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Abstract 

Watersheds located in semi-arid areas such as the eastern Mediterranean are particularly 

sensitive to the impact of climate change. To gain knowledge on the hydrogeochemical 

processes occurring in the Nahr Ibrahim watershed, a Critical Zone Observatory in Lebanon, 

we analyze the isotopic composition of the river water as well as the concentrations of the 

major ions exported (Ca
2+

, Mg
2+

, HCO3
-
, Na

+
, Cl

-
, K

+
, SO4

2-
). Sampling campaigns were 

conducted from March 2014 to August 2016 to capture contrasting hydrological conditions. 

The results indicate that the carbonate lithology of the watershed is the predominant source of 

Ca
2+

, Mg
2+

 and HCO3
-
, whereas the low contents of Na

+
, Cl

-
, K

+
, SO4

2-
 mainly originate from 

sea spray. Except in the headwaters, the Nahr Ibrahim River is oversaturated with respect to 

calcite and dolomite. During wet seasons, calcite and dolomite weathering contribute in an 

equivalent manner to the solute budget, whereas during dry seasons, calcite precipitates in the 

river. The isotopic composition of the river water reveals little seasonal dependency, the 

groundwater recharge by snowmelt infiltration leading to spring waters depleted in heavier 

isotopes during the dry seasons. A Carbonate Weathering rate of about 176 t/km
2
/yr was 

determined at the outlet of the Nahr Ibrahim watershed. The calculated values of CO2 partial 

pressure, on average twice the atmospheric pressure, suggest that the river is a significant 

source of CO2 to the atmosphere (111 t/yr).  

 

 

Keywords: Karst watershed, Nahr Ibrahim River, carbonate weathering, water isotopes 
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Introduction 

The water fluxes in karst watersheds are the result of a complex interplay between surface 

water/groundwater interactions, climatic conditions, and human activities, mediated at longer 

time scales by tectonic and erosional processes (Cartwright et al. 2012; Diaw et al. 2012). 

The characteristic underground morphology of karsts (cracks, joints, fissures, conduits, and 

caves) leads to aquifers and streams highly responsive to environmental changes (Bakalowicz 

2010; Bakalowicz et al. 2008; Calmels et al. 2014; Fayad et al. 2017; Ford and Williams 

2007; Kaufmann 2009). Small Eastern Mediterranean karst watersheds, located in arid and 

semi-arid regions, are particularly sensitive to slight changes in rainfall pattern (Ammar et al. 

2017; Bar-matthews and Ayalon 2004). Most often, such watersheds are prone to water 

scarcity because of uncontrolled over-exploitation of water resources and intensive 

groundwater withdrawal (Huang et al. 2013). In the context of a rapid climate change that 

will extend periods of drought, it has become urgent to better understand the dynamics of 

these Eastern Mediterranean karst watersheds, both in terms of water flow and water quality, 

in order to promote a sustainable water management of water resources (Bakalowicz 2010). 

The objective of this study is to describe the hydrogeochemical functioning of a small karst 

catchment, the Nahr Ibrahim River watershed (Lebanon), using a combination of 

geochemical methods (major ions exported, calculation of solubility equilibria) and water 

isotopes tracers (δ
18

O and δD). The isotopic signature of water is a traditional tool in 

hydrology to provide information about the water origin and water fluxes (Clark and Fritz 

1997; Gat 1996), whereas the seasonal trends and spatial patterns of major ions in the river 

describe the evolution of water quality. The Nahr Ibrahim watershed is, at the moment, a 

relatively pristine environment (proposed with its archeological remains on the Tentative List 

of UNESCO (Bou Saab et al. 2007)), and it was recently selected as a Critical Zone 

Observatory in the Mediterranean region (O-LIFE MISTRALS). 

 

1 Study Area 

1.1 Geographical setting 

Situated in the west-central part of Lebanon, the Nahr Ibrahim River watershed extends from 

Mount Lebanon at an altitude of 2700 m to the Mediterranean littoral covering an area of 330 

km
2
 (Figure 1). The Nahr Ibrahim River is a perennial second order stream of 30 km long 
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that flows westward to discharge into the Mediterranean sea, 20 km north of Beirut (Darwich 

et al. 2015). Two permanent karstic springs, Afqa and Roueiss located at 1200 m and 1300 m 

of altitude, respectively, predominantly feed the Nahr Ibrahim River, although other 

temporary or permanent springs of lesser importance also flow to the main stream (Assaker 

2016; Bou Saab et al. 2007; Korfali and Davies 2005). In the mountainous area, the Nahr 

Ibrahim River flows into a deeply incised valley that develops into narrow floodplains in the 

coastal lowlands before the estuary (El Samrani et al. 2005; Korfali and Davies 2004). The 

Nahr Ibrahim watershed is bounded to the East by the Yammouneh transform fault resulting 

from the movement of the Arabian plate. This complex geological structure leads to a system 

of steep-sided valleys oriented NE-SW, which episodically contribute to the main stream but 

remain dry 8 to 10 months per year. 

