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On discrete loop signatures and Markov loops topology

Our purpose is to explore, in the context of loop ensembles on finite graphs, the relations between combinatorial group theory, loops topology, loop measures, and signatures of discrete paths. We determine the distributions of the loop homotopy class, and of the first and second homologies, defined by the lower central series of the fundamental group. This last result has yet to be extended to higher order homologies.

Geodesic loops and fundamental group for graphs

We consider a finite connected graph G, denoting by X the set of vertices and by E o the set of oriented edges. The extremities of an oriented edge e are denoted pe ´, e `q. The opposite oriented edge is denoted ´e.

Recall that on graphs, geodesics paths are defined as non backtracking paths: px 0 , x 1 , ..., x n q with tx i , x i`1 u in E and x i´1 ‰ x i`1 . Based loops at x are paths from x to x. We say they are tailless if their first edge and the opposite of their last edge differ. Loops are equivalence classes of based loops under the shift. Geodesic loops are defined as equivalence classes of non backtracking tailless based loops under the shift.

For each choice of a base vertex x, the fundamental group (Cf [13] ) Γ x is defined by geodesics from x to x. The composition rule is concatenation 0 0 AMS 2000 subject classification: .

followed by erasure of backtracking subarcs. These groups are all isomorphic to the free group Γ with r " |E| ´|X| `1 generators, in a non canonical way. However, geodesic (unrooted) loops are in canonical bijection with the conjugacy classes of any Γ x . The isomorphisms between different Γ x 's, as well as a set of generators for the free group, can be defined by the choice of a spanning tree T of the graph. To each oriented edge α " pa, bq outside the spanning tree we associate the element γ x pαq of Γ x defined by the based loop obtained by concatenation of the geodesic from x to α ´in T , α, and the geodesic from α `to x in T . Note that γ x p´αq is the inverse of γ x pαq. Finally recall that each loop l is homotopic to a unique geodesic loop l g , obtained by removing from the loop all its subtrees. The same holds for based loops (but in this case the tail is not removed).

The lower central series

Recall (see section 5-3 in [START_REF] Magnus | Combinatorial group theory[END_REF], section 6-4 in [START_REF] Reutenauer | Free Lie algebras[END_REF]) that the lower central series Γ pnq of normal subgroups of the free group Γ are defined recursively by setting Γ p1q " Γ and Γ pn`1q " rΓ pnq , Γs. The quotients groups H n " Γ pnq {Γ pn`1q are Abelian. H 1 is the homology group of the graph, i.e the abelianized image of the fundamental group. By Witt's formula (Cf theorem 5-11 in [START_REF] Magnus | Combinatorial group theory[END_REF]), H n , we will refer to as the homology group of class n, is a free Abelian group with d n " 1 n ř d|n µpdqr n{d generators, µ denoting the Moebius function. In particular, d 1 " r, d 2 " rpr´1q 2 , and d 3 " r 3 ´r 3 . The quotient group Γ{Γ pn`1q is the free nilpotent group of class n, with r generators (obtained by imposing that all iterated commutators of order n `1 vanish). Each element u of Γ pnq projects on an element h n puq of H n . which depends only on the conjugacy class of u, as h n pu 1 u 2 q " h n pu 1 q `hn pu 2 q . We can now define the degree dpγq of a geodesic loop γ as the highest index n such that the associated conjugacy class is included in Γ pnq . hpγq denotes the corresponding element of H dpγq . Note that h n pγq vanishes for n ă dpγq.

Discrete signatures

Given a root vertex x 0 , a spanning tree T and an orientation e j of the of the r " |E| ´|X| `1 edges ˘ej not included in T , the elements γ x 0 pe j q denoted γ j generate the free group Γ x 0 .

