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1. Introduction 1.1. Siegel modular forms for Sp 2g (Z). We denote by S k (Γ g ) and S k (Γ g ) respectively the space of cuspidal Siegel modular forms for the full Siegel modular group Γ g = Sp 2g (Z), which are either scalar-valued of weight k ∈ Z, or more generally vector-valued of weight k = (k 1 , k 2 , . . . , k g ) in Z g with k 1 ≥ k 2 ≥ • • • ≥ k g (we refer to [vdG08] for a general introduction to Siegel modular forms). Recall that S k (Γ g ) trivially vanishes when i k i is odd, and also for k g < g/2 (Freitag, Reznikoff, Weissauer).

The question of determining the dimension of S k (Γ g ), very classical for g = 1, has a long and rich history for g > 1. It has first been attacked for g = 2 using geometric methods, in which case concrete formulas were obtained by Igusa (1962) in the scalar-valued case, and by Tsushima (1983) for the weights 1 k 1 ≥ k 2 ≥ 3. There is still no known formula for k 2 = 2, although we have S k (Γ 2 ) = 0 for k 2 = 1 (Ibukiyama, Skoruppa): see [START_REF] Cléry | On vector-valued Siegel modular forms of degree 2 and weight (j, 2)[END_REF] for a discussion of these singular cases. An analogue of Igusa's result for g = 3 was proved by Tsuyumine in 1986, but only quite recently a conjectural formula was proposed by Bergström, Faber and van der Geer, in the vector valued case k 1 ≥ k 2 ≥ k 3 ≥ 4, based on counting genus three curves over finite fields (2011). Their formula, and more generally a formula 2 for dim S k (Γ g ) for arbitrary g ≤ 7 and k g > g was proved by the second author in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], using a method that we will recall in § 1.4. Actually, the general formulas given in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] apply to any genus g and any weights with k g > g. However, they involve certain rational numbers, that we shall refer to later as masses, that are rather difficult to compute; Taïbi provided loc. cit. a number of algorithms to determine them (more precisely, certain local orbital integrals, see § 1.4) that allowed him to numerically compute those masses for g ≤ 7.

Our first main result in this paper is a completely different and comparatively much easier method to compute the aforementioned masses. This method allows us to recover, in a uniform and rather "effortless" way, all the computations of masses done in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] for g ≤ 7, and even to go further: Theorem 1. There is an explicit and implemented formula computing dim S k (Γ g ) for any g ≤ 8, and any k with k g > g.

See Theorems 6 & 7 for equivalent, better formulated, statements. Theorem 1 is about Siegel modular forms of arbitrary weights k such that k g > g, but with genus g ≤ 8. A second result concerns the Siegel modular forms of arbitrary genus, but of weights ≤ 13 (there are really finitely many relevant pairs (k, g) here). It is very much in the spirit of the determination of dim S k (Γ g ) by Chenevier-Lannes in [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] in the cases g ≤ k ≤ 12.

Theorem 2. The dimension of S k (Γ g ) for 13 ≥ k 1 ≥ • • • ≥ k g > g, and k non scalar, is given by Table 6. The dimension of S k (Γ g ) for any k ≤ 13 and any g ≥ 1 is given by Table 5.

The notations for these tables are explained in §5.3. Table 6 shows in particular that S k (Γ g ) has dimension ≤ 1 for k non scalar and 13 ≥ k 1 ≥ • • • ≥ k g > g, and is nonzero for exactly 29 values of k. Table 5 includes the fact that S k (Γ g ) vanishes whenever k ≤ 13 and g ≥ k, except in the three following situations: dim S 12 (Γ 12 ) = dim S 13 (Γ 16 ) = dim S 13 (Γ 24 ) = 1 1 More precisely, Tsushima could only prove that his formula works for k 2 ≥ 5, and later Petersen (2013) and Taïbi (2016) independently showed that it holds as well for k 2 ≥ 3 and (k 1 , k 2 ) = (3, 3), as conjectured by Ibukiyama.

2 These are pretty huge formulas, which can't be printed here already for g > 2, but see Theorem A loc. cit. for their general shape.

(a nonzero element in the first and last spaces has been constructed in [START_REF] Borcherds | A Siegel cusp form of degree 12 and weight 12[END_REF] and [START_REF]Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten[END_REF]). We obtain for instance the following result.

Corollary 1. S 13 (Γ g ) has dimension 1 for g = 8, 12, 16, 24, and 0 otherwise.

An inspection of standard L-functions, and general results of Böcherer, Kudla-Rallis and Weissauer, show that these four spaces are spanned by certain Siegel theta series build on Niemeier lattices (see §5.4). In a companion paper [START_REF] Chenevier | Siegel modular forms of weight 13 and the Leech lattice[END_REF] we come back to these constructions and study them in a much more elementary way. Combined with [CL19, Sect. 9.5], this provides an explicit construction of all the cuspidal Siegel modular eigenforms of weight k ≤ 13 and level Γ g for an arbitrary genus g. In §5.4, we also prove that Eichler's basis problem holds in weights k = 8 and 12 for arbitrary genus g, completing the results of [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] for g ≤ k.

Last but not least, let us mention that in the past, several other authors have computed dim S k (Γ g ) for a number of isolated and small pairs (g, k), sometimes with much efforts, e.g. Igusa, Witt, Erokhin, Duke-Immamoglu,3 Nebe-Venkov, and Poor-Yuen among others. We would like to stress that none of the results of this paper depend on a previous computation of the dimension of a space of Siegel modular forms, not even of S k (SL 2 (Z)) ! see §1.4. Moreover, as far as we know, the dimensions given by Theorems 1 and 2 seem to recover all the previously known4 dimensions of spaces of Siegel modular cuspforms for Γ g .

Our proof of Theorems 1 and 2 will use automorphic methods, building on a strategy developed in the recent works [CR15, CL19, Taï17]: we will review this strategy in §1.4 and §5. An important ingredient is Arthur's endoscopic classification of the discrete automorphic spectrum of classical groups in terms of general linear groups [START_REF]The Endoscopic Classification of Representations: Orthogonal and Symplectic groups[END_REF], including the so-called multiplicity formula. A special feature of this approach is that even if we were only interested in dim S k (Γ g ), we would be forced to compute first the dimension of various spaces of automorphic forms for all the split classical groups over Z of smaller dimension. By a split classical group over Z we will mean here either the group scheme Sp 2g over Z, or the special orthogonal group scheme SO n of the integral quadratic form n/2 i=1 x i x n+1-i (case n even = 2) or (n-1)/2 i=1 x i x n+1-i + x 2 (n+1)/2 (case n odd) over Z n . An important gain of this approach, however, is that in the end we do not only compute dim S k (Γ g ), but also the dimension of its subspace of cuspforms of any possible endoscopic type, a quantity which is arguably more interesting than the whole dimension itself: see Tables 6 &5 for a sample of results.

1.2. Level one algebraic cusp forms on GL m . Let m ≥ 1 be an integer and π a cuspidal automorphic representation of PGL m over Q. We say that π has level 1 if π p is unramified for each prime p. We say that π is algebraic if the infinitesimal character of π ∞ , that we may view following Harish-Chandra and Langlands as a semi-simple conjugacy class in M m (C), has its eigenvalues in 1 2 Z, say w 1 ≥ w 2 ≥ • • • ≥ w m , and with w i -w j ∈ Z. Those eigenvalues w i are called the weights of π, and the important integer w(π) := 2w 1 is called the motivic weight of π. The Jacquet-Shalika estimates imply w m+1-i = -w i for all i, and in particular, w(π) ≥ 0 (see §2.1).

The algebraic cuspidal π are especially interesting to number theorists, as for such a π standard conjectures (by Clozel, Langlands) predict the existence of a compatible system of pure and irreducible -adic Galois representations ρ with same L-function as π|.| w 1 , the Hodge-Tate weights of ρ being the w i + w 1 , and its Deligne weight being w(π). The level 1 assumption in this work has to be thought as a simplifying, but still interesting, one (see [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] for several motivations).

An important problem is thus the following. For an integer m ≥ 1, we denote by W m the set of w = (w i ) in 1 2 Z m with w 1 ≥ w 2 ≥ • • • ≥ w m , w i -w j ∈ Z and w i = -w m+1-i for all 1 ≤ i, j ≤ m. Problem 1. For w ∈ W m , determine the (finite) number N(w) of level 1 cuspidal algebraic automorphic representations of PGL m whose weights are the w i , and the number N ⊥ (w) of those π satisfying furthermore π ∨ π (self-duality).

Let us say that an element (w i ) in W m is regular if for all i = j we have either w i = w j , or m ≡ 0 mod 4, i = j -1 = m/2 and w i = w j = 0 (hence w 1 ∈ Z). Despite appearences, the question of determining the N ⊥ (w) for regular w is very close to that discussed in § 1.1. Indeed, as was observed and used in [CR15, [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF][START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], the level 1 self-dual π of regular weights are the exact building blocks for Arthur's endoscopic classification of the discrete automorphic representations of split classical groups over Z which are unramified at all finite places and discrete series at the Archimedean place (with a very concrete form of Arthur's multiplicity formula, relying on [START_REF] Arancibia | Paquets d'Arthur des groupes classiques et unitaires[END_REF]). As an illustration of this slogan, the following fact was observed in [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF]Chap 9].

Key fact 1. Fix g ≥ 1 and k = (k 1 , . . . , k g ) ∈ Z g with

k 1 ≥ k 2 ≥ • • • ≥ k g > g.
Then the dimension of S k (Γ g ) is an explicit function of the (finitely many) quantities N ⊥ (w) with w = (w i ) ∈ W m regular, m ≤ 2g + 1 and w 1 ≤ k 1 -1.

See [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF]Prop. 1.11] for explicit formulas for g ≤ 3, [Taï17, Chap. 5] for g = 4, and [CL19, Thm. 5.2] for the general recipe. This general recipe will actually be recalled in §5, in which we will also apply the recent results of [MR] to give an analoguous statement for S k (Γ g ) (scalar-valued case) in the case k ≤ g. This last case is quite more sophisticated, in particular it also involves certain slightly irregular weights. We will come back later on the relations between the Problem above and Theorems 1 and 2.

1.3. Classification and inexistence results. Let us denote by Π alg the set of cuspidal automorphic representations of PGL m , with m ≥ 1 arbitrary, which are algebraic and of level 1. The second main result of this paper is a partial classification of elements π in Π alg having motivic weight ≤ 24. The first statement of this type, proved in [CL19, Thm. F], asserts that there are exactly 11 elements π in Π alg of motivic weight ≤ 22: the trivial representation of PGL 1 , the 5 representations ∆ k-1 of PGL 2 generated by the 1-dimensional spaces S k (SL 2 (Z)) for k = 12, 16, 18, 20, 22 (whose weights are ± k-1

2 ), the Gelbart-Jacquet symmetric square of ∆ 11 (with weights -11, 0, 11), and four other 4-dimensional self-dual π with respective weights {± 19/2, ± 7/2}, {± 21/2, ± 5/2}, {± 21/2, ± 9/2} and {± 21/2, ± 13/2}.

In this paper we significantly simplify the proof of [CL19, Thm. F]: see §2.4.6. More importantly, these simplifications allow us to prove the following theorems for motivic weights 23 and 24.

Theorem 3. There are exactly 13 level 1 cuspidal algebraic automorphic representations of GL m over Q, with m varying, with motivic weight 23, and having the weight 23 with multiplicity 1:

(i) 2 representations of PGL 2 generated by the eigenforms in S 24 (SL 2 (Z)), (ii) 3 representations of PGL 4 of weights ± 23/2, ± v/2 with v = 7, 9 or 13, (iii) 7 representations of PGL 6 of weights ± 23/2, ± v/2, ± u/2 with (v, u) = (13, 5), (15, 3), (15, 7), (17, 5), (17, 9), (19, 3) and (19, 11), (iv) 1 representation of PGL 10 of weights ± 23/2, ± 21/2, ± 17/2, ± 11/2, ± 3/2.

There are all self-dual (symplectic) and uniquely determined by their weights.

The representations in (ii) and (iii) above were first discovered in [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF], using some conditional argument that was later made unconditional in [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF]. Their existence was also confirmed by the different computation of the second author in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], who also discovered the 10-dimensional form in (iv).

Despite our efforts, we have not been able to classify the π of motivic weight 23 such that multiplicity of the weight 23 is > 1. We could only prove that there is an explicit list L of 182 weights w = (w i ) with w 1 = w 2 = 23 such that (a) the weight of any such π belongs to L, (b) for any w in L there is at most one π with this weight (necessarily self-dual symplectic), except for the single weight w = (v i /2) in W 14 ∩ L with (v 1 , v 2 , . . . , v 7 ) = (23, 23, 21, 17, 13, 7, 1), for which there might also be two such π which are the dual of each other: see Proposition 4.1. Nevertheless, we conjecture that all of those putative 183 representations do not exist, except perhaps one. Indeed, we prove in §4.3 the following result, assuming a suitable form of (GRH).

Theorem 4. Assume (GRH) and that there exists π in Π alg with motivic weight 23 and having the weight 23 with multiplicity > 1. Then we have m = 16, the weights of π are ±1/2, ±7/2, ±11/2, ±15/2, ±19/2, ±21/2 as well as ±23/2 with multiplicity 2, and π is the unique element of Π alg having these 16 weights.

We now state our (weaker) classification result in motivic weight 24.

Theorem 5. There are exactly 3 level 1 algebraic cuspidal self-dual automorphic representations of PGL m over Q, with m varying, with motivic weight 24 and a regular weight. They are self-dual (orthogonal) with respective set of weights {±12, ±8, ±4, 0}, {±12, ±9, ±5, ±2} and {±12, ±10, ±7, ±1}.

Again, those three forms were first discovered in [CR15, Cor. 1.10 & 1.12] and confirmed in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF]. Interestingly, as explained in [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF], we expect that their Sato-Tate groups are respectively the compact groups G 2 , Spin(7) and SO(8). See [Che19, Thm. 6.12] for a proof that the first form, which is 7-dimensional, has G 2 -valued -adic Galois representations.

Proofs. Our proofs of Theorems 3 and 5 are in the same spirit of the one of [CL19, Thm. F]. As already said, all the representations appearing in the theorem were already known to exist by the works [CR15, Taï19, Taï17] (and we will give another proof of their existence in §3), so the main problem is to show that there are no others. The basic idea that we will use for doing so is to consider an hypothetical π, consider an associate L-function of π, and show that this function cannot exist by applying to it the so-called explicit formula for suitable test functions. This is a classical method by now, inspired by the pioneering works of Stark, Odlyzko and Serre on discriminant bounds of number fields. It was developed by Mestre in [START_REF] Mestre | Formules explicites et minorations de conducteurs de variétés algébriques[END_REF] and applied loc. cit. to the standard L-function of π (see also [START_REF] Fermigier | Annulation de la cohomologie cuspidale de sous-groupes de congruence de GL n (Z)[END_REF]), then by Miller [START_REF] Stephen | The highest lowest zero and other applications of positivity[END_REF] to the Rankin-Selberg L-function of π, and developed further more recently in [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF]§9.3.4].

Two important novelties were discovered in [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] in order to obtain the aforementioned classification result in motivic weight ≤ 22. The first one, developed further in [Chea], is a finiteness result which implies that there are only finitely many level 1 cuspidal algebraic automorphic representations π of PGL m , with m varying, of motivic weight ≤ 23. This finiteness is also valid in motivic weight ≤ 24 assuming a suitable form of GRH. This result is effective and produces a finite but large list of possible weights for those π (for instance, it leads to 12295 possible weights in motivic weight 23). The hardest part is then to eliminate most of those remaining weights. The second novelty found in [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] was the observation that we obtain efficient constraints by applying as well the explicit formula to all the L-functions L(s, π × π i ), where the π i are the known representations. See [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF]Scholia 9.3.26 & 9.3.32] for the two useful criteria obtained there using this idea.

In this paper, we discovered a criterion that may be seen as a natural generalisation of [CL19, Scholia 9.3.26], and that happened to be (in practice, and quite surprisingly) much more efficient than the aforementioned ones. Moreover, contrary to [CL19, Scholia 9.3.32], we do not need to know any Satake parameter for the known elements of Π alg (which allow us to use test functions with aribtrary supports). Our basic idea here is to apply the explicit formula to the Rankin-Selberg L-function of all linear combinations t 1 π 1 ⊕ • • • ⊕ t s π s where π 1 is unknown of given weights, the π i with i > 1 are known (in the sense that they exist and we know their weights), and the t i are arbitrary nonnegative real numbers. More precisely, for any test function F we associate a certain symmetric bilinear form C F on the free vector space R Π alg over Π alg , which represents the computable part of the explicit formula for the test function F . Assuming a certain positivity assumption on F , the quadratic form x → C F (x, x) is then ≥ 0 on the cone of R Π alg generated by Π alg : see Proposition 2.2. In order to reach a contradiction we have thus to show that at least one quadratic form C F takes a negative value on the cone generated by π 1 , . . . , π s . See §2.4 for the description of the minimisation algorithm that we have used for this purpose, as well as the homepage [CT19b] for related sources. One charm of this method is that although it requires some computational work to find a concrete element x of that cone and a test function F leading to a contradiction (and all is fair for that!), once we have found it it is quick and easy to rigorously check that we have C F (x, x) < 0: see §2.4.3.

1.4. The effortless computation of masses. Fix G a rank n split classical group over Z in the sense of §1.1. In other words, G belongs to one of the families

(SO 2n+1 ) n≥1 , (Sp 2n ) n≥1 and (SO 2n ) n≥2
Assume that G(R) has discrete series, i.e. that G is not isomorphic to SO 2n with n odd, and fix K a maximal compact subgroup of G(R). There is an analogue of Key fact 1 with S k (Γ g ) replaced by the multiplicity of any discrete series of G(R) in the space A 2 (G) of K-finite square-integrable automorphic forms over G(Z)\G(R). In this paper, as in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], we will use a variant of this statement involving rather certain Euler-Poincaré characteristics. Our first aim is to state this variant (Key fact 2 below). For any dominant weight λ of G(C), we denote by V λ an irreducible representation of G(C) with highest weight λ and consider

EP(G; λ) = i≥0 (-1) i dim H i (g, K; A 2 (G) ⊗ V ∨ λ ) ∈ Z,
where H * (g, K; -) denotes (g, K)-cohomology. Attached to G is a certain integer denoted n G , defined as the dimension of the standard representation of G, the Langlands dual group of G: concretely, we have n G = 2n + 1 for G = Sp 2n , and n G = 2n for G = SO 2n+1 or SO 2n . The infinitesimal character of V λ , namely "λ+ρ", defines a unique regular element w(λ) in W m with m = n G . Concretely, using the standard5 notation λ = n i=1 λ i e i for dominant weights of classical groups (as in [Taï17, §2]), w(λ) is explicitely given by the following formulas:

w(λ) i =      λ i + n + 1/2 -i for 1 ≤ i ≤ n if G = SO 2n+1 , λ i + n + 1 -i for 1 ≤ i ≤ n if G = Sp 2n , |λ i | + n -i for 1 ≤ i ≤ n if G = SO 2n and n ≡ 0 mod 2.
The promised second key fact, explained in § §4.1 and 4.2 of [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] is:

Key fact 2. Fix G and λ as above, and set w = w(λ) = (w i ). Assume we know N ⊥ (v) for all regular v = (v i ) ∈ W m with m < n G and v 1 ≤ w 1 , then it is equivalent to know EP(G; λ) and N ⊥ (w).

It follows from the formula above for w(λ) that any regular w in W m , with m ≥ 1 arbitrary, is of the form w(λ) for a unique split classical group G over Z and some dominant weight λ of G. As a consequence, Key fact 2 paves the way for a computation of N ⊥ (w) for all regular w, by induction on n G .

Contrary to the case of Key fact 1, we will not reproduce here the precise claimed relation between EP(G; λ) and the quantities N ⊥ (-) stated in Key fact 2, and simply refer to [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF]§4]. As for Key fact 1, it crucially depends on Arthur's endoscopic classification [START_REF]The Endoscopic Classification of Representations: Orthogonal and Symplectic groups[END_REF] and on the explicit description of Archimedean Arthur packets in the regular algebraic case given by [START_REF] Adams | Endoscopic groups and packets of nontempered representations[END_REF] and [START_REF] Arancibia | Paquets d'Arthur des groupes classiques et unitaires[END_REF] (they are the so-called Adams-Johnson packets, see [Taï17, §4.2.2]). The full combinatorics, when written down explicitly and case-by-case, are rather complicated but computable, and implemented since [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF].

The second ingredient is Arthur's L 2 -Lefschetz trace formula developed in [START_REF]The L 2 -Lefschetz numbers of Hecke operators[END_REF] applied to the relevant test function. A detailed analysis of this formula has been made in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] that we will follow below. We use this version of the trace formula as it is the one with the simplest geometric terms. Its spectral side is exactly EP(G; λ), a quantity in principle harder to interpret (the price to pay for a simple geometric side), but this can be done precisely by Key fact 2 above.

