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SIEGEL MODULAR FORMS OF WEIGHT 13 AND THE LEECH
LATTICE

GAËTAN CHENEVIER AND OLIVIER TAÏBI

Abstract. For g = 8, 12, 16 and 24, there is an alternating g-multilinear form
on the Leech lattice, unique up to scalar, which is invariant by the orthogonal
group of Leech. The harmonic Siegel theta series built from these alternating
forms are Siegel modular cuspforms of weight 13 for Sp2g(Z). We prove that
they are nonzero eigenforms, determine one of their Fourier coefficients, and
give informations about their standard L-functions. These forms are interesting
since, by a recent work of the authors, they are the only nonzero Siegel modular
forms of weight 13 for Sp2n(Z), for any n ≥ 1.

Introduction

Let L be an even unimodular lattice of dimension 24. We know since Conway
and Niemeier that either L has no root, and is isomorphic to the Leech lattice
(denoted Leech below), or L ⊗ R is generated by the roots of L [CS99, Chap.
16]. In the latter case it follows that for any integer g ≥ 1 there is no nonzero
alternating g-form on L which is invariant by its orthogonal group O(L) (see §4).
On the other hand, O(Leech) is Conway’s group Co0 and a computation made in
[Che], using the character χ102 and the power maps given in the ATLAS [CCN+85],
revealed that the average characteristic polynomial of an element of O(Leech) is

(1)
1

|Co0|
∑
γ∈Co0

det(t− γ) = t24 + t16 + t12 + t8 + 1.

It follows that for g in {8, 12, 16, 24}, and only for those values of g ≥ 1, there is
a nonzero alternating g-multilinear form, unique up to a rational scalar,

ωg : Leechg −→ Q

such that ωg(γv1, γv2, . . . , γvg) = ωg(v1, v2, . . . , vg) for all γ ∈ O(Leech) and all
v1, . . . , vg in Leech.

A first natural question is to exhibit concretely these ωg. Of course, we may
choose for ω24 the determinant taken in a Z-basis of Leech: it is indeed O(Leech)-
invariant as we know since Conway [Con69] that any element in O(Leech) has
determinant 1, a non trivial fact. We will explain in §1 a simple and uniform
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construction of ω8, ω12 and ω16. It will appear that it is not an accident that
the numbers 0, 8, 12, 16 and 24 are also the possible length of an element in the
extended binary Golay code.

A second interesting question is to study the Siegel theta series

(2) Fg
def
=

∑
v∈Leechg

ωg(v) q
v·v
2 .

Here v · v abusively denotes the Gram matrix (vi · vj)1≤i,j≤g with v = (v1, . . . , vg),
and qn abusively denotes the the function τ 7→ e 2π iTr(nτ) for τ ∈ Mg(C) in the
Siegel upper-half space. This theta series is a Siegel modular form of weight 13 for
the full Siegel modular group Sp2g(Z), necessarily a cuspform, whose Fourier coef-
ficients are in Q. The first paragraph above even shows that this is an eigenform...
provided it is nonzero ! (see §4).

Among these four forms, only F24 seems to have been studied in the past, by
Freitag, in the last section of [Fre82]. He observed that F24 is indeed a nonzero
eigenform. Indeed, if we choose ω24 as above, and if u ∈ Leech24 is a Z-basis
of Leech with ω24(u) = 1, there are exactly |O(Leech)| vectors v ∈ Leech24 with
v · v = u · u, namely the γu with γ in O(Leech). They all satisfy ω24(v) = 1 since
any element of O(Leech) has determinant 1. It follows that the Fourier coefficient
of F24 in q

u·u
2 is |O(Leech)|, it is thus nonzero.

Nevertheless, the following theorem was recently proved in [CT, Cor. 1 & Prop.
5.12]:

Theorem 1. For g ≥ 1 the space of weight 13 Siegel modular forms for Sp2g(Z)
is 0, or we have g ∈ {8, 12, 16, 24}, it has dimension 1, and is generated by Fg.

The proof given loc. cit. of the non vanishing of the forms Fg is quite indirect.
Using quite sophisticated recent results from the theory of automorphic forms
(Arthur’s classification [Art13], recent description by Arancibia, Moeglin and Re-
nard of certain local Arthur packets [AMR, MR]) we observed the existence of 4
weight 13 Siegel modular eigenforms for Sp2g(Z) of respective genus g = 8, 12, 16
and 24, and with specific standard L-function. The cases g = 16 and g = 24 are
especially delicate, and use recent results of Moeglin and Renard [MR]. Using
works of Böcherer [Bö89], we then checked that they must be linear combinations
of Siegel theta series construction from alternating g-multilinear forms on Niemeier
lattices, hence must be equal to Fg by what we explained above. Our aim here
is to provide a more direct and elementary proof of the non vanishing of the 3
remaining forms Fg, by exhibiting a nonzero Fourier coefficient.

Let F =
∑

n an q
n be a Siegel modular form for Sp2g(Z) of odd weight, and N

an even Euclidean lattice of rank g. If v and v′ in N g are Z-bases of N , with
associated Gram matrices 2n and 2n′, we have an = (det γ) an′ where γ is the
unique element of GL(N) with γ(v) = v′. In particular, the element ±an (a
complex number modulo sign) only depends on the isometry class of N , and will
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be denoted aN(F ) and called the N-th Fourier coefficient of F . For instance, we
have aLeech(F24) = ±|O(Leech)|. We will say that a lattice N is orientable if any
element of O(N) has determinant 1; note that we have aN(F ) = 0 for all non
orientable even lattice N of rank g.

Four orientable rank g even lattices Qg with g in {8, 12, 16, 24} will play an
important role below. The lattice Q24 is simply Leech. The lattice Q12 is the
unique even lattice L of rank 12 without roots with L]/L ' (Z/3Z)6; it is also
known as the Coxeter-Todd lattice [CS99, Ch. 4 §9]. The lattices Q8 and Q16

are the unique even lattices L without roots, of respective rank 8 and 16, with
L]/L ' (Z/5Z)4; the lattice Q8 was known to Maass and is sometimes called the
iscosian lattice [CS99, Ch. 8 §2]. These properties, and other relevant ones for
our purposes, will be reviewed or proved in §2 and §3. An important one is that
there is a unique O(Leech)-orbit of sublattices of Leech isometric to Qg. Our main
result is the following.

Theorem 2. For each g, the Qg-Fourier coefficient of Fg is nonzero. More pre-
cisely, if we normalize ωg as in Definition 1.5, we have

aQg(Fg) = ± ng eg,

where ng is the number of isometric embeddings Qg ↪→ Leech, and with e8 = e16 =
5, e12 = 18 and e24 = 1.

As we will see, the quantity eg has the following conceptual explanation in terms
of the extended binary Golay code G and its automorphism group M24. Write
res Qg ' (Z/pgZ)rg ; then eg is the number of g-element subsets of G containing
the fixed point set of a given element of M24 of shape 124−pgrg p

rg
g (Lemmas 2.3 &

2.4). We will also prove ng = |O(Leech)|/κ24−g, with κg = 1 for g < 12, κ12 = 3
and κ16 = 10. We would like to stress that our proof of Theorem 2 does not rely
on any computer calculation other than the simple summations (1) and (1.1).

Last but not least, we discuss in the last section the standard L-functions of the
eigenforms Fg: see Theorem 4.4. This last part is less elementary than the others,
and relies on [Art13, AMR, Taï19] (but not on [MR]).

We end this introduction by discussing prior works on the determination of the
spaces Mk(Sp2g(Z)) of Siegel modular forms of weight k for Sp2g(Z), and its sub-
space Sk(Sp2g(Z)) of cuspforms, for k < 13. For this purpose, the subspace Θg

n of
Mn(Sp2g(Z)) generated by (classical) Siegel theta series of even unimodular lat-
tices of rank 2n has drawn much attention, starting with Witt’s famous conjecture
dim Θg

8 = 2 ⇔ g ≥ 4, proved by Igusa. The study of Θg
12 has a rich history as

well. Erokhin proved dim Θg
12 = 24 for g ≥ 12 in [Ero79], and Borcherds-Freitag-

Weissauer showed dim Θ11
12 = 23 in [BFW98]. Nebe and Venkov conjectured in

[NV01] that the 11 integers dim Θg
12, for g = 0, . . . , 10, are respectively given by

1, 2, 3, 4, 6, 8, 11, 14, 18, 20 and 22,
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and proved it for g 6= 7, 8, 9. Ikeda used his “lifts” [Ike01, Ike06] to determine the
standard L-functions of 20 of the 24 eigenforms in Θ12

12. The full Nebe-Venkov
conjecture was finally proved by Chenevier-Lannes [CL19], as well as the deter-
mination of the 4 standard L-functions not determined by Ikeda. Moreover, these
authors show Θg

12 = M12(Sp2g(Z)) for all g ≤ 12, as well as Θg
8 = M8(Sp2g(Z))

for all g ≤ 8. Simpler proof of these results, as well as their extension to all g,
were then given in [CT], in which the vanishing of Sk(Sp2g(Z)) is proved for g > k
and k < 13. Let us mention that dimensions and generators of Sk(Sp2g(Z)) with
g ≤ k ≤ 11, as well as standard L-functions of eigenforms, are also given in [CL19]
and [CT], completing previous works of several authors, including Ikeda, Igusa,
Tsuyumine, Poor-Yuen and Duke-Imamoḡlu.

General notations and terminology
Let X be a set. We denote by |X| the cardinality of X and by SX its symmetric
group. Let k be a commutative ring. We denote by k X the free k-module over
X. The elements x of X form a natural k-basis of k X that we will often denote
by νx to avoid confusions. For S ⊂ X we also set νS =

∑
x∈S νx.

If V and W are two k-modules, a quadratic map q : V → W is a map satisfying
q(λv) = λ2q(v) for all λ in k and v in V , and such that V × V → W, (x, y) 7→
q(x+ y)− q(x)− q(y), is k-bilinear (the associated bilinear form).

A quadratic space over k is a k-module V equipped with a quadratic map (usually
k-valued, but not always). Such a space has an isometry group, denoted O(V ),
defined as the subgroup of k-linear automorphisms g of V with q ◦ g = q. If V is
furthermore a free k-module of finite rank, and with k-valued quadratic form, the
determinant of the Gram matrix of its associated bilinear form in any k-basis of
V will be denoted by detV (an element of k× modulo squares).

A linking quadratic space (a qe-module in the terminology of [CL19, Chap. 2]) is
a finite quadratic space over Z whose quadratic form is Q/Z-valued (or “linking”)
and with nondegenerate associated bilinear form. If A is a finite abelian group,
the hyperbolic linking quadratic space over A is H(A) = A ⊕ Hom(A,Q/Z), with
the quadratic form (x, ϕ) 7→ ϕ(x).

Let L be a lattice in the Euclidean space E, with inner product x · y. The dual
lattice of L is the lattice L] = {x ∈ E | x · L ⊂ Z}. Assume L is integral, that is
L ⊂ L]. A root of L is an element α ∈ L with α · α = 2. The roots of L form
a (possibly empty) root system R(L) of type ADE and rank ≤ dimE: see the
beginning of §3 for much more about roots and root systems.

