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Abstract: The maximum entropy principle has a relevant role in image processing, in particular for thresholding and 

image segmentation. Different entropic formulations are available to this purpose; one of them is based on the 

Tsallis non-extensive entropy. Here, we propose a discussion of its use for bi- and multi-level thresholding.   
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1. Introduction 

In 1988, Constantino Tsallis proposed, in a paper 

entitled "Possible generalization of Boltzmann–Gibbs 

statistics" [1], a new concept of entropy, which is 

known today as "Tsallis entropy". This entropy was 

embedded in a generalization of the classical 

statistics, formulated for a non-extensive 

thermodynamics. For systems with long-range 

interactions or long time memory, Tsallis used an 

approach which was inspired by some multifractals 

concepts. As the scaling functions of the universal 

multifractals are depending on a multifractality index, 

the Tsallis entropy depends on a dimensionless 

parameter; when this parameter has the limit value of 

1, the entropy is recovering the expression of 

Boltzmann-Gibbs entropy.  

 

Today, we can see that a strongly increasingly 

number of natural and artificial systems is studied by 

means of Tsallis entropy [2]: of all the researches 

referring to it, a large part, at least more than a 

thousand, are on its application in image processing. 

The Tsallis entropy enters the image processing 

through the problem of image segmentation. This is a 

processing task which aims separating the image 

pixels in some manner, for instance, in pixels 

pertaining to objects or to the background. This very 

important process is the first step to understand the 

components of the image and for a recognition and 

extraction of their features [3].  

 

The segmentation can be made by image 

thresholding, usually classified as bi-level and multi-

level thresholding. Bi-level thresholding separates the 

pixels into two classes, one containing pixels with 

gray-levels below the threshold, the other with gray-

levels above it. Multi-level thresholding generalizes 

this to several classes [3]. Here, we will discuss the 

use of Tsallis entropy in bi- and multi-level image 

thresholding. 

 

2. Tsallis entropy and non-additivity 

Let us have a discrete set of probabilities  ip , 

where i  is a discrete random variable. Condition on 

probabilities is:  
i

ip 1 . For any real parameter q , 

Tsallis entropy is defined as: 
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Sometimes, parameter q  appearing in (1) is named 

the “entropic index”. k  is a constant. 

In the limit 1q , the usual Boltzmann–Gibbs 

entropy is recovered, namely: 

 


i

iiBG ppkSS log1   (2) 

 

In the case this entropy is used in information theory, 

it assumes the form of the Shannon entropy ( 1k ): 

 


i

iiS ppS log   (3) 

 

The Tsallis Entropy has been used along with the 

principle of maximum entropy to derive Tsallis 

distributions. For instance, the q-Gaussians are the 

distributions maximizing the entropy, having the 

same role of Gaussians in the Boltzmann-Gibbs 

theory. 

 

The Boltzmann–Gibbs and Shannon (BGS) statistics 

is naturally applied to systems having short-range 

microscopic interactions and microscopic memory. 

Systems obeying BGS statistics are called extensive 

systems. Let us consider a physical system 

decomposed into two independent systems A and B, 
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having joint probability: 

)()(),( BpApBAp  , BGS entropy is 

additive: 

 

     BSASBAS BGSBGSBGS ,   (4) 

  

In the case Tsallis entropy is evaluated, we have: 

 

         BSASqBSASBAS qqqqq )1(,   

     (5) 

 

The Tsallis entropy possesses the remarkable 

property of being non-additive. It means that the 

concerned systems are non-extensive. Modulus 

|1| q  is measuring the departure from 

additivity. In the limit when 1q , we have the 

expected additivity of entropy.  Note that parameter q 

can be lesser or greater than 1. In the case 1q , 

the entropy is subextensive: 

     BSASBAS qqq , . When 1q , it is 

extensive and when 1q , it becomes 

superextensive:      BSASBAS qqq , . 