Each group element g (except the neutral element) can be expressed uniquely by a reduced word γ n 1 j 1 γ n 2 j 2 ...γ nm j l , m being a positive integer and the n i a mtuple of non zero integers (reduced means that consecutive j's are distinct). Each conjugacy class, or equivalently geodesic loop, is represented uniquely by a class of cyclically reduced words equivalent under the shift (cyclically reduced means reduced, and that either j 1 ‰ j m , either that j 1 " j m and sgnpn 1 q " sgnpn m q). Following the definition given in corollary 5-19 of [START_REF] Magnus | Combinatorial group theory[END_REF], we will associate to such a goup element the formal series Spgq " ś l i"1 e n j i X j i , the X j 's being non-commuting symbols. By analogy with the definition of Chen [START_REF] Kuo-Tsai Chen | Integration of paths-a faithful representation of paths by noncommutative formal power[END_REF], extended to bounded variation paths in [START_REF] Hambly | Uniqueness for the signature of a path of bounded variation and the reduced path group[END_REF], and in the theory of rough paths, we say that Spgq is the signature of g. Note that the connection with this notion becomes more visible if one lifts the geodesic based loop to a geodesic (I.e. non backtracking) path of the universal Abelian cover, which is a lattice. Shift invariance becomes invariance under Verwaat transformation. We denote by L the free Lie algebra (Cf [START_REF] Magnus | Combinatorial group theory[END_REF], section 5-6 or [START_REF] Reutenauer | Free Lie algebras[END_REF] Section 0-2 ) generated by the X j 's. It is the space of formal series whose homogeneous terms of all degrees are Lie polynomials. Let us start by recalling a few fundamental properties proved in [START_REF] Magnus | Combinatorial group theory[END_REF] and [START_REF] Reutenauer | Free Lie algebras[END_REF]) :

Proposition 1 a) Spg 1 g 2 q " Spg 1 qSpg 2 q b) logpSpgqq belongs to L.
c) The sum of the terms of lowest degree in Spgq ´1 and in logpSpgqq, denoted P g pXq are equal, and their degree is dpgq. P g is a homogeneous Lie polynomial of degree dpgq.

d) For any word u composed of the non-commuting symbols X j , denoting by ¡ the shuffle product of words (Cf [START_REF] Reutenauer | Free Lie algebras[END_REF], section 1-4), and xSpgq, uy the coeficient of u in Spgq,

xSpg 1 qSpg 2 q, uy " ÿ u 1 ,u 2 , u 1 ¡u 2 "u xSpg 1 qu 1 y xSpg 2 q, u 2 y.
Remark 1 It follows easily from the above proposition that P g ´1 pXq " ´Pg pXq (as SpgqSpg ´1q " 1 and that P g pXq and dpgq depends only on the conjugacy class Cpgq .

If γ is a geodesic loop, we denote by P γ the Lie polynomial defined by the associated conjugacy class. If l is a loop, we denote by P l the polynomial P l g and its degree dpl g q by dplq. hpl g q will be denoted hplq and for n ď dplq, h n pl g q will be denoted h n plq.

As in [START_REF] Le | Markov paths, loops and fields[END_REF], we denote by N e plq, e P E o , the oriented edge occupation field defined by a loop l and by N e pLq " ř lPL N e plq the field defined by a set of loops L. It counts the total number of traversals of e and therefore verifies the Eulerian property: We set q N x,y " N x,y ´Ny,x . One checks easily from the Eulerian property that for any choice of spanning tree and outside edges orientation, q N is determined by the r integers q N e i we will simply denote by

q N i .
Then we have:

Proposition 2 a) dplq ą 1 iff q N i plq " 0 for all 1 ď i ď r. b) If dplq " 1, P l " ř 1ďiďr q N i plqX i . c) If dplq ě 1, h 1 plq " ř 1ďiďr q N i plqh 1 pγ i q.
Proof. Note that q N i plq " q N i pl g q. Then compute the non constant term of degree 1 in Spl g q and h 1 plq " h 1 pl g q using the decomposition of the signature in a product of exponentials stemming from the decomposition of l g by a cyclically reduced word.