Assume furthermore L is even (that is x · x is in 2Z for all x in L). Then
we view L as a quadratic space over Z for the quadratic form x 7→ x·x

2
, L → Z.

Moreover, the finite abelian group L]/L equipped with its nondegenerate Q/Z-
valued quadratic form x 7→ x·x

2
mod Z is a linking quadratic space denoted resL

and called the residue of L (often also called the discriminant group or the glue
group).
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1. The forms ωg

We fix Ω a set with 24 elements and as well as an extended binary Golay code G
on Ω. This is a 12-dimensional linear subspace of (Z/2Z) Ω that is often convenient
to view as a subset of P(Ω), the set of all subsets of Ω. For any element C of G we
have |C| = 0, 8, 12, 16 or 24. We first recall how to define the Leech lattice using
G, following Conway in [CS99, Ch. 10, §3].

An octad is an 8-element subset of Ω belonging to G. Their most important
property is that any 5 elements of Ω belong to a unique octad; in particular there
are

(
24
5

)
/
(

8
5

)
= 759 octads. We view the 24-dimensional space RΩ as an Euclidean

space with orthonormal (canonical) basis the νi with i in Ω. For S ⊂ Ω, recall that
we set νS =

∑
i∈S νi. Following Conway, the Leech lattice may be defined as the

subgroup of RΩ generated by the 1√
8

2νO with O an octad, and the 1√
8

(νΩ− 4νi)

with i in Ω.
The Mathieu group associated to G is the subgroup of SΩ ' S24 preserving G,

and is simply denoted by M24. It has 48 · 24!/19! = 244823040 elements. It acts
on RΩ (permutation representation), which realizes it a subgroup of O(Leech).
We know since Frobenius the cycle decompositions, and cardinality, of all the
conjugacy classes of M24 acting on Ω [Fro04, p. 12-13]. For the convenience of the
reader they are gathered in Table 1 below, which gives for each cycle shape the
quantity cent = |M24|/card, where card is the number of elements of this shape
in M24.1 This table allows us to compute the average characteristic polynomial of
an element in M24, and we find:

Fact 1.1. The polynomial 1
|M24|

∑
γ∈M24

det(t− γ) is

t24 − t23 − t17 + 2 t16 − t15 − t13 + 2 t12 − t11 − t9 + 2 t8 − t7 − t + 1.

In particular, the space of M24-invariant alternating g-multilinear forms on QΩ
has dimension 2 for g = 8, 12, 16. We will now exhibit concrete generators for the
M24-invariants in each ΛgQΩ. We start with some general preliminary remarks.

1We write this number in the form n/2 in the five cases where there are more than one
conjugacy class of the given shape. In these five cases, there are exactly two conjugacy classes,
each of which containing |M24|/n elements.



6 GAËTAN CHENEVIER AND OLIVIER TAÏBI

shape 18 28 212 16 36 38 24 44 14 22 44 46 14 54 12 22 32 62 64

cent 21504 7680 1080 504 384 128 96 60 24 24

shape 1373 12 2 4 82 22 102 12 112 2 4 6 12 122 1 2 7 14 1 3 5 15 3 21 1 23

cent 42/2 16 20 11 12 12 14/2 15/2 21/2 23/2

Table 1. The cycle shape of the nontrivial elements of M24.

Let G be a group acting on a finite set X. A subset S ⊂ X will be called
G-orientable if the stabilizer GS of S in G acts on S by even permutations. An
orientation of such an S is the choice of a numbering of its elements up to even
permutations, or more formally, an An-orbit of bijections {1, . . . , n}

∼→ S. Consider
the permutation representation of G on QX and fix an integer g ≥ 1. The
dimension of the G-invariant subspace in Λg QX is the number of G-orbits of
G-orientable subsets of X with g elements. Indeed, fix a G-orientable nonempty
subset S of X with |S| = g, choose an orientation s : {1, . . . , g} ∼→ S, and set

(3) βs = s(1) ∧ s(2) ∧ · · · ∧ s(g) and σs =
∑

γ inG/GS

γ βs.

Then σs is a nonzero G-invariant in Λg QX. Both ±βs and ±σs only depend
on S, we denote them respectively by βS and σS. We also set β∅ = σ∅ = 1. It
straightforward to check the following fact:

Fact 1.2. If a group G acts on the finite set X, and if Sg is a set of representatives
for the G-orbits of G-orientable subsets of X with g elements, then the σS with S
in Sg are a Q-basis of the G-invariants in Λg QX.

The following lemma could probably be entirely deduced from Conway’s results
in [CS99, Chap. 10 §2]. We will rather use Facts 1.1 & 1.2 to prove it. Recall
that we identify P(Ω) with (Z/2Z) Ω. In particular for S1, S2 in P(Ω) we have
S1 + S2 = (S1 ∪ S2) r (S1 ∩ S2).

Lemma 1.3. Let S be a subset of Ω. Then S is M24-orientable if, and only if, it
is of the form C +P , with C in G and either |P | ≤ 1, or |P | = 2 and |P ∩C| = 1.

Proof. The elements of G have size 0, 8, 12, 16 or 24. The C + P with C in G and
P a point thus have size 1, 7, 9, 11, 13, 15, 17 or 23, and the C + P with |P | = 2
and |C ∩ P | = 1 have size 8, 12 or 16. If we can show that all of those subsets
are M24-orientable, then Facts 1.1 and 1.2 will not only prove the lemma, but also
that there is a single M24-orbit of subsets of each of these 16 types.

Fix C in G, denote by GC ⊂ M24 its stabilizer and by IC the image of the natural
morphism GC → SC . If we have C = 0 or C = Ω, then C is M24-orientable (M24

is even a simple group). If C is an octad, Conway showed that IC is the full
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alternating group of C, so that octads are M24-orientable. As Ω is M24-orientable,
it follows that complements of octads are M24-orientable as well. If C is a dodecad,
Conway showed that IC is a Mathieu permutation group M12 over C, hence in the
alternating group of C as well (again, it is even a simple group), so that dodecads
are M24-orientable.

Fix furthermore a subset P of Ω, assuming first |P | ≤ 3, and consider the subset
C + P in P(Ω). If γ in M24 preserves C + P , we have

C + γ(C) = P + γ(P ).

The left-hand side is an element in G, hence so is P + γ(P ). But this last subset
has at most 6 elements, hence must be 0. It follows that the stabilizer of C + P
is the subgroup of GC stabilizing P . If we assume furthermore either |P | = 1, or
|P | = 2 and |P ∩ C| = 1, we deduce that the M24-orientability of C implies that
of C + P , and we are done. �

The code G itself also embeds in O(RΩ) by letting the element S of G act on
νi by −1 if i is in S, 1 otherwise. As shown by Conway [CS99, Chap. 10, §3,
Thm. 26], this is also a subgroup of O(Leech), obviously normalized by M24. The
subgroup of O(Leech) generated by G and M24 is denoted by N or 212M24 by
Conway. It will play a role in the proof of the following proposition.

Proposition 1.4. For all g in {0, 8, 12, 16, 24}, the line of O(Leech)-invariants in
ΛgLeech⊗Q is generated by σC, where C is any element of G with |C| = g.

Proof. Fix g ≥ 0 and set Vg = ΛgQΩ. We have the trivial inclusions

V O(Leech)
g ⊂ V N

g ⊂ V M24
g ,

the dimension of the left-hand side being given by (1), and that of the right-hand
side by Fact 1.1. We will show that V N

g is non-zero only for g in {0, 8, 12, 16, 24},
and that in theses cases V N

g is generated by σC for C ∈ G with |C| = g (recall
from the proof of Lemma 1.3 that M24 acts transitively on the set of such C’s).
Let S be an M24-orientable subset of Ω of the form S = C+P as in the statement
of Lemma 1.3. If Conway’s group N fixes σS, then the element βS in (3) has
to be fixed by the action of C. By definition, this element of G acts on βS by
multiplication by (−1)|S∩C|, so we must have |S ∩ C| ≡ 0 mod 2, hence P = 0 or
|P | = 1 and P ∩ C = ∅. In the latter case, the element C ′ = Ω r C of G contains
P , so it maps βS to −βS and the basis σS of V M24

g is not fixed by N . We have
proved dimV N

g ≤ 1 for g in {0, 8, 12, 16, 24}, and V N
g = 0 otherwise. Fix now C

in G and set g = |C|. For all C ′ in G we have |C ∩C ′| ≡ 0 mod 2. This shows that
N acts trivially on σC : we have proved V N

g = QσC . �

The inner product Leech × Leech → Z, (x, y) 7→ x · y, induces for each integer
g ≥ 0 an O(Leech)-equivariant isomorphism ΛgLeech ⊗ Q ∼→ Hom(ΛgLeech,Q).
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This isomorphism sends the element v1∧v2∧· · ·∧vg, with vi in Leech for all i, to the
alternating g-multilinear form on Leech defined by (x1, . . . , xg) 7→ det(xi ·vj)1≤i,j≤g.

Definition 1.5. The element σC, where C is any element of G with |C| = g,
viewed as above as an alternating g-multilinear form on Leech, will be denoted by
ωg. It is well defined up to a sign, nonzero, and O(Leech)-invariant.

Note that by definition, we have ω0 = 1, and ±ω24 is the determinant taken in
the canonical basis νi of QΩ, or equivalently, in a Z-basis of Leech as the latter is
unimodular.

For the sake of completeness, we end this section with the determination of
the ring structure of the O(Leech)-invariants in the exterior algebra Λ Leech⊗Q.
Denote by mg the number of g-element subsets of G. We have m0 = m24 = 1,
m8 = m16 = 759 and m12 = 212 − 2 − 2 · 759 = 2576. Let us simply write σg for
the element ±σC with C in G and |C| = g.

Proposition 1.6. We have σ8 ∧ σ8 = ± 30σ16 and σg ∧ σ24−g = ±mg σ24 for
all g in {0, 8, 12, 16, 24}.

Proof. Fix C ⊂ Ω of size g, denote by C ′ its complement, and fix c and c′ respective
orientations of C and C ′. The stabilizers of C and C ′ in M24 coincide, call them
G. We have σC ∧σC′ = ±

∑
γ,γ′ in M24/G

γ(βc)∧ γ′(βc′). An element in this sum is
nonzero if, and only if, we have γ(C) ∩ γ′(C ′) = ∅, or equivalently γ′(C) = γ(C),
i.e. γ = γ′. We conclude the second assertion by the M24-orientability of Ω and
the equality |M24/G| = mg.

We now determine σ8 ∧ σ8. Let T be the set of triples (O1, O2, O3) where the
Oi are octads satisfying O1

∐
O2

∐
O3 = Ω (ordered trios). By [CS99, Chap.