We fix a Haar measure dg = v dg v on G(A), with A the adèle ring of Q, such that the Haar measure dg p on G(Q p ) gives G(Z p ) the volume 1. Fix a dominant weight λ of G. We apply Arthur's formula [START_REF] Arthur | The invariant trace formula. II. Global theory[END_REF] to a test function ϕ of the form ϕ ∞ ⊗ p 1 G(Zp) , where 1 G(Zp) is the characteristic function of G(Z p ), and where ϕ ∞ (g)dg ∞ is the sum, over all the discrete series δ of G(R) with same infinitesimal character as V λ , of a pseudocoefficient of δ. According to [START_REF]The L 2 -Lefschetz numbers of Hecke operators[END_REF] the resulting identity, which only depends on G and λ, is 

T ell (G; λ) = γ vol(G γ (Q)\G γ (A)) • O γ (1 G( Z) ) • tr(γ | V λ ),
where γ runs over representatives of the (finitely many) G(Q)-conjugacy classes of finite order elements in G(Q) whose G(Q p )-conjugacy class meets G(Z p ) for each prime p (see §3.1). For each such γ, we have denoted by G γ its centralizer in G (defined over Q), choosed on G γ (A) a signed Haar measure dh = v dh v with dh ∞ an Euler-Poincaré measure on G γ (R) (in the sense of [START_REF] Serre | Cohomologie des groupes discrets[END_REF]), and we have denoted by O γ (1 G( Z) ) the product over all primes p of the classical orbital integrals (1.4.4)

G(Qp)/Gγ (Qp) 1 G(Zp) (g p γg -1 p ) dg p dh p .
Taïbi developped in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] a number of algorithms to enumerate the γ, compute their local orbital integrals (with dh p Gross's canonical measure), and the associated global volumes. Here we shall simply write (1.4.5)

T ell (G; λ) = c∈C(G) m c tr(c | V λ ),
where C(G) denotes the set of G(Q)-conjugacy classes of finite order elements in G(Q) (essentially, a characteristic polynomial: see §3.1) and m c is a certain number depending only on c and called the mass of c (note that tr(c | V λ ) is welldefined). By definition, m c is a concrete sum of volumes times global integral orbitals; it essentially follows from [Gro97, Theorem 9.9] and Siegel's theorem on the rationality of the values of Artin L-functions at non-negative integers [START_REF] Carl | Berechnung von Zetafunktionen an ganzzahligen Stellen[END_REF] that we have m c ∈ Q.

The character of V λ may be either evaluated using the (degenerate) Weyl character formula as in [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF], or much more efficiently for small λ using Koike-Terrada's formulas [START_REF] Koike | Young-diagrammatic methods for the representation theory of the classical groups of type B n , C n , D n[END_REF] as was observed in [Cheb]. Last but not least, the term in the sum defining T geom (G; λ) corresponding to a proper Levi subgroup of the form (1.4.2) is expressed in terms of T ell (G ; λ ), as well as T ell (SO 3 ; λ ) if b = 0, for suitable auxilliary λ , λ : see [Taï17, §3.3.4] for the concrete formulas, that will not be repeated here. As a consequence, the key problem is to be able to compute the masses m c for c ∈ C(G).

The strategy. We are finally able to explain our strategy. Fix m ≥ 1 an integer. We may assume, by induction, that we have computed the masses m c for all split classical groups H over Z such that H(R) has discrete series and n H < m, and all c ∈ C(H). By the Key fact 2 and the trace formula (1.4.1), note that we have an explicit and computable formula for N ⊥ (w) for all regular w ∈ W m with m < m. Fix a split classical group G over Z such that G(R) has discrete series and n G = m. Assume we have found a finite set Λ of dominant weights of G(C) with the following two properties:

(P1) For all λ ∈ Λ we have

N ⊥ (w(λ)) = 0. (P2) the Λ × C(G) matrix (tr(c | V λ )) (λ,c) has rank |C(G)|.
Then from (P1) and the Key fact 2 we know EP(G; λ) for all λ ∈ Λ. It follows that for all λ ∈ Λ we know T geom (G; λ) as well, by the trace formula (1.4.1), hence also T ell (G; λ) since the non-elliptic geometric terms are also known by induction. By (1.4.5) and (P2), we deduce the masses m c for all c ∈ C(G) by solving a linear system. As a consequence, for an arbitrary dominant weight λ of G we may then compute T geom (G; λ), hence EP(G; λ) by (1.4.1), and N ⊥ (w(λ)) by Key fact 2. Amusingly, the conclusion is that we end by proving the existence of self-dual cusp forms for PGL m mostly by showing that many others do not exist ! (namely the ones with weights of the form w(λ) with λ in Λ.)

A simple example. Let us illustrate this method in the (admittedly too) simple case m = 2 and G = SO 3 . In this case C(G) has 5 classes, of respective order 1, 2, 3, 4 and 6: say c i has order i. The dominant weights of G are of the form ke 1 for a unique integer k ≥ 0, and will be simply denoted by k. For k ≥ 0, we have w(k) = (k + 1/2, -k -1/2), N(w(k)) = dim S 2k+2 (SL 2 (Z)), the analysis of the spectral side gives EP(G; k) = -N(w(k)) + δ k,0 , with δ i,j the Kronecker symbol, and the geometric side is

T geom (G; k) = T ell (G; k) + 1 2 .
Assume we know that there is no cuspidal modular form for SL 2 (Z) of usual weight 2, 4, 6, 8, 10. This may for instance be shown by applying the explicit formula to the Hecke L-function of a putative eigenform of such a weight, as observed in [Mes86, Rem. III.1]. This also follows very easily from the methods of §1.3. Using dim V k = 2k + 1 and the identity tr(c i |V k ) = sin( (2k+1)π i )/sin 2π i for i > 1 we obtain with Λ = {0, 1, 2, 3, 4} the linear system

      1 1 1 1 1 3 -1 0 1 2 5 1 -1 -1 1 7 -1 1 -1 -1 9 1 0 1 -2       .       mc 1 mc 2 mc 3 mc 4 mc 6       =       1/2 -1/2 -1/2 -1/2 -1/2      
.

Luckily, the matrix on the left-hand side is invertible: we find

m c 1 = -1 12 , m c 2 = 1 4 , m c 3 = 1
3 and m c 4 = m c 6 = 0. As a consequence, we recover the classical formula for dim S 2k (SL 2 (Z)).

Remark 1.1. In certain classes c in C(G), there is no element γ whose G(Q)conjugacy class meets G(Z p ) for each p and such that G γ (R) has discrete series: this forces m c = 0 by (1.4.3). This actually explains m c 4 = m c 6 = 0 above. This remark will lead us in §3.2, and following [Taï17, Remark 3.2.8], to replace C(G) by a smaller set C 1 (G), and to rather apply our strategy with C(G) replaced by C 1 (G) in (P2). See also §3.1 for other more elementary reductions, using the center of G or an outer automorphism of SO 2n .

The crucial last ingredient for this method to work is to be able to find sufficiently many w ∈ W n G such that N ⊥ (w) = 0. We will use of course for this the method explained in §1.3 (the explicit formula for Rankin-Selberg L-functions). Rather miraculously, it provides enough vanishing results up to rather a high rank: see §3.3 for a proof of the following final theorem, obtained by applying only this "effortless" strategy: As already said, these results are in accordance with all the orbital integral computations done in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF]. This method is both conceptually simpler and faster: for comparison, computing all the orbital integrals for Sp 14 takes several weeks, whereas finding Λ and solving the linear system to determine all the m c , for c ∈ C(Sp 14 ), only takes minutes on the same computer. The cases SO m with m = 15, 16, 17 are new. Last but not least, if we combine the methods of this paper with Taïbi's, we obtain the following new result in the symplectic case (see §3.3).

Theorem 7. The masses m c , for all c ∈ C(Sp 16 ), are given in [CT19b].

Following Key fact 2, these two theorems allow to compute EP(G; λ) for all those G and an arbitrary weight λ, as well as the quantity N ⊥ (w) for any w ∈ W m for m ≤ 16: see loc. cit. for tables. We denote by W R the Weil group of R: we have W R = C × jC × , where j 2 is the element -1 of C × and with jzj -1 = z for all z ∈ C × . The Langlands correspondence for GL n (R) is a natural bijection V → L(V ) between the set of isomorphism classes of irreducible admissible Harish-Chandra modules for GL n (R), and the set of isomorphism classes of n-dimensional (complex, continuous and semisimple) representations of W R [START_REF] Knapp | Local Langlands correspondence: the Archimedean case, Motives[END_REF]. We say that the Harish-Chandra module V is algebraic if every element in the center R × of W R acts as a homothety with factor ±1 in L(V ). In particular, L(V ) factors through the (compact) quotient of W R by R >0 , which is an extension of Z/2 by the unit circle. We denote by 1 the trivial representation of W R , by ε C/R its unique order 2 character, and for w ∈ Z we set I w = Ind W R C × η w where η(z) = z/|z|. Up to isomorphism, the irreducible representations of W R trivial on R >0 are 1, ε C/R , and I w for w > 0.

Weil's explicit formula for

We also have I 0 1 ⊕ ε C/R , and I w I w if and only if w = ±w .

If π is a cuspidal automorphic representation of PGL n over Q, Clozel's purity lemma (or the Archimedean Jacquet-Shalika estimates) shows that the Harish-Chandra module π ∞ is algebraic in the sense above if, and only if, π is algebraic in the sense of §1.2 [CL19, Prop. 8.2.13]. Moreover, for all v ∈ Z the multiplicity of the weight v/2 of π is the same as the multiplicity of the character η v in the restriction of L(π ∞ ) to C × . In other words, all the weights 0 (resp. ±v/2 with v > 0) of π ∞ are explained by occurences of 1 or ε C/R (resp. of I v ) in L(π ∞ ). It will be convenient to introduce:

• the Grothendieck ring K ∞ of complex, continuous, finite dimensional, representations of W R which are trivial on its central subgroup R >0 ,

• for w an integer, the sugroup K ≤w ∞ of K ∞ generated by the I v with 0 ≤ v ≤ w and v ≡ w mod 2, and also by 1 and ε C/R in the case w is even.

An element U of K ∞ will be called effective if it is the class of a representation of W R . The weights of such a U are the w/2 in 1 2 Z such that η w occurs in U |C × , counted with the multiplicity of η w in U |C × (a nonnegative number as U is effective).

It follows from this discussion that for π in Π alg , we have L(π ∞ ) ∈ K ≤w ∞ for some integer w ≥ 0, and that the smallest such integer w coincides with the motivic weight w(π) of π introduced in §1.2. Moreover, the weights of π are that of L(π ∞ ).

For later use, we now recall Langlands' definition for the ε-factors and Γ-factors of algebraic Harish-Chandra modules. The Γ-factor of an element U in K ∞ is a meromorphic function s → Γ(s, U ) on the whole complex plane, characterized by the additivity property Γ(s, U ⊕ U ) = Γ(s, U )Γ(s, U ) and the following axioms [Tat79]:

Γ(s, 1) = π -s 2 Γ( s 2 ) and Γ(s, I w ) = 2(2π) -s-|w| 2 Γ(s + |w| 2 ) for all w ∈ Z,
in which s → Γ(s) is the classical gamma function. Similarly,6 the ε-factor of U ∈ K ∞ is the element ε(U ) of {±1, ±i} characterized by the additivity property ε(U ⊕ U ) = ε(U )ε(U ) and the identities ε(1) = 1 and ε(I w ) = i w+1 for every integer w ≥ 0.

2.2. Regular and self-dual elements of Π alg . Let π be a level 1 algebraic cuspidal automorphic representation of PGL n over Q. We will say that π is regular if the representation L(π ∞ ) of W R is multiplicity free. It is thus equivalent to say that for each weight w of π, either w has multiplicity 1 or we have w = 0 and L(π ∞ ) contains both 1 and ε C/R with multiplicity 1. This latter case can only occur of course if both the motivic weight of π and n are even. Moreover, we observe that:

• if all the nonzero weights of π have multiplicity 1, and if the weight 0 has multiplicity 2, then π is regular if, and only if, we have n ≡ 0 mod 4.

• π is regular if, and only if, the vector

(w i ) ∈ 1 2 Z n , where w 1 ≥ w 2 ≥ • • • ≥ w n are the weights of π, is regular in the sense of §1.2. • if π is regular and n = 2g + 1 is odd, then L(π ∞ ) contains ε g C/R
. Indeed, as π a trivial central character, we must have det L(π ∞ ) = 1, and we conclude by the formula det I v = ε v+1 C/R for v ∈ Z. Assume now that π is self-dual, that is, isomorphic to its contragredient (or dual) π ∨ . Then π is either symplectic or orthogonal in the sense of Arthur [Art13,Thm. 1.4 

L(s, π × π ) = p det(1 -p -s c p (π) ⊗ c p (π )) -1 .
By fundamental works of Jacquet, Piatetski-Shapiro, and Shalika [START_REF] Jacquet | On Euler products and the classification of automorphic forms[END_REF][START_REF] Jacquet | Rankin-Selberg convolutions[END_REF], this Euler product is absolutely convergent for Re s > 1, and the completed Lfunction

(2.3.1) Λ(s, π × π ) = Γ(s, L(π ∞ ) ⊗ L(π ∞ )) L(s, π × π ),
has a meromorphic continuation to C and a functional equation of the form

(2.3.2) Λ(s, π × π ) = (π × π ) Λ(1 -s, π ∨ × (π ) ∨ )
where (π × π ) is a certain nonzero complex number (it does not depend on s as π has level 1). We set (π) = (π × 1).

Assuming π and π are algebraic, the only case of interest here, the Γ(s, -) factor in (2.3.1) is given by the recipe recalled in §2.1, and we simply have

(2.3.3) (π × π ) = ε(L(π ∞ ) ⊗ L(π ∞ )).
Note that the ring structure of K ∞ is determined by the relations

I w •I w = I |w+w | + I |w-w | and ε C/R • I w = I w .
By Moeglin and Waldspurger [MW89, App.], Λ(s, π × π ) is entire unless we have π π ∨ , in which case the only poles are simple and at s = 0, 1. Moreover, Λ(s, π × π ) is bounded in vertical strips away from its poles by Gelbart and Shahidi [START_REF] Gelbart | Boundedness of automorphic L-functions in vertical strips[END_REF]. All those analytic properties are key to establishing the Weil explicit formula (for which we refer to Poitou [START_REF]Séminaire Delange-Pisot-Poitou, 18e année[END_REF][START_REF]The Siegel operator Φ g+1 : M k (Γ g+1 ) → M k (Γ g ) is bijective. (2) If k ≡ 0 mod 4, the linear map ϑ g : C[X 2k ] → M k (Γ g ) is an isomorphism[END_REF]) in this context. The general formalism of Mestre [START_REF] Mestre | Formules explicites et minorations de conducteurs de variétés algébriques[END_REF]§I] applies verbatim: we refer to [CL19, Chap. 9, Sect. 3] for the details and only recall here what we need to prove our criterion.

We denote by R Π alg the R-vector space with basis Π alg . We fix a test function F , that is an even function R → R satisfying the axioms (i), (ii) and (iii) of [Mes86, §I.2] with the constant c loc. cit. equal to 0 (see also [START_REF]Séminaire Delange-Pisot-Poitou, 18e année[END_REF][START_REF]The Siegel operator Φ g+1 : M k (Γ g+1 ) → M k (Γ g ) is bijective. (2) If k ≡ 0 mod 4, the linear map ϑ g : C[X 2k ] → M k (Γ g ) is an isomorphism[END_REF]). The reader will not lose anything here assuming simply that F is compactly supported and of class C 2 . We denote by F the Fourier transform of F , with the convention F (ξ) = R F (x)e -2iπxξ dx. Following [CL19, Chap. 9, Sect. 3], we first define five symmetric bilinear forms on R Π alg , that we denote by B F f , B F ∞ , Z F , e ⊥ and δ. The first three of them depend on the choice of F . They are uniquely determined by their values on any

(π, π ) ∈ Π alg × Π alg : (a) B F f (π, π ) = p,k F (klog p) log p p k/2 tr (c p (π) k ) tr (c p (π ) k
), the sum being over all primes p and integers k ≥ 1.

(b) B F ∞ (π, π ) = J F (L(π ∞ ) ⊗ L(π ∞ )), where J F : K ∞ → R is the linear map defined by (2.3.4) J F (U ) = - R Γ Γ ( 1 2 + 2πt i, U ) F (t) dt.
We will also denote abusively by B F ∞ the real-valued symmetric bilinear form on

K ∞ defined by B F ∞ (U, V ) = J F (U • V ). With these abusive notations we have B F ∞ (π, π ) = B F ∞ (L(π ∞ ), L(π ∞ )). (c) Z F (π, π ) is the limit of ρ (ord s=ρ Λ(s, π ∨ × π )) F ( 1-2ρ
4iπ ), the sum being over the zeros ρ of Λ(s, π ∨ × π ) with 0 ≤ | ρ| ≤ T and 0 ≤ ρ ≤ 1, when the real number T goes to +∞.

(d) δ(π, π ) = 1 if π π , and δ(π, π ) = 0 otherwise (Kronecker symbol).

(e) e ⊥ (π, π ) = 1 if π and π are self-dual with (π × π ) = -1, and e ⊥ (π, π ) = 0 otherwise.

The main result is that for any test function F we have the equality of bilinear forms

(2.3.5) B F f + B F ∞ + 1 2 Z F = F ( i 4π ) δ ( the"explicit formula")
on the space R Π alg : see [Mes86, §I.2] and [CL19, Prop. 9.3.9]. We finally define a last bilinear form on R Π alg by the formula

(2.3.6) C F := F ( i 4π ) δ -B F ∞ - 1 2 F (0) e ⊥ .
In our applications, it will represent the "computable" part of the explicit formula. Note that for any test function F , both F (0) and F (i/4π) are real numbers, and if F is non-negative then they are both non-negative.

Definition 2.1. Let F be a test function. We will say that F satisfies (POS) if we have F (x) ≥ 0 for all x ∈ R, and F (ξ) ≥ 0 for all ξ ∈ C with |Im ξ| ≤ 1 4π . Proposition 2.2. Let F be a test function satisfying (POS). Then for any integer r ≥ 1, any π 1 , . . . , π r in Π alg and any nonnegative real numbers t 1 , . . . , t r , we have

(2.3.7) C F ( i t i π i , i t i π i ) ≥ 0.
Proof. By density of the rationals in R, we may assume that the t i are rational numbers, and even that they are integers by homogeneity of the quadratic form x → C F (x, x). But in this case, the statement is [CL19, Cor. 9.3.12]. As the proof is very simple, we give a direct argument. By (2.3.5) we have

C F = B F f + 1 2 (Z F -F (0) e ⊥ ).
By definition (a) and the assumption F ≥ 0, the symmetric bilinear form

B F f is positive (semi-definite) on RΠ alg . It is thus enough to show that 1 2 (Z F -F (0) e ⊥
) has nonnegative coefficients in the natural basis Π alg of R Π alg , i.e. that we have Z F (π, π ) ≥ F (0) e ⊥ (π, π ) for all π, π ∈ Π alg . But this follows from the definition of Z F (π, π ), the assumption on F , and the fact that if we have e ⊥ (π, π ) = 1 then Λ(s, π ∨ × π ) has a zero at s = 1/2 by the functional equation (2.3.2).

Applications.

In what follows we will apply Proposition 2.2 to disprove the existence of representations π in Π alg such that π ∞ is a given algebraic representation, using the knowledge that there are representations in Π alg with known Archimedean components.

2.4.1. The basic inequalities. Before doing so, we first recall the following basic but important consequence of the explicit formula, that we derive here as a very special case of Proposition 2.2 (see also [CL19, Cor. 9.3.12 & 9.3.14]).

Corollary 2.3. Let F be a test function satisfying (POS) and fix U in K ∞ . If there is an element π in Π alg with L(π ∞ ) = U then we have the inequality

(2.4.1) B F ∞ (U, U ) ≤ F (i/4π
). More generally, if there are distinct elements π 1 , . . . , π m in Π alg with L((π j ) ∞ ) = U for all j, then we have

(2.4.2) B F ∞ (U, U ) ≤ 1 m F (i/4π).
Proof. Consider the element x = m i=1 π i of RΠ alg . We have C F (x, x) ≥ 0 by Proposition 2.2. We clearly have7 F (0)e ⊥ (x, x) ≥ 0, by the inequality F (0) ≥ 0. We conclude by the equalities δ

(x, x) = m and B F ∞ (x, x) = m 2 B F ∞ (U, U ).
Establishing inequality (2.4.1) is the original application of the explicit formula for Rankin-Selberg L-function to prove the nonexistence of certain π in Π alg with given π ∞ . It was used by8 Miller in [START_REF] Stephen | The highest lowest zero and other applications of positivity[END_REF] to show that for n ≤ 12 there is no π in Π alg {1} such that L(π ∞ ) is either

I 1 +I 3 +• • •+I 2n+1 or ε n C/R +I 2 +I 4 +• • •+I 2n .
As explained in [CL19, Sect. 9.3] and [Chea], the simple inequality (2.4.1) is very constraining generally in motivic weight ≤ 23: for suitable F the bilinear form B F ∞ is positive definite on K ≤w ∞ for w ≤ 23, and there is an explicit finite list L of elements of K ∞ such that whenever U is in K ≤w ∞ -L with w ≤ 23, there is no π in Π alg with L(π ∞ ) = U . It has however some limitations: as we shall see, the list L is quite large, and far from optimal. For instance, it does not seem possible to exclude this way the possibility 9 L(π ∞ ) I 13 . Nevertheless, Inequality (2.4.1) will be extremely helpful to us in §3.3 and Sect. 4. Inequality (2.4.2) was first observed by Taïbi. In the case B F ∞ (U, U ) > 0, it may be seen as an effective form of Harish-Chandra's finiteness theorem. We will often use it to show that there is at most one π in Π alg with given L(π ∞ ) = U ; note that such a π has to be self-dual if it exists, as we have

L((π ∨ ) ∞ ) = L(π ∞ ) ∨ = L(π ∞ ).
2.4.2. A general method. For π in Π alg , set sd(π) = 1 if π is self-dual, and sd(π) = 0 otherwise. In this section, we will develop a method trying to answer in the negative the following question.