For l ¨any based loop, we denote by N ep1q,ep2q,...,epmq pl . q the number of increasing m-tuples of times at which l ¨crosses the m-tuple oriented edges ep1q...epmq successively. Denote by q N i,j the number N e i ,e j `N´e i ,´e j ´Ne i ,´e j Ń´e

i ,e j . Then: Proposition 3 a) If h 1 plq vanishes (i.e. if dplq ě 2), and if l . is any based loop representing the loop l, q N i,j pl . q ´q N j,i pl . q is independent of the base point and dplq ą 2 iff q N i,j plq ´q N j,i plq " 0 for all

1 ď i ă j ď r. b) If dplq " 2, P l " 1 2 ř 1ďiăjďr p q N i,j plq ´q N j,i plqqrX i , X j s. c) If dplq ě 2, h 2 plq " 1 2 ř 1ďiăjďr p q N i,j plq ´q N j,i plqqh 2 prγ i , γ j sq.
Proof. Let l ¨be a loop based at x 0 representing l and l g ¨be the associated geodesic based loop, defining an element γ of Γ x 0 . Using the decomposition of the signature in a product of exponentials, we get that the sum of the terms of degree ď 2 in Spγq equals:

1 `ř1ďiďr q N i plqX i `1 2 ř 1ďiďr 1 2 pN i plqpN e i plq ´1q `N´e i plqpN ´ei plq ´1q 2N e i plqN ´ei plqqX 2 i `ř1ďiăjďr p q N i,j plqX i X j `q N i,j plqX j X i q `1 2 ř
1ďiďr pN e i plq Ǹ´e i plqqX 2 i (the second and third sum come from the products of terms of degree one in two exponentials and the last sum from the terms of degree two in one exponential )

" 1 `ř1ďiďr q N i plqX i `1 2 r ř 1ďiďr q N i plqX i s 2 `1 2 ř 1ďiăjďr p q N i,j plqrX i , X j s q N j,i plqrX j , X i qs, denoting X i X j ´Xj X i by rX i , X j s.
Note also that the terms of degree ď 2 in logpSpγqq are ř 1ďiďr q N i plqX i `1 2 ř 1ďiăjďr p q N i,j plq q N j,i plqqqrX i X j s. a) and b) follow directly, by remark 1. Then c) follows from theorem 5-12 in [START_REF] Magnus | Combinatorial group theory[END_REF] and its corollary.

Remark: More generally, we can define q N ip1q,ip2q,...,ipmq pl ¨q "

ÿ k "˘,1ďkďm m ź k"1 k N ε 1 e ip1q ,ε 2 e ip2q ,...,εme ipmq .
Then, if dplq " m, it follows directly from its definition that: P l " ÿ ip1q,ip2q,...,ipmq q N ip1q,ip2q,...,ipmq pl ¨qX ip1q X ip2q ...X ipmq for any representative l ¨of l, Moreover from theorem 1-4 in [START_REF] Reutenauer | Free Lie algebras[END_REF] (or in theorem 5-17 in [START_REF] Magnus | Combinatorial group theory[END_REF] ) this last expression can be rewritten as follows:

Proposition 4 P l " 1 m ÿ ip1q,ip2q,...,ipmq
q N ip1q,ip2q,...,ipmq pl ¨qrr...rX ip1q , X ip2q s...sX ipmq s.

Remark: Equivalently, P l equals:

1 m ÿ ip1qăip2q,ip3q,...,ipmq p q N ip1q,ip2q,...,ipmq pl ¨q´q N ip2q,ip1q,ip3q,...,ipmq pl ¨qqrr...rX ip1q , X ip2q s...sX ipmq s.

This gives a non self-contained proof of proposition 3. In general, this expression can be further modified to get a decomposition in any specific basis of the free Lie algebra (cf [START_REF] Reutenauer | Free Lie algebras[END_REF], chapter 4). Then it follows that its coefficients which are linear combinations of q N 's depend only on l, as q N i , and q N i,j if dplq ą 1.