10, §2, Thm. 18], M24 acts transitively on T and we have |T | = 30 m8. Fix
(O1, O2, O3) in T , an orientation oi of each Oi, and denote by Si the stabilizer
of Oi in M24. As octads are M24-orientable, for any γ1, γ2, γ3 in M24 the element
t(γ1, γ2, γ3) = γ1βo1 ∧ γ2βo2 ∧ γ3βo3 only depends on the γi modulo Si. We have

(4) σo1 ∧ σo2 ∧ σo3 =
∑

γi∈M24/Si

t(γ1, γ2, γ3).

Observe that t(γ1, γ2, γ3) is nonzero if and only if the three octads γ1(O1), γ2(O2)
and γ3(O3) are disjoint, in which case we have t(γ1, γ2, γ3) = ±t(1, 1, 1) = ±σ24.
There are thus exactly |T | nonzero terms t(γ1, γ2, γ3) in the sum (4). Fix such a
nonzero term. The transitivity of M24 on T shows the existence of γ in M24 with
γγi ∈ Si for each i. As Ω is M24-orientable, we have

t(γ1, γ2, γ3) = γt(γ1, γ2, γ3) = t(γγ1, γγ2, γγ3) = t(1, 1, 1).

(“the sign is always +1”). We have proved σ8 ∧ σ8 ∧ σ8 = ± |T |σ24. As σ8 ∧ σ8

must be a multiple of σ16, we conclude by the identity σ8 ∧ σ16 = ±m8 σ24. �
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2. Fixed point lattices of some prime order elements in M24

We keep the notations of §1, and fix an element c in M24 of order p, with p an
odd prime. We are interested in the fixed points lattice

Q = {v ∈ Leech | cv = v},
and in its orthogonal Q⊥ in Leech. Let F ⊂ Ω the subset of fixed points of c and
Z ⊂ P(Ω) the set of supports of its p-cycles. We have a + p b = 24 with a = |F |,
b = |Z|, and b ≥ 1. Those lattices are special cases of those considered in [HL90].

We denote by In ⊗ Z/pZ the linking quadratic space (Z/pZ)n equipped with
1
p
Z/Z-valued quadratic form 1

p

∑n
i=1 x

2
i . If V is a quadratic space, we denote by

−V the quadratic space with same underlying group but opposite quadratic form.

Lemma 2.1. The lattices Q and Q⊥ are even, without roots, of respective ranks
a+ b and (p− 1)b, and we have resQ ' Ib ⊗ Z/pZ and resQ⊥ ' − resQ.

Proof. It is clear that Q and Q⊥ are even and without roots, as so is Leech. We also
have pLeech ⊂ Q⊕Q⊥ because of the identity 1+c+c2+· · ·+cp−1 ∈ p+(c−1)Z[c].
As Leech is unimodular and p is odd, we deduce that both detQ and detQ⊥ are
odd. It is thus enough to prove both assertions about resQ and resQ⊥ after
inverting 2. As Ω is the disjoint union of 3 octads, note that the 24 elements

√
2 νi

with i ∈ Ω form an orthogonal Z[1
2
]-basis of Leech[1

2
].

On the one hand, this implies that the a elements
√

2 νi with i ∈ F , and the
b elements

√
2 νZ with Z ∈ Z, form an orthogonal Z[1

2
]-basis of Q[1

2
]. For the

quadratic form q(x) = x·x
2

and S ⊂ Ω, we have q(
√

2 νS) = |S|: we have proved
the assertion about resQ.

On the other hand, this also shows that Q⊥[1
2
] is the submodule of Leech[1

2
]

consisting of the
∑

i∈ΩrF xi
√

2 νi with xi ∈ Z[1
2
] satisfying

∑
i∈Z xi = 0 for any Z

in Z. In other words 1√
2
Q⊥[1

2
] is isomorphic to the root lattice Ap−1

b over Z[1
2
]. It

follows that resQ⊥[1
2
] is isomorphic to −(Ib⊗Z/pZ). (See also [CL19, Prop. B.2.2

(d)] for a more conceptual proof of resQ⊥ ' − resQ). �

By Table 1, there are 8 conjugacy classes of elements of odd prime order in
M24, with respective shape 38, 16 36, 14 54, 13 73 (two classes), 12 112 and 1 23 (two
classes). For our applications we are looking for cases 1a pb with a+b in {8, 12, 16}
and Q orientable. Only the first three conjugacy classes just listed meet the first
condition, and the class with shape 38 does not meet the second. Indeed, in this
case, the description above of Q[1

2
] shows x·x ≡ 0 mod 3 for all x ∈ Q. This implies

that 1√
3
Q is an even unimodular lattice of rank 8, necessarily isomorphic to E8,

hence non orientable. In §3, we will check that the lattice Q is actually orientable
for the two remaining classes 16 36 and 1454, and has the following properties:

Proposition 2.2. Let g be 8, 12 or 16. Up to isometry, there is a unique even
lattice Qg of rank g without roots and with residue isomorphic to I4 ⊗ Z/5Z (case
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g = 8, 16) or to I6 ⊗ Z/3Z (g = 12). The lattice Qg is orientable, and there is a
unique O(Leech)-orbit of sublattices of Leech isometric to Qg.

In the remaining part of this section we explain how to deduce Theorem 2 from
Proposition 2.2 (this proposition will only be used at the end, and not in the proof
of the two following lemmas).

Recall that a dodecad is an element of G with 12 elements. Moreover, a subset
S ⊂ Ω with |S| = 4 (resp. |S| = 6) is called a tetrad (resp. an hexad). Following
Conway, we will also say that an hexad is special if it is contained in an octad, and
umbral otherwise. The umbral hexads are obtained as follows: choose 5 points in
an octad and 1 in its complement.

Lemma 2.3. (i) A tetrad T is contained in exactly 5 octads.
(ii) If γ in M24 is an element of order 5 whose set of fixed points is a tetrad T ,

then the 5 octads containing T are permuted transitively by γ, and each of
them intersects each orbit of γ at exactly one point.

(iii) An umbral hexad U is contained in exactly 18 dodecads; these 18 dodecads
are permuted transitively by the stabilizer of U in M24.

(iv) Let γ in M24 be an element of order 3 with 6 fixed points. The set U of fixed
points of γ is an umbral hexad, and each dodecad containing U intersects
each orbit of γ at exactly one point. Moreover, the stabilizer GU of U
in M24 coincides with the normalizer of 〈γ〉 in M24, and the natural map
GU → SU is surjective with kernel 〈γ〉.

Most of these statements are certainly well-known. We will explain how to
deduce them from the exposition of Conway in [CS99, Chap. 10 §2].

Proof. Proof of (i). Recall that any 5-element subset of Ω is contained in a unique
octad. This shows that if T is a tetrad, its complement is the disjoint union of
5 other tetrads Ti, uniquely determined by the property that T ∪ Ti is an octad
for each i (these six tetrads, namely T and the Ti, form a sextet in the sense of
Conway).

Proof of (ii). The element γ permutes the five Ti above since we have γ(T ) = T .
Assume there is some i, some x in Ti, and k in (Z/5Z)×, with γk(x) ∈ Ti. Then
γk(T ∪ Ti) is the unique octad containing T ∪ γk(x), hence equals T ∪ Ti, and so
we have γk(Ti) = Ti. But this implies |Ti| ≥ 5: a contradiction.

Proof of the first assertion of (iii). Conway shows loc. cit. that M24 acts
transitively on the octads, on the dodecads, and 6+1 transitively on an octad and
its complement, hence transitively on the umbral (resp. special) hexads as well.
There are thus 759 ·

(
8
6

)
= 21252 special hexads in Ω, and

(
24
6

)
− 21252 = 113344

umbral hexads. There are also 212 − 2− 2 · 759 = 2576 dodecads. Fix a dodecad
D. For any octad O, we have |D + O| ∈ {0, 8, 12, 16, 24} since D + O is in G,
and |D + O| = 20 − 2|D ∩ O|, so |D ∩ O| is in {2, 4, 6}. Therefore the octad



SIEGEL MODULAR FORMS OF WEIGHT 13 AND THE LEECH LATTICE 11

O containing any given 5-element subset of D has the property that O ∩ D is a
special hexad. In other words, any 5-element subset of D is contained in a unique
special hexad included in D. It follows that there are

(
12
5

)
/6 = 132 special hexads

in D, hence
(

12
6

)
− 132 = 792 umbral hexads. By counting in two ways the pairs

(U,D) with U a umbral hexad, D a dodecad, and U ⊂ D, we obtain that there are
792 · 2576/113344 = 18 dodecads containing a given umbral hexad, as asserted.

In order to prove the second assertion in (iii), we show that the pairs (U,D) as
above are permuted transitively by M24. Fix a dodecad D. It is enough to show
that the stabilizer H of D in M24 permutes transitively the umbral hexads of D.
But H is a Mathieu group M12 and is sharply 5 transitive on D by Conway. In
particular, H permutes transitively the special hexads of D. Fix S ⊂ D a special
hexad and denote by S ′ its complement in D. The stabilizer HS of S in H acts
faithfully both on S and S ′, and 5 transitively on S, by the sharp 5 transitivity
of H on D. The two projections of the natural morphism HS → SS × SS′ are
thus injective, and the first one is surjective: they are both bijective. (This is of
course compatible with the equality |M12|/132 = 720.) By numbering S and S ′,
we obtain two isomorphisms HS

∼→ S6. We claim that they differ by an outer
automorphism of S6. Indeed, an element of M24 of order two with at least 1 fixed
point on Ω has actually 8 fixed points by Table 1, which must form an octad (see
the beginning of §2.2 in [CS99, Ch. 10]). The group HS contains an element of
order 2 with 4 fixed points in S, but its 4 remaining fixed points cannot lie in D
because no octad is contained in D. This proves the claim. It follows that the
stabilizer in HS of a point P of S (isomorphic to S5) acts transitively on S ′, hence
on the set of umbral hexads in D containing SrP . Together with the fact that H
acts 5 transitively on D, this shows that H acts transitively on the umbral hexads
in D.

Proof of (iv). If O is an octad containing U , necessarily unique, we have
γ(O) = O, and so γ stabilizes the two-element set O r U without fixed point:
a contradiction. So U is an umbral hexad. For any u in U , there is a unique octad
Ou containing U r {u}. The six Ou, and the six 3-element sets Zu = Ou r U are
thus preserved by any element of M24 fixing U pointwise. In particular, the Zu
are the supports of the 3-cycles of γ. The assertion about dodecads follows as we
already explained in the proof of (iii) that any octad O containing five points of
a dodecad D satisfies |O ∩ D| = 6. This also shows that the pointwise stabilizer
of U in M24 is 〈γ〉: a non trivial element of M24 with at least 7 fixed points has
shape 18 28 by Table 1, and as recalled above the set of its fixed points is an octad.
Let now GU be the stabilizer of U in M24, and H the normalizer of 〈γ〉. We have
H ⊂ GU . We know that GU has |M24|/113344 = 2160 elements. Table 1 also
shows that the centralizer of γ has 1080 elements, and that its normalizer contains
an element sending γ to γ−1, so we have H = GU . We have seen that the kernel of
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GU → SU is 〈γ〉, and we conclude that this morphism is surjective by the equality
2160/3 = 6!. �

Lemma 2.4. (i) Assume c has shape 14 54, so that Q and Q⊥ have respective
ranks 8 and 16, and fix v ∈ Q8 and u ∈ (Q⊥)16 two Z-bases of these
respective lattices. Then we have ω8(v) = ±5 and ω16(u) = ±5.