Question 2.4. Fix an integer r ≥ 1, and for each

1 ≤ i ≤ r elements U i in K ∞ and δ i in {0, 1}. Does there exist distinct representations π 1 , . . . , π r in Π alg with L((π i ) ∞ ) = U i and sd(π i ) = δ i for each 1 ≤ i ≤ r ?
To do so, assume we are given an integer r ≥ 1 and for each 1 ≤ i ≤ r, elements U i in K ∞ , δ i in {0, 1}, and an integer m i ≥ 1. In other words, we fix a quadruple

(2.4.3) Q = (r, U , δ, m) with U = (U i ) 1≤i≤r in K r ∞ , δ = (δ i ) 1≤i≤r in {0, 1} r and m = (m i ) 1≤i≤r in Z r ≥1 .
To the choice of Q and of a test function F , we associate the symmetric bilinear form β F Q on the standard Euclidean space R r , defined by the formula

(2.4.4) β F Q (e i , e j ) = 1 m i F (i/4π) e i • e j -J F (U i • U j ) -F (0)δ i δ j 1 -ε(U i • U j ) 4 ,
where e 1 , . . . , e r is the standard orthonormal basis of R r . We will discuss the practical numerical evaluation of β F Q (i.e. of J F , F (0) and

F ( i 4π )) in §2.4.3. Set S r-1 + = {(t i ) ∈ R r | r i=1 t 2 i = 1
and ∀i, t i ≥ 0}. Problem 2. Fix a test function F and a quadruple Q = (r, U , δ, m) as in (2.4.3). Determine wether the map x → β F Q (x, x) takes a negative value on S r-1 + . The relationship between Question 2.4 and this problem (which does not involve automorphic representations) is the following. Suppose m i = 1 for each 1 ≤ i ≤ r (the general m i will play a role only later). Assume there are distinct

π 1 , . . . , π r in Π alg with L((π i ) ∞ ) = U i and sd(π i ) = δ i for each 1 ≤ i ≤ r. Denote V = r i=1
Rπ i ⊂ RΠ alg viewed as an Euclidean space with orthonormal basis (π 1 , . . . , π r ). As the π i are distinct we actually have x • x = δ(x, x) for all x ∈ V . We also have

(2.4.5) B F ∞ (π i , π j ) = B F ∞ (U i , U i ) = J F (U i • U j ), e ⊥ (π i , π j ) = δ i δ j 1 -ε(U i • U j ) 2 .
In other words, the linear map ι : R r → V defined by e i → π i is an isometry satisfying

C F (ι(x), ι(y)) = β F Q (x, y) for all x, y ∈ R r . If we are able to find an element t = (t i ) ∈ S r-1 + with β F Q (t, t) < 0, then the element ι(t) = r i=1 t i π i contadicts Proposition 2
.2: we have answered Question 2.4 in the negative.

From now on we thus focus on Problem 2. We fix an arbitrary quadruple Q = (r, U , δ, m) as in (2.4.3) and a test function F . To simplify the notations we also set E = R r and D = S r-1 + . Let us introduce, for each non-empty I ⊂ {1, . . . , r}:

• the subspace E I := i∈I Re i of E, the intersection D I = D ∩ E I and its interior DI := { i∈I t i e i ∈ D | ∀i ∈ I, t i > 0}.
We have D = I DI .

• the minimal eigenvalue λ I of the Gram matrix (β F Q (e i , e j )) i,j∈I of the restriction of β F

Q to E I × E I , and the corresponding eigenspace E I,λ I . We also denote by µ F Q the minimum of x → β F Q (x, x) on D. Proposition 2.5. Fix a test function F and a quadruple Q = (r, U , δ, m) as in (2.4.3). Let I be the set of non-empty I ⊂ {1, . . . , r} such that E I,λ I intersects DI . Then I is non-empty and we have µ

F Q = min I∈I λ I . Proof. The minimum µ F Q of x → β F Q (x, x) on the compact D = I∈I DI is reached in DJ for some J. By Lemma 2.6 below applied to E J and C F |E J ×E J , any local minimum of x → β F Q (x, x)
on DJ is an eigenvector for λ J and we have µ F Q = λ J . We have J ∈ I, and the other inequality µ F Q ≤ λ I for any I ∈ I is obvious. Lemma 2.6. Let E be an Euclidean space with scalar product x • y, S its unit sphere, b a symmetric bilinear form on E and u the (symmetric) endomorphism of E satisfying b(x, y) = x • u(y) for all x, y in E. Assume that the map S → R, x → b(x, x) has a local minimum at the element v in S. Then v is an eigenvector of u whose eigenvalue b(v, v) is the minimal eigenvalue of u.

Proof. Set q(x) = b(x, x). We have q( v+w |v+w| ) = q(v)+2b(w, v)+O(w 2 ) when w goes to 0 in v ⊥ . As v is a local minimum of q, this shows b(w, v) = w • u(v) = 0 for all w in v ⊥ . So v is an eigenvector of u. Denote by λ be the corresponding eigenvalue. Assume u has an eigenvalue λ < λ, and choose v in S with u

(v ) = λ v . We have b(v, v ) = 0 and q((1 -2 ) 1/2 v + v ) = λ + 2 (λ -λ) < λ for all 0 < < 1, a contradiction. Example 2.7. Assume r = 2 and set (β F Q (e i , e i )) 1≤i,j≤2 = a b b c
. We have λ {1} = a and λ {2} = c. We may assume a and c are ≥ 0, otherwise Problem 2 is solved. For I = {1, 2}, the eigenvalue λ I is < 0 if and only if the determinant ac -b 2 is < 0. In this case, we have b = 0 and the eigenspace E I,λ I is a line: we easily check that this line meets DI if and only if b < 0. Proposition 2.5 implies that assuming ac < b 2 and b < 0, or equivalently b + √ ac < 0, we have

µ F Q < 0. Lemma 2.8. Fix a test function F and a quadruple Q = (r, U , δ, m) as in (2.4.3). Assume µ F Q < 0, F (i/4π) > 0, as well as (U i , δ i , m i ) = (U j , δ j , m j ) for some indices i = j. Then any element t in D with β F Q (t, t) = µ satisfies t i = t j . Proof. Set q(x) = β F Q (x, x). Consider the set B = 0≤λ<1 λD; then B ∪ D is convex and we have q(x) > µ F Q for x ∈ B. Fix t ∈ D with β F Q (t, t) = µ F Q .
An inspection of Formula (2.4.4) shows that for any real numbers s i , s j we have (2.4.6) q s i e i + s j e j + l =i,j

t l e l = - 2 m i s i s j F (i/4π) + (function of s i + s j ) . The set (2.4.7) {(s i , s j ) | s i , s j ≥ 0, s i + s j = t i + t j , s 2 i + s 2 j + l =i,j t 2 l ≤ 1}
is a compact interval in R 2 with end points (t i , t j ) and (t j , t i ). By assumption we have F (i/4π) > 0, and so the minimum of (2.4.6) on (2.4.7) is reached for s i = s j = (t i + t j )/2. If we assume t i = t j then s i e i + s j e j + l =i,j t l e l belongs to B, a contradiction.

This lemma leads to the following considerations. Start with a quadruple Q = (r, U , δ, m) with the property m i = 1 for i = 1, . . . , r. Assume we have a partition {1, . . . , r} = r l=1 P l with the property that for each 1 ≤ l ≤ s, and each i, j ∈ P l , we have (U i , δ i ) = (U j , δ j ). Consider the new quadruple Q = (r , U , δ , m ) where for each 1 ≤ l ≤ r we define U l (resp. δ l ) as the element U i (resp. δ i ) with i ∈ P l (this does not depend on the choice of such an i), and set m l = |P l |. We have a natural inclusion i : R r -→ R r sending e l to 1 √ m l i∈P l e i for each 1 ≤ l ≤ r . This embedding is an isometry for the standard Euclidean structures on both sides, and it follows from Formula (2.4.4) that we have y) for all x, y ∈ R r and all test functions F . Lemma 2.8 shows then (the inequality µ

β F Q (i(x), i(y)) = β F Q (x,
F Q ≤ µ F Q being obvious):
Corollary 2.9. Let Q and Q be as above, and fix a test function F with F (i/4π) > 0. We have µ F Q < 0 if and only if µ F Q < 0, and if these inequalities hold we have

µ F Q = µ F Q .
Remark 2.10. Assume we have two quadruples of the form Q = (r, U , δ, m) and

Q = (r, U , δ , m) with δ i ≥ δ i for each 1 ≤ i ≤ r. Choose a test function F with F (0) ≥ 0. Then we have β F Q (x, y) ≤ β F Q (x, y) for all x, y in R r ≥0 by Formula (2.4.4). This shows µ F Q ≤ µ F Q . In particular, µ F Q < 0 implies µ F Q < 0.
2.4.3. A digression on numerical evaluation. Before discussing the natural algorithm that follows from Propositions 2.5 and Corollary 2.9, let us discuss the numerical evaluation of the bilinear form C F . Given a test function F , we will have to be able to compute with enough and certified precision the quantities (2.4.8) F (0), F (i/4π) and J F (U ) for U = 1 and U = I w (w ∈ Z).

It amounts to computing certain indefinite integrals. Numerical integration routines of computer packages such as PARI allow to compute approximations of such integrals, with increasing and in principle arbitrarily large accuracy. Although these routines have been very useful in our preliminary computations, and experimentally return highly accurate values when properly used, it would be delicate to rigorously bound the differences between these computed values and the exact ones. This is why we proceed differently.

In this paper, we only use Odlyzko's function F = F with parameter > 0. This is the function defined by F (x) = g(x/ )/cosh(x/2), where g : R → R is twice the convolution square of the function x → cos(πx)1 |x|≤1/2 : see [Poi77b, Sect. 3] and [CL19, Sect. 9.3.17]. These functions satisfy (POS), F (i/4π) = 8 π 2 , and Proposition 9.3.18 of [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] provides alternative closed formulas for all the other quantities in (2.4.8) (see Proposition 4.4 for similar expressions). Each is a sum of a linear combination of a few special values of the classical digamma function ψ = Γ /Γ and of its derivative ψ (z) = n≥0 1/(n + z) 2 , and of a simple rapidly converging series with given tail estimates [CL19, (3) p.127]. Using these formulas and estimates, we implemented functions in Python using Sage [S + 14] to compute certified intervals containing the real numbers (2.4.8) for F = F . See [CT19b] for the source code. For interval arithmetic, Sage relies on the Arb library http://arblib.org/. Our computations only use the four operations, the exponential and logarithm functions, the constant π, the function ψ (acb_digamma in this library), and its derivative (a special case of acb_polygamma).

Remark 2.11. Fix an integer 0 ≤ w ≤ 23. For suitable > 0, the restriction of B F ∞ to K ≤w ∞ is positive definite (see e.g. Lemma 9.3.37 and Proposition 9.3.40 in [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF], as well as [Chea]). By Corollary 2.3, it is important to be able to enumerate, for c > 0, all the (finitely many) effective elements U in K ≤w ∞ satisfying B F ∞ (U, U ) ≤ c. We use for this the Fincke-Pohst algorithm enumerating the short vectors in a lattice. Using interval arithmetic as explained above we can obtain rational lower bounds for the coefficients of the Gram matrix of B F ∞ , and since we are only interested in effective elements of K ≤w ∞ we can work with this rational Gram matrix instead. Unfortunately PARI's qfminim does not (yet?) include an exact variant of the Fincke and Pohst algorithm for Gram matrices with integral entries. For this reason we reimplemented the first (simple) algorithm of Fincke-Pohst [FP85] using only exact computations, adding the condition of effectivity in the recursion to avoid unnecessary computations. Of course in practice this algorithm always leads to the same conclusions as PARI's qfminim algorithm, if the latter is properly used. See [CT19b] for our source code. 2.4.4. The algorithm. The following algorithm tries to solve Problem 2 using the method discussed in §2.4.2.

Input: A quadruple Q = (r, U , δ, m) as in 2.4.3.
Output: (if the algorithm terminates) A triple ( , I, t) with > 0, a non empty I ⊂ {1, . . . , r}, and t ∈ R I with β F Q (t, t) < 0.

Step 1. Choose a real number > 0 and compute an approximation (G i,j ) 1≤i,j≤r of the Gram matrix (β F Q (e i , e j )) 1≤i,j≤r . We do this using the formulas (2.4.4) of §2.4.2 and the expressions of [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] for the quantities (2.4.8) with F = F discussed in §2.4.3.

Step 2. Choose a nonempty subset I of {1, . . . , r} and compute an approximation λ I of the minimal eigenvalue of the Gram matrix (G i,j ) i,j∈I , as well as an approximate corresponding eigenvector (t i ) i∈I . For doing so, we apply PARI's qfjacobi function to (G i,j ) i,j∈I (an implementation of Jacobi's method).

Step 3. If we have λ I < 0 and t i > 0 for all i ∈ I, return , I and t = (t i Step 4. Check rigorously, using interval arithmetic as discussed in §2.4.3, that we have indeed β F Q (t, t) < 0. If it fails go back to the second part of Step 3. Let us comment this algorithm and discuss the unexplained choices involved:

• The choice of in Step 1 is based on some preliminary experiments, and it seems quite hard to guess a priori a range for the best ones. In our applications, we will choose in [ 1 2 , 15] ∩ 10 -2 Z. • The loop consisting of Steps 2 and 3, for a given , can be very long if r is large, as there are 2 r -1 possibilities for I. In practice, we order the subsets I by increasing cardinality, often restrict to I of small cardinality. In practice again, the eigenspace E I,λ I is just a line. • Whenever we reached Step 4, the rigorous check with interval arithmetic of the inequality β F Q (t, t) < 0 never fails in practice. This single check is enough to justify that the algorithm does show that x → β F Q (x, x) takes a negative value on S r-1 + . This is the most important remark regarding this algorithm. In particular, we do not have to justify any of the computations done in Steps 1, 2 and 3 before: all is fair in order to find a candidate ( , I, t). Of course, the experimental fact that the last check in Step 4 never fails just reflects that the computations made with PARI are highly accurate.

In the end, a charm of this algorithm is that even if the loop of Steps 1, 2 and 3 can be very long, once we get the candidate ( , I, t) we just have to store it, and then inequality β F Q (t, t) < 0 can be rechecked instantly. 2.4.5. Final algorithm. For our applications in §2.4.6, §4 and §3.3, it will be convenient to apply Algorithm 2.4.4 in the following slightly more restrictive context.

Set up. We fix U in K ∞ , δ in {0, 1}, and an integer m ≥ 1. We fix as well a known set S of elements of Π alg and our aim is to show that there does not exist distinct elements π 1 , . . . , π m in Π alg \ S with L((π i ) ∞ ) = U and sd(π i ) ≥ δ for each 1 ≤ i ≤ m. By known we mean that we assume given L( ∞ ) and10 sd( ) for all ∈ S. We denote by S the set of triples (U , δ , m ) in K ∞ × {0, 1} × Z ≥1 such that there are exactly m elements in S with (L( ∞ ), sd( )) = (U , δ ).

Algorithm. Set r = 1 + |S|. Assuming |S| ≥ 1 it is convenient choose a bijection (2.4.9) S ∼ → {2, . . . , r} and write S = {(U i , δ i , m i ) | 2 ≤ i ≤ r}. Set also (U 1 , δ 1 , m 1 ) = (U, δ, m)
. This defines a quadruple Q = (r, U , δ, m). We now apply Algorithm 2.4.4 to Q. In Step 2 we obviously may, and do, restrict to subsets I containing 1, i.e. of the form I = {1} S with S ⊂ S, via the identification (2.4.9).

Output. When this algorithm terminates, it produces ( , I, t)

such that β F Q (t, t) < 0. For j = 2, . . . , m, set x j = 1 √ m j
, the sum being over the ∈ S with (L( ∞ ), δ( )) = (U j , δ j ). Assume there are distinct elements π 1 , . . . , π m in Π alg \S with L((π i ) ∞ ) = U and sd(π i ) ≥ δ for each 1 ≤ i ≤ m. Then for the element Remark 2.12. In the case S = ∅, this method just amounts to applying Corollary 2.3. In the case |S| = 1, it amounts to applying Scholium 9.3.26 of [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF], by the discussion of Example 2.7. The case of arbitrary |S| can thus be viewed as a generalisation of these criteria loc. cit. See [CT19b] for our source code in PARI of the algorithm above.

x = t 1 1 √ m (π 1 + • • • + π m ) + r i=2 t i x i of R Π alg we have C F (x, x) ≤ β F Q (t,
2.4.6. An illustration. Algorithm 2.4.5 can be used to give another proof of the Chenevier-Lannes classification theorem [CL19, Thm. 9.3.3] mentionned in §1.3 of the introduction, which is both very fast (a few seconds of computations) and systematic. Although this alternative proof shares many steps with the one loc. cit., it bypasses the geometric criterion involving Satake parameters explained in §9.3.29 therein (and does not rely at all on any computation of Satake parameters of known elements in Π alg ). Such an improvement, although not decisive here, will be crucial in the proof of Theorem 3, because at present we only know rather few Satake parameters for the known elements of Π alg of dimension > 3 (see however [START_REF] Bergström | Siegel modular forms of degree two and three[END_REF] and [START_REF] Mégarbané | Traces des opérateurs de Hecke sur les espaces de formes automorphes de SO7, SO8 ou SO9 en niveau 1 et poids arbitraire[END_REF]).

For the convenience of the reader, and in order to illustrate our new method, let us now explain the aforementioned proof of [CL19, Thm. 9.3.3] in the most complicated case of motivic weight 22. So we want to prove that there is a unique π in Π alg of motivic weight 22, namely π = Sym 2 ∆ 11 (for which we have L(π ∞ ) = I 22 +ε C/R ). We refer to the working sheet in [CT19b] for the numerical verifications used below.

Step 1. We first observe that B F ∞ is positive definite on the lattice K ≤22 ∞ for = 4.38 (Lemma [CL19, 9.3.37]). Using the PARI qfminim command, or better Remark 2.11, we may and do list all the effective elements U in K ≤22 ∞ satisfying B F ∞ (U, U ) ≤ F (i/4π) for = 4.38. We retain furthermore only those satisfying det U = 1 and containing I 22 . The resulting list U has 158 elements. If π in Π alg has motivic weight 22, then L(π ∞ ) is in U by Corollary 2.3. We will study each of these 158 possibilities for L(π ∞ ) mostly case by case.

Step 2. Denote by N(U ) be the number of elements π in Π alg with L(π ∞ ) = U . We want to bound N(U ) for each U in U by applying Inequality (2.4.2) of Corollary 2.3. For this we check that for all U in U we have

B F ∞ (U, U ) > 1 2 F (i/4π
), unless U belongs to the subset U = {I 22 + I 12 , I 22 + I 10 , I 22 + I 8 }, in which case we only have B F ∞ (U, U ) > 1 3 F (i/4π) (here is still 4.38). This shows N(U ) ≤ 1 for U in U \ U , and N(U ) ≤ 2 for U in U .

Step 3. Fix U in U . We want to show N(U ) ≤ 1. Assume N(U ) = 2, i.e. that there exist distinct π 1 , π 2 in Π alg with L((π 1 ) ∞ ) = L((π 2 ) ∞ ) = U . We apply Algorithm 2.4.5 to U , δ = 0 (see Remark 2.10), m = 2 and to the known set S = {1, ∆ 11 , ∆ 15 , ∆ 17 , ∆ 19 , ∆ 21 , Sym 2 ∆ 11 }. For U = I 22 + I 12 and = 3.5 it returns for instance an element close to

x = 0.924 1 √ 2 (π 1 + π 2 ) + 0.383 ∆ 11 .
We verify (using interval arithmetic, see §2.4.3) that we have C F (x, x) -0.173 up to 10 -3 : this contradicts Proposition 2.2. The algorithm produces a similar element x in the case U = I 22 + I 10 , with (0.924, 0.383) replaced by (0.900, 0.436), and we have then C F (x, x) -0.198 up to 10 -3 . Nevertheless, it does not seem to produce any contradiction in the remaining case U = I 22 + I 8 , even if we let vary. To deal with this last U we add to S the known element ∆ 21,9 of Π alg , whose Archimedean L-parameter is I 21 + I 9 (which is "close" to U ). The algorithm returns for = 3.5 the element x := 0.942 1 √ 2 (π 1 + π 2 ) + 0.335 ∆ 21,9 and we verify that we have C F (x, x) -0.147 up to 10 -3 , which is indeed < 0.

Step 4. We have proved so far N(U ) ≤ 1 for all U ∈ U. In particular, any π in Π alg with L(π) ∈ U is self-dual. Fix U in U. We now apply Algorithm 2.4.5 to U , δ = 1, m = 1 and to the same set S as above (with |S| ≤ 7). Using the nine in [3, 5] ∩ 1 4 Z, it yields a contradiction in each case! Actually, if we restrict to subsets S ⊂ S with |S | = 1 in Step 2 of the algorithm (in other words, if we only apply the Scholium of [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] mentioned in Remark 2.12) we already get a contradiction for all but the 7 elements U mentioned in Table 1 below. These remaining cases were exactly the ones dealt with using the geometric criterion involving Satake parameters explained in [CL19, §9.3.29]. In these 7 cases, our algorithm produces contradictions for subsets S of size 2, such as the ones gathered in Table 1. This concludes the proof. 