1.2 Climate and hydrology 

A typical Mediterranean climate prevails on the coastal area whereas the mountainous areas 

are cooler and more humid. The average annual precipitation on the Nahr Ibrahim watershed 

is 1200 mm (Khair et al. 1994). As shown in figure 2, most of the precipitation falls between 

November and April whereas no rainfall occurs in June, July and August (Amery 2002; Sene 

et al. 1999). During the period of the study, 2013-2014 was the driest year with only 45 days 

of rain and a total precipitation of 384 mm. In contrast, 2014-2015 and 2015-2016 brought a 

similar number of rainy days (77 and 82, respectively), but differing amounts of total 

precipitation (906.8 and 519.2 mm, respectively). Because of the high elevations of the 

watershed, the mountainous part is covered with snow during the wet season (Shaban et al. 

2014). The maximum extent of snow cover varied from 387.99 km
2
 in 2013-2014, 554.12 

km
2
 in 2014-2015, to reach 692.65 km

2
 in 2015-2016. As indicated in figure 2, snowmelt 

substantially contributes to the streamflow in the spring (Assaker 2016). 

The annual average discharge of the Nahr Ibrahim River varies between 10.70 m
3
/s and 12.77 

m
3
/s according to the source (Korfali and Davies 2005; Lebanese Ministry of Hydraulics and 

Electrical Resources 1999). The mean flow reaches 17.5 m
3
/s to 20.88 m

3
/s during the wet 

season whereas it decreases to 4-4.65 m
3
/s during the dry season. As a result, the stream flow 

can be either laminar or highly turbulent during the course of the year (Korfali and Davies 

2000). During the low water period, the discharges at Afqa and at Roueiss springs are about 

0.9 m
3
/s, but only 0.5 m

3
/s reaches the stream because of pumping for irrigation (Nakhlé 

2003). 
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1.3 Geology 

Various calcareous formations from the Middle Jurassic to the Upper Cretaceous form about 

80% of the substrate of the Nahr Ibrahim watershed (Shaban et al. 2015) (Figure 1 and Table 

1). However, sandstone, ferruginous, and basaltic outcrops, are also present in the watershed 

(Korfali and Davies 2005; Nakhlé 2003). The cretaceous formations outcrop near the coast 

and on the eastern part of the watershed heights where they are highly karstified. Fractured 

karstic limestones (C4-Cenomanian), massive dolostones (C3-Albian) and marls/dolomitic 

limestones (Lower and Middle Albian) are prevalent in these areas. Middle Jurassic 

formations occupy the central area of the watershed and are represented by weathered 

dolomites and bedded limestones (J6-Kimmeridgian) (Abdel-Rahman and Nader 2002). Both 

Cenomanian and Kimmeridgian formations are considered as excellent aquifers potentially 

connected with adjacent watersheds, i.e. Nahr El Jaouz to the North and Nahr El Kalb to the 

South (Shaban et al. 2015). Quaternary alluvial deposits are mainly found in the river outlet 

area whereas volcanic tuff outcrops upstream of the Nahr Ibrahim watershed.  

1.4 Land occupation use 

The population density of the Nahr Ibrahim watershed reaches 1700 inhabitant/km
2
 (Daou et 

al. 2013). The urban areas, located near the coast, concentrate most of the industrial activity 

(Assaker 2016; Bou Saab et al. 2007; Korfali and Davies 2003). Thus, marble factories, food 

establishments, repair workshops, woodcrafts and various other factories (Plastic, paint, 

galvanizing, electroplating and ferrous industries) have been identified in the estuary region. 

The lack of sewerage networks and wastewater treatment facilities leads to discharges of 

domestic wastewater and industrial effluents into the river (Daou et al. 2013; El Samrani et 

al. 2005; Korfali and Davies 2004). The agricultural activities are spread throughout the 

watershed; they encompass many forms of land use including fruit trees cultivations as well 

as horticultures that can be accompanied by an excessive use of fertilizers (Daou et al. 2013; 

Korfali and Davies 2004).Three small hydroelectric plants using dams are also present in the 

Nahr Ibrahim watershed (Nakhlé 2003). 

 

2 Materials and methods 

2.1 Data source and GIS mapping 

ArcGIS 12.2 was used to establish thematic maps of the Nahr Ibrahim watershed. The raw 

data (shapefiles for geology, hydrogeology, land cover, digital elevation models and drainage 
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network) were provided by the National Council for Scientific Research – Lebanon (NCSR-

L), daily flow rates of Afqa and Roueiss springs and of Nahr Ibrahim River at the outlet were 

obtained from the Litani Authority, whereas daily measurements of ambient temperature, 

relative humidity and precipitations at the Akoura meteorological station (see Figure 1 for 

location), were provided by the Lebanese Agricultural Research Institute (LARI). 

2.2 Sampling and chemical analysis 

A total of 7 sites were sampled along the Nahr Ibrahim River, from the main springs to the 

estuary, between March 2014 and August 2016. The sites were selected to cover the spatial 

variability of land use and lithology (Figure 1 and Table 2). Sampling campaigns were 

performed during dry (June to October) and wet (November to May) seasons according to the 

discharge of the Nahr Ibrahim River. The pH, temperature and electrical conductivity were 

measured on site using a portable LaMotte pocket multi Tracer-1766 calibrated according to 

the manufacturer’s instructions. The accuracy of measurements was ±0.01 for pH, ± 0.1°C 

for temperature and ±2% for electrical conductivity. Samples collected for chemical and 

isotopic analyses were filtered over 0.45μm GRID MCE sterile membrane filters. The 

filtrates were stored in polyethylene bottles filled to the brim to avoid any evaporation and 

contact with the atmosphere. Samples for cation analysis were acidified with concentrated 

nitric acid to pH<2. Samples for isotopic analysis were collected in separate plastic bottles of 

