]. However, the interpretation of results dif-
fers among studies. Lee et al. [34] showed in a simulation 
study that AUC can be used as a measure of model accu-
racy in case–control studies. Using pregnancy status in a 
real beef cattle data, Toghiani et al. [35] also applied AUC 
to evaluate predictive ability of different genomic models. 
The authors pointed that although high values of AUC 
indicate better modelling, this measure is not directly 
comparable to correlations between adjusted phenotypes 
and GEBV.

Selection on common QTL versus genomic selection
The use of common or individual QTL for genome-tar-
geted selection in the two populations investigated in 
this study may not be a promising approach compared 
to the potential of genome-wide selection. We identified 
only one moderate-major effect QTL region on chromo-
some Omy 17 that explains more than 10% of the addi-
tive genetic variation in the NCCCWA population and 
multiple windows with small effects (between 1 and 5%) 
in both populations. Among those, only four regions that 
explain more than 1% of the additive genetic variance 
were common to both populations, which means that a 
limited amount of the genetic variation can be explained 
by SNPs associated with QTL that might be useful for 
genome-target selection. Further validation of the QTL 
for resistance to CD in more generations from each pop-
ulation is under way, and additional genomic investiga-
tion (e.g. genome re-sequencing to discover more SNPs 
in the QTL regions) could be attempted in the future to 
help identify potential CD causative variants for resist-
ance to CD and reduce the list of candidate causative 
genes in the respective QTL regions.

Conclusions
Columnaris disease in rainbow trout has a complex 
polygenic inheritance architecture, since it is controlled 
by several genomic regions that explain a considerable 
amount of the genetic variance (> 1%). The SNP windows 
that we found to be associated with resistance to CD do 
not explain a sufficiently high proportion of genetic vari-
ance for choosing genome-targeted instead of genome-
wide selection (GS). In addition, because of the small 
number of overlapping QTL regions between popula-
tions, QTL information cannot be used for selection 
decisions across populations. Genome-wide selection has 
a greater ability to predict future performance compared 
to pedigree-based selection. Our analyses also show that 
correct evaluation of the potential of genomic selection 
for binary traits requires a proper validation method that 
accounts for differences in scale when threshold models 
are used.
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Additional files

Additional file 1: Figure S1. SNP windows that explained more than 
0.5% of the additive genetic variance for resistance to CD in the year-class 
2015 populations of TLUM and NCCCWA. Co-localized QTL are marked by 
a red rectangle.

Additional file 2: Figure S2. SNP windows that explained more than 
1% of the additive genetic variance for resistance to BCWD in the TLUM 
2013 year-class and CD resistance in the TLUM 2015 year-class. Co-local-
ized QTL are marked by a red rectangle.

Additional file 3: Figure S3. SNP windows that explained more than 1% 
of the additive genetic variance for resistance to BCWD in the NCCCWA 
2005 year-class and CD resistance in the NCCCWA 2015 year-class. Co-
localized QTL are marked by a red oval.

Additional file 4: Table S1. Annotated protein coding genes in RefSeq 
(NCBI genome annotation of predicted protein coding genes; Acces-
sion GCA_002163495.1) found within the QTL region with the largest 
effect on resistance to CD in the NCCCWA population (Chr. Omy 17; 
59,030,557 bp–59,975,343 bp).
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