(ii) Assume c has shape 16 36, so that Q has rank 12, and fix v ∈ Q12 a Z-basis
of Q. Then we have ω12(v) = ±18.

Proof. We first show ω8(v) = ±5 in (i) and ω12(v) = ±18 in (ii). If v′ = (v′1, . . . , v
′
g)

is any Q-basis of Q ⊗ Q, we have ωg(v′) = detv(v
′)ωg(v), and | detv(v

′)| is the
covolume of the lattice

∑
i Zv′i divided by the covolume of Q (that is, by 25 or 27).

Fix from now on a basis v′ made of the
√

2 νi with i in F , and the
√

2 νZ with Z
in Z. We have detv(v

′) = ± 2g/2, so we need to prove that 2−g/2 ωg(v
′) is ±5 in

the case g = 8, and ±18 in the case g = 12.
By Definition 1.5, ωg(v′) is a sum of terms of the form det (v′i · xj)1≤i,j≤g where
{x1, . . . , xg} runs over all the possible elements C of G of size g, numbered in
an M24-equivariant way. For such a determinant to be nonzero, each linear form
v 7→ v ·xi has to be nonzero on Q: the subset C has thus to contain all the elements
of F , and a point in each Z in Z. In other words, such a C has to meet each of
the g orbits of c in exactly one point. Denote by C(c) the set of elements of G of
size g with this property. For all C = {x1, . . . , xg} in C(c) we have

(5) det (v′i · xj)1≤i,j≤g = ± 2g/2.

By Lemma 2.3 (ii) and (iv), the set C(c) consists of 5 octads (resp. 18 dodecads)
if c has shape 14 54 (resp. 16 36), and the normalizer G of 〈c〉 in M24 permutes C(c)
transitively. If we fix C = {x1, . . . , xg} in C(c), we may thus find a |C(c)|-element
subset Γ ⊂ G with

ωg(v
′) = ±

∑
γ∈Γ

det (v′i · γ xj)1≤i,j≤g.

We claim that the |Γ| determinants above are equal. This will show ωg(v
′) =

±|S(c)|2g/2 by (5). For any γ ∈ G we have

det (v′i · γxj)1≤i,j≤g = det (γ−1v′i · xj)1≤i,j≤g = det γ−1
|Q det (v′i · xj)1≤i,j≤g.

As Q is orientable by Lemma 2.1 and Proposition 2.2, we have det γ|Q = 1, and
we are done. We may actually avoid the use of these lemma and proposition as
follows. If c has shape 14 54, we may choose Γ = 〈c〉 by Lemma 2.3 (ii), and we
clearly have γ|Q = id. If c has shape 16 36, the proof of Lemma 2.3 (iv) defines a
natural G-equivariant bijection u 7→ Zu between U and Z. For any γ ∈ G we have
thus det γ|Q = ε2 = 1, where ε is the signature of the image of γ in SU .

We now prove ω16(u) = ±5 in (i). Observe first that for any oriented octad
(O, o), there is a sign ε such that for all u′1, . . . , u′16 in QΩ we have
(6) ω16(u′1, . . . , u

′
16) = ε ω24(σo ∧ u′1 ∧ u′2 ∧ · · · ∧ u′16).
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Indeed, the alternating 16-form on the right is O(Leech)-invariant, as both σo and
ω24 are, so it is proportional to ω16. But if {u′1, . . . , u′16} is a 16-element subset of
G, both sides are equal to ±1, and we are done.

Choose a basis u′ of Q⊥⊗Q made of 16 elements of the form
√

2 (νi−νc(i)) with i
in ΩrF =

⊔
Z∈Z Z (i.e. choose 4 elements i in each Z ∈ Z). Comparing covolumes

as in the first case of the proof, we have to show ω16(u′) = ±5 · 28. Apply Formula
(6) to u′ = (u′1, . . . , u

′
16). If γ(O) is an octad such that γ(βO) ∧ u′1 ∧ u′2 ∧ · · · ∧ u′16

is nonzero, that octad meets at most once each Z in Z. We have |Z| = |F | = 4
and |O| = 8, so γ(O) must meet each Z of Z in one point and contain F . By
Lemma 2.3 (i) and (ii), there are 5 such octads, permuted transitively by c. We
may choose O to be one of them. We then have

ω16(u′1, . . . , u
′
16) = ε

∑
k in Z/5Z

ω24(ckβo ∧ u′1 ∧ u′2 ∧ · · · ∧ u′16).

Now c preserves Q⊥ and has determinant 1 on it (being of order 5), so we have
u′1 ∧ · · · ∧ u′16 = ck(u′1 ∧ · · · ∧ u′16) and the sum above is 5 times ω24(βo ∧ u′1 ∧
u′2 ∧ · · · ∧ u′16) by c-invariance of ω24. An easy computation shows that we have
ω24(βo ∧ u′1 ∧ u′2 ∧ · · · ∧ u′16) = ± 28. �

We are now able to prove Theorem 2, assuming Proposition 2.2.

Proof. (Proposition 2.2 implies Theorem 2) Let Lg be the set of sublattices of
Leech isometric to Qg. This set is nonempty by Lemma 2.1 and we fix one of its
elements, that we denote Qg. By Proposition 2.2, O(Leech) acts transitively on
Lg, so we may find an ng-element subset Γ ⊂ O(Leech) with Lg = Γ ·Qg.

Fix a Z-basis u1, . . . , ug of Qg, and denote by 2n its Gram matrix. The n-th
Fourier coefficient of Fg is the sum, over all the g-uples (v1, . . . , vg) of elements of
Leech with 2n = (vi ·vj)1≤i,j≤g, of ωg(v1, . . . , vg). There are exactly ng|O(Qg)| such
g-tuples, namely the (γγ′u1, . . . , γγ

′ug) with γ ∈ Γ and γ′ ∈ O(Qg). The O(Leech)-
invariance of ωg, the trivial equality ωg(γ′u1, . . . , γ

′ug) = (det γ′)ωg(u1, . . . , ug) for
γ′ in O(Qg), and the property det γ′ = 1 (as Qg is orientable), imply that the
n-th Fourier coefficient of Fg is ng|O(Qg)|ωg(u1, . . . , ug). We conclude by Lemma
2.4. �

3. Properties of the lattices Qg

The aim of this section is to prove Proposition 2.2. We make first some prelim-
inary remarks about root lattices and their sublattices.

Let R be a root system in the Euclidean space V . We will follow Bourbaki’s
definitions and notations in [Bou68, Chap. VI] and assume furthermore that we
have α · α = 2 for all α in R. In particular, each irreducible component of R is of
type Al (l ≥ 1), Dl (l ≥ 3) or El (l = 6, 7, 8), and R is identified to its dual root
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system, with α∨ = α for all roots α. We denote by Q(R) the even lattice of V
generated by R and by P(R) the dual lattice Q(R)], so that we have

res Q(R) = P(R)/Q(R).

It is well known that the trivial inclusion R ⊂ R(Q(R)) is an equality. We will
simply denote by Al, Dl and El for Q(R) when R is Al, Dl or El respectively.
The Weyl group of R will be denoted by W(R), and the orthogonal group of Q(R)
by A(R). The group W(R) is the subgroup of A(R) generated by the orthogonal
symmetries sα(x) = x − (α · x)α with α ∈ R, hence acts trivially on res Q(R). It
permutes simply transitively the positive root systems R+ of R. Fix such an R+,
and denote by {αi | i ∈ I} its simple roots. The αi form a Z-basis of Q(R), whose
dual basis $i (the fundamental weights) is thus a Z-basis of P(R). The Weyl vector
ρ associated to R+ is the half-sum of elements of R+, it satisfies ρ =

∑
i∈I $i.

Assume now R is irreducible of rank dimV = |I| = l; we will always identify
the set I with {1, . . . , l} as in Bourbaki. The highest positive root is the unique
element α̃ in R+ satisfying α · $i ≤ α̃ · $i for all i in I and α in R. There are
unique integers ni > 0 for i = 1, . . . , l with α̃ =

∑l
i=1 niαi. Let h(R) be the

Coxeter number of R [Bou68, Chap. V & VI], for h = h(R) we have

(7) |R| = l h, n1 + n2 + . . . + nl = h− 1 and ρ · ρ =
l

12
h (h+ 1).

Indeed, the first equality is [Bou68, Chap. V §6 Thm. 1] and the second is
[Bou68, Chap. VI §1 Prop. 31] (see also [Kos59, Theorem 8.4]). The last equality
may either be checked case by case, using the ADE classification, or deduced from
[Kos59]. 2 Recall h(Al) = l + 1, h(Dl) = 2l − 2, h(E6) = 12, h(E7) = 18 and
h(E8) = 30. Following Borel-de Siebenthal and Dynkin, the sublattice

BSi(R) = {x ∈ Q(R) |x ·$i ≡ 0 mod ni}
is the root lattice Q(Ri) where Ri is the root system of V having as a set of
simple roots −α̃ and the αj with j 6= i [Bou68, Chap. VI, §4, Exercise 4]. The
Dynkin diagram of Ri is thus obtained by removing αi from the extended Dynkin
diagram of R. We clearly have W(Ri) ⊂ W(R). The fundamental weights of Ri

with respect to the simple roots above are − 1
ni
$i and the $j − nj

ni
$i for j 6= i; in

particular, the corresponding Weyl vector of Ri is ρ− h
ni
$i.

2We may argue as follows. Recall that the height of the positive root α ∈ R+ is ht(α) = ρ ·α.
We thus have 2 ρ·ρ =

∑
α∈R+

ht(α). By Bourbaki’s theory of the canonical bilinear form [Bou68,
Ch. VI §1.12] we also have h(R)ρ · ρ =

∑
α∈R+

ht(α)2 as R is of type ADE. Let Exp(R) be
the set of exponents of R [Bou68, Ch. V §6 Déf. 2]. By Kostant loc. cit., we have for any map
f : Z≥1 → R the identity

∑
α∈R+

f(ht(α)) =
∑
m∈Exp(R) F (m) with F (m) =

∑m
u=1 f(u) (see

[CL19, p. 82]). We apply this to f(x) = x and f(x) = x2. And using the involution m 7→ h−m
of Exp(R) [Bou68, Ch. V §6.2], we obtain two linear relations between ρ · ρ and

∑
m∈Exp(R)m

2.
Inverting the system gives the result.
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Observe that for any integer p ≥ 1, we have an A(R)-equivariant isomorphism

P(R)⊗ Z/pZ ∼−→ Hom(Q(R),Z/pZ)

ξ 7−→ (x 7→ ξ · x mod p).

Assertion (ii) and (iii) below are Propositions 3.4.1.2 and 3.2.4.8 in [CL19] (see
also [Kos59]).