For example, if dplq " 3, using Jacobi identity, we get that rrX k , X i sX j s " ´rrX i , X j sX k s ´rrX j , X k sX i s. Hence P l " 1 3

ř iăjăk prp q N i,j,k ´q N j,i,k ´q N k,i,j q N i,k,j splqrrX i , X j sX k s`rp q N j,k,i ´q N k,j,i ´q N k,i,j `q N i,k,j splqrrX j , X k sX i sq`1 3 ř i‰j r q N i,j,i q N s j,i,i splqrrX j , X i sX i s.
Morevover, as q N j plq " 0, q N i,j,k `q N i,k,j `q N j,i,k " q N j q N i,k " 0 and as q N j plq " 0, q N j,k,i `q N k,i,j `q N k,j,i " 0. Therefore:

P l " 1 3 ř iăjăk prp q N j,i,k `2 q N k,i,j splqrrX j , X i sX k s`rp2 q N j,k,i `q N i,k,j splqrrX j , X k sX i sq2 3 ř i‰j q N i,j,i plqrrX j , X i sX j s.
4 Loop measures and homotopies distribution.

Following [START_REF] Le | Markov paths, loops and fields[END_REF], we attach a positive conductance C e to each edge e P E and a killing rate κ x to each vertex x P X, then, denoting Λ a set of r oriented edges define the duality measure λ x " κ x `řy C x,y and the λ-symmetric transition matrix P x y "

C x,y λ x , P x ∆ " κ x λ x . The energy functional is:

pf, f q " 1 2 ÿ x,y C x,y pf pxq ´f pyqq 2 `ÿ x κ x f pxq 2
and the associated Green function is denoted by G.

We define a measure µ on (discrete time, unbased) loops:

µplq " 1 multplq ź edges of l ´P e é`¯m ultplq .
Here multplq denotes the multiplicity of the loop l. Note that |µ| " µp1q " ´logpdetpI ´P qq Note that this measure is induced by the restriction to non-trivial discrete loops of the measure ř xPX ş 8 0 1 t P x,x t λ x dt defined on continuous time based loops, P x,x t being the non-normalized bridge measure defined by the transition semigroup expptrI ´P sq associated with the energy functional (Cf [START_REF] Le | Markov paths, loops and fields[END_REF]). It is the discrete space version of the loop measure defined by Lawler and Werner ( [START_REF] Lawler | The Brownian loop soup[END_REF] and Symanzik ([16] ).

We denote by L α the Poisson point process of intensity αµ. The ensemble L α can be decomposed into independent sets of loops of distinct homotopies: For any geodesic loop γ, the number of loops l P L α such that l g " γ is a Poisson variable of parameter µ γ . In the case of the regular graphs with unit conductances and constant κ, a simple expression of µ γ was obtained in [START_REF] Mnëv | Discrete Path Integral Approach to the Selberg Trace Formula for Regular Graphs[END_REF]: This result follow from a more general one: If px, yq is an edge, let us denote r x,y the probability that the Markov chain starting at y returns to y following a tree-contour subloop without visiting x at the first step. Note that: If G is a d-regular graph, with C e " 1, κ constant, it is clear that the r x,y are all equal to the same return probability to the root of a half-d-regular tree.

Proposition 5 If G is a d-
r x,
We then get from the previous equations that ρ x,y " pd `κq 2 2spd ´1q p1 ´d1 ´4pd ´1q pd `κq 2 q and recover the result of [START_REF] Mnëv | Discrete Path Integral Approach to the Selberg Trace Formula for Regular Graphs[END_REF]. This argument is close to the proof of Ihara's formula in [START_REF] Harold | Zeta functions on finite graphs and coverings[END_REF]. The corresponding generalization of Ihara's formula is given in [START_REF] Anantharaman | Some relations between the spectra of simple and non-backtracking random walks[END_REF]. A different generalization was given in [START_REF] Watanabe | Graph zeta function in the Bethe free energy and loopy belief propagation[END_REF].