50 ml. All the samples were then transported in a refrigerated box to the laboratory and stored 

at 4°C awaiting analysis. Alkalinity was measured by acid titration within 24 hours of 

sampling. Anions (SO4
2-

, Cl
-
, NO3

-
) were analyzed by ion chromatography (Shimadzu LC-

20AD – Shim-pack IC-A3 (S)) with a typical precision of ± 0.5%, whereas major cations 

were analyzed by atomic absorption spectrophotometry (Ca
2+

 and Mg
2+

) and flame 

photometry (K
+
 and Na

+
) using a Sherwood Flame Photometer (Model 420) with a precision 

of ± 1% and a repeatability of 0.3%. To check the consistency of the results, charge balance 

(CB) calculations were performed using the relationships: CB = 100 x (∑ Ccations - ∑ 

Canions)/(∑ Ccations + ∑ Canions), where C represents the concentration in meq L
-1

. As shown in 

the supporting information section, about 90% of CB was below 5%. 

The isotopic signature of water samples was obtained using a Liquid Water Isotope Analyzer 

(LWIA-24d). Each sample was measured six times according to a standard calibration curve 

using VSMOW (Vienna Standard Mean Ocean Water) certified standards following IAEA 

norms (International Atomic Energy Agency 2009). The δ
18

O and δD are reported using the 
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delta notation in per mill (‰) relative to VSMOW water stable isotopes with a precision of 

better than 0.1‰ for δ
18
O and 0.3‰ for δD. 

 

3 Results 

3.1 Water chemistry 

The physico-chemical characteristics of water samples collected during both wet and dry 

seasons between 2014 and 2016 are listed in Table 3. The pH values, ranging from 7.57 to 

8.8, are in line with those previously reported for the Nahr Ibrahim watershed by Khalaf 

(1984), El Samrani et al. (2005) and Assaker (2016). As illustrated in figure 3, the pH is 

about 0.3 units higher during wet periods compared with dry periods, whereas the pH of Afqa 

and Roueiss springs is slightly lower than those of river water samples. The electrical 

conductivity of water ranges from 196 to 410 μS/cm with an average value of 261 ± 53 

μS/cm. Springs show lower conductivities than water samples taken downstream and EC are 

higher during the dry season. 

The Piper diagram for the Nahr Ibrahim water samples is shown in figure 4. As expected for 

waters draining essentially limestones and dolomites (Saad et al. 2005a; Williams et al. 

2007), Ca
2+

-Mg
2+

-HCO3
-
 type waters prevail with the abundance of major cations and anions 

in the order Ca
2+

>Mg
2+

>Na
+
>K

+
 and HCO3

-
>Cl

-
>SO4

2-
, respectively. Thus, all the samples 

are clustered at the HCO3
-
+CO3

2-
 pole of the anion triangle, whereas Ca

2+
 and Mg

2+
 clearly 

dominate the cation triangle with relative percentages exceeding 70% and 25%, respectively. 

A Ca
2+

 to Mg
2+

 trend is observed along the Nahr Ibrahim course, both spring waters (Afqa 

and Roueiss) being characterized by a lower Mg
2+

 content and a higher Ca
2+

 content 

compared with the other surface waters. Cl
-
 and SO4

2-
 represent only minor contributions to 

the cation-anion balance, which is consistent with the lithology of the Nahr Ibrahim 

watershed. Water samples collected in 2014, the driest year of the study, reveal a slight 

enrichment in Na
+
 and Cl

-
 downstream of the watershed. In addition, a seasonal comparison 

indicates that the samples taken during the dry season are Mg
2+

-enriched and Ca
2+

-depleted.  

3.2 Water stable isotopes 

The isotopic signature of Nahr Ibrahim waters is consistent with the regional context. As 

shown in figure 5, all the δD-δ
18
O values align with the Lebanese Meteoric Water Line (δD = 
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7.135*δ
18

O + 15.979) established by Saad et al. (2005b). No clear seasonal trend can be 

evidenced, the difference between average δ
18

O measured during wet and dry season being at 

most 0.6 ‰ for a given sampling site. Therefore, waters sampled during the dry season do not 

reveal a significant evaporation process that would preferentially enrich the water in heavy 

stable isotopes. Stated in other terms, during the dry season, the Nahr Ibrahim River is 

essentially fed by local karstic aquifers and not by irrigation return flows. Spring waters taken 

at an altitude of about 1600 m are more depleted in heavy isotopes than waters sampled 

downstream close to the coast. The corresponding decrease of isotopic ratios can be 

explained by an altitude effect on the isotopic composition of local precipitations (Mook 

2001). Saad et al. (2005a) found a decrease of the order of -0.3‰/100 m for δ
18

O in 

precipitations in the same geographical area. 

