

Figure 1. Jar-test results for a $500 \mathrm{mg} / \mathrm{L}$ suspension of silica particles in the presence of various phosphate ligand additions. (a) Residual turbidity as a function of iron concentration. (b) Sediment volume as a function of iron concentration. The hyphenated lines indicate the $0.36 \mathrm{mmol} / \mathrm{L}$ iron coagulant concentration. The arrows show the optimum coagulant concentrations. The error bars are smaller than the size of the symbols.

Figure 2. (a) Optimum iron coagulant dose as a function of phosphate addition, (${ }^{\bullet}$) without silica particles in suspension, (■) with a $500 \mathrm{mg} / \mathrm{L}$ silica suspension. The inset shows the jar-test results for a $0.32 \mathrm{mmol} / \mathrm{L}$ P concentration coagulated with the iron coagulant in the absence of silica nanoparticles. The other jar-test results are given in figure S 1 of Supporting Information.
(b) Residual concentrations in phosphorus (\star) and $\mathrm{SiO}_{2}(\square)$ as a function of iron concentration for suspensions of $500 \mathrm{mg} / \mathrm{L} \mathrm{SiO}_{2}$ and initial phosphorus additions of $0.048 \mathrm{mmol} / \mathrm{L}$ and $0.64 \mathrm{mmol} / \mathrm{L}$.

Figure 3. Evolution of Residual turbidity $\left({ }^{\bullet}\right)$ and sediment volume (\square) as a function of phosphate addition For an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$. The thick bar in blue indicates the [7-8] range in Fe / P.

Figure 4: (a) Temporal evolution of mean aggregate diameter (D50) for various added P concentrations and an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$.
(b) Evolution of aggregation rate (\bullet) and maximum aggregate size $\left({ }^{\circ}\right)$ as a function of phosphate concentration for an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$. The confidence intervals for the aggregation rate were obtained using a Student t -test with a significance level of 5%. The standard deviation for the maximum mean aggregate diameter was calculated from the variation of diameter in the vicinity of the maximum of the D_{50} vs time curve.

Figure 5: (a) Log-Log plot of scattering intensity versus scattering vector for sediments obtained with an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$ and various phosphate concentrations ($\mathrm{mmol} / \mathrm{L}$) indicated on the left of the SAXS curve.
(b) Evolution of the fractal dimension (inferred from the slope of the linear portion of the SAXS curves in (a)) as a function of phosphate concentration. The thick bar in blue indicates the [7-8] range in Fe / P. The confidence intervals for the slope of the regression line giving the fractal dimension were calculated using a Student t -test with a significance level of 5%.

Figure 6: Evolution of the aggregate electrophoretic mobility as a function of phosphate addition for an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$. The thick bar in blue indicates the $[7-8]$ range in Fe / P.

Added Fe/P (Molar ratio)

Figure 7. Frequency histograms of Fe / P elemental ratio obtained from TEM-EDXS microanalysis on freeze-dried sediments as a function of phosphate concentration for an iron coagulant concentration of $0.36 \mathrm{mmol} / \mathrm{L}$.

Figure 8. EXAFS oscillations $\left(\mathrm{k}^{3} * \mathrm{khi}(\mathrm{k})\right)$ and Fourier Transform curves calculated in the $[3.7-13] \AA^{-1}$ range with a Kaiser window, $\mathrm{t}=3$; a: $\mathrm{P} / \mathrm{Fe}=0$; b: $\mathrm{Fe} / \mathrm{P}=45(0.008 \mathrm{mmol} / \mathrm{L}$ in P$) ; \mathrm{c}: \mathrm{Fe} / \mathrm{P}=18(0.02 \mathrm{mmol} / \mathrm{L}$ in $\mathrm{P})$; d: $\mathrm{Fe} / \mathrm{P}=15(0.024 \mathrm{mmol} / \mathrm{L}$ in P$)$; e: $\mathrm{Fe} / \mathrm{P}=9(0.04 \mathrm{mmol} / \mathrm{L}$ in P$) ; \mathrm{f}: \mathrm{Fe} / \mathrm{P}=7.5(0.048 \mathrm{mmol} / \mathrm{L}$ in P$) ; \mathrm{g}: \mathrm{Fe} /$ $\mathrm{P}=6(0.06 \mathrm{mmol} / \mathrm{L}$ in P$)$; h: $\mathrm{Fe} / \mathrm{P}=5(0.072 \mathrm{mmol} / \mathrm{L}$ in P$)$.

Figure 9. Experimental and theoretical (dashed line) back filttered $k 3 * k h i(k)$ curves corresponding to $2^{\text {nd }}$ coordination shell [2.2-3.5] \AA. (a) $\mathrm{P} / \mathrm{Fe}=0$; (b) $\mathrm{Fe} / \mathrm{P}=45$ ($0.008 \mathrm{mmol} / \mathrm{L} \mathrm{P}$); (c) $\mathrm{Fe} / \mathrm{P}=18$ ($0.02 \mathrm{mmol} / \mathrm{L} \mathrm{P}$); (d) $\mathrm{Fe} / \mathrm{P}=15$ ($0.024 \mathrm{mmol} / \mathrm{L} \mathrm{P}$); (e) $\mathrm{Fe} / \mathrm{P}=9(0.04 \mathrm{mmol} / \mathrm{L} \mathrm{P})$; (f) $\mathrm{Fe} / \mathrm{P}=7.5$ ($0.048 \mathrm{mmol} / \mathrm{L} \mathrm{P}$); (g) $\mathrm{Fe} / \mathrm{P}=6$ ($0.06 \mathrm{mmol} / \mathrm{LP}$); (h) $\mathrm{Fe} / \mathrm{P}=5(0.072 \mathrm{mmol} / \mathrm{L} \mathrm{P})$.

Figure 10. Possible local structures of $\mathrm{Fe}-\mathrm{P}$ coagulant species: (A) Edge-sharing dimer or trimer, distance [$\mathrm{Fe}-\mathrm{Fe}$] ~ 3.0-3.2 \AA. (B) double corner-sharing trimer, distance [Fe-Fe] ~ 3.45-3.55 \AA. (C) Single corner sharing with a SiO_{4} or PO_{4} tetrahedron, distance [$\left.\mathrm{Fe}-\mathrm{P}\right] \sim 3.0-3.3 \AA$. (D) Single corner sharing Fe complex, distance $[\mathrm{Fe}-\mathrm{Fe}] \sim 3.4-3.6 \AA$. (E) Fe-P oligomeric species.