Let us now consider the distribution of the number of loops homotopic to a point; It is obviously a Poisson distribution of parameter ´lnpdetpI Ṕ q ´řγ µ γ . To compute this quantity, let us now denote r x,y,k the probability that the Markov chain starting at y returns to y for the first time in 2k steps following a tree-contour subloop without visiting x at the first step. Set r x,y psq " ř r x,y,k s k . Set ρ x,y psq " ř 8 n"0 rr x,y psqs n Note that: r x,y psq " s ÿ z‰x P y z P z y ρ y,z psq and that ρ x,y psq satisfies the relation: ρ x,y psq " 1 `s ÿ z‰x P y z ρ y,z psqP z y ρ x,y psq.

Let us now denote r x,k the probability that the Markov chain starting at x returns to x for the first time in 2k steps following a tree-contour subloop. Set r x psq " ř r x,k s k Note that: r x psq " s ÿ y P x y P y x ρ x,y psq.

Let denote ρ x,k the probability that the Markov chain starting at x returns to x in 2k steps following a tree-contour subloop. Set ρ x psq " ř 8 0 ρ x,k s k and note that: ρ x psq " 1 1´r x psq .

The number of loops of L homotopic to a point is a Poisson r.v. with expectation ř

x ř 8 0 1 2k ρ x,k s k " ř x ş 1 0 ρ x psq´1 2s
ds.

If G is a d-regular graph, with C e " 1, κ constant, it is clear that ρ x,y psq and ρ x psq are constants in the edge or vertex variables. We get from the previous equations that ρ x,y psq " pd `κq 2 2spd ´1q p1 ´d1 ´4spd ´1q pd `κq 2 q and

ρ x psq " 2pd ´1q d ´2 `db 1 ´4spd´1q pd`κq 2 q
.

From the expression of ρ x , by an elementary integration, we finally deduce that:

Proposition 7 If G is a d-regular graph, with C e " 1, κ constant, the number of loops homotopic to a point is a Poisson r.v. of expectation

|X|p d 2 plogp2q ´logpb `1qq `pd ´2qplogpb `d ´2 d q ´logp1 `d ´2 d qqq with b " b 1 ´4 d´1 pd`κq 2 .
In particular, for κ " 0, this is equal to: pd ´2q logpd ´2q `d{2q logpdq ṕd ´2 `d{2q logpd ´1q.

Homology and holonomies distributions

The loops L α can also be classified into independent sets of loops L pdq α according to their degrees dpl g q. For each degree d, we can try to determine the distribution of the sum of the homologies of the loops of degree d and the distribution of the number of loops of given d-th homology, In this section, we recall and complete the results obtained in [START_REF] Le | Markov paths, loops and fields[END_REF], [START_REF] Le | Markov loops, free field and Eulerian networks[END_REF], and [START_REF] Le | Markov loops, Coverings and Fields[END_REF], which solve the problem for d " 1.

Define η j x,y " 1 x"e j ,y"e j ´1y"e j ,x"e j . Denoting by P pθq the matrix P x y e 2π ? ´1 ř θ i η i

x,y , we have (see [START_REF] Le | Markov paths, loops and fields[END_REF]):

ż pe ř i ? ´1π q N i plqθ i ´1qµpdlq " ´logpdetpI ´P pθq q.
Hence for any pj i q P Z r , using an inverse Fourier transform, we have:

Proposition 8 |tl P L α , q N i plq " j i , i " 1...ru| are independent Poisson r.v. with expectations: αµptl, q N i plq " j i , i " 1...ruq " ´α ż r0,1s r logpdetpI ´P pθq qq

r ź i"1 e ´2π ? ´1 j i θ i dθ i .
Remarks: -Consequently, the distribution of the homology field defined by L α is:

P p q N i pL α q " j i , i " 1...rq " ż r0,1s r " detpI ´P q detpI ´P pθq q sq  α r ź i"1
e ´2π ? ´1,j i θ i dθ i -An intrinsic, but less explicit, expression ( not relying on the choice of the spanning tree) is given in [START_REF] Le | Markov loops, free field and Eulerian networks[END_REF]. It involves the evaluation of a discrete differential form (Cf [START_REF] Le | Markov paths, loops and fields[END_REF], section 1-5) on the loop. The Fourier integration is done on the Jacobian torus ([5]), i.e. the quotient of the space of harmonic one-forms H 1 pG, Rq (i.e. the space of one-forms ω such that ř y C x,y ω x,y " 0) for all x P X by H 1 pG, Zq the space of harmonic one-forms with Z-valued integrals on loops. The Lebegue measure is normalized by its volume which is equal to a detpJq, with J i,j " δ i,j C e i ´Ce i K e i ,e j C e j , for 1 ď i, j ď r, K denoting the transfer matrix: K e,f " G e `,f ``G e ´,f ´´G e `,f ´´G e ´,f `.

-For α " 1, an alternative expression (without inverse Fourier transform) is given in section 3 of [START_REF] Le | Random flows defined by Markov loops[END_REF].

To try to to solve the problem for higher values of d, in particular for d " 2, we need to recall more results.

For the fundamental groups Γ x morphisms in a group G are obtained from maps A, assigning to each oriented edge e an element Ares in G with Ar´es " Ares ´1. A path, in particular a based loop, is mapped to the product of the images by A of its oriented edges and the associated loop l to the conjugacy class of this product, i.e. the holonomy of l, is denoted H A plq. Moreover H A plq " H A pl g q A gauge equivalence relation between assignment maps is defined as follows: A 1 " A 2 iff there exists Q: X Þ Ñ G such that: A 2 res " Qpe `qA 1 resQ ´1pe ´q Equivalence classes are G-connexions. They define G-Galois coverings of G (cf [START_REF] Le | Markov loops, Coverings and Fields[END_REF]). Obviously, holonomies depend only on connections.

Given a spanning tree T , there exists a unique A T " A such that A T res " I for every edge e of T . For any unitary representation π of G, denote χ π pCq the normalized trace of the image by π of any element in the conjugacy class C. Recall that free groups are conjugacy separable: Two conjugacy classes are separated by a morphism in some finite group. Conjugate separability implies that if we consider all unitary representations of finite groups and all connections, the holonomies determine the geodesic loop (i.e. the conjugacy class of Γ) defined by l. The functions γ Þ Ñ χ π pH A pγqq span an algebra and separate geodesic loops.

Fix now a finite group G, and let R denote the set of irreducible unitary representations of G. Define an extended transition matrix P A,π with indices in Xˆt1, 2, ... dimpπqu by rP A,π s x,i y,j " P x y rπpArpx, yqsqs i j . Then the following proposition follows directly from the expression of the based loop measure inducing µ (see [START_REF] Le | Markov paths, loops and fields[END_REF]):

Proposition 9 ÿ l χ π pH A plqqµplq " ´1 dimpπq logpdetpI ´P A,π qq 
Remarks: -This result extends to compact groups.

-For any unitary representation π, choose, for any oriented edge e j , an Hermitian matrix H pπq j , such that expr ? ´1H pπq j s " πrApe j qs. Then, for any based loop representative of l, denoted l ¨, the holonomy can be expressed as the normalized trace of the signature series acting on the matrices H pπq j in place of the X j 's:

χ π pH A plqq " 1 dimpπq
T rpSpl g ¨qrH j , 1 ď j ď rs.

-It follows from this proposition and group representation theory (Cf for example [START_REF] Zagier | Appendix in Graphs on Surfaces and their Applications[END_REF]) that |tl P L α , H A plq " 

Nilpotent holonomy and homology of class two

Let us now consider the case where G is the free nilpotent group of class two based on the field Z p " Z{pZ, for some prime number p. This group can be defined as follows:

G " tpa, cq, a P Z r p , c P rZ r p s ^2u, with product :

pa, cq ¨pa 1 , c 1 q " pa `a1 , c `c1 `pa b a 1 ´a1 b aqq.

Associativity is checked easily. The neutral element is p0, 0q, and pa, cq ´1 " p´a, ´cq.