Lemma 3.1. Let R be an irreducible root system, h = h(R), and p ≥ 1 an integer.

(i) Each W(R)-orbit in P(R)/pQ(R) admits a unique representative of the
form

∑
imi$i with mi ≥ 0 for all i and

∑
imini ≤ p.

(ii) The kernel of any linear form Q(R) → Z/pZ with p < h contains some
element of R.

(iii) There is a unique W(R)-orbit of linear forms Q(R)→ Z/hZ whose kernel
does not contain any root, namely the orbit of the form x 7→ ρ · x mod h.

Proof. The set Π of v ∈ V with v · αi ≥ 0 for all i, and with v · α̃ ≤ 1, is a
fundamental domain for the affine Weyl group Waff(R) = Q(R)oW(R) acting on
V [Bou68, Chap. VI §2]. For any ξ in P(R), the Waff(R)-orbit of 1

p
ξ meets thus

Π in a unique element: this proves (i). Any linear form ϕ : Q(R)→ Z/pZ may be
written ϕ(x) = ξ · x mod p for some ξ ∈ P(R)/pQ(R). Replacing ϕ by w(ϕ) for
some w ∈W(R) we may assume ξ has the form

∑
imi$i with the mi as in (i). If

the kernel of ϕ contain neither the αi nor α̃, we must have mi > 0 for all i and∑
imini < p, and thus h− 1 =

∑
i ni ≤

∑
imini < p. This proves (ii). In the case

p = h this inequality implies mi = 1 for each i, hence ξ =
∑

i$i = ρ. For any
positive root α in R we have 0 < α · ρ ≤ α̃ · ρ = h− 1. As we have R = R(Q(R)),
this shows (iii). �

A root system R is called equi-Coxeter if its irreducible components all have the
same Coxeter number, called the Coxeter number of R, and denoted by h(R).

Corollary 3.2. Let R be an equi-Coxeter root system of rank l and Coxeter number
h. Then assertion (iii) of Lemma 3.1 holds and there is a unique W(R)-orbit of
sublattices L ⊂ Q(R) with no root and Q(R)/L ' Z/hZ. These lattices are of
the form {x ∈ Q(R) | x · ρ ≡ 0 mod h} for a Weyl vector ρ for R. Assuming
furthermore ρ ∈ Q(R), h odd and l(h + 1) ≡ 0 mod 12, they satisfy resL '
H(Z/hZ)⊥ res Q(R).

Proof. The first assertion is a trivial consequence of (iii) of Lemma 3.1 and
of ρ · α = 1 for a simple root α of R. The identity ρ · ρ = l h(h + 1)/12 (a
consequence of (7)) shows that ρ is a nonzero isotropic vector in Q(R)⊗Z/hZ, so
the last assertion follows from the general Lemma 3.16 below. �
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We have res An ' Z/(n + 1)Z with q(1) ≡ n
2(n+1)

mod Z, res E6 ' −res A2,
res E8 = 0. As −1 is a square modulo 5, Corollary (3.2) implies:

Corollary-Definition 3.3. Let R be either 2A4 or 3A2, and set p = h(R)
(either 5 or 3) and g = rankR (either 8 or 6). Define Qg as the sublattice of
Q(R) whose elements x satisfy x · ρ ≡ 0 mod p, for a fixed Weyl vector ρ in Q(R).
Then Qg is an even lattice, without roots, satisfying res Qg ' res Eg ⊕ H(Z/pZ)2.

Proposition 3.4. Assume either p = 5 and E is the root lattice E8, or p = 3 and
E is the root lattice E6. Up to isometry, there is a unique triple of even lattices
(A,B,C) with A ⊂ B ⊂ C, both inclusions of index p, C ' E and R(A) = ∅.

Proof. Set R = R(E), so that we have E = Q(R). We have to show that there is
a unique W(R)-orbit of index p subgroups B ⊂ E such that B possesses an index
p subgroup without roots, and that for such a B there is a unique O(B) ∩ O(E)-
orbit of index p subgroups of B without roots. We claim (provocatively) that
both properties follow at once from Lemma 3.1 and an inspection of the extended
Dynkin diagrams of E8 and E6 drawn below:

2

3

4 6 5 4 3 2

−α̃α1

α2

α3 α4 α5 α6 α7 α8

1

2

2 3 2 1

−α̃

α1

α2

α3 α4 α5 α6

(Each simple root αi is labelled with the integer ni.) Indeed, assume for instance
R ' E8 and p = 5 = n5. Note that the irreducible root systems with Coxeter
number ≤ 5 are the Al with 1 ≤ l ≤ 4, so by assertion (ii) of the lemma, the
irreducible components of R(B) must have this form. On the other hand, assertion
(i) asserts that for a suitable choice of a positive system of R the lattice B is the
kernel of x 7→ ξ · x mod 5 with ξ =

∑
imi$i and

∑
imini ≤ 5. Consider the set

J = { j | mj 6= 0}.

We must have |J | ≤ 2 (note ni ≥ 2 for all i) and αj ∈ R(B) for j /∈ J . An
inspection of the Dynkin diagram of E8 shows that in the case |J | = 2, we have
J ⊂ {1, 2, 7, 8} and {2, 7} 6⊂ J , and R(B) contains an irreducible root system of
rank 5: a contradiction. So we have |J | = 1 and J 6= {4}. But this clearly implies
J = {5} and ξ = ω5 by another inspection of this diagram. So B is the Borel-de
Siebenthal lattice BS5(R) = Q(R5), and is isomorphic to the root lattice A4⊕A4.
Note that we have h(A4) = 5 = p. By the last assertion of Lemma 3.1 applied to
R5, there is a unique W(R5)-orbit of index 5 sublattices of Q(R5) without root.
As we have W(R5) ⊂ W(R), this concludes the proof in the case R ' E8. The
case R ' E6 is entirely similar. �



SIEGEL MODULAR FORMS OF WEIGHT 13 AND THE LEECH LATTICE 17

Proposition 3.5. Let (g, p,m) be either (8, 5, 4) or (6, 3, 5). Up to isometry, Qg

is the unique even lattice of rank g without roots satisfying Q]
g/Qg ' (Z/pZ)m.

Moreover, O(Qg) permutes transitively the totally isotropic planes (resp. lines,
resp. flags) of res Qg. The inverse image in Q]

g of such an isotropic plane (resp.
line) is isometric to Eg (resp. to A4 ⊕ A4 for g = 8, to A2 ⊕ A2 ⊕ A2 for g = 6).

In the statement above, by a totally isotropic flag of res Qg we mean a pair
(D,P ) with D a line and P a totally isotropic plane containing D.

Proof. Let A be an even lattice of rank g with A]/A ' (Z/pZ)m. The isomorphism
class of anm-dimensional linking quadratic space V over Z/pZ is determined by its
Gauss sum γ(V ) = |V |−1/2

∑
v∈V e

2πi q(v). The Milgram formula [MH73, Appendix
4] asserts γ(resA) = e

2πig
8 = γ(res Qg) and proves resA ' res Qg.

The even lattices L containing A with index pi are in natural bijection with
the totally isotropic subspaces of dimension i over Z/pZ inside resA, via the map
L 7→ L/A. We have already proved resA ' H(Z/pZ)2 ⊕ res Eg. By Witt’s
theorem, any isotropic line (or plane) is thus part of a totally isotropic flag of resA.
By Proposition 3.4, it only remains to show that any even lattice L containing A
with dimZ/pZ L/A = 2 is isometric to Eg. But such an L has determinant 1 in the
case g = 8, and determinant 3 otherwise. As is well known, this shows L ' E8 in
the first case, and L ' E6 in the second (use e.g. that such a lattice must be the
orthogonal of an A2 embedded in E8). �

This proposition implies in particular that the fixed point lattice Q considered
in Lemma 2.1, in the case of an element c with shape 1454, is isometric to Q8.

Proposition 3.6. For g = 6, 8, the natural morphism O(Qg) → O(res Qg) is an
isomorphism.

Proof. Set A = Qg. Fix an isotropic line D in the quadratic space resA over
Fp (with p = 3 for g = 6, p = 5 otherwise). We have a canonical filtration
0 ⊂ D ⊂ D⊥ ⊂ resA, and a nondegenerate quadratic space V = D⊥/D over Fp.
The stabilizer P of D in O(resA) is in a natural (splittable) exact sequence

(8) 1 −→ U −→ P −→ GL(D)×O(V ) −→ 1

(P is a “parabolic subgroup” with “unipotent radical” U). We have an isomorphism
β : U

∼→ Hom((resA)/D⊥, V ) characterized by

g(x) ≡ x+ β(g)(x) mod D

for all g ∈ U and x ∈ resA. (By duality U is also naturally isomorphic to
Hom(V,D), but we will not need this point of view.) Denote by B the even
lattice defined as the inverse image of D in A]. We have natural isomorphisms
V ' resB and B/A ' D (see Lemma 3.16 (i)). The stabilizer S of D in O(A)
is O(A) ∩ O(B). By Proposition 3.5, we are left to check that the natural map
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S → P is an isomorphism. We first study O(A) ∩ O(B). Set k = g/(p − 1). By
the same proposition, we may also assume that we have

B = Ak
p−1 and A = { (ai)1≤i≤k ∈ B |

k∑
i=1

ρ′ · ai ≡ 0 mod p},

where ρ′ is some Weyl vector in Ap−1 (e.g. the vector ((p− 1)/2, ...,−(p− 1)/2)).
Let R = kAp−1 be the root system of B. For general reasons, the subgroup G(R)
of A(R) fixing the Weyl vector ρ = (ρ′, . . . , ρ′) of R is naturally isomorphic to
{±1}k oSk (automorphisms of the Dynkin diagram of R), and we have O(B) =
A(R) = W(R) o G(R). This proves

O(B) ' Sk
p o ({±1}k oSk).

We trivially have G(R) ⊂ O(A), hence we only have to determine W(R) ∩ O(A).
By definition of A, this is the subgroup of W(R) preserving Zρ + pP(R). As
ρ is in Q(R) and pP(R) ⊂ Q(R), W(R) ∩ O(A) is also the subgroup of W(R)
preserving the subspace of the quadratic space Q(R)⊗ Fp generated by ρ and its
kernel pP(R)/pQ(R). But the kernel of Ap−1 ⊗ Fp is generated by the image e of
the vector (1 − p, 1, . . . , 1), and is fixed by Sp. So W(R) ∩ O(A) is the subgroup
of (σ1, . . . , σk) in Sk

p such that there is λ in F×p such that for all j = 1, . . . , k there
is bj in Fp with

(9) σj(ρ
′) ≡ λ ρ′ + bj e mod pAp−1.

To go further it will be convenient to identify Ap−1 with the subgroup of (xi)i∈Fp
in ZFp satisfying

∑
i xi = 0 in such a way that we have ρ′i = i for all i in Fp. If

we do so, W(R) ∩ O(A) becomes the subgroup of (σ1, . . . , σk) in Sk
Fp such that

there is λ in F×p and b1, . . . , bk in Fp with σ−1
j (i) = λi + bj for all i in Fp and

all j = 1, . . . , k (“k affine transformations with common slope”). We have shown
W(R) ∩O(A) = Fpk o F×p and

(10) O(A) ∩O(B) = Fpk o (F×p × ({±1}k oSk)).