3.3 Major ions geochemistry 

To identify the main lithological sources of solutes in the Nahr Ibrahim River, plots of [Ca
2+

] 

+ [Mg
2+

] against [HCO3
-
], and [Mg

2+
] against [Ca

2+
], were drawn. As shown in figure 6a, the 

majority of water samples exhibit a 2:1 mole ratio of HCO3
-
 to Ca

2+
 + Mg

2+
 in accordance 

with the dissolution reactions of calcite and dolomite: 

Calcite: CaCO3+ CO +  O  Ca
 +
+  CO3

-
     (1) 

Dolomite:              + CO +  O  xCa
 +
+(1-x)Mg

 +
+  CO3

-
  (2) 

The slight excess in [HCO3
-
] observed during wet seasons (data points below the theoretical 

1:2 dissolution line) may be attributed to the presence in the water of small amounts of 

dissolved organic matter that contribute to alkalinity.  

The Mg
2+

/Ca
2+

 molar ratios, shown in figure 6b, are generally used to provide an insight into 

the relative contributions of dolomite and/or calcite dissolution to the dissolved load. Thus, 

the dissolution of dolomite alone leads to Mg
2+

/Ca
2+

 ratios equal to 1, that of calcite 

containing traces of Mg
2+

 is characterized by Mg
2+

/Ca
2+

 ratios less than 0.1, whereas the 

congruent dissolution of calcite and dolomite leads to Mg
2+

/Ca
2+

 ratios of about 0.33 

(Szramek et al. 2011; Williams et al. 2007). The water samples from the Nahr Ibrahim River 

generally cluster between the 0.1 and 0.5 theoretical lines (average of 0.36), except for waters 

collected during dry seasons where Mg
2+

/Ca
2+

 ratios as high as 0.86 can be obtained. 

Therefore, on average, the dissolutions of calcite and dolomite contribute in an equivalent 
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manner to the dissolved load of the Nahr Ibrahim River. The Mg
2+

 enriched waters collected 

during dry seasons likely result from a preferential precipitation of calcite (Drever 1997; 

Langmuir 1997; Szramek and Walter 2004). Indeed, during the dry period, if the river water 

becomes oversaturated both for calcite and dolomite, calcite precipitation is favored over 

dolomite for kinetic reasons (Jin et al. 2010). As a result, the preferential loss of Ca
2+

 

increases the Mg
2+

/Ca
2+

 ratio of the water.  

Concentrations of Na
+
, K

+
, and SO4

2-
 as a function of Cl

-
 concentration are shown in figure 7. 

A significant correlation is observed with the level of Cl
-
 in the lower range of Na

+
, K

+
, and 

SO4
2-

 concentrations, the molar ratios Na
+
/Cl

-
, SO4

2-
/Cl

-
, and K

+
/Cl

-
 then being equal to 0.91, 

0.66, 0.07, respectively. As no evaporite lithology has been noted in the watershed, those 

values, close to those found in sea salt aerosols, are consistent with a substantial contribution 

of sea spray (both in the form of wet and dry depositions) to the solute budget of the Nahr 

Ibrahim River (Al-Momani et al. 1995; Im 2013; Whipkey et al. 2000; Zhu et al. 2012). 

Nevertheless, an additional contribution in SO4
2-

 and K
+
 detected close to the outlet during 

the dry season, probably corresponds to a contribution of the local aquifer or even a slight 

input in fertilizers from irrigation flows (Azzi et al. 2017). 

3.4 Downstream evolution of water chemistry 

Despite drastic differences in the seasonal pattern of weathering, the Nahr Ibrahim River 

displays a typical downstream evolution during both wet and dry periods. Spring waters at 

Afqa and Roueiss show systematically lower concentrations in Ca
2+

, Mg
2+

 and HCO3
-
 than 

those of stream water (Figure 8). Then, the levels in Ca
2+

 and HCO3
-
 remain fairly constant 

on average up to the outlet, whereas the concentration of Mg
2+

 significantly increases 

especially during the dry season. The latter observation can be related to the watershed 

lithology: if limestone (Albian-Cenomanian) dominates the geology at the head of the 

watershed, dolostone interbedded with limestone (Kimmeridgian) occurs predominantly in 

the central area of the watershed (Figure 1). An estimate of 54.7% dolomite weathering has 

thus been calculated for the Jurassic aquifer (Nader et al., 2008). In addition, the water 

draining the alluvial deposits of Quaternary age is expected to contribute to the Mg
2+

 content 

of the surface water (Zavadlav et al. 2013; Kanduc et al. 2013). Nevertheless, it should be 

noted that, during the dry season, both Ca
2+

 and HCO3
-
 concentrations significantly drop at 

the Yahshoush sampling site, which is attributed to a preferential calcite precipitation (Nader 

et al. 2008; Singurindy and Berkowitz 2003).  
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As illustrated in figure 8, the downstream evolution of Na
+
, K

+
, Cl

-
 and SO4

2-
 is consistent 

with a dominant sea-spray contribution to the solute budget of the Nahr Ibrahim River for 

those elements. Close to the coast (Outlet, Yashoush, Janneh) and during the wet season, the 

average levels of Na
+
, K

+
, and SO4

2-
 (0.155±0.032, 0.011±0.002, and 0.103±0.22 mmol/L, 

respectively) are comparable with those found in wet precipitations in the eastern 

mediterannean region (Al-Momani et al. 1995; Saad et al. 2005b). In contrast, the lower 

concentrations measured at upstream sampling sites are consistent with a fractionation effect 

that occurs during the formation of precipitations and is enhanced both by the distance to the 

marine source and the increase in altitude (Meier et al. 2015; Stallard and Edmond 1981; 

Whipkey et al. 2000; Zhu et al. 2012). Such combined effects are particularly obvious from 

the linear correlation observed when plotting the Cl
-
 concentration against δD (Figure 9): 

indeed, the sites close to the coast are slightly depleted in heavy isotopes and present the 

highest Cl
-
 concentration, whereas the high altitude sites show the lowest δD and the lowest 

Cl
-
 concentration. 