For any pr, rq skew-symetric matrix h i,j with coeficients in Z p , a unitary representation U h of G on the space V r,p of functions on Z r p is defined as follows:

U h pa, cqψpxq " e 2π ? ´1 p pxc,hy`xa,xyq ψpx `h ¨aq with xc, hy " ř 1ďiăjďr h i,j c i,j , ph¨aq i " ř 1ďjďr h i,j a j and xa, xy " ř 1ďiďr a i x i ( note that xa b a 1 ´a1 b a, hy " xa 1 , h ¨ay). This is similar to the Schrödinger representation of the Heisenberg group. dimpV r,p q " p r and an orthonormal base of V r,p is given by products of exponentials ψ n 1 ,...,nr pl 1 , ...l r q " e 2π ? ´1 p ř 1ďiďr l i n i , with 0 ď l i ă p. We can check that the normalized trace χ U h ppa, cqq " 1 ta"0u e 2π ? ´1 p xc,hy .

Consider the G-connection A defined by assigning to each edge e i , i P t1, ...ru the element pv i , 0q, v i being the i-th element of the canonical base of R r .

Then if l ¨is any based loop in l, p q N i plq, q N i,j pl ¨q ´q N j,i pl ¨qq is a representative of H A plq in G and χ U h pH A plqq " 1 tl, q N i plq"0, @iu e 2π ? ´1 p ř 1ďiăjďr q N i,j plqh i,j .

By the previous proposition, ř l χ U h pH A plqµplq " ´1 p r logpdetpI ´P A,U h qq. Hence, for any pr, rq skew-symetric matrix u i,j with coeficients in r0 , 1q, ř tl, q N i plq"0, @iu e 2π ? ´1 ř 1ďiăjďr q

Ne i ,e j plqu i,j µplq " ř tl, h 1 plq"0u e 2π ? ´1xh 2 plq,uy µplq " lim pÒ8 ´1 p r logpdetpI ´P A,U hpu,pq q, taking for hpu, pq i,j the integral part of u i,j p.

Proposition 10 |tl P L p1q α , q N i,j plq " m i,j , 1 ď i ă j ď r u| are independent Poisson r.v. with expectations:

αµptl, q N i,j plq " m i,j , 1 ď i ă j ď ruq " ´α ż r0,1s rpr´1q 2

F puq ź i,j e ´2π ? ´1m i,j u i,j du i,j .

with F puq " lim pÒ8 1 p r logpdetpI ´P pA,hpu,pqq qq.

Remarks: -The inverse Fourier transfom can also be performed before taking the limit p Ò 8 -As before, a more intrinsic formulation can be given using a couple of harmonic discrete differential forms and an integration on the product of two Jacobian tori. -The distribution of the homology field of class 2 h 2 pL p1q α q can then be derived straightforwardly in the same way as the distribution of h 1 pL α q.

-The distributions of higher order homologies are likely to be obtained in a similar way, using representations of nilpotent groups of higher class.
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 1 regular graph, with C e " 1, κ constant, for any closed geodesic γ, the number of loops homotopic to γ is a Poisson r.v. of expectation:In particular, for κ " 0, µ γ " pγq pd ´1q ´|γ| Remark: If κ " 1 u `upd ´1q ´d, the associated generating function ř γ u |γ| µ γ coincides with the logarithm of Ihara's zeta function (Cf[START_REF] Harold | Zeta functions on finite graphs and coverings[END_REF],[START_REF] Kotani | Zeta functions of finite graphs[END_REF] [START_REF] Le | Markov paths, loops and fields[END_REF]).

ÿ γ 1

 1 multpγq u |γ| " logpζ Ih puqq " ´logrp1 ´u2 q ´χ detpI ´uA `u2 pd ´1qIqswhere A denotes the adjacency matrix and χ the Euler number |E| ´|X| of the graph.
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	Set ρ x,y "	ř 8 n"0 rr x,y s n . We get the following:
	Proposition 6 If γ varies in the set of geodesic loops (conjugacy classes),
	|tl P L, l g " γu| are independent Poisson r.v. with mean values
		µ γ "	1 multpγq	edges of γ p ź	P eé `ρe ´,e `qmultpγq