It remains to identify the action of this group on resA. The reduction modulo A
of the natural inclusions A ⊂ B ⊂ B] ⊂ A], is 0 ⊂ D ⊂ D⊥ ⊂ resA by definition,
and we have set V = resB. Note that resA is generated by D⊥ and the image of
the vector p−1ρ, and that W (R) acts trivially on V . Dividing Formula (9) by p
gives the action of W(R) ∩O(A) on (resA)/D:

• λ is an element of GL((resA)/D⊥), which is naturally isomorphic to GL(D)
by duality, and
• for λ = 1, i.e. when considering an element of W(R) ∩ O(A) mapping to
U , the family (bj)1≤j≤k is the matrix of an element of Hom((resA)/D⊥, V )
in the bases p−1ρ of (resA)/D⊥ and ((p−1e, 0, . . . , 0), . . . , (0, . . . , 0, p−1e))
of V .
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The natural map O(A)→ O(resA) thus identifies W(R) ∩ O(A) with the inverse
image of GL(D) × 1 in P . In order to conclude that O(A) ∩ O(B) → P is an
isomorphism, we are left to check that the natural map

{±1}k oSk → O(res Ak
p−1) = O(Ik ⊗ Fp)

is an isomorphism. Injectivity is clear (for any p > 2 and k > 0). Surjectivity is
particular to the two cases at hand: for (p, k) = (3, 3) or (5, 2), the only elements
of norm 1 in Ik ⊗ Fp are the standard basis elements and their opposites. �

Proposition 3.7. The lattice Q8 is orientable, whereas Q6 is not.

Proof. Set again A = Qg and p = 3 (case g = 6) or p = 5 (case g = 8).
We will view the linking quadratic space resA over Z/pZ as traditional quadratic
space over Z/pZ by multiplying its quadratic form by p (making it Z/pZ-valued
instead of 1

p
Z/Z-valued). This quadratic space is nondegenerate and isotropic (it

has dimension > 2) so by a classical theorem of Eichler [Die71, Ch. II §8.I] the
determinant and spinor norm maps induce an isomorphism

(11) O(resA)ab ' {±1} × (F×p ⊗ Z/2Z).

We will give two elements γ, γ′ of O(A) inducing orthogonal reflections of resA
and with distinct spinor norms. The previous proposition and (11) will then imply
that γ and γ′ generate O(A)ab.

Set k = g/(p − 1). By definition, A is the index p subgroup of the root lattice
B = Ak

p−1 defined by x · ρ ≡ 0 mod p, where ρ = (ρ′, . . . , ρ′) is a fixed Weyl vector
in B. As already seen in the proof of Proposition 3.6 the subgroup G of O(B)
fixing ρ is a subgroup of O(A) naturally isomorphic to {±1}koSk. The subgroup
1 o Sk ⊂ G is the obvious one, but the element (−1, 1, . . . , 1) o 1 acts on B as
(x1, . . . , xk) 7→ (−σx1, x2, . . . , xk), where σ in Sp is the unique element sending ρ′
to −ρ′. We take γ, γ′ in G with γ = (−1, 1, . . . , 1)oid and γ′ = (1, . . . , 1)oτ , where
τ is a transposition in Sk. Then γ and γ′ act trivially on A]/B] = 〈 p−1ρ 〉 and
induce orthogonal reflections of resB and resA, with spinor norm 1

2
det(res Ap−1)

for γ and 2 · 1
2

det(res Ap−1) for γ′. We actually have 1
2

det(res Ap−1) ≡ p−1
2

in
(Z/pZ)×, but what only matters for this proof is that these spinor norms are
distinct, as 2 is not a square in (Z/pZ)× for p = 3, 5.

We have det γ|A = (−1)(p−1)/2 and det γ′|A = (−1)p−1 = 1: this shows that det is
trivial on O(A) for p = 5 but not for p = 3. �

For g = 6, 8, we have seen that there is a unique O(Qg)-orbit of overlattices
E ⊃ Qg isomorphic to Eg. We now define Q2g by a doubling process.

Definition 3.8. Set (g, p) = (6, 3) or (8, 5) and fix an embedding Qg ⊂ Eg ar-
bitrarily. Define Q2g as the sublattice of Eg ⊕ Eg consisting of elements (x, y)
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satisfying x + y ∈ Qg. Then Q2g is an even lattice, without roots, satisfying
res Q2g ' H(Z/pZ)2 ⊕ res E2

g.

Let us check the last assertion in the definition above. Note that a root in
Eg ⊕ Eg must belong either to Eg ⊕ 0 or to 0 ⊕ Eg, so the fact that Qg has no
root implies that Q2g has no root either. The assertion on the residue of Q2g

follows from (Eg⊕Eg)/Q2g ' (Z/pZ)2, the fact that res Q2g is a subquotient of the
Z/pZ-vectorspace res Qg ⊕ res Qg, and Lemma 3.16. The following statements are
analogues of Propositions 3.4 and 3.5 (although their proofs are slightly different).

Proposition 3.9. Set (g, p) = (6, 3) or (8, 5) and E = Eg. Up to the action of
O(E) × O(E) there is a unique sublattice A of index p2 in E ⊕ E without roots.
For such an A, the natural map O(A) ∩ (O(E) × O(E)) → GL((E ⊕ E)/A) is
surjective.

Proof. Fix A as in the statement. The sublattice A∩ (E ⊕ 0) of E ⊕ 0 has index
dividing p2 and has no root, so by Proposition 3.4 it has index p2 and there is γ in
O(E) with (γ × 1)(A∩ (E ⊕ 0)) = Qg ⊕ 0. Arguing similarly with A∩ (0⊕E), we
obtain the existence of h in O(E) × O(E) such that h(A) contains Qg ⊕ Qg. Set
A′ = h(A).

Denote by P the totally isotropic plane E/Qg of res Qg, and by I the plane
A′/(Qg⊕Qg) inside P ⊕P . We have seen that the two natural projections I → P
are injective, hence bijective. There is thus an element ϕ in GL(P ) with I =
{(x, ϕ(x)), x ∈ P}. Set S = O(E) ∩ O(Qg). By Proposition 3.6, the natural
morphism S → GL(P ) is surjective. By multiplying h by a suitable element in
1 × O(E) we may thus assume that we have ϕ = −idP , that is, A′ = Q2g. We
have proved the first assertion. For the second, observe that S embeds diagonally
in O(E) × O(E), and as such, it preserves Q2g and acts on the totally isotropic
plane P ′ = (E ⊕ E)/Q2g of res Q2g. Moreover, the natural map

E/Qg → (E ⊕ E)/Q2g, x 7→ (x, 0) mod Q2g,

defines an S-equivariant isomorphism P → P ′. The surjectivity of S → GL(P )
thus implies that of S → GL(P ′). �

Proposition 3.10. Let (g, p,m) be either (8, 5, 4) or (6, 3, 6). Up to isometry, Q2g

is the unique even lattice of rank 2g without roots satisfying Q]
2g/Q2g ' (Z/pZ)m.

Moreover, O(Q2g) permutes transitively the totally isotropic planes (resp. lines,
resp. flags) of res Q2g. The inverse image in Q]

2g of such an isotropic plane (resp.
line) is isometric to Eg ⊕ Eg (resp. to an even lattice with root system mAp−1).

Proof. Let A be an even lattice of rank 2g with A]/A ' (Z/pZ)m. The Milgram
formula applied to A and Q2g shows resA ' res Q2g (see the proof of Corollary
3.5). The even lattices L containing A with index pi are in natural bijection with
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the totally isotropic subspaces of dimension i over Z/pZ inside resA, via the map
L 7→ L/A. As we have resA ' H(Z/pZ)2⊕res E2

g, the maximal isotropic subspaces
of resA have dimension 2 over Z/pZ. Fix such a plane in resA and denote by F
its inverse image in A]. We have resF ' res E2

g, so F is an even lattice with same
rank and residue as Eg ⊕ Eg.

Assume first g = 8. Then F is unimodular. We know since Witt that it is either
isometric to E8 ⊕ E8, or to a certain lattice E16 with root system D16. Assuming
furthermore that A has no root, we claim that the F cannot be isometric to E16.
Indeed, using the method explained in the proof of Proposition 3.4, Lemma 3.1 (i)
and an inspection of the Dynkin diagram of D16 (including the ni’s):

1 2 2 2 2 2 2 2 2 2 2 2 2 2

1

1

show that an index 5 subgroup of D16 always contains an irreducible root system
isomorphic to A5. But A5 has Coxeter number 6, so A5 has no index 5 subgroup
without roots by Lemma 3.1 (ii): this proves the claim.

Assume now g = 6. We have resF ' − res A2
2. This is well-known to imply

that F is isometric to E6⊕E6, E8⊕A2⊕A2 or to a certain lattice E12 having root
system D10. (One way to prove this is to start by observing that such a lattice is
the orthogonal of some A2 ⊕ A2 embedded an even unimodular lattice, hence in
E8 ⊕ E8 or in E16.) An inspection of the Dynkin diagrams of E8 and D10 shows
that an index 3 subgroup of E8 or D10 always contains an irreducible root system
isomorphic to A3, whose Coxeter number is > 3. Assuming A has no root, this
implies F ' E6 ⊕ E6 by Lemma 3.1 (ii).

We have just shown that in both cases, assuming A has no roots, the inverse
image in A] of a totally isotropic plane of resA is isometric to Eg ⊕ Eg. By
Proposition 3.9, there is a unique isometry class of pairs (A,F ) with F ' Eg⊕Eg,
A of index p2 in F , and R(A) = ∅. This shows A ' Q2g as well as the transitivity of
O(Q2g) on the totally isotropic planes in res Q2g. Moreover, the same proposition
also asserts that the stabilizer in O(Q2g) of an isotropic plane P in res Q2g surjects
naturally onto GL(P ). This shows the transitivity of O(Q2g) on the isotropic lines
(resp. flags) in res Q2g.

Fix an even lattice B ⊂ Eg containing Qg with index p. We known from Propo-
sition 3.4 that such a B exists and is a root lattice with root system g

p−1
Ap−1. The

sublattice C ⊂ Eg ⊕ Eg whose elements (x, y) satisfy x+ y ∈ B contains Q2g, and
defines an isotropic line C/Q2g in res Q2g. Its root system R(C) is isomorphic to
2 g
p−1

Ap−1. This concludes the proof of the proposition. �

Proposition 3.11. For g = 6, 8, the natural morphism O(Q2g) → O(res Q2g) is
surjective, with kernel isomorphic to Z/3Z for g = 6, Z/5Z o Z/2Z for g = 8.
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Proof. Set E = Eg, Q = Qg and consider the group S = O(E) ∩ O(Q). The
inclusions Q ⊂ E ⊂ E] ⊂ Q] define a composition series U1CU2CU3C S, where:

• U3 is the kernel of the natural morphism β : S → GL(E/Q),
• U2 is the kernel of the natural morphism β3 : U3 → O(resE),
• U1 is the kernel of the natural morphism β2 : U2 → Hom(E]/E,E/Q) given
by g(x) = x+β2(g)(x) for all g in U2 and all x in E] with image x in E]/E.