The patterns of K
+
 and SO4

2-
 concentrations exhibit a pronounced maximum at the Janneh 

sampling site during the dry season. Basaltic outcrops (βJ6 and βC2) are present in this area 

of the watershed (Figure 1), and some silicates (feldspars, pyroxenes…) might release K
+
 

through weathering (Roy et al. 1999). However, the close correlation between K
+
 and SO4

2-
 

concentrations (Figure 7d), suggests a common origin for the two ions. The C4 cretaceous 

formation that occurs around Janneh as anoxic marls containing some pyrite, might 

contribute to the release of both K
+
 and SO4

2-
. The leaching of fertilizers used in agriculture 

could also account for the presence of those two ions (Azzi et al. 2017). 

 

4 Discussion 

4.1 Groundwater contribution to surface water outflow 

As many karstic areas around the Mediterranean, the Nahr Ibrahim watershed has 

undergone drastic base-level changes during Miocene to Quaternary times. In particular, the 

Messinian Salinity Crisis (5.96-5.33 Ma), associated with a drastic sea-level drop of more 

than 1000 m (Krijgsman et al. 1999), led to the deep incision of the Nahr Ibrahim canyon. 

The opening of the Gibraltar strait at the beginning of Pliocene flooded the karstified 

limestones and partially filled the cavities with marine sediments. During Quaternary, the 
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successive glacial and interglacial periods with concomitant changes in sea level, periods of 

enhanced erosion followed by continental sediment accumulation, formed an important part 

of the history of this complex multi-phase karstic system whose detailed description is 

beyond the scope of this paper. 

Afqa and Roueiss, the two main permanent springs that feed the Nahr Ibrahim River, are 

both located at the base of the highly karstified Cenomanian-Turonian carbonate formation. 

The two spring waters present close physico-chemical characteristics (temperature, pH, 

conductivity) as well as similar solute contents and isotopic signatures. Previous study of the 

hydrogeological functioning of Afqa aquifer (Bakalowicz et al. 2008) has indicated that the 

groundwater recharge is essentially controlled by snow melt and that the mean residence time 

of water in the phreatic zone is about 2.5 months. Indeed, as can be followed in figure 2, any 

significant decrease in snow cover area leads to a flood peak on the hydrograph with a time 

delay of about one month. Such observation is in line with the significant enrichment in 

heavy isotopes observed for spring waters during the dry season (Fig. 5). The water isotope 

composition of the downstream sampling sites is similar for a given site regardless of the 

season. On the one hand, the upstream water withdrawals attenuate the impact of permanent 

springs on the isotopic signature of downstream sites that then reflect the influence of local 

aquifers. On the other hand, those sites are situated at a lower altitude and in a warmer 

environment where snowfall is much less frequent. As a result, the water isotope signature of 

sampling sites essentially reflects the altitude effect on the isotopic content of the local 

rainfall. 

4.2 Dolomite and Calcite contribution to the total carbonate weathering 

The Nahr Ibrahim hydrogeochemistry is dominated by the weathering of carbonate 

minerals by carbonic acid. The high Mg
2+

/Ca
2+

 ratios observed during the dry season, suggest 

a calcite precipitation process. Saturation indexes were calculated using Visual Minteq 

(version 2.3) according to the following equations: SIcalcite= log(IAPcalcite/Kcalcite) and 

SIdolomite= log(IAPdolomite/Kdolomite) where calcite and dolomite ion activity products are 

respectively IAPcalcite= [Ca
2+

].[CO3
2-

] and IAPdolomite = [Ca
2+

].[Mg
2+

].[CO3
2-

] and Kcalcite and 

Kdolomite their respective solubility products (Langmuir 1997). As illustrated in Figure 10, 

calcite and dolomite saturation indexes (SIdol and SIcal) are frequently well above equilibrium 

(SIequilibrium=0) especially for downstream river waters. Nevertheless, during the dry season, 

the river water is less saturated with respect to calcite, and Afqa and Roueiss springs are even 
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close to equilibrium. The calculated values of CO2 partial pressure vary from 355 ppm to 

3392 ppm, i.e. from near equilibrium with atmospheric pressure to about 8-fold 

supersaturated river water during dry season at the outlet (See Figure S1 in Supporting 

Information). On average, the pCO2 concentration is about twice the atmospheric value. 

The Carbonate Weathering Rate (CWR) can be calculated at the outlet of the watershed 

using the equation:                          where Q is the discharge at 

the outlet (l/yr), A the drainage area (km
2
), Ca

2+
, Mg

2+
, HCO3

2+
the respective concentrations 

of the elements (mg/l), and CWR in t/km
2
/yr (Zavadlav et al. 2013). An average CWR of 

176.29 t/km
2
/yr is thus obtained for the entire period of study. Because of the higher flow rate 

of the river, the CWR is higher and equal to 231.8 t/km
2
/yr during the wet season. Values 

equal to 499.3 t/km
2
/yr can even be reached during the period of snowmelt. Nevertheless, 

such values remain consistent with those reported in the literature for karstic watersheds, i.e. 