 

In fact, Costantino Tsallis and Alfred Renyi both 

proposed entropies that, for 1q , reduce to the 

Shannon entropy. The Renyi entropy is defined as 

[4]: 
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iiq p
q
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This entropy is additive and the parameter q is used 

to have it more or less sensitive to the shape of 

probability [5]. The link between Tsallis and Renyi 

entropy is given in [1]: 

 

 qq Sq
q

S )1(1ln
1

1
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
   (7) 

 

Let us assume two independent systems A and B 

again. Since the Renyi entropy is additive:  

     BSASBAS qqq ,   (8) 

 

Using (7) in (8), we have Eq.5. 

Let us remember also that in 1967, Havrda and 

Charvát defined an entropy [6]: 

 

















 

i

q
iq

HC
q pS 1

21

1
1

  (9) 

 

This entropy differs from that proposed 

independently by Tsallis for the normalization factor. 

The Havrda and Charvát entropy is normalized to 1, 

whereas the Tsallis entropy is not normalized. As told 

in [7], for the use made in the reference, both 

entropies yield the same result and for this reason the 

entropy is also named Tsallis–Havrda–Charvát 

entropy.  

 

3. Entropy,  information and  images 

Before Tsallis had proposed his entropy, the use of 

maximum entropy principle was already considered a 

powerful method for image processing and 

reconstruction. As explained in [8], the method had 

the privileged position of being the only consistent 

method for combining different data into a single 

image. In fact, the maximum entropy method allows 

incorporating extra knowledge about the object which 

is represented in the image. 

 

In 2000, Takuya Yamano generalized the Shannon’s 

information theory in a non-additive way, and 

proposed this generalization in a work [9] where he 

explored the consequences of adopting a non-additive 

information content and a non-additive entropy. In 

2003, this generalization was extended to image 

processing areas, specifically to image segmentation 

[10]. 

 

One of the simplest methods used for segmentation is 

the thresholding. In [11], a survey of thresholding is 

given, which is categorizing the methods into some 

groups based on the information the algorithms are 

manipulating. Among them, we find methods based 

on histograms of the gray-level sample or methods 

based on clustering, where the gray-level samples are 

clustered in two parts as background and objects. We 

have also the entropy-based methods: as told in [10], 

Kapur et al. [12] assumed two probability 

distributions, one for the object and the other for the 

background and maximized the total entropy of the 

partitioned image in order to obtain the threshold 

level. In [10], the authors used a method similar to 

the maximum entropy sum method of Kapur et al., 

however, using the Tsallis entropy. 

 

4. Entropy of an image 

Let us consider an image having k gray levels.  Let 

),( yxf  be the gray value of the pixel located at 

the point ),( yx . In fact, a digital image of size 

YX   is a matrix of the form |),([ yxf

;,...,2,1 Xx  ],...,2,1 Yy  . Let the set of 

all gray values  k,...,2,1,0 . Usually, 

255k .  
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We need a distribution of probabilities, kppp ,,, 21 
. To have it we use the histogram of the gray values. 

The  normalized histogram is:  

 

 
tot

i

N

N
ih    (10) 

 

iN  is the number of pixels with gray value i  and 

totN  is the number of all pixels in the image.  The 

probability distribution is: 

 

o

k

oo p

p

p

p

p

p
I ,,,:

21
   (11) 

1
1




k

i

io pp   (12) 

 

Note that (11) is estimated by: 

 

)(,),2(),1(: khhhI    (13) 

 

The Tsallis entropy is: 
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Let us stress again that Tsallis entropy is a function of 

parameter q.  

 

5. Entropic segmentation via thresholding 

Let us consider again an image having k gray levels, 

with a distribution of probabilities, kppp ,,, 21  . 

Let us assume a bi-level threshold t for the gray 

levels. In [10], two classes had been introduced, A 

and B, and their probability distributions: 
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 (16) 

 

In (15) and (16), we have: 
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The Tsallis entropy for each distribution is: 
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The entropy is: 

 

)()()1()()()( tStSqtStStS B
q

A
q

B
q

A
qq 

     (20) 

 

In [10], this entropy, which is a function of threshold 

t, is maximized and the corresponding gray level t is 

considered to be the optimum threshold value. Of 

course, this threshold is depending on q parameter. 