U x C F 4 (x,

Effortless computation of masses in the trace formula

Let G be a split classical group over Z such that G(R) admits discrete series. In other words, G belongs to one of the three families

(SO 2n+1 ) n≥1 , (Sp 2n ) n≥1 and (SO 4n ) n≥1
In this section, we explain how to implement the strategy explained in §1.4 in order to determine the masses m c for c ∈ C(G). In §3.1, we first make elementary observations that will allow us to replace C(G) by a concrete set P(G)/ ∼ of equivalence classes of polynomials, and to rewrite the elliptic terms accordingly. In §3.2, we restrict further C(G) by an explicit subset containing all conjugacy classes c such that m c = 0. It turns out that finding a subset significantly smaller than C(G) is possible in the case of special orthogonal groups, using spinor norms considerations. In the last §3.3, we finally prove Theorems 6 and 7, by discussing how to produce sets Λ of dominant weights satisfying a variant of conditions (P1) and (P2) alluded in §1.4.

3.1. Conjugacy classes and characteristic polynomials: elementary observations. Let G be one of SO 2n+1 , Sp 2n or SO 4n . We shall denote by n G the dimension of the standard (or tautological) representation of G, so n G is respectively 2n + 1, 2n or 4n. (Do not confuse n G with the n G introduced in §1.4).

The indexing set for the sum defining the elliptic part T ell (G; λ) of the geometric side in Arthur's L 2 -Lefschetz trace formula [START_REF]The L 2 -Lefschetz numbers of Hecke operators[END_REF] recalled in (1.4.3), is the set of conjugacy classes of semi-simple elements γ ∈ G(Q) which are R-elliptic (i.e. γ belongs to an anisotropic maximal torus of G R , in particular the eigenvalues of γ have absolute value 1) and such that the conjugacy class of γ in G(A f ) meets the compact support of the smooth function we put in the trace formula, in our case the characteristic function of G( Z). In particular, the characteristic polynomial P γ of such a γ, a monic polynomial of degree n G in Q[X], belongs to Z[X] and has all its complex roots of absolute value 1. Using a celebrated theorem of Kronecker, these conditions imply that the roots of P γ are roots of unity, hence that the semisimple element γ has finite order. This explains the discussion of Formula (1.4.3) in §1.4, and the indexing set C(G) of finite order elements of G(Q) taken up to conjugacy by G(Q) in the sum (1.4.5).

Definition 3.1. Let P(G) be the set of polynomials P in Q[X] having degree n G , which are products of cyclotomic polynomials and in which X + 1 has even multiplicity (or equivalently, with P (0) = (-1) n G ).

If c is a class in C(G), then all the elements γ ∈ c have the same P γ , and we will denote by P c this polynomial. It is an element of P(G) by the above discussion. We have thus defined a map This also implies T ell (SO 4n ; θ(λ)) = T ell (SO 4n ; λ) where θ is the non-trivial outer automorphism of SO 4n induced by O 4n (Z)/SO 4n (Z) = Z/2Z. This invariance is fortunate also because Koike and Terada's simple (and most importantly very effective for small weights) formulas [START_REF] Koike | Young-diagrammatic methods for the representation theory of the classical groups of type B n , C n , D n[END_REF] for traces in algebraic representations apply to irreducible representations of symplectic and orthogonal (rather than special orthogonal) groups. Equivalently, their formula gives tr(P ; λ) in terms of P , but not tr(c | V λ ) in the second case above if θ(λ) = λ.

There is another obvious invariance property of masses. For G = SO 4n or Sp 2n , the element -1 of G(Z) is in the center of G, and c → -c preserves C(G). Formula (1.4.4) thus shows: For G and c as above, we have P -c (X) = (-1) deg Pc P c (-X), tr(P -c ; λ) = λ(-1)tr(P c ; λ), as well as m Pc = m P -c by the lemma. A consequence is that T ell (G; λ) = 0 if the restriction of λ to the center Z(G) of G is non-trivial. 12 Define the following equivalence relation on P(G): where e P ∈ {1, 2} denotes the size of the equivalence class of P .

P 1 ∼ P 2 if P 1 = P 2 or P 2 (X) = (-1) n G P 1 (-X). Assuming λ |Z(G) =
12 From the perspective of the strategy discussed in §1.4, this vanishing is in agreement with the vanishing of N ⊥ (w(λ)) for all dominant weights λ of Sp 2n or SO 4n such that λ(-1) = -1, which is a consequence of the property (π) = ε(L(π ∞ )) = 1 for orthogonal π in Π alg : see [Art13, Thm. 1.5.3] and [CR15, Prop. 1.8].

To sum up, for the purpose of implementing our strategy introduced in §1.4 we can replace the indexing set C(G) by P(G)/ ∼, which is computable, and we may as well restrict to dominant weights λ such that λ| Z(G) = 1, and even to a set of representatives for the orbits under {1, θ} in the even orthogonal case. ) for any n ≥ 1. Since this fact is rather unfortunate for our strategy, we leave the details to the interested reader.

We now focus on special orthogonal groups. Proposition 3.7 below gives an explicit subset P 1 (G) of P(G) such that its preimage C 1 (G) ⊂ C(G) under the map char (3.1.1) contains C 0 (G). In contrast with the symplectic case we will see that C 1 (G) C(G) in general, owing to the fact that special orthogonal groups are not simply connected.

Remark 3.4. The second author had already observed that there was such a restriction on classes c satisfying m c = 0 in [Taï17, Remark 3.2.8], unfortunately without giving details or proofs . . . He was also unaware of related previous work of Gross and McMullen: [GM02, Theorem 6.1] is similar to Proposition 3.7. Unfortunately we could not deduce Proposition 3.7 from the results of [START_REF] Benedict | Automorphisms of even unimodular lattices and unramified Salem numbers[END_REF], so we give a slightly different proof below, relying on the Zassenhaus formula for spinor norms.

Let R be a commutative ring, V a projective R-module of finite constant rank n and q : V → R a quadratic form. We say that q is non-degenerate if the associated R-bilinear form β q (x, y) = q(x + y) -q(x) -q(y) is a perfect pairing on V . We say that q is regular if either q is non-degenerate, or n is odd and Zariski-locally on R the half-discriminant of q is invertible: see [Knu91, Ch. IV §3] (who rather uses the terminology semi-regular in this case). When V is a free R-module and q is non-degenerate, we denote by disc(q) ∈ R × /R ×,2 the class of the determinant of a Gram matrix of β q , where R ×,2 denotes the subgroups of squares in R × .

First we recall a few definitions from [Con14, Appendix C] or [Knu91, Ch. IV]. Assume n ≥ 3 and q regular. Associated to (V, q) are (reductive) groups schemes Spin(V, q) ⊂ GSpin(V, q) and SO(V, q) over R. The group GSpin(V, q) is the group of even degree invertible elements in the Clifford algebra C(V, q) which stabilize the submodule V ⊂ C(V, q) under conjugation. This conjugation action gives a morphism π : GSpin(V, q) → SO(V, q), with kernel the central GL 1 (invertible scalars in the Clifford algebra). See e.g. Propositions C.2.8 and C.4.6 of [START_REF] Conrad | Reductive group schemes, Autour des schémas en groupes[END_REF] for these properties and the fact that π factors through the special orthogonal group. The Clifford norm morphism ν : GSpin(V, q) → GL 1 is defined in (C.4.2) and (C.4.4) loc. cit. The restriction of ν to the central GL 1 is t → t 2 . The group Spin(V, q) can be defined as the kernel of the Clifford norm: see the proof of Lemma C.4.1 loc. cit. for the case n even and the proof of Proposition C.4.10 loc. cit. and the paragraph following it for the case n odd. We have [Knu91, (6.2.3) p.231] an exact sequence of sheaves in groups on the Zariski site of R (3.2.1)

1 → GL 1 → GSpin(V, q) → SO(V, q) → 1,
and thus an exact sequence of sheaves in groups on the fppf site of R

1 → µ 2 → Spin(V, q) → SO(V, q) → 1.
The (not so) long exact sequence in cohomology associated to the second short exact sequence above gives the spinor norm sn : SO(V, q) → H 1 fppf (R, µ 2 ). If Pic(R) = 1, which will always be the case in this paper, the fppf exact sequence

1 → µ 2 → GL 1 → GL 1 → 1 gives the isomorphism H 1 fppf (R, µ 2 ) R × /R ×,2
, and we will implicitly consider the spinor norm in this last group. The spinor norm of γ ∈ SO(V, q)(R) is then represented by ν(γ) where γ ∈ GSpin(V, q)(R) is any lift of γ; such a lift exists by (3.2.1) and Pic(R) = 1. The spinor norm is additive: if (V, q) (V 1 , q 1 ) ⊥ (V 2 , q 2 ) and γ ∈ SO(V, q)(R) stabilizes V 1 and V 2 then we have

sn γ = sn γ| V 1 × sn γ| V 2 .
Theorem 3.5 (Zassenhaus). Let k be a field of characteristic different from 2. Let V be a finite-dimensional vector space over k, endowed with a non-degenerate quadratic form q. Let γ ∈ SO(V, q)(k) and write the characteristic polynomial of γ as (X -1) a (X + 1) 2b Q(X) with Q(1)Q(-1) = 0. Then the spinor norm sn γ of γ is represented by disc(q | ker (γ + 1)

2b ) Q(-1) in k × /k ×,2 .
Proof. This is just a reformulation of the main theorem of [START_REF] Zassenhaus | On the spinor norm[END_REF]. Here is a short argument for the convenience of the reader. Using the orthogonal decomposition V = ker (γ -1) a ⊥ ker (γ + 1) 2b ⊥ ker Q(γ), and the additivity of spinor norms, we may assume a = 0, so dim V ≡ 0 mod 2, and either Q = 1 or b = 0. In the case Q = 1, we have sn γ = sn(-1) as unipotent elements are squares, and we conclude by the classical formula sn(-1) = 2 dim V disc(q) (use an orthogonal basis of V ). The arguments so far have used that the characteristic of k is = 2, but the following ones will not.

Assume b = 0, write Q(X) = n i=1 (X -t i )(X -t -1 i ) in k[X],
and choose γ ∈ GSpin(V, q)(k) a lift of γ. Write γ = du = ud its Jordan decomposition in GSpin(V, q)(k), with d semi-simple and u unipotent. There is a decomposition

V ⊗ k k = P 1 ⊥ • • • ⊥ P n ,
where each P i is a d-stable hyperbolic plane on which the two eigenvalues of d are t ±1 i . Using the natural isomorphism between C(V, q) ⊗ k k and the graded tensor product of the Clifford algebras of the P i (see e.g. [Knu91, IV. Prop. 1.3.1]) we easily sees that there is a pair (s, λ) in k × ×k × such that: s 2 = t 1 . . . t n , the Clifford norm of d (or equivalently, of γ) is λ 2 , and the trace of d (or equivalently, of γ) in the spin representation of GSpin(V, q)(k) is λs n i=1 (1 + t -1 i ). The spinor norm of γ is thus represented by λ 2 ∈ k × . Note that although the spin representation may not be defined over k, its trace is. Indeed, this representation is defined as the tautological morphism GSpin(V, q)(k) ⊂ C(V, q) × and C(V, q) is a central simple algebra over k, whose reduced trace is k-valued. Since we have 1 + t -1 i = 0 for each i as Q(-1) = 0, the spinor norm of γ is represented by 1). We deduce the following discriminant formula, which can also be proved directly (see [GM02, Proposition A.3]).

s 2 n i=1 (1 + t -1 i ) 2 = n i=1 t i (1 + t -1 i ) 2 = n i=1 (1 + t i )(1 + t -1 i ) = (-1) 2n Q(-
Corollary 3.6. Under the same assumptions, assume moreover that a = b = 0.

Then disc(q) ∈ k × /k ×,2 is represented by Q(1)Q(-1).
Proof. The discriminant of q is the spinor norm of -Id V , or equivalently of γ(-γ). We conclude by applying the theorem to γ and -γ. Proposition 3.7. Let V be a free Z-module of rank n endowed with a regular quadratic form q, G = SO(V, q), and P (X) = (X -1) a (X + 1) 2b Q(X) a monic polynomial of degree n in Q[X] with Q(1)Q(-1) = 0. Assume that for every prime p there exists γ p ∈ G(Z p ) having characteristic polynomial P . If b = 0 then the integer |Q(-1)| is square, and if a = 0 then the integer |Q(1)| is a square.

Note that the existence of γ p for all primes p implies that Q has integer coefficients.

Proof. Fix a prime p. Since γ p ∈ G(Z p ) and Pic Z p = 1 the element γ p can be lifted to an element of GSpin(V, q)(Z p ) by (3.2.1), so the spinor norm of γ p lies in the image of

Z × p in Q × p /Q ×,2
p . Together with Theorem 3.5, this implies that disc(q | ker(

γ p + 1) 2b ) × Q(-1) ∈ Q × p /Q ×,2
p lies as well in the image of Z × p . Assuming b = 0, it follows that the integer Q(-1) has an even valuation at each prime p, so |Q(-1)| is a square. Assume now a = 0. In particular, n is even and we have disc(q) ∈ Z × . By Corollary 3.6 applied to the orthogonal of ker(γ p + 1)

2b in V ⊗ Q p , we have disc(q) × disc(q | ker(γ p + 1) 2b ) ≡ Q(-1)Q(1) in Q × p /Q ×,2 p , or equivalently: disc(q) × disc(q | ker(γ p + 1) 2b ) × Q(-1) ≡ Q(1) mod Q ×,2 p
But have seen that the left-hand side is in the image of Z × p . So the integer Q(1) has an even valuation at each prime p, and |Q(1)| is a square.

The astute reader will notice that the second statement could also be proved by considering (-1) deg P P (-X) and (-γ p ) p . In odd dimension this would require the introduction of GPin and Pin groups to define the spinor norm (see complications in [Con14, Appendix C]). Definition 3.8. For G = SO 2n+1 or SO 4n let P 1 (G) be the subset of P(G) consisting of all polynomials of the form (X -1) a (X + 1) 2b Q(X), where Q(X) is a product of cyclotomic polynomials Φ m with m ≥ 3, which satisfy

• b > 0 if the positive integer Q(-1) is not a square, and

• a > 0 if the positive integer Q(1) is not a square. For G = Sp 2n denote P 1 (G) = P(G) (Definition 3.1).
The positive integers Φ m (±1) for m ≥ 3 may be computed inductively in terms of the prime decomposition of m: see [GM02, Theorem 7.1]. In terms of the notation m P defined in §3.1, Proposition 3.7 asserts: Corollary 3.9. If P ∈ P(G) satisfies m P = 0, then we have P ∈ P 1 (G).

This constraint is very useful, particularly in the even case, as the following table shows. In practice, we will see that it is almost sharp: see Remark 3.10. Observe that P 1 (G) is stable under the equivalence relation ∼ introduced in the end of §3.1. 3.3. Non-existence of level one regular algebraic automorphic cuspidal representations. In this paragraph, we prove Theorems 6 and 7 of the introduction. To implement the strategy explained in §1.4, taking into account the reduced Formula (3.1.2) and Corollary 3.9, it remains to actually produce, for as many "small rank" groups G as possible in the families (SO 2n+1 ) n≥1 , (Sp 2n ) n≥1 and (SO 4n ) n≥1 , sets Λ of dominant weights for G satisfying the following properties:

(P1') For all λ ∈ Λ we have λ |Z(G) = 1 and N ⊥ (w(λ)) = 0.

(P2') For P = P 1 (G)/ ∼, the Λ × P matrix (e P tr(P ; λ)) λ∈Λ,P ∈P has rank |P|.

Of course (P2') implies |Λ| ≥ |P| so our aim is roughly to produce as many dominant weights satisfying (P1') as possible. See also Footnote 12 for an important remark regarding the condition on λ |Z(G) in (P1').

Notations: For w ≥ 0 an integer we denote by Λ G (w) the (finite) set of all dominant weights λ of G such that: 2w(λ) 1 ≤ w, λ |Z(G) = 1, as well as λ m ≥ 0 in the case G = SO 2m . For a dominant weight λ of G, there is a unique effective element U (λ) ∈ K ∞ with det U (λ) = 1 and such that the multi-set of weights of U (λ) (as defined in §2.1) coincides with w(λ) (viewed of course as the multi-set {w(λ) i | 1 ≤ i ≤ n G }). The representation U (λ) is multiplicity free, and for any π ∈ Π alg having weights w(λ) we have L(π ∞ ) = U (λ).

In order to produce Λ we will first use the inequality (2.4.1) in Corollary 2.3. We choose w big enough, and for every λ ∈ Λ G (w), and for all parameters

∈ 1 4 Z∩ [1/2, 20], we compute F (i/4π) -B F ∞ (U (λ), U (λ)).
Whenever we find a negative value (certified using interval arithmetic as explained in §2.4.3), we know that N ⊥ (w(λ)) = 0 by Corollary 2.3 and thus we add λ to Λ. In other words, we choose

Λ test w := {λ ∈ Λ G (w) | ∃ ∈ 1 4 Z ∩ [1/2, 20], F (i/4π) < B F ∞ (U (λ), U (λ))},
for the set Λ. For our purpose this simple method is already very effective. Table 3.3 below displays all groups for which it works, i.e. for which, using the given w, the set Λ test w satisfies the rank condition (P2').

Table 4. (1) all masses (m P ) P ∈P 1 (G) ,

G |P 1 (G)/ ∼ |
(2) T ell (G; λ), EP(G; λ) and N ⊥ (w(λ)) for all dominant weights λ in any desired range (only limited by computer memory).

Note that we obtain in particular, independently of the computation of masses in [START_REF] Chenevier | Level one algebraic cusp forms of classical groups of small rank[END_REF] and [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], the existence of 27 self-dual elements of Π alg having regular weight and motivic weight ≤ 24. In §4 we will prove that there is no other such element in Π alg . The only case which was obtained in [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] and that we cannot recover using this much simpler method is Sp 14 . The case of SO 15 is new. For G = Sp 14 , considering all dominant weights λ in Λ G (90), we only find a set Λ test 90 of cardinality 974, whereas we have |P 1 (Sp 14 )/ ∼ | = 1157. Higher motivic weights do not seem to provide any new non-existence results. Similarly this method does not allow us to conclude either in the case of SO 17 .

To go further we use the algorithm explained in §2.4.5 to find larger sets Λ satisfying (P1'). More precisely, for a large enough w and each dominant weight λ ∈ Λ G (w) we applied this algorithm with U = U (λ), δ = 1, m = 1 and taking for S13 the set of 27 known elements of Π alg having motivic weight ≤ 24 found above. As before we try various

∈ 1 4 Z ∩ [1/2, 20].
Using this refined method we obtain the following three new cases:

• For G = Sp 14 we have |P(G)/ ∼ | = 1157 and we found a subset Λ ⊂ Λ G (36) of cardinality 1274 satisfying (P1') and (P2').

• The case G = SO 16 is easier: we have |P 1 (G)/ ∼ | = 992 and we found a subset Λ ⊂ Λ G (28) of cardinality 1810 satisfying (P1') and (P2').

• For G = SO 17 we have |P 1 (G)| = 2948 and we found a subset Λ ⊂ Λ G (63) of cardinality 3477 satisfying (P1') and (P2'). (Restricting to Λ G (61) is not enough, as it yields a set of dominant weights of cardinality 3461 which does not satisfy (P2')).

Again our program checking rigorously that these sets satisfy (P1') and the inductive computation of masses and of the numbers N ⊥ (w(λ)) can be found at [CT19b]. This concludes the proof of Theorem 6.

Remark 3.10. Let G be as in Theorem 6. An inspection of the masses found above shows m P = 0 for all P ∈ P 1 (G), except for 6 polynomials P in the case G = SO 13 , and 6 others in the case G = SO 17 . This shows that the spinor norms constraints established in §3.2 are almost sharp.

This second method only gives us these three additional cases for which we can compute all masses by solving a linear system. For example the set P 1 (Sp 16 )/ ∼ has 2521 elements, but we are not even close to producing Λ's with enough elements: we were only able to produce a subset Λ ⊂ Λ Sp 16 (116) having 1427 elements satisfying (P1'). To overcome this scarcity of dominant weights satisfying (P1'), we computed a lot of masses for Sp 16 , namely for all P in a certain subset P(Sp 16 ) easy of P(Sp 16 ), using the method of [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF], i.e. by computing orbital integrals directly, and then we computed the remaining ones by solving a linear system.

To describe the set P(Sp 16 ) easy explicitly, for P ∈ P(Sp 16 ) and p a prime write

P = m k∈S(p,m) Φ d(p,m,k) mp k
where the first product is over all integers m coprime to p, S(p, m) ⊂ Z ≥0 and d(p,m,k For such a polynomial P the computation using the method explained loc. cit. of the orbital integrals (1.4.4) occurring in the mass m P is purely a combinatorial matter and does not require any bilinear algebra. To be more precise, in general computing an orbital integral using the method loc. cit. involves enumerating totally isotropic subspaces stable under a given unipotent automorphism γ in (possibly degenerate) symplectic or hermitian spaces (V, •, • ) over a finite field, enumerating isomorphisms between such triples (V, •, • , γ), and/or computing the complete invariants attached by Wall [START_REF] Wall | On the conjugacy classes in the unitary, symplectic and orthogonal groups[END_REF] to isomorphism classes of such triples with •, • non-degenerate; we restrict to cases where no such computation is necessary. Although these easier cases have the obvious benefit of being much easier to implement, the second advantage here is that these orbital integrals are computed (by a computer) in a matter of seconds. In contrast, there are relevant orbital integrals for Sp 16 for which the implementation of [START_REF] Taïbi | Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula[END_REF] does not terminate in any reasonable time.

Denoting P(Sp 16 ) = P(Sp 16 ) easy P(Sp 16 ) hard , we have |P(Sp 16 ) hard / ∼ | = 766. We found a subset of dominant weights Λ ⊂ Λ G (36) for G = Sp 16 of cardinality 1086 satisfying (P1') and the analogue of (P2') for P(Sp 16 ) hard . This concludes the proof of Theorem 7.