133t/km
2
/yr (Li et al., 2010), 394.9 t/km

2
/yr (Sun et al. 2010), or 121 t/km

2
/yr (Zavadlav et al. 

2013). In particular, a recent study by Assaker (2016) gave a CWR of 219 t/km
2
/yr for the 

Nahr Ibrahim watershed, which is in accordance with our findings. 

Following the method described in Kanduc et al. (2012; 2013), the flux of CO2 degassed 

by the river can be calculated using FCO2  = K ([CO2]eq – [CO2]), where K is the liquid film 

transfer for CO2, and [CO2]eq and [CO2] are the concentrations of dissolved CO2 in 

equilibrium with the atmosphere and of calculated CO2 in the water proximate to the 

interface, respectively. K depends on the mean wind speed above the water and the flowing 

conditions in the river channel. The detailed wind pattern over the Nahr Ibrahim River is not 

known at the moment, nor are the flowing conditions that vary significantly between the 

springs and the outlet. At first approximation, using a value of K equal to 28 cm/h (moderate 

turbulence conditions under a mean wind speed of 4 m/s), FCO2 is about 4.8 10
-7

 mol/cm
2
h. 

Taking an approximate mean width of 2 m for the 30 km-long Nahr Ibrahim River, the 

average annual amount of CO2 emitted by the river to the atmosphere is 0.25 10
7
 mol/yr or 

111 t/yr, which is equivalent to the flux of dissolved inorganic carbon at the outlet. 

Conclusion 

The water chemical composition and the isotopic signature of water (δ
18

O and δD) were 

used to describe the hydrogeochemical functioning of the Nahr Ibrahim River situated in a 

small karstic watershed in Lebanon. The dominant ions of the solute load are Ca
2+

, Mg
2+

 and 
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HCO3
-
. Concentrations of HCO3

-
 vary seasonally from 2.6 mM to 4 mM according to the 

discharge. Ca
2+

, Mg
2+

 and HCO3
-
 are found in a 2:1 mole ratio of HCO3

-
 to Ca

2+
 + Mg

2+
, thus 

indicating that carbonate weathering by carbonic acid is the main source of solutes in the 

watershed. An additional contribution from sea spray accounts for the contents in Na
+
 and Cl

-
 

in the river. Except in the headwaters, the river water is found oversaturated with respect to 

calcite and dolomite. The seasonal variations of Mg
2+

/Ca
2+

 ratio reveal that the dissolution of 

calcite and dolomite contributes in an equivalent manner to the dissolved load of the Nahr 

Ibrahim River during the wet season. In contrast, Mg
2+

-enriched waters collected during the 

dry season identify a calcite precipitation process in the river. A Carbonate Weathering rate 

of about 176 t/km
2
/yr was determined at the outlet of the Nahr Ibrahim watershed. The 

calculated values of CO2 partial pressure, on average twice the atmospheric pressure, suggest 

that the river is a significant source of CO2 to the atmosphere (111 t/yr).  

The isotopic signature of water of the spring water reflects the snowmelt recharge of the 

aquifer, especially during the dry season. The spatial variation of the isotopic composition of 

the river water results from an altitude effect on the precipitation composition, and indicates 

that the Nahr Ibrahim River is a groundwater-dominated river even during the wet season. 

This initial assessment of the water chemistry of the Nahr Ibrahim River provides a baseline 

measure against which we can assess the environmental impacts of water withdrawals in the 

watershed and we can monitor the evolution of water chemistry in the context of climate 

change. 
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Figures and tables 

 

Figure 1: Geographic and geological setting of the Nahr Ibrahim watershed. The bold blue 

line represents the Nahr Ibrahim River. The yellow diamonds indicate the location of 

sampling sites. The Red triangle represents the Akoura meteorological station. The river 

profile is given below the geological map. 

 

Figure 2: (a) Precipitation at Akoura Meteorological station. (b) Nahr Ibrahim discharge at 

Afqa gauging station and at Outlet. (c) Snow cover area in the Nahr Ibrahim watershed. 

 

Figure 3: (a) pH and (b) electrical conductivity measurements at different sampling sites.  

Afqa;  Roueiss;  Yenouh;  Mzarib;  Janneh;  Yahshoush;  Outlet. Samples 

collected during the wet season in blue, during the dry season in red. 

 

Figure 4: Piper trilinear diagram for the Nahr Ibrahim water samples. Wet season samples 

are in blue, dry season samples are in red. ( corresponds to  in the other graphs, and  

corresponds to ) 

 

Figure 5: Plot of δ
18

O vs. δD for the Nahr Ibrahim water samples. Samples taken during the 

wet season are in blue, whereas samples taken during dry season are in red. The solid line 

shows the Lebanese Meteoric Water Line (δD=7.135*δ
18

O+15.979). 

 

Figure 6: (a) Plot of Ca
2+

+Mg
2+

 versus HCO3
- 
for the Nahr Ibrahim watershed. The solid line 

shows the (Ca
2+

 + Mg
2+

) : 2HCO3
-
 relationship. (b) Mg

2+
 versus Ca

2+ 
for the Nahr Ibrahim 

watershed. The solid lines shows various Mg
2+

/Ca
2+

 ratios that characterize dolomite and/or 

calcite dissolution.  (c) Mg
2+

 versus HCO3
-
.  Afqa;  Roueiss;  Yenouh;  Mzarib;  

Janneh;  Yahshoush;  Outlet. Wet season samples are in blue, dry season samples are in 

red. 