An example of thresholding is given in  Figure 1 on 

the royalty-free image cameraman.jpg. In the same 

image we can see the histogram and the Tsallis 

entropy as a function of the chosen threshold. Since 

the final result depends on q , this coefficient can be 

used as an adjustable value and can play an important 

role as a tuning parameter [10]. As we can see in the 

example, the threshold is used to divide the data in 

two classes, the object and the background. In Figure 

2, another  example is given on lena.jpg. 

 

Renyi entropy based image thresholding [13-15] and 

Tsallis entropy based image thresholding [10] are two 

important global threshold selection approaches in 

image segmentation. The equivalence relationship 

between these two approaches is revealed, that is,  

with the same parameter, the two approaches will 

obtain the same threshold. 

 

In the previous discussion we have talk about gray 

tones. Of course images have colors: all what we 

have previously told can be applied to each of the 

colour tone (red, green and blue). In some previous 

papers [16-18], the reader can find an example of 

thresholding on color tones for a specific application: 

the digital restoration of manuscripts and drawings.  

 

6. Multi-level thresholding 

In computer vision and image processing, the 

reduction of a gray level image to a binary image can 

be obtained through a clustering-based image 

thresholding. Examples are given in the Figures 1 and 

2.  However, we can extend  the method to multi-

level thresholding. 

Let us consider again an image having k gray levels, 

with a distribution of probabilities, kppp ,,, 21  . 

Let us assume some thresholds  mttt ,,, 21    for the 
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gray levels. Some classes must be introduced; their 

probability distributions are: 
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In (21)-(24), we have: 
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The Tsallis entropy for each distribution and the total 

entropy are: 
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In [19], a multi-level thresholding in image 

segmentation is obtained combining Tsallis entropy 

and Particle Swarm Optimization (PSO). PSO is a 

computational method of optimization which use 

iterative tests to improve a candidate solution. In 

[20], the authors proposed the multi-level 

thresholding method for image segmentation, using 

the artificial bee colony approach to reduce the time 

of processing.  

 

In the Figure 3, an example of multi-level 

thresholding using the Tsallis entropy is given. The 

upper left image shows cameraman.jpg in gray tones. 

On the right, we can see the effect of a thresholding, 

obtained by optimizing two thresholds using Tsallis 

entropy. The lower panel is showing the behavior of 

the entropy: in dark gray we can see the entropy as a 

function of threshold 1t  for different values of the 

other threshold, in light gray, we can see the same for 

threshold 2t .  Other two examples are proposed in 

the Figure 4. 

 

7. The Two-Dimensional Histogram 

As previously told, f(x,y) is the gray value of the 

pixel located at the point (x,y). We can use, for 

segmentation, the average gray value of the 

 
tot

ij

N

N
jih ,   (30) 

 

ijN  is the number of pixels with gray value i and 

average gray value j, and totN  is the number of 

pixels in the image.  

 

Let us discuss the threshold to distinguish object and 

background. The threshold is obtained through a 

vector ),( st  where t, for ),( yxf , represents the 

neighborhood of each pixel too. Let g(x,y) be the 

average of the neighborhood of the pixel located at 

the point (x,y). For instance, we can use the integer 

part of the arithmetic mean obtained with gray values 

of the given pixel at (x,y) and of its eight nearest 

neighboring pixels. While computing the average 

gray value, it is necessary  to disregard the two rows 

from the top and bottom and two columns from the 

sides [15]. The gray value of the pixel, f(x,y), and the 

average of its neighborhood, g(x,y), are used to 

construct a two-dimensional histogram. The 

normalized histogram is approximated by using the 

formula is [15]: 
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threshold of the gray level of the pixel and s, for 

),( yxg , represents the threshold of the average 

gray level of the pixels neighborhood. Using (30), we 

find a surface that will have two peaks and one 

valley. The object and background correspond to the 

peaks and can be separated by selecting the vector 

),( st  that maximizes a suitable criterion function 

),( stU . 