Classification results in motivic weights 23 and 24

This section is in the natural continuation of Sect. 2, of which we shall use freely the notations. We have decided to postpone it here because, in a few places, we will use below existence or inexistence results of certain self-dual regular elements of Π alg , results which have been proved in Sect. 3. 

F (i/4π) -1 B F ∞ to K ≤23
∞ is positive definite. As explained in Remark 2.11, using interval arithmetic we obtain rational lower bounds (we take them in 10 -6 Z) for the coefficients of its Gram matrix in the basis I 1 , . . . , I 23 . Applying the Fincke-Pohst algorithm, we obtain the set U 2 of all 265 effective elements U in K ≤23 ∞ containing I 23 and satisfying B F ∞ (U, U ) ≤ F (i/4π)/2. By Corollary 2.3, U 2 contains all the elements U such that there exist two distinct elements π 1 , π 2 in Π alg of motivic weight 23 and with L((π

1 ) ∞ ) = L((π 2 ) ∞ ) = U .
For each U in U 2 , we systematically applied Algorithm 2.4.5 to U , δ = 0, m = 2 and to the set S of 27 known elements of Π alg having motivic weight ≤ 24, and various . For all but one U , namely the one of assertion [START_REF]The Siegel operator Φ g+1 : M k (Γ g+1 ) → M k (Γ g ) is bijective. (2) If k ≡ 0 mod 4, the linear map ϑ g : C[X 2k ] → M k (Γ g ) is an isomorphism[END_REF], it led to a contradiction with Inequality (2.3.7). Let us be more precise about the choices of and of the subset S ⊂ S that we can make a posteriori in order to reach these contradictions more quickly (see also the source code [CT19b] for a working sheet). We first replace for the rest of the proof the S above by its subset whose elements have motivic weight ≤ 23. We now have |S| = 24 and |S| = 23. If we apply Algorithm 2.4.5 with all in [3, 12] ∩ Z and all subsets S ⊂ S with 1 ≤ |S | ≤ 2, we obtain in a few seconds (on a personal computer) a contradiction for all but 12 elements of U 2 . Using then all in [7, 9.5] ∩ 1 2 Z and all S ⊂ S with 3 ≤ |S | ≤ 4 for those 12 elements, the algorithm finds again in a few seconds a contradiction in all but 6 cases. Two of these six are eliminated in a minute about using = 11 and all the 33649 subsets S with |S | = 5. The remaining 4 elements have the form U = U +I 21 + 2 I 23 with U in the following list: Note that we have proved assertion (1) except for the non self-duality assertion. To go further, we determine the set of effective elements U in K ≤23 ∞ containing I 23 and satisfying B F ∞ (U, U ) ≤ F (i/π) for = 9.74. For this we proceed as in the first paragraph of the proof and obtain an explicit set U 1 with 12230 elements. By Corollary 2.3, U 1 contains all the elements U such that there exists π in Π alg of motivic weigth 23 with L(π ∞ ) = U . For each U in U 1 we applied Algorithm 2.4.5 to U , δ = 1 (we restrict to self-dual elements), m = 1, to the set S of all 27 known elements of Π alg having motivic weight ≤ 24, for various choices of and subsets S ⊂ S. We obtained contradictions with Inequality (2.3.7) for all but 187 elements of U 2 . We refer to [CT19b] for an explicit list of 12293-187 = 12106 triples ( , S , t) leading to a contradiction in each case (checked using interval arithmetic). It would be tedious to explain here in details which and S we did choose to find these triples: this is unnecessary anyway as all the necessary information for our proof is contained in the aforementioned list! We nevertheless refer to [CT19b] for the log file of our computations (which took several months).

I
Among the 187 aforementioned "resistant" elements of U 2 , six of them are multiplicity free: (i) U contains I 23 with multiplicity ≥ 2, (ii) U contains I w for some w ∈ {1, 3, 5}, (iii) for any w ∈ {1, 3, 5, 7, 9}, the multiplicity of I w in U is at most one. Assertion (i) concludes the proof of Theorem 3. Assertion (b) above and the fact that I 1 + I 7 + I 13 + I 17 + I 21 + 2 I 23 is not in V imply assertion (1) of Proposition 4.1. By (ii) and (iii) above, for any U in V there is some I w which occurs in U with multiplicity 1. In particular, such a U has no W R -equivariant nondegenerate symmetric pairing. This shows that any self-dual π with L(π ∞ ) = U is of symplectic type by [Art13, Theorem 1.4.2], and proves assertion (2) of Proposition 4.1.

Remark 4.2. For a given (U, δ, m), it seems hard to us to guess a priori what will be the best choices of and S (or S ) to plug into Algorithm 2.4.5 for the purpose of reaching a contradiction with Inequality (2.3.7). Athough the authors have developped their own intuition and artisanal methods to find good and S, they are mostly based on numerical experiments. In the same vein, in the cases where we did not find any contradiction, it seems difficult to prove that there cannot be any, as it is always possible to let vary and increase the size of S. However, based on the large number of experiments we made, we find it likely that it is not possible to discard any of the elements of the remaining list V by changing or S.

Motivic weight 24.

The following lemma is the first step in the proof of Theorem 5. Proof. Let π be as in the lemma and set U = L(π ∞ ). This is a multiplicity free effective element of K ≤24 ∞ containing I 24 and with det U = 1. There are only finitely many such elements, with dim U ≤ 25 in all cases. Moreover, π is orthogonal as w(π) is even (see the last paragraph of §2.2). By [Art13, Theorem 1.5.3] loc. cit. we have thus (π) = +1. Since (π) = ε(U ) this gives an extra constraint on U .

A straightforward computer-aided enumeration gives us the list of the 1260 effective multiplicity free elements U in K ≤24 ∞ containing I 24 , and satisfying dim U > 12, det U = 1 and ε(U ) = 1. We applied Algorithm 2.4.5 to each such U , δ = 1, m = 1, to the set S of 15 elements of Π alg having motivic weight ≤ 23 and dimension ≤ 4. Except in the four cases given in the statement, we obtained a contradiction with Inequality (2.3.7). It is actually enough to choose in [3, 7]∩ 1 2 Z and to restrict to the subsets S ⊂ S with |S | ≤ 7. We refer to [CT19b] for an explicit list of 1256 triples ( , S , t) leading to a contradiction in each case (checked using interval arithmetic).

Proof. (Of Theorem 5) Using Theorem 6 we may compute, for any effective, multiplicity free, element U ∈ K ≤24 ∞ containing I 24 , and with dim U ≤ 16, the number of self-dual π in Π alg with L(π ∞ ) = U (this uses SO n for n ≤ 16 and Sp 2n for 2n ≤ 8). Remarkably, we find only three such π, namely the ones in the statement of Theorem 5. We conclude by Lemma 4.3. 4.3. Classification results conditional to (GRH). By (GRH) we shall mean here: for all π, π ∈ Π alg , the zeros s ∈ C of Λ(s, π × π ) satisfy s = 1 2 . Assuming (GRH), Proposition 2.2 holds more generally for any test function F satisfying F (x) ≥ 0 and F (ξ) ≥ 0 for all x and ξ in R (a condition weaker than (POS)). This condition is trivially satisfied by the function G (x) = g(x/ ), where g is the function recalled in §2.4.3 and is a positive real number (these are the classical functions of Odlyzko "under (GRH)"). In order to apply Algorithms 2.4.4 and 2.4.5 with G instead of F , we need the following variant of [CL19, Prop. 9.3.18]. We set φ(z) = 1 2 ψ( z+1 2 ) -1 2 ψ( z 2 ) and r(z) = 2π 2 e -z (z 2 +π 2 ) 2 . Proposition 4.4. Let > 0 be a real number. For any integer w ≥ 0 we have

J G (I w ) = log 2π -ψ(b + iπ ) + 1 π ψ(b + iπ ) - 1 ψ (b + iπ ) + s 1 (b, ), with b = 1+w 2 and s 1 (b, ) = ∞ n=0 r( (b + n))
. Moreover, we also have

J G (1 -ε C/R ) = φ ( 1 2 + iπ ) - 1 π φ( 1 2 + iπ ) + 1 φ ( 1 2 + iπ ) + s 2 ( ) with s 2 ( ) = ∞ n=0 (-1
) n r( (n + 1/2)), as well as G (0) = 8 /π 2 and

G (i/4π) = 4π 2 1 + cosh( /2) ( 2 /4 + π 2 ) 2 .
Proof. We follow the proof of [CL19, Prop. 9.3.18] and omit the straightforward details. For real numbers b, > 0, set S(b, ) = ∞ 0 (g(x/ ) e -bx 1-e -x -e -x x )dx. A computation almost identical to p. 276 loc. cit. shows that we have S(b, ) = -ψ(b

+ iπ ) + 1 π ψ(b + iπ ) -1 ψ (b + iπ ) + s 1 (b, ).
On the other hand, by [CL19, Prop. 9.3.8] we have J G (I w ) = log 2π + S( 1+w 2 , ) for any integer w ≥ 0 and

J G (1 -ε C/R ) = 1 2 (S( 1 4 , 2 ) -S( 3 4 , 2 )). This shows the first two formulas. Set h(α) = ∞ 0 g(x)e -αx dx for α in C. By p. 275 loc. cit. we have h(α) = α α 2 +π 2 + 2π 2 1+e -α (α 2 +π 2 ) 2 . We conclude by the relations G (0) = 2 h(0) and G (i/4π) = (h( /2) + h(-/2)).
Upper bounds for the tails of the series s 1 and s 2 are given in [CL19, (3) p. 277].

Proof. (Of Theorem 4) In this proof, whenever we apply Algorithms 2.4.4 & 2.4.5 we do it using G instead of F . Applying Algorithm 2.4.5 to the element U of Proposition 4.1 (1), δ = m = 2 and the set S of 27 known elements of Π alg with motivic weight ≤ 24, we obtain a contradiction with Inequality (2.3.7) with = 5 and S = {∆ 23,7 , ∆ 23,13,5 , ∆ 23,15,7 } (three elements in the list of Thm. 3). It thus only remains to show that for any of the 181 elements of the list V of Proposition 4.1 (2), there is no selfdual π in Π alg with L(π ∞ ) = U . For each U in V, we applied Algorithm 2.4.5 to U , δ = m = 1 and the set S above, using various . We found a contradiction in all but one cases. More precisely, we may reach all these contradictions but one using ∈ [4, 7] ∩ 1 2 Z, S of size ≤ 7, and S not containing any of the 3 elements of Π alg with motivic weight 24 (see [CT19b] for a working sheet). The two remaining elements of V are then For U = B we eventually found a contradiction using = 6.36 and a certain subset S ⊂ S with 13 elements ! (see loc. cit.) The remaining case U = A is the one of the statement of Theorem 4.

Siegel modular cusp forms for Sp 2g (Z)

In this section, we explain how to use our classification Theorems 3 & 5 to prove Theorem 2. Along the way, we will also reformulate much more precisely the Key fact 1 stated in the introduction. 5.1. Brief review of Arthur's results for Sp 2g . Fix g ≥ 1 be an integer. We denote by Π disc (Sp 2g ) the set of isomorphism classes of discrete automorphic representations of Sp 2g with π Sp 2g (Zp) p = 0 for all primes p. Recall that the Langlands dual group of Sp 2g "is" SO 2g+1 (C); it has a tautological (often called standard) representation St of dimension 2g + 1. Let π be in Π disc (Sp 2g ). For each prime p, the Satake parameter c(π p ) of π p will be viewed following Langlands as a semi-simple conjugacy class in SO 2g+1 (C). Similarly, the infinitesimal character c(π ∞ ) of π ∞ will be viewed as a semi-simple conjugacy class in the Lie algebra of SO 2g+1 (C) (and most of the time, as the collection of its 2g + 1 eigenvalues).

Let Ψ(Sp 2g ) denote the set of level 1 global Arthur parameters for Sp 2g . An element of Ψ(Sp 2g ) is by definition a finite collection ψ of distinct triples (π i , n i , d i ), for i in I, with n i , d i ≥ 1 a collection of integers satisfying 2g + 1 = i∈I n i d i , and with π i a level 1 self-dual cuspidal automorphic representation of PGL n i over Q which is orthogonal if d i is odd, symplectic otherwise. It suggestive to view ψ as the isobaric automorphic representation of GL 2g+1 over Q defined as (5.1.1)

ψ = i∈I 0≤r i ≤d i -1 π i |.| d i -1 2 -r i .
We often simply write for short14 

ψ = ⊕ i∈I π i [d i ].
To any ψ in Ψ(Sp 2g ), viewed as in (5.1.1) as an irreducible admissible representation of GL 2g+1 (A) over Q, we may attach a collection of Satake parameters ψ p (semi-simple conjugacy classes in GL 2g+1 (C)), as well as an infinitesimal character ψ ∞ (a semi-simple conjugacy class in M 2g+1 (C)). We shall say that ψ is algebraic when the 2g + 1 eigenvalues of ψ ∞ are in Z. In this case, the only one that we shall need to study here, all the π i are algebraic (see §2.1).

Assume ψ ∈ Ψ(Sp 2g ) is algebraic. Using the local Langlands correspondence for the GL n i (R), we may attach to ψ a morphism ψ R : W R × SL 2 (C) -→ SO 2g+1 (C), uniquely defined up to SO 2g+1 (C)-conjugacy, with the property

St • ψ R i L((π i ) ∞ ) Sym d i -1 C 2 .
(Recall the notation L(-) from §2.1) By §2.1, note that ψ R is trivial on R >0 ×1, and in particular, ψ R (W R ) is bounded (it is thus an Archimedean Arthur parameter). If r is a representation of W R , and d ≥ 1 is an integer, it will be convenient to write r

[d] for the representation r Sym d-1 C 2 of W R × SL 2 (C).
Arthur's first main result [Art13, Thm. 1.5.2] attaches to any

π in Π disc (Sp 2g ) a unique ψ(π) in Ψ(Sp 2g ) such that we have ψ(π) v = St • c(π v ) for all place v of Q (see also [Taï17, Lemma 4.1.1]
). Arthur's second main result is a converse statement, the so-called multiplicity formula, on which we shall focus from now on and until the end of this section.

Fix

ψ = ⊕ i∈I π i [d i ] in Ψ(Sp 2g ).
We assume that ψ is algebraic for our purposes. There are both a local and a global ingredient in the multiplicity formula.

We start with the global one. Write I = I even I odd with i ∈ I even if, and only if, n i d i is even. Define C ψ as the abelian group generated by the symbols s i for i ∈ I even , and by the symbols s ij for all i, j ∈ I odd , with relations 1 = s 2 i = s 2 ij and s ij s jk = s ik (note s ii = 1). This is an elementary abelian 2-group of order 2 |I|-1 . Arthur defines a global character ψ of this group in [Art13, p. 48], that we now recall. For each i ∈ I consider the sign (5.1.2)

(i) = j =i (π i × π j ) Min(d i ,d j ) .
The term (π i ×π j ) here is the Rankin-Selberg root number already encountered in §2.3, a (purely Archimedean) sign that we already explained how to compute loc. cit. It is necessarily +1 by [Art13, Theorem 1.5.3] if π i and π j are both orthogonal or both symplectic. As the adjoint representation of SO 2g+1 (C) is isomorphic to Λ 2 St, Arthur's definition reads (see e.g. [CL19, Sect. 8.3.5] for more details):

(5.1.3) ψ (s i ) = (i) ∀ i ∈ I even and ψ (s ij ) = (i) (j) ∀ i, j ∈ I odd . We now describe the local ingredient. Fix K a maximal compact subgroup of Sp 2g (R) and g the Lie algebra of Sp 2g (R). Arthur associates to ψ R a finite multi-set Π(ψ R ), also called an Arthur packet, of unitary irreducible admissible (g, K)-modules. One important property he shows is that we have

π ∞ ∈ Π(ψ(π) R ) for all π ∈ Π disc (Sp 2g ). Moreover, Π(ψ R ) is equipped with a map Π(Ψ R ) → Hom(C ψ R , {±1}), U → χ U ,
where C ψ R denotes the centralizer of the image of ψ R in SO 2g+1 (C).

Remark 5.1. The map U → χ U depends on the choice of an equivalence class of Whittaker datum for Sp 2g (R). From now on we fix a global Whitaker datum Wh for Sp 2g such that Wh p is unramified with respect to Sp 2g (Z p ), for each prime p, in the sense of Casselman and Shalika. Up to conjugating Wh if necessary by the outer action of GSp 2g (Z), its Archimedian component Wh ∞ can belong to any of the two classes of Whittaker data for Sp 2g (R).

We can now state Arthur's multiplicity formula. Fix an algebraic ψ in Ψ(G).

There is a natural group embedding ι : C ψ → C ψ R ("local-global" map). Choose U in Π(ψ R ) and assume for simplicity that it has multiplicity one in this multiset (this assumption will be satisfied in the cases that we will consider below). Then there is a π in Π disc (G) such that π ∞ U if, and only if, we have

(5.1.4) ψ (s i ) = χ U (ι(s i )) ∀ i ∈ I even and ψ (s ij ) = χ U (ι(s ij )) ∀ i, j ∈ I odd .
Moreover, if these equalities are satisfied then the multiplicity of π in the automorphic discrete spectrum of Sp 2g is equal to 1. There is a slightly more complicated statement when we do not assume U has multiplicity one in Π(ψ R ). This multiplicity one property will always be the case in our applications (see §5.2). It is believed but not known that it holds in general, although Moeglin and Renard have a number of results in this direction.

Remark 5.2. It is important to remark that (5.1.4) trivially holds when we have ψ = [d] for some cuspidal of PGL (2g+1)/d , because the group C ψ is trivial.

Lowest-weight modules: results of Arancibia-Moeglin-Renard and of Moeglin

-Renard. For k = (k 1 , k 2 , . . . , k g ) ∈ Z g with k 1 ≥ k 2 ≥ • • • ≥ k g ≥ 0
we denote by ρ k the holomorphic, unitary, lowest weight (g, K)-module of (lowest) weight k. 15 The precise meaning here for "lowest" or "holomorphic" is a convention that we may fix as in [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]§3] to fix ideas, nevertheless this choice will play no role in the sequel as we shall see. We are interested in ρ k for the following classical reason. Let us denote by M k (Γ g ) the vector-space of vector-valued Siegel modular forms of weight k for Γ g , and by L 2 k (Γ g ) its subspace of square-integrable forms. We have

S k (Γ g ) ⊂ L 2 k (Γ g ) ⊂ M k (Γ g ). Assume F is a Hecke eigenform in L 2 k (Γ g ). Then F generates an element π(F ) in Π disc (Sp 2g ) with π(F ) ∞ ρ k . Better, dim L 2 k (Γ g ) (resp. dim S k (Γ g ))
is exactly the number of π in Π disc (Sp 2g ) with π ∞ ρ k counted with their global discrete (resp. cuspidal) multiplicity.

An important property to have in mind is that the 2g + 1 eigenvalues of the infinitesimal character of ρ k are 0 and the 2g elements ±(k i -i) for i = 1, . . . , g. Note that these 2g + 1 integers are distinct if, and only if, we have k g > g. This is also exactly the condition under which ρ k is a (holomorphic) discrete series. If F is a Hecke eigenform in L 2 k (Γ g ) as above, the shape of the infinitesimal character of ρ k implies that ψ(π(F )) is always algebraic. Moreover, ρ k is an element of the Arthur packet Π(ψ(π(F )) R ).

Conversely, let us fix until the end of §5.2 a global Arthur parameter

ψ = ⊕ i∈I π i [d i ]
in Ψ(Sp 2g ) such that the eigenvalues of ψ ∞ are 0 and the ±(k i -i), with i = 1, . . . , g (in particular, ψ is algebraic). In order to apply the Arthur multiplicity formula, we want to know under which condition on ψ the module ρ k belongs to Π(ψ R ), whether it has multiplicity one in this multi-set, and if so, we want to know χ ρ k . We shall consider only the two following special, but important, cases.

5.2.1.

Vector-valued case, with k g > g. This situation is studied at length in [CR15, Chap. 9] and [CL19, Sect. 8.4.7]. In this case, ρ k is a discrete series, the eigenvalues of ψ ∞ are distinct, and we have S k (Γ g ) = L 2 k (Γ g ) by a general result of Wallach. We have I odd = {i 0 } (a singleton) and π i is regular for all i in I, so we have n i d i ≡ 0 mod 4 for i = i 0 by §2.2. The parameter ψ R is necessarily an Adams-Johnson parameter (see e.g. [CR15, §3.8, App. A],[CL19, Sect. 8.4.15],[Taï17, §4.2.2]), and the main result of [START_REF] Arancibia | Paquets d'Arthur des groupes classiques et unitaires[END_REF] shows that Π(ψ R ) coincides with the packet that Adams and Johnson associate to ψ R in [START_REF] Adams | Endoscopic groups and packets of nontempered representations[END_REF] (any element of this packet having multiplicity one). Arancibia, Moeglin and Renard also prove the expected form of the map U → χ U . As was observed in [CR15, §9] (see also [CL19, Sect 8.5.1]), this packet contains ρ k if and only if we have d i 0 = 1, and in this case the corresponding character χ ρ k is given by the formula, for all i in I even :

(5.2.1)

χ ρ k (ι(s i )) = (-1) n i d i 4 if d i ≡ 0 mod 2, (-1) e i otherwise,
where e i is the number of odd integers 1 ≤ i ≤ g such that k i -i is a weight of π i . Note that the quantity e i mod 2 does not change if we replace odd with even in the definition of e i , as we have n i ≡ 0 mod 4 for d i odd. This property expresses the fact that the character above does not depend on the choice of the Whittaker datum Wh ∞ in Remark 5.1. All in all, we have explained fully, and much more precisely, the Key fact 1 of the introduction.