 

Figure 7: (a) Plot of Na
+
 versus Cl

-
. The solid line shows the Na

+
/Cl

-
 ratio in local 

precipitations (Saad et al., 2000). (b) Plot of SO4
2- 

versus Cl
-
. (c) Plot of K

+
 versus Cl

-
. (d) 

Plot of K
+
 versus SO4

2-
.  Afqa;  Roueiss;  Yenouh;  Mzarib;  Janneh;  

Yahshoush;  Outlet. Samples collected during the wet season samples are in blue, samples 

collected during the dry season are in red. 

 

Figure 8: Downstream evolution of (a) Ca
2+

; (b) Mg
2+

; (c) HCO3
-
 (d) Na

+
; (e) SO4

2-
 and (f) 

K
+
. The distance is from the outlet of the Nahr Ibrahim River in the Mediterranean sea.  

Afqa;  Roueiss;  Yenouh;  Mzarib;  Janneh;  Yahshoush;  Outlet. Wet season 

samples are in blue, dry season samples are in red. 

 

Figure 9: Plot of δD versus Cl
-
 for the Nahr Ibrahim water samples. The inset gives the 

variation of δD with the altitude of the sampling site. Wet season samples are in blue, dry 

season samples are in red. 

 

Figure 10: Downstream evolution for the Nahr Ibrahim water samples of (a) calcite 

saturation index SICalcite and (b) dolomite saturation index SIDolomite.  Afqa;  Roueiss;  

Yenouh;  Mzarib;  Janneh;  Yahshoush;  Outlet. Wet season samples are in blue, dry 

season samples are in red. 
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Table 1: Summary of the different lithologies outcropping in the Nahr Ibrahim watershed. 

 

Symbol Stage Lithology % of Basin area 

J6 
Potlandian, Upper 

Jurassic 

Karstified massive to medium bedded limestones with horizons of 

dolomitic limestones, with thin marly limestone and chert nodules 
19.07 

βJ6 
Kimmeridgian, 

Upper Jurassic 
Upper Jurassic volcanism, basalts 3.42 

C1  
Cross-bedded or thin to thick bedded and massive sandstone with 

intercalation of limestones, clays shales, highly jointed 
2.85 

C2a 
Lower Aptian; 

Lower Cretaceous 
Clastic limestone, thin to thick bedded and jointed 3.41 

C2b 
Upper Aptian; 

Lower Cretaceous 

Stylotics, partly dolomitic, medium to thick bedded and massive, 

partly jointed and karstified 
2.91 

βC2  Basalts, agglomerates and tuffs, jointed, flow or bedded type 1.62 

C3 
Albian; Lower 

Cretaceous 

Calcareous shales interbedded with highly fossiliferous and clastic 

limestone, thin to medium bedded and jointed 
2.04 

C4 
Cenomanian; Upper 

Cretaceous 

Well bedded limestone with few calcareous shale intercalations, 

bedded and jointed 
60.12 

qat Quaternary deposits Modern alluviums, alluvium terraces, landslides 4.56 
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Table 2: Main characteristics of sampling sites 

Site Type Latitude Longitude Altitude (m) Distance to outlet (m) 
Geological 

layer 

Afqa Spring 34 4'3.38''N 35 53'34.97''E 1147 29349 qat 

Roueiss Spring 34 6'31.78''N 35 54'30.49''E 1201 30371 qat 

Yenouh Surface water 34 5'36.6''N 35 53'3.7''E 959 27346 C1 

Mzarib Surface water 34 4'28.6''N 35 52'57.2''E 993 28084 C1 

Janneh Surface water 34 4'45.8''N 35 49'39.9''E 731 20784 qat 

Yahsoush Surface water 34 4'38.94''N 35 43'27.08''E 256 9783 J6 

Outlet Surface water 34 3'36.73''N 35 38'55.8''E 13 715 qat 
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Table 3: Physico-chemical data for the Nahr Ibrahim watershed during the study period 

Sampling 

site 
Type Season EC [Ca

2+
] [Mg

2+
] [Na

+
] [K

+
] [HCO3

-
] [Cl

-
] [SO4

2-
] SICalcite SIDolomite 

log 

pCO2 
δ

18
Ο δD 

   
[μS/cm] mM mM mM mM mM mM mM 

  
[atm] [‰] [‰] 