 

Using vector ),( st , the domain of the histogram is 

contain information about edges and noise alone, and 

therefore they are ignored in the calculation. The 

quadrants which contain the object and the 

background are the second and fourth; they are 

considered to be independent distributions, the 

probability values in each case must be normalized in 

order to have a total probability equal to 1. The 

normalization is accomplished by using a posteriori 

class probabilities:  
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In [12], the contribution of the quadrants which 

contains the edges and noise is assumed negligible, 

hence it is approximated: 
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The distributions and entropies are:  
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Again, the total entropy is: 

 

),(),()1(),(),(),( stSstSqstSstSstS B
q

A
q
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     (38) 

 

The entropy (38)  is a function of thresholds t and s; 

we can find them  maximizing the entropy. Parameter 

q  can be used as a tuning parameter. 

 

8. Discussion 

As we have seen, Tsallis entropy is easy to use for 

discrete data and related frequencies. For this reason, 

it assumed a relevant role in several numerical 

applications.  In particular we find it used in medical 

image processing, a quite dynamic branch of image 

processing [21]. This processing is based, among 

several other methods, on clustering the presence of 

unwanted lesions/regions in a noisy background and 

in highlighting the edges of poorly illuminated 

images. As a starting point of  analysis, segmentation 

is often used. In [22], to set parameters on a 

segmentation based on pulse-coupled neural network 

(PCNN), the Tsallis entropy is used. Pulse-coupled 

networks are models proposed for high-performance 

biomimetic image processing. 

 

Feature extraction method for image processing via 

PCNN and Tsallis entropy is presented in Ref.23 too. 

Some most recent papers using the Tsallis entropy in 

medical image processing are going from 

thresholding to the problem of image registration [24-

27]. 

 

For what concerns the role of Tsallis entropy in the 

pattern recognition, Ref.28 compared the 

effectiveness of it over the classic Boltzmann–Gibbs–

Shannon entropy and proposed a multi-q approach to 

improve pattern analysis. Experiments in [28] show 

that the Tsallis entropy using the multi-q approach 

has great advantages over the Boltzmann–Gibbs–

Shannon entropy for pattern classification. Moreover, 

the approach is improving the image recognition 

rates. As explained in [28], this happens because  the 

Tsallis entropy for different values of parameter q is 

encoding much more information from the given 

probability distribution than the Boltzmann–Gibbs–

Shannon entropy.  
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Figure 1: An example of  bi-level thresholding using Tsallis entropy. The upper left image shows cameraman.jpg in 

gray tones. On the right, we can see the histogram of this image, obtained using GIMP (GNU Image Manipulation 

Program). In the lower part, we can see the effect of a thresholding, obtained by maximizing the Tsallis entropy. The 

pixels  having a gray tone larger than the threshold value become white; the pixels having a lower value become 

black. On the right, we can see the behavior of  Tsallis entropy as a function of threshold. The maximum value 

corresponds to 160. Let us note that changing parameter q, the threshold is different, such as the values of entropy.  
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Figure 2: Another example of bi-level thresholding using the Tsallis entropy. The upper left image shows lena.jpg 

in gray tones. On the right, we can see the histogram of this image. In the lower part, we can see the effect of  

thresholding, obtained using Tsallis entropy. On the right, we can see the behavior of  Tsallis entropy as a function 

of threshold. The maximum value corresponds to 120.  
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Figure 3: An example of multi-level thresholding using Tsallis entropy (three levels). The upper left image shows 

cameraman.jpg in gray tones. On the right, we can see the effect of thresholding. The lower panel is showing the 

behavior of the entropy: in dark gray we can see the entropy as a function of threshold 1t , for different values of the 

other threshold; in light gray, we can see the same for threshold 2t .  
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Figure 4: Two examples of multi-level thresholding using the Tsallis entropy (three levels). The upper image on the 

left is lena.jpg, the lower image  D23.jpg  from Brodatz album.  
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