5.2.2. Scalar-valued case, arbitrary genus. In this case we have k = (k, k, . . . , k) in Z g with k ≥ 1, and we rather write ρ k (g) for ρ k . If we have k > g we are in the case of §5.2.1, so from now on we assume g ≥ k. The 2g + 1 eigenvalues of the infinitesimal character of ρ k are now 0 and the 2g elements ±(k -i) for i = 1, . . . , g: the eigenvalue 0 has thus the multiplicity 3, and for g > k > 1 the eigenvalues ±1, ±2, . . . , ± min(k -1, g -k) have multiplicity 2.

We will use as a key ingredient the recent local results of Moeglin and Renard [MR] 16 , that we will specialize in what follows to this level 1 situation. The first main result of [MR] is that ρ g (k) belongs to Π(ψ R ) if, and only if, we are in one of the two cases called (I) and (H) below. In both cases they show that ρ g (k) has multiplicity 1 in Π(ψ R ) and they determine χ ρg(k) . We use the letter I for the case reminiscent of Ikeda lifts, and the letter H for those related to the Howe (or theta) correspondence. The formula for χ ρg(k) given in [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]Prop. 18.3] depends on the class of Wh ∞ , which is represented there by a certain sign δ loc. cit. and that we represent the same way here (it may be either one of ±1: see Remark 5.1). We will express below only the restriction of χ ρg(k) to C ψ , which is the information we need for applying the global multiplicity formula (5. 1.4). In all cases we will see in particular that this restriction does not depend on Wh ∞ , i.e. on δ, hence neither on the choices discussed in the beginning of §5.2 that we made (or rather didn't) to define ρ k : changing of choice amounts to replace δ with -δ by [MR].

Preliminary general notations and remarks -Recall we have already defined a partition I = I even I odd according to the parity of n i d i for i in I. We now define I 0 ⊂ I as the subset of elements i in I such that 0 is a weight of π i . We clearly have I odd ⊂ I 0 , I odd = ∅ and |I 0 | ≤ 3. Set

d max = max i∈I 0 d i .
-Say that an algebraic cuspidal automorphic representation π of PGL n satisfies (R) if its weights are ≤ k -1, its nonzero weights have multiplicity 1, the multiplicity r(π) of the weight 0 of π is ≤ 3, and if 1 and ε C/R have multiplicity at most 2 in L(π ∞ ). We shall see below that all the π i satisfy property (R), and that at most one of them is not regular.

-To decipher the formulas of [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]Prop. 18.3], we have found it useful to observe, for = ±1, a ∈ Z ≥1 and b ∈ Z, the following equalities of signs:

(5.2.2)

(-1) a/2 = a i=1 (-1) i-1 and b+a i=b+1 (-1) i-1 = (-1) (-1) b a/2 .
This first is the product of a alternating signs starting with ; it only depends on a mod 4. The second follows from the first by replacing with (-1) b .

Case (I)

This corresponds to case (i) of [MR, Théorème 7.1]. We have I 0 = {i 0 } (a singleton), the weight 0 of π i 0 has multiplicity 1,

d i 0 = d max = 1, k -1 > g -k,
and the g numbers w i + d i -1 2 -r i , where i is in I, w i is a positive weights of π i , and with 0 ≤ r i ≤ d i -1, fill the length g segment [k -g, k -1] (hence are distinct). The representation π i is regular for each i, with weights ≤ k -1, hence satisfies n i d i ≡ 0 mod 4 for i = i 0 by §2.2. Moreover, for i = i 0 the representation π i does not have 0 among its weights.

In this case we must have I 0 = I odd so C ψ is generated by the s i with i = i 0 . Fix such an i, necessarily in I even . For any sign s = ±1 we define e s (π i ) as the number of integers 1 ≤ j ≤ k -1 with (-1) j = s such that k -j is a weight of π i . The first assertion of Proposition 18.3 of [MR] (we are in case (1) of §18 loc. cit.), together with Formula (5.2.2), show that χ ρ k (g) (ι(s i )) is given by the formula:

(5.2.3)

χ ρ k (g) (ι(s i )) = ( -1) 
n i d i 4

if d i ≡ 0 mod 2, (-1) e δ (π i ) otherwise.

Indeed, consider the sequence of g alternating signs s = (s k-1 , s k-2 , . . . , s k-g ) starting with s k-1 = δ, i.e. set s k-i = δ(-1) i-1 . Formulas (5.2.2) show that, for any i in I even and any positive weight w of π i , the sign (I 2w [d i ]) of Proposition [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]Prop. 18.3] is the product of the s j with j in the interval [w -d i -1 2 , w + d i -1 2 ] of length d i . Note that when d i is even this product is (-1) d i /2 ; when d i is odd, and thus w ∈ Z, this product coincides with s w . The formula s w = δ(-1) k-w-1 shows that we have s w = -1 if and only if w = k -j with (-1) j = δ. Formula (5.2.3) follows, as for i in I even the sign χ ρ k (g) (ι(s i )) is by definition the product, over all the positive weights w of π i , of (I 2w [d i ]).

Note that when d i is odd we have e δ (π i ) + e -δ (π i ) = n i /2 ≡ 0 mod 2, as π i is regular and does not have the zero weight, so e 1 (π i ) ≡ e -1 (π i ) mod 2. As a consequence, Formula (5.2.3) does not depend on δ.

Case (H)

This corresponds to case (ii) in [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]Théorème 7.1]. According to Theorem 7.2 loc. cit. there are two subcases: (H1) There is i 0 in I 0 with d i 0 = d max = 2(g -k) + 1, and L((

π i 0 ) ∞ ) contains ε k C/R .
with δ but with the index g -k + 1 omitted in case (H2); in other words, we still set s k-i = δ(-1) i-1 in Case (H1), and in Case (H2) we set s k-i = δ(-1) i-1 for k -i > g -k + 1, and s k-i = δ(-1) i otherwise. The same arguments as in case (I) show Formula (5.2.5) and its independence on δ.

For i in I 0 , in which case we must have d i = 1, we rather find (5.2.6)

χ ρ k (g) (ι(s i )) = (-1) e δ (π i ) δ (-1) k -1 .
Indeed, we are in the situation (2) of §18 loc. cit. and in the notations there we have a = 1 and

1 2 = (-1) δ(-1) k -1 /2 = δ(-1) k -1 = s 0 [MR, Remarque 18.4].
The congruence n i ≡ 0 mod 4, the equality r(π i ) = 2, and (5.2.4) show that (5.2.6) does not depend on the sign δ.

-Assume i = i 0 is in I even (se we are in case (H1) by Remark 5.3). We have n i 0 ≡ 0 mod 4 if and only if π i 0 is regular by §2.2. By [START_REF] Moeglin | Sur les paquets d'arthur de Sp(2n, R) contenant des modules unitaires de plus haut poids, scalaires[END_REF]Proposition 18.3] (including the formula for 2 3 in Case (2) there with a = g -k -1) we find:

(5.2.7)

χ ρ k (g) (ι(s i 0 )) = (-1) e δ (π i 0 ) δ (-1) k-1 if n i 0 ≡ 0 mod 4, (-1) e δ (π i 0 )
otherwise.

Again, these two formulas do not depend on δ by (5.2.4) and r(π i 0 ) = 2.

-We are left to consider the case |I odd | > 1. We must have |I odd | = 3 and I odd = I 0 . We want to give the value of χ ρ k (g) (ι(s ij )) for i = j in I odd . We may write I 0 = {i 0 , i 1 , i 2 } with d i 1 = 1 and set d i 2 = 2a -1. By [MR, Proposition 18.3] (including the formula for 1 2 there and Remark 18.4 (ii)), we have:

(5.2.8) χ ρ k (g) (ι(s i 1 i 2 )) = (-1) e δ (π i 1 )+e δ (π i 2 )+ δ (-1) k -a a/2 .

Observe that we also have δ (-1) k -a = s a-1 , as a -1 < (g -k) + 1 in case (H2), hence (-1) δ (-1) k -a a/2 = s a-1 • • • s 1 s 0 by Formula (5.2.2). As π i 0 is regular of odd dimension, and L((π i 0 ) ∞ ) contains ε k C/R , we have n i 0 ≡ 2k + 1 mod 4. This implies (5.2.9) n i 0 d i 0 ≡ 2g + 1 mod 4 and n i 1 + n i 2 (2a -1) ≡ 0 mod 4, which may also be written

n i 1 -1 2 + n i 2 -1 2
≡ a mod 2. The relation e δ (π l )+e -δ (π l ) ≡ n i l -1 2 mod 2, from (5.2.4), and the trivial identity (-1) -ea/2 = (-1) a (-1) ea/2 for e = ±1, show that Formula (5.2.8) does not depend on δ.

-We still assume I odd = {i 0 , i 1 , i 2 } as above. It only remains to give χ ρ k (ι(s i 0 i 2 )). It will depend on the following property on {π i 0 , π i 2 }:

(P i 0 ,i 2 ) L((π i 0 ) ∞ ) ⊕ L((π i 2 ) ∞ ) contains 1 ⊕ ε C/R .
Similarly to (5.2.7) we find

(5.2.10) χ ρ k (g) (ι(s i 0 i 2 )) = (-1) e δ (π i 0 )+e δ (π i 2 ) δ (-1) k-1 if (P i 0 ,i 2 ) holds, (-1) e δ (π i 0 )+e δ (π i 2 ) (-1) k-k otherwise.

These values do not depend on δ by (5.2.4): the integer n i 0 + n i 2 is ≡ 0 mod 4 if (P i 0 ,i 2 ) holds, and ≡ 2 mod 4 otherwise.

Remark 5.4.

(1) The cases (I) and (H) are disjoint for k = g, and for k = g case (I) is a special case of (H1), and the two formulas (5.2.3) and (5.2.5) for χ ρ k (g) are identical.

(2) The parameter ψ does not always determine k: when g is even, parameters of type (H1) in weight k = g/2 coincide with parameters of type (H2) in weight k = g/2 + 1.

5.3.

Proof of theorem 2. Fix g ≥ 1, k = (k 1 , . . . , k g ) ∈ Z g and assume either that k is scalar or k g > g. Arthur's multiplicity formula, as well as the multiplicity one results of [START_REF] Arancibia | Paquets d'Arthur des groupes classiques et unitaires[END_REF] and [MR], show that two Hecke eigenforms in S k (Γ g ) with same Hecke eigenvalues, or equivalently with the same standard parameter, are proportional. It follows that dim S k (Γ g ) is the number of possible standard parameters of Hecke eigenforms in S k (Γ g ). In what follows we enumerate these parameters in the case k 1 ≤ 13. We thus fix a Hecke eigenform in S k (Γ g ) and denote by ψ ∈ Ψ(Sp 2g ) its standard parameter. As in §5.1 we write

ψ = ⊕ i∈I π i [d i ]. Notation: -Assume v 1 > v 2 > • • • > v r
are positive odd (resp. even) integers and that there is a unique self-dual regular π in Π alg with weights ± v 1 2 , ± v 2 2 , . . . , ± vr 2 , then we shall denote by ∆ v 1 ,v 2 ,...,vr (resp. O e v 1 ,v 2 ,...,vr ) this unique element π. Similarly, when v 1 > v 2 > • • • > v r are even positive integers and there is a unique self-dual π in Π alg with weights 0 and ± v 1 2 , ± v 2 2 , . . . , ± vr 2 , then we shall denote by O o v 1 ,v 2 ,...,vr this element. The ∆'s are symplectic and the O's are orthogonal. These notations are compatible with the ones introduced in §1.3, and we have for instance O o 22 = Sym 2 ∆ 11 . We shall also denote by 1 the trivial representation of PGL 1 , and by ∆ 1 23 and ∆ 2 23 the two cuspidal representations of PGL 2 generated by the two normalized eigenforms in S 24 (SL 2 (Z)).

-We will denote by L 24 the subset of Π alg whose elements are either of motivic weight ≤ 22, or of motivic weight 23 with the weight 23 having multiplicity 1, or regular self-dual of motivic weight 24. By the classification theorems ([CL19, Thm. F], Theorems 3 and 5), there are 11+13+3 = 27 elements in L 24 , all regular self-dual, and according to the notations above we have 

L 24 = {1,

5.3.1.

Case k = (k 1 , k 2 , . . . , k g ) with k 1 ≤ 13 and k g > g. We have 1 ≤ g ≤ 12. We apply §5.2.1. In this case, each π i is regular of motivic weight ≤ 2(k 1 -1) ≤ 24, there is a unique i 0 ∈ I with n i 0 odd, and we have d i 0 = 1. In particular, all the π i are in L 24 and π i 0 is either 1, Sym 2 ∆ 11 or O o 24,16,8 . It is a boring but trivial exercise to enumerate all the ψ in Ψ(Sp 2g ) with these properties and such that the eigenvalues of ψ ∞ are distinct and ≤ 12. We find exactly 199 such parameters. The possible ψ are then exactly the ones in this list satisfying the Arthur multiplicity formula (5.1.4), using Formulas (5.2.1), (5.1.3) and (5.1.2). We find that only 59 of these 199 do satisfy this formula, and obtain Table 6, as well as the part of Table 5 concerning the case k > g. All those computations can be done easily with the help of a computer: see [CT19b] for a PARI code doing it. They can also be made by hand as follows.

We only treat the case π i 0 = Sym 2 ∆ 11 , the two other ones being similar. Note that for i = i 0 such that π i is symplectic, we have w(π i ) ≤ 19, and either

π i [d i ] = ∆ 19,7 [2] or π i = ∆ w [d] with w + d -1 ≤ 20. Assume first that π i is symplectic for all i = i 0 . We have (∆ 19,7 × Sym 2 ∆ 11 ) = 1, so if we have π i [d i ] = ∆ 19,7 [2] then Arthur's multiplicity formula ψ (s i ) = χ ρ k (ι(s i )) simply reads 1 = 1. If we have π i [d i ] = ∆ w [d], it rather asserts -(-1) (w+1)/2 = (-1) d/2 , i.e. w ≡ d + 1 mod 4 (note (∆ w × Sym 2 ∆ 11 ) = -(∆ w ) for w < 22).
This justifies the existence of the 18 ψ in Tables 6 and 5 containing Sym 2 ∆ 11 . Assume now there is i 1 = i 0 , necessarily unique, such that π i 1 is orthogonal. We will show that this case cannot happen. We have either π i 1 = O e 24,18,10,4 or π i 1 = O e 24,20,14,2 , and

d i 1 = 1. If I = {i 0 , i 1 } we have ψ = 1 and we compute χ ρ k (ι(s i 1 )) = -1, so there is i = i 0 , i 1 in I. For weight reasons we must have π i [d i ] = ∆ w [2], with w ∈ {17, 11} if π i 1 = O e
24,20,14,2 , and w = 15 otherwise. This implies

χ ρ k (ι(s i )) = -1. Note that (∆ w × π i 1 ) is -1 if π i 1 has
an odd number of weights > w/2, and is 1 otherwise. This shows ψ (s i ) = -(∆ w ) (∆ w × π i 1 ) = 1 for w = 17, 11 and π i 1 = O e 24,20,14,2 , a contradiction. We finally exclude the last possible case π i 1 = O e 24,18,10,4 and w = 15 as we have I = {i 0 , i 1 , i}, χ ρ k (ι(s i 1 )) = -1 and ψ (s i 1 ) = (∆ w × π i 1 ) = 1. 5.3.2. Scalar-valued case with k ≤ 13 and g ≥ k. We apply §5.2.2. We are either in case (I), (H1) or (H2).

Case (I). Assume first we are in case (I), in particular we have I 0 = I odd = {i 0 }, d i 0 = 1 and the π i are regular for all i in I. For each i in I, we have w(π j )+d j -1 2

≤ 12, and in particular π i has motivic weight ≤ 24: it belongs to the list L 24 . By inspection, π i 0 has thus to be 1, Sym 2 ∆ 11 or O o 24,16,8 . As the weight 0 has multiplicity 3 in ψ ∞ and d i 0 = 1 we have I = {i 0 }. There is then a unique j in I -{i 0 } such that, if a i denotes the smallest positive weight of π i , we have

a j -d i -1 2 ≤ 0; we must have a j -d i -1 2 = k -g. We have both d j -1 2 
≥ a j and

d j -1 2 
≤ 12 -w(π j )/2, which implies a j + w(π j )/2 ≤ 12. By an inspection of L 24 , this forces π j = ∆ 11 and d j = 12. But this implies that the positive weights of the π i with i in I -{j} are ≥ 12. Only the trivial representation has this property in L 24 . This shows π i 0 = 1 and that the unique possibility for ψ is

ψ = ∆ 11 [12] ⊕ [1].
For k = 12, we have 24 possibilities for ψ , namely the ones in [CL19, Thm. E].

Lemma 5.6. We have k ≡ 0 mod 4.

Proof. Assume that k ≡ 2 mod 4, then by inspection |I odd | = 3 and we denote

I odd = {i 0 , i 1 , i 2 } so that π i 1 [d i 1 ] = [1] and π i 2 [d i 2 ] = [2a -1].
For any i ∈ I even we have n i d i /2 ≡ 0 mod 2 and so a ≡ k mod 2, i.e. a is even. Thus Arthur's multiplicity formula (5.1.4) implies

χ ρ k (g) (ι(s i 1 i 2 )) = (-1) a/2 = (i 1 ) (i 2 ),
the first equality being (5.2.8). For ψ = [1] ⊕ [2k -1] those epsilon factors are 1 and we have a = k ≡ 2 mod 4 so this formula does not hold. This rules out k = 2 and k = 6. The four other parameters for k = 10 are ruled out the same way using (∆ w ) = (-1) (w+1)/2 . We will now prove that, apart from the case ψ = ∆ 11 [12] ⊕ [START_REF]The Siegel operator Φ g+1 : M k (Γ g+1 ) → M k (Γ g ) is bijective. (2) If k ≡ 0 mod 4, the linear map ϑ g : C[X 2k ] → M k (Γ g ) is an isomorphism[END_REF], none of the remaining ψ come from a cuspidal modular form. We will need first to recall some results on orthogonal automorphic forms and theta series. For each integer n ≡ 0 mod 8 we fix arbitrarily an even unimodular lattice of rank n and denote respectively by Ω n and SΩ n its orthogonal and special orthogonal group schemes over Z. We refer to [CL19, Sects. 4.4 & 6.4.7] for the basics of the theory of level 1 automorphic forms for Ω n and SΩ n (beware that these group schemes are rather denoted by O n and SO n loc. cit.). By results of Arthur [START_REF]The Endoscopic Classification of Representations: Orthogonal and Symplectic groups[END_REF] and Taïbi [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF], any discrete automorphic representation of SΩ n or Ω n has a standard parameter ψ in Ψ(SΩ n ), the latter being defined exactly as in the case of Sp 2g (see §5.1) but with the condition i∈I n i d i = n instead of i∈I n i d i = 2g + 1.

For n ≡ 0 mod 8, we denote by X n the set of isomorphism classes of even unimodular lattices of rank n. The vector-space C[X n ] is in a natural way the dual of a space of level 1 automorphic forms for Ω n . Any Hecke eigenform G in C[X n ] generates a discrete automorphic representation π G of Ω n (with trivial Archimedean component and (π F ) Ωn(Zp) p = 0 for each prime p), which has a standard parameter ψ G in Ψ(SΩ n ). Moreover, Siegel theta series provide a linear map (5.3.1)

ϑ g : C[X n ] -→ M n/2 (Γ g )
for all g ≥ 0 (see e.g. [CL19, §5.1], in particular for the conventions for g = 0), with Φ • ϑ g = ϑ g-1 (here Φ denotes the Siegel operator). For G in C[X n ], the degree of G is the smallest integer g 0 ≥ 0 with ϑ g 0 (G) = 0; the form ϑ g 0 (G) is then cuspidal and we have ϑ g

(G) = 0 for g ≥ g 0 . If G in C[X n
] is an eigenform with degree g 0 , and for g ≥ g 0 , then the Eichler commutation relations show that ϑ g (G) is an eigenform in M n/2 (Γ g ), and there is a simple relation due to Rallis [Ral82,§6] between the Satake parameters of G and that of F = ϑ g (G) (see [CL19, Sect 7.1]). Concretely, if F is square integrable (e.g. cuspidal), this relation is the equality

ψ G = ψ F ⊕ [n -2g 0 -1] for n > 2g 0 + 1, ψ F = ψ G ⊕ [2g 0 + 1 -n] for n < 2g 0 + 1.
Last but not least, we have the following result, a consequence of [Ral84, Thm. I. 

> n -1 -g 0 , then F = ϑ g (G) is square integrable and ψ F = ψ G ⊕ [2g -n + 1].
(Note that we have 2g + 1 > g + g 0 + 1 > n, hence the last assertion.) We finally go back to our analysis of case (H1), setting n = 2k. The spaces C[X 8 ], C[X 16 ] and C[X 24 ] have respective dimension 1, 2, 24, and the standard parameters of their eigenforms turn out to be exactly the 1, 2 and 24 parameters ψ discussed above for k = 4, 8 and 12, by [CL19, Cor. 7.2.7 & Thm. E]. This reference determines as well the degree of each eigenform (see [CL19, Thm. 9.2.6], note that most of these degrees had already been found before by Nebe and Venkov): this is the smallest integer g 0 that [2k -1 -2g 0 ] is a summand of ψ (hence g 0 < k), unless we have ψ = ∆ 11 [12] and g 0 = 12. For ψ = ∆ 11 [12] we have thus g > g 0 as well as g > 2k -1 -g 0 by the necessary condition d max = 2(g -k) + 1 of (H1). By Lemma 5.7, the automorphic representation π F is thus the (necessarily unique) discrete automorphic representation of Sp 2g with parameter ψ = [2(g -k)+1]⊕ψ , and it is not cuspidal since we have g > g 0 . In the remaining case we have ψ = [2(g -k) + 1] ⊕ ∆ 11 [12], k = 12 and g 0 = 12, and again π F is discrete but not cuspidal if we have g > 12. We conclude since for g = 12 we recover the form found in case (I).