Afqa Spring Wet 
209 ± 

14 

1.09 ± 

0.14 

0.28 ± 

0.1 

0.096 ± 

0.013 

0.006 ± 

0.001 

2.82 ± 

0.42 

0.116 ± 

0.031 

0.065 ± 

0.011 

0.59 ± 

0.17 

0.52 ± 

0.34 

-3.17 

± 0.24 

-8.14 

± 0.2 

-41.5 

± 1.4 

  
Dry 

247 ± 

28 

0.97 ± 

0.04 

0.47 ± 

0.04 

0.096 ± 

0.025 

0.01 ± 

0 

2.62 ± 

0.26 

0.126 ± 

0.018 

0.091 ± 

0.013 

0.28 ± 

0.13 

0.14 ± 

0.24 

-3.02 

± 0.05 

-8.45 

± 0.12 

-43.7 

± 1.3 

Roueiss Spring Wet 
223 ± 

22 

1.09 ± 

0.12 

0.22 ± 

0.07 

0.099 ± 

0.006 

0.005 ± 

0 

2.8 ± 

0.23 

0.117 ± 

0.053 

0.064 ± 

0.006 

0.55 ± 

0.08 

0.35 ± 

0.21 

-3.14 

± 0.12 

-8.12 

± 0.2 

-41.2 

± 1.8 

  
Dry 

262 ± 

28 

1.01 ± 

0.01 

0.55 ± 

0.07 

0.089 ± 

0.015 

0.009 ± 

0.002 

2.75 ± 

0.24 

0.106 ± 

0.012 

0.09 ± 

0.018 

0.39 ± 

0.12 

0.41 ± 

0.28 

-3.09 

± 0.05 

-8.54 

± 0.21 

-41.7 

± 3 

Yenouh 
Surface 

water 
Wet 

247 ± 

35 

1.23 ± 

0.11 

0.3 ± 

0.09 

0.121 ± 

0.01 

0.008 ± 

0.002 

3.03 ± 

0.25 

0.147 ± 

0.049 

0.077 ± 

0.013 

0.96 ± 

0.07 

1.27 ± 

0.3 

-3.46 

± 0.1 

-7.95 

± 0.27 

-40.4 

± 2 

  
Dry 327 ± 0 1.18 ± 0 

0.64 ± 

0 

0.148 ± 

0 

0.013 ± 

0 
3.63 ± 0 

0.195 ± 

0 

0.129 ± 

0 
0.9 ± 0 1.56 ± 0 

-3.21 

± 0 

-8.01 

± 0 

-41.5 

± 0 

Mzarib 
Surface 

water 
Wet 

215 ± 

15 

1.18 ± 

0.09 

0.27 ± 

0.08 

0.098 ± 

0.01 

0.006 ± 

0.001 

2.72 ± 

0.11 

0.128 ± 

0.024 

0.071 ± 

0.01 

0.84 ± 

0.08 

0.99 ± 

0.35 

-3.44 

± 0.12 

-7.91 

± 0.52 

-40.1 

± 1.9 

  
Dry 270 ± 0 1.06 ± 0 

0.53 ± 

0 

0.117 ± 

0 

0.01 ± 

0 
3.24 ± 0 

0.156 ± 

0 

0.101 ± 

0 
1.1 ± 0 1.92 ± 0 

-3.6 ± 

0 

-8.21 

± 0 

-43.1 

± 0 

Janneh 
Surface 

water 
Wet 

260 ± 

14 

1.26 ± 

0.09 

0.45 ± 

0.06 

0.18 ± 

0.063 

0.013 ± 

0.004 

3.28 ± 

0.38 

0.17 ± 

0.074 

0.1 ± 

0.03 

0.9 ± 

0.12 

1.31 ± 

0.29 

-3.33 

± 0.12 

-8.05 

± 0.37 

-41.4 

± 2.1 

  
Dry 

397 ± 

19 
1.3 ± 0.1 

0.74 ± 

0.01 

0.223 ± 

0.033 

0.026 ± 

0.007 
4 ± 0.28 

0.201 ± 

0.009 

0.237 ± 

0.045 

0.54 ± 

0.11 

0.85 ± 

0.2 

-2.7 ± 

0 

-7.58 

± 0.28 

-38.8 

± 1.2 

Yahshoush 
Surface 

water 
Wet 

268 ± 

26 

1.26 ± 

0.1 

0.42 ± 

0.12 

0.146 ± 

0.014 

0.01 ± 

0.001 

3.26 ± 

0.36 

0.189 ± 

0.076 

0.105 ± 

0.023 

0.84 ± 

0.09 

1.18 ± 

0.27 

-3.24 

± 0.16 

-7.55 

± 0.21 

-38.7 

± 0.9 

  
Dry 

349 ± 

21 

1.09 ± 

0.11 

0.77 ± 

0.07 

0.216 ± 

0.035 

0.019 ± 

0.005 

3.44 ± 

0.13 

0.205 ± 

0.012 

0.193 ± 

0.043 

0.75 ± 

0.08 

1.4 ± 

0.21 

-3.08 

± 0.03 

-7.66 

± 0.16 

-35.8 

± 2.6 

Outlet 
Surface 

water 
Wet 

265 ± 

25 

1.31 ± 

0.16 

0.4 ± 

0.12 

0.152 ± 

0.023 

0.012 ± 

0.001 

3.24 ± 

0.45 

0.231 ± 

0.143 

0.103 ± 

0.019 

0.76 ± 

0.09 
1 ± 0.21 

-3.11 

± 0.19 

-7.81 

± 0.15 

-39.1 

± 1.6 
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Dry 

346 ± 

60 

1.1 ± 

0.31 

0.8 ± 

0.06 

0.233 ± 

0.034 

0.028 ± 

0.014 

3.44 ± 

0.4 

0.207 ± 

0.049 

0.146 ± 

0.035 
0.3 ± 0.3 

0.56 ± 

0.77 

-2.56 

± 0.42 

-7.24 

± 0.04 

-34.8 

± 1.4 

 

 