Moreover, if Hom(Q]/E], E/Q)antisym denotes the group of antisymmetric group
homomorphisms Q]/E] → E/Q, with E/Q identified with Hom(Q]/E],Q/Z) us-
ing the symmetric bilinear form of Q⊗Q, we have a natural morphism:

• β1 : U1 → Hom(Q]/E], E/Q), given by g(x) = x + β1(g)(x) for all g in U1

and all x in Q]/Q with image x in Q]/E].
Last but not least, since the natural map O(Q) → O(res Q) is an isomorphism
by Proposition 3.6, the morphisms β, β3, β2 above are surjective, and β1 is an
isomorphism. Let p denote the prime such that we have E/Q ' (Z/pZ)2, we have
proved in particular U1 ' Z/pZ.

Set now F = E ⊕ E, A = Q2g and consider the group T = O(F ) ∩ O(A). On
the one hand, we have O(F ) = O(E)2 oS2. As S2 clearly stabilizes A, this shows

T = GoS2 with G = {(g1, g2) ∈ S × S | β(g1) = β(g2)} .

On the other hand, T is also the stabilizer in O(A) of the subspace F/A of resA.
By Proposition 3.10 we are left to prove that the natural morphism ν : T → T ,
where T is the stabilizer of F/A in O(resA), is a surjection whose kernel is as in
the statement.

To the inclusions A ⊂ F ⊂ F ] ⊂ A] is associated as above a composition
series V1C V2C V3C T , whose successive quotients T/V3, V3/V2, V2/V1 and V1 are
naturally identified with the groups GL(F/A), O(resF ), Hom(F ]/F, F/A) and
Hom(A]/F ], F/A)antisym. The following observations below will prove ν(Ui × Ui o
S2) = Vi for i = 1, 2, 3, ν(T ) = T and identify ker ν.

Action of S2. By definition of A the group S2 acts trivially on F/A, hence on
A]/F ] as well. Moreover, it swaps the two factors of resF = resE⊕ resE. Recall
that this linking quadratic space is 0 for g = 8, isomorphic to H(Z/3Z) for g = 6.
As V2 is a p-group and p is odd it follows that S2 acts trivially on resA for g = 8.

Action of G on F/A. As S2 acts trivially on F/A, Proposition 3.9 implies that
ν induces an isomorphism T/((U3 × U3) oS2) ' T/V3.

Restriction of ν to (U3 × U3) o S2. For g = (g1, g2) in U3 × U3 and (x1, x2)
in F ] = E] ⊕ E], we have g(x1, x2) ≡ (g1(x1), g2(x2)) mod F . So ν induces an
isomorphism between U3/U2 × U3/U2 and the subgroup O(resE) × O(resE) of
O(res E ⊕ resE). This subgroup has index 2 for g = 6 (and 1 for g = 8) but
recall that in this case S2 swaps the two factors of resE ⊕ resE.
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Restriction of ν to U2 × U2. The map ι : E/Q → F/A, x 7→ (x, 0), is an
isomorphism. For g = (g1, g2) in U2 × U2 and (x1, x2) in F ] = E] ⊕ E] we thus
have the following equalities in F/A :

g(x1, x2)− (x1, x2) = (β2(g1)(x1), β2(g2)(x2)) = ι(β2(g1)(x1) + β2(g2)(x2)).

This shows that ν induces an isomorphism U2/U1 × U2/U1
∼→ V2/V1.

Restriction of ν to U1×U1. We have A] = {(y1, y2) ∈ Q]⊕Q] | y1 ≡ y2 mod E]}.
For g = (g1, g2) in U1×U1 and (x1 + y, x2 + y) in A] with xi in E] and y in Q], we
have the following equality in F/A (with ι defined as above):

g(x1+y, x2+y)−(x1+y, x2+y) = (β1(g1)(y), β1(g2)(y)) = ι(β1(g1)(y)+β1(g2)(y)).

This shows ν(U1 × U1) = V1 and

(12) ker ν|U1×U1 = {(g1, g2) ∈ U1 × U1 | β1(g1) + β1(g2) = 0} ' Z/pZ.

All in all, we have shown ν(T ) = T , and if K ' Z/pZ denotes the group in (12),
ker ν = K oS2 for g = 8, and ker ν = K for g = 6. �

Proposition 3.12. The lattice Q12 is orientable.

Proof. As the kernel of O(Q12) → O(res Q12) has odd cardinality (namely 3) by
Proposition 3.11, it is contained in SO(Q12). Arguing as in the proof of Proposition
3.7, we are left to find two elements g, g′ in O(Q12) with determinant 1 and whose
images in O(res Q12) are reflections with distinct spinor norms. In the following
arguments, it will be convenient to view linking quadratic spaces over Z/3Z as
traditional quadratic spaces over Z/3Z by multiplying their quadratic form by 3
(which becomes then Z/3Z-valued instead of 1

3
Z/Z-valued), so that it makes sense

to talk about their determinant.
Consider first the non-trivial element g of the group S2 naturally acting on

E6 ⊕ E6. Then g acts trivially on (E6 ⊕ E6)/Q12, and in the obvious way on
res E6 ⊕ res E6. It acts thus as a reflection with spinor norm 2 · 1

2
det(res E6) in

(Z/3Z)× (the squares of (Z/3Z)× are {1}). Moreover, we have det g = (−1)6 = 1.
Let s be an order two element of O(Q6) ∩ O(E6) acting trivially on E6/Q6 and

by −1 on res E6. Such an s exists by Proposition 3.6. By construction, it is a
reflection in O(res Q6) with spinor norm 1

2
det(res E6) = det(res A2) in (Z/3Z)×.

So s is conjugate in O(Q6) to the element denoted γ′ in the proof of Proposition 3.7,
and we have thus det s = det γ′ = 1 as was shown loc. cit. Consider now the order
2 element g′ = (s, 1) in O(E6) × O(E6). As s preserves Q6 ands acts trivially on
E6/Q6, the element g′ preserves Q12 and has a trivial image in GL((E6⊕E6)/Q12).
It acts as diag(−1, 1) in res E6 ⊕ res E6. It acts thus on res Q12 as a reflection with
spinor norm 1

2
det(res E6). This spinor norm is not the same as that of g as 2 is

not a square in (Z/3Z)×. The orientabiliy of Q12 follows then from the equalities
det g′ = det s× 1 = 1. �
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We finally set Q0 = 0 and Q24 = Leech. We denote by ng the number of
isometric embeddings Qg → Leech, and by Kg the kernel of the morphism O(Qg)→
O(res Qg). By Propositions 3.6 and 3.11 we have |Kg| = 1 for g < 12, |K12| = 3,
|K16| = 10, and of course K24 = O(Leech).

Proposition 3.13. For g in {0, 8, 12, 16, 24} there is a unique O(Leech)-orbit of
sublattices Q of Leech with Q ' Qg, and we have ng |K24−g| = |O(Leech)|.

Proof. Let Q be a sublattice of Leech isomorphic to Qg. By [CL19, Prop. B.2.2
(d)], the lattice Q⊥ satisfies resQ⊥ ' −resQ. By Propositions 3.5 and 3.10, we
have Q⊥ ' Qg′ with g′ = 24−g. Moreover, the stabilizer of Q in O(Leech) trivially
coincides with that of Q⊥. To prove uniqueness we are thus left to show that there
is a unique O(Qg) × O(Qg′)-orbit of overlattices L ⊃ Qg ⊕ Qg′ with L ' Leech.
Note that the existence of such an L follows from Lemma 2.1.

Consider now an arbitrary maximal isotropic subspace I in res Qg⊕res Qg′ (which
is a hyperbolic linking quadratic space over Fp with p = 5 or 3). Let L be the
inverse image of I in Q]

g⊕Q]
g′ , an even unimodular lattice. We assume furthermore

that it has no root. Then L ∩ (Q]
g ⊕ 0) is an even lattice without root containing

Qg ⊕ 0. By Propositions 3.5 and 3.10 it must be Qg ⊕ 0, and similarly we have
L∩(0⊕Q]

g′) = 0⊕Qg′ . It follows that both projections I → res Qg and I → res Qg′

are injective, hence isomorphisms. So there is an isometry ϕ : res Qg
∼→ −res Qg′

such that we have I = Iϕ, with Iϕ = {(x, ϕ(x)), x ∈ res Qg}. By Propositions 3.6
and 3.11, the map O(Qg′)→ O(res Qg′) is surjective. This shows that 1×O(Qg′)
permutes transitively the Iϕ, and that the stabilizer in this group of any Iϕ is the
kernel of O(Qg′)→ O(res Qg′), and we are done. �

We have also proved above the following:

Corollary 3.14. Fix g in {0, 8, 12, 16, 24} and an isometric embedding of Qg⊕Qg′

in Leech, with g′ = 24 − g. The stabilizer S of Qg in O(Leech) is O(Leech) ∩
(O(Qg)×O(Qg′)) and the natural map S → O(Qg) is surjective with kernel 1×Kg′.

Proposition 3.15. The lattice Q16 is orientable.

Proof. Fix an isometric embedding of Q8 ⊕ Q16 in Leech. By Corollary 3.14, for
any γ in O(Q16) there is γ′ in O(Q8) such that γ ⊕ γ′ is in O(Leech). As any
element of O(Leech) has determinant 1 we have det γ det γ′ = 1. But we have
det γ′ = 1 as Q8 is orientable, hence det γ = 1. �

We have used several times the following simple lemma.

Lemma 3.16. Let L be an even lattice.
(i) The map M 7→M/L defines a bijection between the set of even lattices M

in L⊗Q containing L and the set of totally isotropic subgroups I ⊂ resL
(that is, with q(I) = 0). In this bijection, we have resM ' I⊥/I. If
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furthermore I is a direct summand of the abelian group resL, and if |I| is
odd, then we have a noncanonical isomorphism resL ' H(I)⊕ resM .

(ii) Let h be an odd integer ≥ 1 and x ∈ L with x · x ≡ 0 mod h. Assume that
the natural map L → Z/hZ, y 7→ y · x mod h is surjective, and denote by
M its kernel. Then M is an even lattice with L/M ' Z/hZ and resM '
resL⊕ H(Z/hZ).