Case (H2). We are going to show that there are exactly two Siegel eigenforms in this remaining case, both for k = 13, of respective genus 16 and 24, and parameters

∆ 17 [8] ⊕ [9] ⊕ [7] ⊕ [1] and [25] ⊕ ∆ 11 [12].
Lemma 5.8. We have π i 0 = 1, k odd and g even.

Proof. As we are in case (H2) we must have w(π i 0 ) + d i 0 -1 ≤ 2(k -1) ≤ 24 and d i 0 = 2(g -k) + 3 ≥ 3, and so w(π i 0 ) ≤ 22. Assume π i 0 is non trivial. We have π i 0 = Sym 2 ∆ 11 by the Chenevier-Lannes theorem, so w(π i 0 ) = 22, d i 0 = 3 and k = 13 is odd. This contradicts the last condition of (H2). So π i 0 is trivial, k is odd by the last condition in (H2), hence g is even as we are in full level Γ g .

Write

ψ = [2(g -k) + 3] ⊕ ψ , with ψ = i =i 0 π i [d i ].
The eigenvalues of ψ ∞ corresponding to ψ are the 2k -2 integers ±i with 0 ≤ j ≤ k -1, with the even number j = g -k + 1 omitted (we shall call those 2k -2 eigenvalues the "weights" of ψ for short). Each π i is regular algebraic of motivic weight ≤ 24, hence in the list L 24 . We are now led to do a simple enumeration exercise: for every odd k ∈ {1, . . . , 13}, enumerate all possible ψ , with π i in L 24 for each i, and with weights ±0, . . . , ±(k -1) where the even integer ±(g -k + 1) is excluded and satisfies k -1 ≥ g -k + 1 > 1.

Lemma 5.9. Assume i ∈ I 0 and π i = 1, then we have π i = Sym 2 ∆ 11 , d i = 1, k = 13 and g = 24, as well as I 0 = I odd = {i 0 , i, j} with j = i 0 , i, π j = 1 and d j ≥ 5.

Proof. Assume first π i = O o 24,16,8 . The only π in L 24 with w(π) / ∈ {24, 23, 17, 15}, and having a weight 5 ≤ λ ≤ 7, are ∆ 11 and ∆ 21,13 . It follows that among the three consecutive integers 5, 6, 7, either 7 or 5 is not a weight of ψ , hence must be g -k + 1: a contradiction as g -k + 1 is even.

An inspection of L 24 shows then π i = Sym 2 ∆ 11 , k -1 ≥ 11 and d i ≤ 3. As k is odd we have k = 13. Assuming d i = 3, π i [d i ] contributes to the weights ±12, ±11, ±10 and ±1, 0 of ψ . There is thus a unique i 1 in I with π

i 1 [d i 1 ] = [1],
and for j = i 0 , i 1 , i the representation π j is symplectic with motivic weight ≤ 17. This shows 2 ≤ g -k + 1 < 9. But there is an odd number of integers 2 ≤ n ≤ 9 with n = g -k + 1: a contradiction. We have proved d i = 1.

As 12 is an eigenvalue of ψ ∞ , we have either g -k + 1 = 12 or there exists some j ∈ I with w(π j ) = 24 and not having the weight 22. The only remaining possibility in this latter case is π j = O e 24,18,10,4 for some j. But there is no π in L 24 with w(π) / ∈ {24, 23, 19, 17, 11} and having a weight 3 ≤ λ ≤ 4: a contradiction with the presence of the weight 3 or 4 of ψ . We have proved g -k + 1 = 12, i.e. g = 24.

The weights of ψ are thus ±11, ±10, ±9, . . . , ±1 and 0 twice. Those possible ψ are easily determined (see [CL19, Prop. 9. We exclude this case using Arthur's multiplicity formula. We have I odd = {i 0 , i, j} with π j = π i 0 = 1. We have ψ (s i 0 j ) = 1, but by Formula (5.2.10) we have χ ρ k (g) (ι(s i 0 j )) = -1: a contradiction.

We are now able to conclude the proof. Assume first that ∆ 11 [12] is a summand of ψ . We must have

ψ = [25] ⊕ ∆ 11 [12],
which trivially satisfies Arthur's multiplicity formula by (5.2.5). In this case there is thus an eigenform F ∈ L 2 13 (Γ 24 ) with parameter ψ; this F is necessarily cuspidal as we have M k (Γ g ) = S k (Γ g ) for k odd. As we will explain in §5.4, this F is actually the form constructed by Freitag in the last section of [START_REF]Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten[END_REF].

So we may assume that ∆ 11 [12] is not a summand of ψ . Consider the double weight 0 of ψ . An inspection of L 24 shows then that there are two elements i 1 , i 2 in I odd -{i 0 }, say with 1 = d i 1 ≤ d i 2 . Better, Lemma 5.9 implies that we have π i 2 = 1, d i 2 ≥ 3, and either π i 1 = 1 or π i 1 = Sym 2 ∆ 11 . We apply Arthur's multiplicity formula at the element s i 0 i 2 . We have χ ρ k (g) (ι(s i 0 i 2 )) = -1 by Formula (5.2.10). This implies ψ (s i 0

i 2 ) = -1, which is equivalent to l∈L (π l ) = -1
where L is the set of elements l in I even such that π l is symplectic and with d i 2 < d l < d i 0 . We have d l ≥ 4 for l ∈ L, as d l is even and d i 2 ≥ 3, which imposes w(π l ) ≤ 21. Among the 9 symplectic representations with such motivic weight, only ∆ 17 and ∆ 21 have a negative epsilon factor. As a consequence, at least one summand of ψ is among

(5.3.2) ∆ 17 [4], ∆ 17 [8], ∆ 21 [4].
Observe that this implies d i 2 < 8 and that such a summand always contributes the weights 9 and 10 to ψ , so that we have k ≥ 11.

Assume first π i 1 = Sym 2 ∆ 11 , hence g = 24, k = 13 and d i 2 ≥ 5 by Lemma 5.9. Then ∆ 17 [8] is a summand of ψ , but the weight 11 occurs in both ∆ 17 [8] and Sym 2 ∆ 11 , a contradiction. We have proved π i 1 = π i 2 = 1. The congruence (5.2.9) implies then d i 2 ≡ -1 mod 4, which leaves only the two cases d i 2 = 3 or d i 2 = 7 by the inequality d i 2 < 8. In the case d i 2 = 7 the only possibility is thus that ψ

contains ∆ 17 [8] ⊕ [7] ⊕ [1]
, hence is equal to the latter for weights reasons, and

ψ = ∆ 17 [8] ⊕ [9] ⊕ [7] ⊕ [1].
Arthur's multiplicity formula is satisfied for this ψ by Formulas (5.2.5), (5.2.8) and (5.2.10). There is thus an eigenform in L 2 13 (Γ 16 ) with parameter ψ, necessarily cuspidal as its weight is odd.

We are left to study the case d i 2 = 3. In this case we focus on the weight 3 of ψ . It cannot come from a summand in the list (5. In both cases, ψ does not satisfy the multiplicity formula at the element s h with π h [d h ] = ∆ 11 [d h ]: we have χ ρ k (g) (ι(s h )) = (-1) d h /2 = -1 by (5.2.5) and ψ (s h ) = 1. This concludes the proof of Theorem 2. 5.4. Complements: theta series constructions. Recall that for any integer n ≡ 0 mod 8 we denote by L n the set of even unimodular lattices in the standard Euclidean space R n , and by X n = O(R n )\L n the finite set of isometry classes of such lattices.

Our first complement concerns the question of the surjectivity of the linear map ϑ g : C[X 2k ] → M k (Γ g ) of Formula (5.3.1), also called the Eichler basis problem, for k ≡ 0 mod 4. This surjectivity was proved in [CL19, §1.3] in the case g ≤ k ≤ 12.

Corollary 5.10. Assume k = 4, 8 or 12. Then ϑ g : C[X 2k ] → M k (Γ g ) is surjective for all g. In particular, the Siegel operator Φ g : M k (Γ g ) → M k (Γ g-1 ) is surjective as well for all g ≥ 1.

Proof. We have the relations Φ g • ϑ g = ϑ g-1 and Ker Φ g = S k (Γ g ). The corollary follows thus from the case g ≤ k, and from the vanishing S k (Γ g ) = 0 for g > k and k ≤ 12, implied by Theorem 2.

In other words, the Eichler basis problem holds for all g for those three values of k. We stress that this is not a general phenomenon: as was observed in [CL19, Cor. 7.3.5] the map ϑ 14 is not surjective for k = 16.

Remark 5.11. For k = 4, 8, 12, the surjectivity of Φ g and the determination of dim S k (Γ g ) for all g by Table 5 allow to determine dim M k (Γ g ) for all g. In particular, we have dim M k (Γ g ) = |X 2k | for k = 4 and g ≥ 1, for k = 8 and g ≥ 4, and for k = 12 and g ≥ 12.

Our second complement concerns the concrete construction via theta series of the four weight 13 Siegel modular eigenforms F g of respective genus g = 8, 12, 16 and 24 given by Table 5. Consider again the standard Euclidean space R n with n ≡ 0 mod 8. For any finite-dimensional continuous representation U of the compact orthogonal group O(R n ) over the complex number, we denote by M U (Ω n ) the complex vector space of O(R n )-equivariant functions L n → U ; this is a space of automorphic forms for the orthogonal group scheme Ω n introduced after Lemma 5.6 (see also [START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF]Sect. 4.4.4]). For any integers g, ν ≥ 1, we denote by H ν,g,n the representation of O(R n ) on the space of harmonic polynomials of degree ν on M n,g (C) in the sense of [START_REF] Böcherer | Siegel modular forms and theta series[END_REF]§XI]. The construction of Siegel theta series with harmonic coefficients gives rise to a linear map (see [START_REF] Böcherer | Siegel modular forms and theta series[END_REF]§XI] Proposition 5.12.

(i) For each g, the form F g is in the image ϑ 1,g,24 . (ii) The form F 8 is in the image of ϑ 5,8,16 .

Proof. Böcherer18 gives in [Bö89, Thm. 5] a necessary and sufficient condition for these properties to hold in terms of the order of vanishing of the standard L-function L(s, F g , St) of F g at s = n/2 -g, with n = 24 in case (i) and n = 16 in case (ii). A case-by-case analysis reveals that this criterion holds true in all five cases. We refer to [CT19b] for the details of this simple, but rather tedious, verification. The only non-trivial necessary ingredient is the non-vanishing at 1/2 of the Godement-Jacquet L-function of ∆ 19,7 and ∆ 21,13 , that was proved in [CL19, Prop. 9.3.39].

In the companion paper [START_REF] Chenevier | Siegel modular forms of weight 13 and the Leech lattice[END_REF], we study the maps ϑ 1,g,24 in a much more elementary way. Note that a harmonic polynomial of weight 1 on M n,g (C) is just the datum of a g-multilinear alternating form on C n . For any element f in M H 1,g,24 (Ω 24 ), and any Niemier lattice Λ in L 24 , the g-multilinear alternating form f (Λ) is invariant under the orthogonal group O(Λ) of Λ. This actually forces f to vanish outside the O(R 24 )-orbit of the Leech lattice by [START_REF] Chenevier | Siegel modular forms of weight 13 and the Leech lattice[END_REF]Prop. 4.1]. A curious consequence of Proposition 5.12 is thus that for g = 8, 12, 16, 24, there is a nonzero, O(Leech)-invariant, g-multilinear alternating form on the Leech lattice! A computation using the O(Leech)-page of the ATLAS fortunately confirms this property, and reveals furthermore that there is a unique such form of to scalar, and none for the other values of g ≥ 1. (The existence of such a form for g = 24 is wellknown, and follows from the fact that the Leech lattice is orientable, which means that any element in O(Leech) has determinant 1). In other words, M H 1,g,24 (Ω 24 ) has dimension 1 for g = 8, 12, 16, 24 (and 0 otherwise). The main result of [START_REF] Chenevier | Siegel modular forms of weight 13 and the Leech lattice[END_REF] is a direct proof of the non-vanishing of the map ϑ 1,g,24 for these four values of g. The non-vanishing of ϑ 1,24,24 , hence of S 13 (Γ 24 ), and had already been observed in the past by Freitag, in the last section of [START_REF]Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten[END_REF]. The Mathieu group M 24 and certain oriented rank g sublattices of the Leech lattice play an important role in our argument for g < 24. We also prove differently loc. cit. that the standard parameter of the line of Siegel eigenforms in the image of ϑ 1,g,24 is the one given in Table 13. All of this fully confirms Corollary 1 and Proposition 5.12 (i), and show the following.

Corollary 5.13. The linear map ϑ 1,g,24 in (5.4.1) is an isomorphism for all g ≥ 1.

Case (ii) of Proposition 5.12 also implies the nonvanishing of M H 5,8,16 (Ω 16 ). Let us simply mention that we actually have dim M H 5,8,16 (Ω 16 ) = 2 using a computation similar to that of [CL19, Cor. 9.5.13]. The space M H 5,8,16 (Ω 16 ) is actually generated by two Ω 16 -eigenforms, with respective standard parameters ∆ 21,13 [4] and ∆ 17 [8].

5.5. Remarks on the case g ≥ 2k. Let k and g be non-negative integers satisfying g ≥ 2k. In this case we have L 2 k (Γ g ) = M k (Γ g ) by [Wei83, Satz 3]. We may thus apply Arthur's endoscopic classification to study M k (Γ g ).

Proposition 5.14. We have dim M k (Γ g ) = dim M k (Γ 2k ) whenever g ≥ 2k, and this dimension vanishes unless k is divisible by 4.

Proof. For any eigenform in L 2 k (Γ g ) with standard parameter ψ, we are in case (H1) as g -k ≥ k, and with π i 0 = 1 as n i 0 = 1. In particular k is even, i 0 is in I odd , and we have ψ = ψ ⊕ [2(g -k) + 1] where ψ is such that ψ R is an Adams-Johnson parameter for the compact group SO(2k). By the Arthur multiplicity formula, the characters ψ and χ ρ k (g) coincide on C ψ . Consider the element s ∈ C ψ defined as the product of i∈Ieven s i and of s i 1 s i 2 in the case I odd = {i 0 , i 1 , i 2 }. Formulas (5.2.5) and (5.2.8) imply χ ρ k (g) (s) = (-1) k/2 . Indeed, one way to argue is to use the interpretation of the signs loc. cit. given right after Formula (5.2.5), which shows χ ρ k (g) (s) = k i=1 s k-i = (-1) k/2 . On the other hand, we have ψ (s) = i =i 0 (π i ) Min(d i ,2(g-k)+1) . We claim that for i ∈ I and any integer g ≥ 2k we have the equality (5.5.1) (π i ) Min(d i ,2(g -k)+1) = 1.

Indeed, we may assume π i symplectic (otherwise (π i ) = 1), in which case we have n i ≥ 2 and n i d i ≤ 2k and thus d i ≤ k < 2(g -k) + 1, and we conclude as d i is even. This shows in particular ψ (s) = 1, and together withχ ρ k (g) (s) = (-1) k/2 , proves that k is divisible by 4 if M k (Γ g ) is nonzero.

To prove the asserted equality of dimensions, it is enough to show that the fact that the multiplicity formula holds for ψ implies that for any genus g ≥ 2k it also holds for the parameter ψ g := ψ ⊕ [2(g -k) + 1)], still in weight k and case (H1). We may index the summands of ψ g with the same set I as for ψ, with the same π i for i ∈ I, the same i 0 , and the same d i for i = i 0 . There is an obvious bijection between C ψ and C ψ g matching all s i and s ij . Via this bijection the characters ψ and ψ g coincide, as for all i = i 0 we have (π i ) Min(d i ,2(g-k)+1) = (π i ) Min(d i ,2(g -k)+1) = 1 by (5.5.1). We conclude as the characters χ ρ k (g) and χ ρ k (g ) trivially coincide as well.

Of course this proposition is coherent with the known properties of Siegel modular forms for g > 2k:

(5.5.2) S k (Γ g ) = 0 and M k (Γ g ) = Im ϑ g if k ≥ 0 and k ≡ 0 mod 4, 0 otherwise.

by [START_REF] Resnikoff | Automorphic forms of singular weight are singular forms[END_REF], [START_REF] Freitag | Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe[END_REF] (first equality), [Fre77] (second equality, see also [START_REF] Howe | Automorphic forms of low rank, Noncommutative harmonic analysis and Lie groups[END_REF]).

Corollary 5.15. Assume g ≥ 2k.

6. Tables 

ψ

( 1 .

 1 4.1) EP(G; λ) = T geom (G; λ). The geometric side T geom (G; λ) is a finite sum of terms indexed by Levi subgroups of G of the form (1.4.2) GL a 1 × GL b 2 × G with G a split classical groups over Z and a, b ≥ 0. The main term, corresponding to G itself and called the elliptic term, is (1.4.3)

Theorem 6 .

 6 ("Effortless" computation) Assume G = SO n with n ≤ 17, or G = Sp 2n with 2n ≤ 14. Then the masses m c , for all c ∈ C(G), are given in [CT19b].

  ) i∈I and go to Step 4. Otherwise, go back to Step 2 and change the subset I. If all the I have been tried, go back to Step 1 and change the parameter .

2.4. 7 .

 7 Another illustration: a strengthening of a vanishing result in[START_REF] Cléry | On vector-valued Siegel modular forms of degree 2 and weight (j, 2)[END_REF]. As another example, let us show that for all odd 1 ≤ w ≤ 53, there is no cuspidal selfdual algebraic level 1 automorphic representation π of PGL 4 with L(π ∞ ) = I w + I w . We apply for this Algorithm 2.4.5 to U = 2 I w , δ = m = 1 and to the set S of dim S w+1 (SL 2 (Z)) cuspidal automorphic representations generated by level 1 cuspidal eigenforms for SL 2 (Z). Note that we have |S| = 0 for w = 13 and w < 11, and |S| = 1 otherwise. We obtain a contradiction in each case using S = S and = 5. This shows S (k 1 ,2) (Γ 2 ) = 0 for all k 1 ≤ 54 by [CvdG18, Lemma A.2].

(3. 1 . 1 )

 11 char : C(G) → P(G), c → P c .It is well-known that if two semi-simple conjugacy classes c 1 , c 2 in the classical group G(Q) have the same characteristic polynomial P , then they are equal, except in the case G = SO 4n , P (-1)P (1) = 0 and c 1 and c 2 are conjugate under O 4n (Q)/SO 4n (Q) Z/2Z. In particular, for P ∈ P(G) the fiber 11 char -1 (P ) has at most 1 element if G = SO 4n or P (-1)P (1) = 0, and 0 or 2 elements otherwise. The following elementary lemma (see [Taï17, Remark 3.2.11]) shows that this latter case does not create complications: Lemma 3.2. For G = SO 4n and c, c ∈ C(G) with P c = P c , we have m c = m c . Thus we may write T ell (G; λ) = P ∈P(G) m P tr(P ; λ) with m P := m c if there is c ∈ C(G) with char(c) = P 0 if P does not belong to char(C(G)) and tr(P ; λ) := tr(c | V λ ) if G = SO 4n or P (1)P (-1) = 0 tr(c | V λ ) + tr(c | V λ ) otherwise with char -1 (P ) = {c} in the first case and char -1 (P ) = {c, c } in the second case.

  Lemma 3.3. For G = SO 4n or Sp 2n , and c ∈ C(G), we have m -c = m c .

1

 1 we may thus finally write (3.1.2) T ell (G; λ) = P ∈P(G)/∼ e P m P tr(P ; λ)

  ) ≥ 1. Then P ∈ P(Sp 16 ) easy if and only if for any prime number p and any m coprime to p we have |S(p, m)| ≤ 2 and 0 ∈ S(p, m) if p > 2 and |S(p, m)| = 2, 0 ∈ S(p, m) or 1 ∈ S(p, m) if p = 2 and |S(p, m)| = 2.

4. 1 .

 1 Motivic weight 23. We now prove Theorem 3 along with the following supplementary result. Proposition 4.1. Let U be an effective element of K ≤23 ∞ containing I 23 with multiplicity ≥ 2. Let T be the subset of elements π in Π alg with L(π ∞ ) = U . (1) If |T | ≥ 2 then we have U = I 1 + I 7 + I 13 + I 17 + I 21 + 2 I 23 and T = {π, π ∨ } for some non-self-dual π. (2) If T = {π} then U belongs to an explicit set of 181 elements and π is of symplectic type. The set of 181 possible U mentioned above can be found in [CT19b]. They all satisfy 14 ≤ dim U ≤ 42. Proof of Theorem 3 and Proposition 4.1. For = 9.74 the restriction of the symmetric bilinear form

  (x, x) = -0.0023 up to 10 -4 . In the case U = I 1 + I 5 + I 9 + I 11 + I 15 + I 17 + I 19 , we use similarly = 11.75 and |S | = 6. The case U = I 3 + I 7 + I 13 + I 17 is quite harder to discard. After many tries, we found a contradiction using = 10.25 and a certain 11 element subset S of S: see the source code in [CT19b] for the details. So far, we have thus proved the following: (a) For any U = I 1 + I 7 + I 13 + I 17 + I 21 + 2 I 23 there is at most one element π of Π alg with motivic weight 23 and L(π ∞ ) = U . In particular any such π is self-dual. Despite our efforts, we could not find a contradiction in the case of the last element U = I 1 + I 7 + I 13 + I 17 + I 21 + 2 I 23 . We have however B F ∞ (U, U ) > F (i/4π)/3 for = 9.74. By Corollary 2.3, this shows: (b) For U = I 1 + I 7 + I 13 + I 17 + I 21 + 2 I 23 , there are at most 2 elements π of Π alg of motivic weight 23 and with L(π ∞ ) = U .

  I 3 + I 11 + I 17 + I 21 + I 23 , I 7 + I 15 + I 21 + I 23 , I 3 + I 9 + I 15 + I 21 + I 23 , I 1 + I 9 + I 17 + I 21 + I 23 , I 5 + I 13 + I 17 + I 21 + I 23 and I 5 + I 13 + I 19 + I 23 . These six regular weights have dimension ≤ 10, and we know from the results of Sect. 3 that there is no self-dual π with these Archimedean components. An inspection of the list V of remaining 181 elements reveals that for any U in V:

Lemma 4. 3 .

 3 Let n ≥ 13. Let π be a self-dual level 1 cuspidal algebraic regular automorphic representation of PGL n over Q of motivic weight 24. Then L(π ∞ ) belongs to the following list: • 1 + I 6 + I 8 + I 14 + I 20 + I 22 + I 24 for n = 13, • 1 + I 6 + I 10 + I 16 + I 20 + I 22 + I 24 for n = 13, • I 2 + I 4 + I 12 + I 14 + I 18 + I 20 + I 22 + I 24 for n = 16, • I 2 + I 8 + I 12 + I 14 + I 18 + I 20 + I 22 + I 24 for n = 16. In particular we have n ≤ 16.

A = I 1 +

 1 I 7 + I 11 + I 15 + I 19 + I 21 + 2 I 23 and B = I 1 + I 9 + I 15 + I 19 + 2 I 23 .

  2.2] or [CL19, Thm. E]): there are 10 possibilities, all of them containing some [d] with d ≥ 5, except ψ = Sym 2 ∆ 11 ⊕ ∆ 11 [10] ⊕ [1].

  3.2). It must thus come from a summand π m [d m ] of ψ which does not contribute to any weight in {0, 1, 9, 10}, in particular π m does not have any weight in {21/2, 10, 19/2, 9, 17/2, 3/2, 1, 0}. If π m has motivic weight < 23, an inspection of L 24 shows π m [d m ] = ∆ 11 [6], which leads toψ = ∆ 21 [4] ⊕ ∆ 11 [6] ⊕ [5] ⊕ [3] ⊕ [1].If π m has motivic weight 23, then we have d m = 2, ∆ 17 [4] is a summand of ψ , so 15/2 and 13/2 are not weights of π m , and the only possibility is π m = ∆ 23,7 andψ = ∆ 23,7 [2] ⊕ ∆ 17 [4] ⊕ ∆ 11 [2] ⊕ [5] ⊕ [3] ⊕ [1].

  and [CL19, Sect. 5.4.1]) (5.4.1) ϑ ν,g,n : M Hν,g,n (Ω n ) -→ S n 2 +ν (Γ g ), mapping any Ω n -eigenform to a Siegel eigenform (Eichler's commutation relations) or to zero. The following proposition is suggested by Rallis's theory [Ral82] and the fact that the standard parameters of the four weight 13 Siegel eigenforms F g are respectively ∆ 21,13 [4]⊕[1], ∆ 19,7 [6]⊕[1], ∆ 17 [8]⊕[9]⊕[7]⊕[1] and ∆ 11 [12]⊕[25].

  Recall that Π alg denotes the set of level 1 algebraic cuspidal automorphic representations of PGL n (with n ≥ 1 varying).

	correspondence (see e.g. [CL19, §8.2.12]).
	Rankin-Selberg L-functions: a
	refined positivity criterion
	2.1. Algebraic Harish-Chandra modules and automorphic representa-
	tions. Let π be a cuspidal automorphic representation of PGL n over Q. As re-
	called in §1.2, we say that π has level 1 if π p is unramified for every prime p. We
	also explained loc. cit. what it means for π to be algebraic. It will be useful to
	have an alternative point of view on this last condition in terms of the Langlands

The explicit formula for L-functions of pairs of elements in Π alg . Let π and π be level 1 cuspidal automorphic representations of PGL n and PGL

  m respectively. For p prime we denote by c p (π) the semi-simple conjugacy class in SL n (C) associated with the unramified representation π p , following Langlands, under the Satake isomorphism. The Rankin-Selberg L-function of π and π is the Euler product

	.1]. Moreover, if π is symplectic (resp. orthogonal) then L(π ∞ ) preserves
	a nondegenerate alternating (resp. symmetric) pairing [Art13, Thm. 1.4.2]. In
	particular, if π ∈ Π alg is self-dual, and if some weight of π has multiplicity 1 (e.g.
	if π is regular), then π is symplectic if and only if w(π) is odd [CL19, Prop. 8.3.3].
	2.3.

Table 1 .

 1 x) up to 10 -3 Some

	I22 + I16 + 1	0.625 π1 + 0.611 ∆19 + 0.485 Sym 2 ∆11	-0.427
	I22 + I12	0.640 π1 + 0.582 ∆15 + 0.502 ∆17	-0.511
	I22 + I12 + 1	0.709 π1 + 0.432 ∆11 + 0.558 ∆15	-0.204
	I22 + I20 + I10 + C/R 0.636 π1 + 0.393 ∆19 + 0.664 Sym 2 ∆11	-0.037
	I22 + I16 + I10 + C/R 0.701 π1 + 0.531 ∆19 + 0.476 Sym 2 ∆11	-0.246
	I22 + I4	0.630 π1 + 0.608 ∆11 + 0.483 Sym 2 ∆11	-0.204
	I22 + I20 + I14 + I4	0.696 π1 + 0.297 1 + 0.654 ∆21	-0.047

elements x with L((π 1 ) ∞ ) = U and C F (x, x) < 0 for = 4.

Table 2 .

 2 GSp 2 Sp 4 Sp 6 Sp 8 Sp 10 Sp 12 Sp 14 Sp 16 Conjugacy classes and characteristic polynomials in the orthogonal case: spinor norms. As announced in Remark 1.1, it turns out that in the orthogonal cases we can further reduce the set parametrizing conjugacy classes.

	|P(G)/ ∼ | 3	12 32 92 219 530 1157 2521
	3.2.	

Let C 0 (G) ⊂ C(G) be the subset of equivalence classes containing a finite order element in G(Q) whose G(A f )-conjugacy class meets G( Z). In particular C 0 (G) contains the set of c ∈ C(G) such that m c = 0. A priori it may happen that C 0 (G) is smaller than C(G). Using the analysis in [Taï17, §3.2.2] and Jacobson's hermitian analogue of the Hasse-Minkowski theorem

[START_REF] Jacobson | A note on Hermitian forms[END_REF]

, one can argue that C 0 (Sp 2n ) = C(Sp 2n

Table 3 .

 3 G SO 3 SO 4 SO 5 SO 7 SO 8 SO 9 SO 11 SO 12 SO 13 SO 15 SO 16 SO 17

	|P(G)/ ∼ |	5	12	19	59	92 165 419	530 1001 2257 2521 4877
	|P 1 (G)/ ∼ |	3	6	12	34	40	99	244	211	598 1339 992 2948

  See[CT19b] for the Sage program which checks that each set Λ in the table satisfies (P1') (using Corollary 2.3 and interval arithmetic) and inductively computes, for each group G appearing in the table:

			|Λ test w | w
	SO 3	3	3	5
	Sp 2	3	4	14
	SO 5	12	44	23
	SO 4	6	30	26
	Sp 4	12	28	28
	SO 7	34	183 27
	Sp 6	32	97	28
	SO 9	99	498 27
	SO 8	40	335 28
	Sp 8	92	255 28
	SO 11	244	923 27
	Sp 10	219	446 28
	SO 13	598	1294 27
	SO 12	211	1061 28
	Sp 12	530	597 28
	SO 15	1339	1924 35

  3 +I 7 +I 13 +I 17 , I 1 +I 5 +I 9 +I 11 +I 15 +I 17 +I 19 , I 1 +I 7 +I 11 +I 15 +I 19 , I 1 +I 7 +I 13 +I 17 . In the case U = I 1 + I 7 + I 11 + I 15 + I 19 we use = 8.75 and all the 100947 subsets S with |S | = 6. To give an example, the algorithm produces in about 2 minutes a linear combination close to + π 2 ) + 0.0834 1 + 0.150 ∆ 11 + 0.108 ∆ 15 + 0.335 ∆ 19,7 + 0.172 ∆ 23,7 + 0.280 ∆ 23,15,7 with C F 8.75

	x = 0.860	1 √ 2	(π 1

  ∆ 11 , ∆ 15 , ∆ 17 , ∆ 19 , ∆ 19,7 , ∆ 21 , ∆ 21,5 , ∆ 21,9 , ∆ 21,13 , Sym 2 ∆ 11 , ∆ 1 23 , ∆ 2 23 , ∆ 23,7 , ∆ 23,9 , ∆ 23,13 , ∆ 23,13,5 , ∆ 23,15,3 , ∆ 23,15,7 , ∆ 23,17,5 , ∆ 23,19,3 , ∆ 23,17,9 , ∆ 23,19,11 , ∆ 23,21,17,11,3 , O

	o 24,16,8 , O e 24,18,10,4 , O e 24,20,14,2 }.

  1.1] and [MW94, Lemme I.4.11] that we learnt from [MR, §16.2].Lemma 5.7. Let G be an eigenform in C[X n ] of degree g 0 . If we have g > g 0 and g
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 6 Standard parameters ψ of the non scalar-valued cuspidal Siegel modular eigenforms of weight k = (k 1 , . . . , k g ) and genus g with k 1 ≤ 13 and k1 ≥ k 2 ≥ • • • ≥ k g > g ≥ 1.

	ψ	g	k
	Sym 2 ∆11	1 12
	∆17[2] ⊕ [1]	2 10
	∆21[2] ⊕ [1]	2 12
	Sym 2 ∆11 ⊕ ∆19[2]	3 12
	∆11[4] ⊕ [1]	4	8
	∆15[4] ⊕ [1]	4 10
	∆19[4] ⊕ [1]	4 12
	∆21[2] ⊕ ∆17[2] ⊕ [1]	4 12
	Sym 2 ∆11 ⊕ ∆17[4]	5 12
	Sym 2 ∆11 ⊕ ∆19[2] ⊕ ∆15[2]	5 12
	∆17[2] ⊕ ∆11[4] ⊕ [1]	6 10
	∆17[6] ⊕ [1]	6 12
	∆21[2] ⊕ ∆15[4] ⊕ [1]	6 12
	∆21,13[2] ⊕ ∆17[2] ⊕ [1]	6 12
	Sym 2 ∆11 ⊕ ∆15[6]	7 12
	Sym 2 ∆11 ⊕ ∆17[4] ⊕ ∆11[2]	7 12
	Sym 2 ∆11 ⊕ ∆19[2] ⊕ ∆15[2] ⊕ ∆11[2]	7 12
	∆11[8] ⊕ [1]	8 10
	∆15[8] ⊕ [1]	8 12
	∆19[4] ⊕ ∆11[4] ⊕ [1]	8 12
	∆21[2] ⊕ ∆17[2] ⊕ ∆11[4] ⊕ [1]	8 12
	∆21,9[2] ⊕ ∆15[4] ⊕ [1]	8 12
	∆21,13[4] ⊕ [1]	8 13
	Sym 2 ∆11 ⊕ ∆19[2] ⊕ ∆11[6]	9 12
	Sym 2 ∆11 ⊕ ∆19,7[2] ⊕ ∆15[2] ⊕ ∆11[2] 9 12
	∆21[2] ⊕ ∆11[8] ⊕ [1]	10 12
	∆21,5[2] ⊕ ∆17[2] ⊕ ∆11[4] ⊕ [1]	10 12
	Sym 2 ∆11 ⊕ ∆11[10]	11 12
	∆11[12] ⊕ [1]	12 12
	∆19,7[6] ⊕ [1]	12 13
	∆17[8] ⊕ [9] ⊕ [7] ⊕ [1]	16 13
	[25] ⊕ ∆11[12]	24 13
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 5 Standard parameters ψ of the scalar-valued cuspidal Siegel modular eigenforms of weight k ≤ 13 and arbitrary genus g ≥ 1.

We warn the reader that the proofs of Duke and Immamoglu in[START_REF] Duke | Imamoḡlu, Siegel modular forms of small weight[END_REF] are not valid in the case g > k since they rely on the incorrect Corollary 3 p. 601 in[START_REF] Mizumoto | Poles and residues of standard L-functions attached to Siegel modular forms[END_REF]: see[START_REF]and residues of standard L-functions attached to Siegel modular forms[END_REF] for a recent erratum. Note also that a preliminary version of[START_REF] Chenevier | Automorphic forms and even unimodular lattices[END_REF] did include a proof of the vanishing of S k (Γ g ) for k ≤ 12, g > k and g = 24, but this statement was deleted in the published version for the same reason. Our proofs here show that all these incriminated results for g > k were nevertheless correct, and actually do not rely anymore on the results in[START_REF] Mizumoto | Poles and residues of standard L-functions attached to Siegel modular forms[END_REF].

More precisely, the only cases not covered by these two theorems seem to be the vanishing of S k (Γ 2 ) for k 2 = 1, and for the pairs k = (k 1 , 2) with k 1 ≤

[START_REF] Cléry | On vector-valued Siegel modular forms of degree 2 and weight (j, 2)[END_REF] Thm. 1.3]. However, this vanishing for k 2 = 1 can also be proved by arguments in the spirit of the ones employed here, as explained by the first author in an appendix of[START_REF] Cléry | On vector-valued Siegel modular forms of degree 2 and weight (j, 2)[END_REF], and we can actually prove it as well for all k = (k 1 , 2) with k 1 ≤ 54: see §2.4.7.

The conditions on the λ i are the following:λ i ∈ Z for each i, λ 1 ≥ • • • ≥ λ n , and either λ n ≥ 0 (cases G = Sp 2n or SO 2n+1 ) or |λ n | ≤ λ n-1 (case G = SO 2n with n ≥ 2).

What we denote by ε(U ) here is what Tate denotes ε(U, ψ, dx) in [Tat79, (3.4)], with choice of additive character ψ(x) = e 2iπx , and with dx the standard Lebesgue measure on R.

We actually have e ⊥ (x, x) = 0. Indeed, if π, π are in Π alg with L(π ∞ ) = L(π ∞ ), then e ⊥ (π, π ) = 0. To see this, we may assume π and π are self-dual, either both symplectic or both orthogonal (they have the same motivic weight by assumption), and the assertion follows then from the general property (π × π ) = 1 proved in [Art13, Thm.1.5.3 (b)]. Alternatively, we can easily check ε(U • U ) = 1 for U = L(π ∞ ).

In the context of Artin L-functions, the advantages of considering Rankin-Selberg L-functions had already been noticed by Serre, see[START_REF] Poitou | Minorations de discriminants[END_REF] p. 150.

An intuitive reason for that is that there actually exists a π in Π alg with very close weights, namely π = ∆ 11 , with L(π ∞ ) I 11 . See the discussion in [CL19, Sect. 9.3.19] for many other examples (and how to deal with this case differently), which allow to develop some intuition.

Let us mention that, at present, the authors are not aware of the existence of any non self-dual element in Π alg , so in practice will always actually have sd( ) = 1 for in S.

Beware that the map char is not surjective in general. For instance, Corollary 3.6 shows that for any prime p ≡ 1 mod 4, there is no order p element in SO p-1 (Q), as Φ p (1)Φ p (-1) = p is not a square.

We actually have |S| = 26, explained by the equality dim S 23 (SL 2 (Z)) = 2.

For typographical reasons we also replace the symbol π i [d i ] with [d i ] if we have π i = 1, and by π i if we have d i = 1 and π i = 1.

These modules have been classified by Enright, Howe and Wallach: they exist if, and only if, we have k g ≥ g -(u + v/2), with u = |{i, k i = k g }| and v = |{i, k i = k g + 1}|, and they are unique up to isomorphism if they exist.

Note that those authors call n, m, π n (m) * what we call g, k, ρ k (k) respectively.

Important contributions to this problem have been made by Siegel, Weissauer, Kudla-Rallis (Siegel-Weil formula), and also by Freitag, Garrett, Piatetski-Shapiro, Rallis and Waldspurger.

(H2) There is i 0 in I 0 with d i 0 = d max = 2(g -k) + 3, and L((π i 0 ) ∞ ) contains ε k-1 C/R . Note that i 0 is not unique in general, so we fix any i 0 satisfying (H1) or (H2). We set k = k in case (H1) and k = k -1 in case (H2). An inspection of ψ R shows that in case (H2) we must have g -k + 1 ≤ k -1, that is g ≤ 2k (hence k ≥ 1). In both cases we may write

and the eigenvalues of ψ ∞ contributing to ψ are the ±i for i = 0, . . . , k -1 in case (H1), and the same ones except ±(g -k + 1) in case (H2). It follows that ψ is an Adams-Johnson parameter for the compact group SO(2k ), and in particular, is multiplicity-free. This implies:

π i satisfies (R) for all i, and is regular for i = i 0 .

In particular, for i = i 0 , we have n i d i ≡ 0 mod 4 if n i is even, and L((π i ) ∞ ) contains ε

if n i is odd (see §2.2). Moreover, either π i 0 is regular or we are in the case (H1) (see Remark 5.3) and in one of the two following situations:

n i 0 ≡ 2 mod 4, 0 is a double weight of π i 0 , and L((

Remark 5.3. Assume we are in the case (H2). Then the weight 0 of π i 0 has multiplicity 1, since the eigenvalue g -k +1 does not contribute to ψ . In particular we have i 0 ∈ I odd and π i 0 is regular. Moreover, we also have k ≥ 2. Indeed, k = 2 implies g = 2, dim π i 0 = 1 hence π i 0 = 1, which contradicts (H2).

We now describe the restriction of the character χ ρ k (g) to C ψ . For any i in I and any sign s = ±1 we define an integer e s (π i ) as follows. If we are in case (H1), then e s (π i ) is the number of integers 1 ≤ j ≤ k -1 with (-1) j = s such that k -j is a weight of π i (as in case (I)). If we are in case (H2), we first consider the decreasing sequence (w 1 , w 2 , . . . , w k -1 ) = (k -1, k -2, . . . , g -k + 1, . . . , 1) where g -k + 1 is omitted (this makes sense as we have 1 ≤ g -k + 1 ≤ k -1 by Remark 5.3), and rather define e s (π i ) as the number of integers 1 ≤ j ≤ k -1 with (-1) j = s such that w j is a weight of π i . In all cases we have by property (R):

(5.2.4)

-Assume first we have i ∈ I even and i = i 0 . For i / ∈ I 0 we have:

(5.2.5)

Indeed, this follows from [MR, Proposition 18.3] by a similar argument as in Case (I). The only difference is to replace the alternating sequence of signs s defined in Case (I) by the length k alternating sequence s = (s k-1 , s k-2 , . . . , s 0 ) starting We recognize the standard parameter of the genus 12 Ikeda lift of ∆ 11 [START_REF] Ikeda | On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n[END_REF], a well-known element of S 12 (Γ 12 ), hence ψ does exist. Alternatively, Arthur's multiplicity formula (5.1.4) is satisfied as we have ψ (s j ) = (∆ 11 ) = 1 = χ ρ 12 (12) (ι(s j )) by (5.2.3), so ψ is indeed the standard parameter of an eigenform in L 2 12 (Γ 12 ). The shape of ψ and the Zharkovskaya relation 17 imply that this eigenform has to be cuspidal.

Case (H1). Assume we are in case (H1). We will show again

as in the definition of (H1).

Lemma 5.5. The representation π i is in L 24 for all i ∈ I, and we have π i 0 = 1.

Proof. As a general fact, all the π i satisfy condition (R) of §5.2.2. They have motivic weight ≤ 2(k -1) ≤ 24 and their nonzero weights have multiplicity 1. Moreover π i is regular for i = i 0 . It follows that all the π i are in L 24 , except perhaps π i 0 in the case w(π i 0 ) = 24. But for each i and each positive weight λ of π i we have λ

Thus w(π i 0 ) = 24 implies k = 13 and d i 0 = 1 = 2(g -k) + 1, so g = k = 13: this is absurd as there is no nonzero Siegel modular form for Γ g with odd weight and genus. So π i 0 is in L 24 with motivic weight < 24, and the unique possibilities are thus

so k is odd by (H1), g is even, and we have d i 0 ≡ 3 mod 4. The inequality 11 +

≤ k -1 ≤ 12 implies then k = 13, d i 0 = 3 and g = 14. We have proved We have I even = {i} with π i [d i ] = ∆ 11 [8], ψ (s i ) = (∆ 11 × Sym 2 ∆ 11 ) = -1 but χ ρ 13 (14) (ι(s i )) = 1 by Formula (5.2.5): the multiplicity formula is not satisfied.

Note that π i 0 = 1 implies k ≡ 0 mod 2 by (H1), hence k ≤ 12. Write again

is a certain 2k-dimensional parameter with weights ±(k -1), ±(k -2), . . . , ±1 and 0 twice, and k -1 ≤ 11. Each π i with i = i 0 is then regular of motivic weight ≤ 22. The list of all possible ψ with these properties is easy to determine: see Proposition 9. 17 This asserts that if F is an eigenform in M k (Γ g ), and if Φ g F in M k (Γ g-1 ) is non zero, with Φ g the Siegel operator, then Φ g F is an eigenform and the standard L-function of F and Φ g F satisfy L(s, St, F ) = L(s, St, Φ g F )ζ(s -(g -k))ζ(s + (g -k)).