Proof. The first two assertions in (i) are obvious [CL19, Prop. 2.1.1]. For the
last assertion of (i) choose first a subgroup J of I⊥ with I⊥ = J ⊕ I. Then J is
nondegenerate in resL, I is a totally isotropic direct summand of V := J⊥, and
we have an exact sequence 0 → I → V → Hom(I,Q/Z) → 0. We now argue as
in the proof of Proposition 2.1.2 of [CL19] (beware however that the statement
loc. cit. does not hold for linking quadratic spaces of even cardinality). Choose
a supplement I ′ of I in V , i.e. V = I ⊕ I ′. As V is nondegenerate, any bilinear
form on I ′ is of the form (x, y) 7→ x · ϕ(y) for some morphism ϕ : I ′ → I. We
apply this to the form (x, y) 7→ 1

2
x · y, which is well defined as |V | is odd. Then

the subgroup {x− ϕ(x), x ∈ I ′} is a totally isotropic supplement of I in V . This
implies V ' H(I) (see Proposition-Definition 2.1.3 loc. cit.).

For assertion (ii), consider the natural map M ] → Z/hZ, y 7→ y · x mod h. This
is well defined as we have x ∈ M by assumtion, and its restriction to L induces
an isomorphism L/M

∼→ Z/hZ. So L/M is a direct summand of resM and we
conclude the proof by (i). �

4. Standard L-functions of the eigenforms Fg

In this section, we show that the Siegel modular forms Fg defined in (2) are
eigenforms and give an expression for their standard L-functions.

Proposition 4.1. Let L be an integral lattice whose roots generate L ⊗ R. For
any g ≥ 1, there is no nonzero, O(L)-invariant, alternating g-form on L.

Proof. Let ω : Lg → R be such a form. It is enough to show ω(x1, . . . , xg) = 0
for any x1, . . . , xg in L, with xi roots of L. Fix such xi and let s be the reflection
associated to the root x1. We have s ∈ O(L) as L is integral, s(x1) = −x1 and
s(xi) ∈ xi + Zx1 for all i, hence the following equalities

ω(x1, x2, . . . , xg) = ω(s(x1), s(x2), . . . , s(xg)) = −ω(x1, x2, . . . , xg) = 0.

�

Fix an integer n ≡ 0 mod 8 and consider the set Ln of even unimodular lattices
in the standard Euclidean space V = Rn. For all g ≥ 1 we denote by Altgn the
free R-vector space with generators the (L, ω), with L in Ln and ω an alternating
g-form on V , and with relations the

(γ−1(L), ω ◦ γ) = (L, ω) and (L, λω + ω′) = λ (L, ω) + (L, ω′),



26 GAËTAN CHENEVIER AND OLIVIER TAÏBI

for all L in Ln, all γ in O(V ), all alternating g-forms ω, ω′ on V and all λ in R.
It follows readily from these definitions that the Siegel theta series construction
(L;ω) 7→ Θ(L;ω) =

∑
v∈Lg ω(v)q

v·v
2 factors through an R-linear map

(13) Θ : Altgn −→ Sn/2+1(Sp2g(Z)).

If L1, . . . , Lh denote representatives for the isometry classes of even unimodular
lattices in V , we also have an R-linear isomorphism

(14) Altgn '
h⊕
i=1

(ΛgV ∗)O(Li).

The classification of even unimodular lattices in rank ≤ 24 (or simply, Venkov’s
argument in [CS99, Chap. 18, §2, Prop. 1]) shows that appart from Leech these
lattices are generated over Q by their roots. Proposition 4.1 and Formula (14)
thus show that Altgn vanishes for n < 24, and together with (1), imply:

Proposition 4.2. Altg24 has dimension 1 for g in {8, 12, 16, 24}, 0 otherwise.

Let us denote by On the orthogonal group scheme of a fixed even unimodular
lattice of rank n, e.g. of Dn + Z e with e = 1

2
(1, . . . , 1). For any finite dimensional

representation U of O(V ), the space3 MU(On) of O(V )-equivariant functions Ln →
U , is the space of level 1 automorphic forms of On with coefficients in U [CL19,
§4.4.4]. As such it is equipped with an action of the (commutative) Hecke ring
H(On) of On [CL19, §4.2.5 & §4.2.6]. For all g ≥ 1, the space Altgn is canonically
isomorphic to the dual of MΛgV (On), hence carries an H(On)-action as well. As an
example, for any prime p the Kneser p-neighbor operator is the endomorphism of
Altgn sending (L, ω) to the sum of (L′, ω) over the L′ in Ln with L∩L′ of covolume p.
The so-called Eichler commutations relations imply that the map Θ in (13) sends
an H(On)-eigenvector on the left-hand side either to 0 or to a Siegel eigenform on
the right-hand side (i.e. an H(Sp2g)-eigenvector): see [Fre82], as well as [Ral82]
for an interpretation in terms of Satake parameters.

For g = 8, 12, 16, 24, the space Altg24 has dimension 1, so it is generated by an
H(O24)-eigenvector. Our main theorem asserts that the image of Altg24 under Θ is
generated by Fg and is nonzero. We have proved:

Corollary 4.3. For g = 8, 12, 16, 24, the Siegel modular form Fg is an eigenform.

We now discuss the standard L-functions of the eigenforms Fg, or more precisely,
their collections of Satake parameters. We need some preliminary remarks and
notations mostly borrowed from [CL19, §6.4].

For any integer n ≥ 1 we denote by Xn the set of sequences c = (c2, . . . , cp, . . . , c∞),
where the cp are semisimple conjugacy classes in GLn(C) indexed by the primes
p, and where c∞ is a semisimple conjugacy class in Mn(C). The direct sum and

3We have a similar definition with O replaced by SO that we will also use below.
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tensor product induce componentwise two natural operations Xn × Xm → Xn+m

and Xn × Xm → Xnm, denoted respectively (c, c′) 7→ c ⊕ c′ and (c, c′) 7→ c c′. An
important role will be played by the element [n] of Xn such that [n]p (resp. [n]∞)
has the eigenvalues p

n−1
2
−i (resp. n−1

2
− i) for i = 0, . . . , n− 1.

Any Siegel eigenform F for Sp2g(Z) has an associated collection of Satake pa-
rameters, semisimple conjugacy classes in SO2g+1(C) indexed by the primes, as
well as an infinitesimal character (as defined by Harish-Chandra), which may be
viewed as a semisimple conjugacy class in the Lie algebra of SO2g+1(C). So F
gives rise to an element in X2g+1 using the natural (or “standard”) representation
SO2g+1(C) → GL2g+1(C). This element is called the standard parameter of F .
Similarly, any H(On)-eigenvector in MU(On) or MU(SOn) gives rise to an element
of Xn: see e.g. [CL19, Sch. 6.2.4 & Def. 6.4.9].

For g = 8, 12, 16, 24 we denote by ψg the standard parameter of the eigenform
Fg, and by ψ′g that of a generator of MΛgV (O24) = (Altg24)∗. By definition, ψg is in
X2g+1 and ψ′g is in X24. Using Theorem 2, Rallis’s aforementioned theorem asserts

(15) ψ′8 = ψ8 ⊕ [7] and ψg = ψ′g ⊕ [2g − 23] for g ≥ 12.

In the spirit of standard conjectures by Langlands and Arthur (see. [CL19, §6.4.4]),
we will express those ψg and ψ′g in terms of Satake parameters of certain cuspidal
automorphic eigenforms for GLm(Z). The four following forms will play a role:

– For w = 11, 17, we denote by ∆w ∈ X2 the collection of the Satake parameters,
and of the infinitesimal character, of the classical modular normalized eigenform of
weight w+1 for PGL2(Z). For example, the p-th component of ∆11 has determinant
1 and trace τ(p)/p11/2. The eigenvalues of (∆w)∞ are ±w

2
.

– For (w, v) = (19, 7) and (21, 13), and following [CL19, §9.1.3], there is a
unique (up to scalar) cuspidal eigenform for PGL4(Z) whose infinitesimal character
has the eigenvalues ±w/2,±v/2: we denote by ∆w,v ∈ X4 the collection of its
Satake parameters, and of this infinitesimal character. As explained loc. cit., they
are also the spinor parameters of generators of the 1-dimensional space of Siegel
modular forms for Sp4(Z) with coefficients in the representations Sym6⊗det8 and
Sym12⊗det6 of GL2(C) respectively. See [CL19, Tables C3 & C.4] and [BCFvdG17]
for more information on these Satake parameters.

Theorem 4.4. The parameters ψg and ψ′g are given by the following table:

g 8 12 16 24

ψg ∆21,13[4]⊕ [1] ∆19,7[6]⊕ [1] ∆17[8]⊕ [9]⊕ [7]⊕ [1] ∆11[12]⊕ [25]

ψ′g ∆21,13[4]⊕ [7]⊕ [1] ∆19,7[6] ∆17[8]⊕ [7]⊕ [1] ∆11[12]

Proof. By Proposition 7.5.1 of [CL19], relying on [Ike01] and [Wei86] or [Bö89],
we have ψ′24 = ∆11[12], and thus ψ24 = ∆11[12] ⊕ [25] by (15). The remaining
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parameters are harder to determine, and at the moment we only know how to do
it using Arthur’s results [Art13] together with [AMR, Taï19].

The irreducible representation Λ12 V of O(V ) is the sum of two irreducible
non-isomorphic representations A± of SO(V ). As a consequence, the two spaces
MA±(SO24) have dimension 1 and are isomorphic to MΛ12 V (O24) as H(O24)-modules
(see [CL19, §4.4.4]). The eigenvalues of s = (∆19,7[6])∞ are ±i with i = 1, . . . , 12,
so s is the image in M24(C) of the infinitesimal character of A±. By Arthur’s mul-
tiplicity formula for SO24, discussed in [CL19, Thm. 8.5.8] and which applies by
[AMR, Taï19], there is an H(O24)-eigenvector in MA±(SO24) with standard param-
eter ∆19,7[6]: this parameter must be ψ′12 because we have dim MA±(SO24) = 1.

The two non-isomorphic representations Λ8 V and Λ16 V of O(V ) have isomor-
phic and irreducible restriction B to SO(V ). As a consequence, the space

(16) MB(SO24) ' MΛ8V (O24)⊕MΛ16V (O24)

has dimension 2 (see [CL19, §4.4.4]). Assume ψ ∈ X24 is either ∆21,13[4]⊕ [7]⊕ [1]
or ∆17[8] ⊕ [7] ⊕ [1]. The eigenvalues of ψ∞ are the ±i with 0 ≤ i ≤ 12 and
i 6= 4, so ψ∞ is the image in M24(C) of the infinitesimal character of B. An
inspection of Arthur’s multiplicity formula for SO24 [CL19, Thm. 8.5.8] shows that
there is an H(O24)-eigenvector in MB(SO24) with standard parameter ψ. These
two parameters are distinct and the isomorphism (16) is H(O24)-equivariant by
[CL19, §4.4.4], it thus only remains to explain which of the two eigenvectors above
belongs to MΛ8V (O24). But Arthur’s multiplicity formula for Sp16 (or Ikeda’s
results) shows that there is no cuspidal Siegel eigenform for Sp16(Z) with standard
parameter ∆17[8] ⊕ [1], as explained in [CL19, Example 8.5.3]. This proves ψ′8 =
∆21,13[4] ⊕ [7] ⊕ [1] by (15), hence ψ′16 = ∆17[8] ⊕ [7] ⊕ [1], and the whole table
follows from (15) again. �
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