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ABSTRACT: Two divalent cation-based coagulants, magnesium chloride and manganese 

chloride, were used to treat synthetic textile wastewaters containing the azo-dye pigment 

Levafix Brilliant blue EBRA. The jar-tests were performed in the presence or absence of 

auxiliary dyeing chemicals. They proved that (i) both divalent cation-based coagulants were 

effective in the treatment of those alkaline effluents, (ii) better performances in terms of color 

removal, residual turbidity, and settled volume, were achieved with manganese chloride, (iii) 

the presence of dyeing auxiliaries significantly increases the required coagulant demand for 

treating the textile effluent. The dye removal mechanisms were investigated by combining 

observations of freeze-dried sediments with Transmission Electron Microscopy coupled with 

Energy-Dispersive X-ray Spectroscopy and Selected Area Electron Diffraction, Fourier 

Transform Infrared Spectroscopy, adsorption experiments, and aggregates size measurements 

with a laser sizer under cyclic shear conditions. The results show that brucite (Mg(OH)2) 

particles are formed when applying MgCl2 to the textile wastewaters, whereas a mixture of 

feitknechite (-MnOOH) and hausmannite (Mn3O4) is obtained when using MnCl2. More 

poorly crystallized particles are formed in presence of auxiliary dyeing chemicals. The 

adsorption experiments suggested that the azo-dye pigment adsorbs onto the surface of 

precipitating phases, whereas the aggregation dynamics indicated that a charge-neutralization 

mechanism underlies the formation of aggregates. The dye removal is then consistent with a 

precipitation/adsorption mechanism. 

 

Keywords: Azo-dye pigment, Levafix Brilliant blue EBRA, MgCl2, MnCl2, brucite, 

feitknechite. 
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1. INTRODUCTION 

 

Textile dyeing is one of the main contributing categories to the ecological footprint of 

textile production [1]. Besides a high water consumption, this process generates coloured 

wastewaters that are particularly difficult to treat. Indeed, textile effluents are characterized by 

a large amount of dyestuffs, a strong alkalinity, a high chemical oxygen demand, and a low 

biodegradability [2]. In addition, the chemical structure of dyes contained in the effluents 

resists degradation in most conventional wastewater treatment processes because of their 

stability to oxidizing agents and to microorganisms [3-5]. As most dyes have been shown to 

be toxic to some organisms and to cause direct destruction of aquatic communities [6], the 

discharge of partially treated effluents often severely impact the receiving water systems [7].  

Various methods have been proposed for the treatment of coloured wastewaters, namely, 

oxidation [8-10], electrolysis [11-13], biodegradation [14-15], adsorption [6, 16-18], chemical 

coagulation [5-6,19-25] and membrane filtration [1, 5, 26-28]. The oxidation processes 

certainly represent the best techniques to eliminate the total organic carbon, but they have 

been shown to be effective only at very low dye concentrations [5, 25]. Electrochemical 

processes can be easily adapted to the polluant load but the formation of an abundant 

hydroxide sludge represents a major drawback [24]. Conventional biological process are 

generally shown to be less efficient at degrading dye pigments because of their complicated 

aromatic structure and molecular size [25]. Both coagulation and adsorption processes have 

been proven to be highly effective for decoloring textile effluent, but the costs associated with 

actived carbon requirement and sludge treatment appear prohibitive [24-25]. Finally, the 

performance of membrane processes for the removal of reactive dyes is often limited by 

severe fouling [24]. 

Chemical coagulation using magnesium salts has been shown to be an effective 

alternative to conventional treatments of textile effluents, especially since (i) conventional 

coagulants such as alum or PAC are not operational at pHs encountered in typical textile 

wastewaters [41], (ii) magnesium can be easily recovered from the sludge and reused [25]. 

However, the mechanisms by which the dye pigments are amenable to removal in such a 

treatment have only been roughly examined [21, 23, 29-30]. In particular, the adsorptive-

coagulating mechanism initially suggested by Leentvaar and Rebhun [30], needs to be further 
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substantiated. The purpose of this work is then to provide some new insights into the ability 

of two divalent cation-based coagulants, MgCl2 and MnCl2, to eliminate the reactive dye 

Levafix Brilliant Blue EBRA from synthetic textile wastewaters. Levafix Brilliant Blue 

EBRA is a pigment dye mainly used for jeans dyeing. Although this compound is abundantly 

present in textile effluents, only scarce data are available regarding its removal from 

wastewaters [23].  Furthermore, the influence of auxiliary dyeing chemicals on the process of 

dye removal is commonly overlooked in the literature. Therefore, we used two types of 

synthetic effluents, i.e. EBRA reactive dye in the presence or absence of dyeing auxiliaries, to 

investigate the importance of those chemicals on dye coagulation. The elimination of pigment 

dye was assessed by jar-test coupled with UV-visible spectroscopy measurements, the 

mineral species generated by the chemical treatment were identified using Fourier Transform 

Infrared Spectroscopy and Transmission Electron Microscopy combined with Energy-

Dispersive X-ray Spectroscopy (TEM-EDXS), and the structural characteristics of aggregates 

were examined with a laser sizer under cyclic shear conditions. 

 

2. EXPERIMENTAL SECTION 

 

2.1 Chemicals. The commercial dye used in this study, Levafix Brillant Blue (EBRA), was 

kindly supplied by DENIM, a jeans textile manufacturer from Algeria. The patent protecting 

its chemical formula (Patent n°F 51942), states that the chromophore part can be either 

dichloroquinoxaline, monofluorotriazine, or difluorochloropyridine. Dyeing auxiliary 

chemicals, Migrasol MV, Meropan XR, and Subitol RNC, were graciously provided by 

CHTR (France). Urea (99 %) and NaHCO3 (99.7 %) were acquired from Acros organics and 

Aldrich, respectively. The chemical nature of these products and their role upon dyeing, are 

indicated in table 1. Unlike EBRA dye which fixation rate on the textile fiber is about 70%, 

the dyeing auxiliary chemicals end up in the effluent. 

 Reagent grade MnCl2, 4H2O (99 %) and MgCl2, 6H2O (99 %) obtained from Acros 

organics and Sigma, respectively, were used as coagulants. They were both freshly prepared 

as 1M coagulant stock solutions with deionized water (MilliQ-plus 18.2 MΩ). 

 

2.2 Preparation of synthetic waters. Two types of synthetic effluents were used in this study. 

SW1 was prepared by dissolving EBRA reactive dye (30 mg/l) and NaHCO3 (1 g/l) in 

deionized water. SW2 was prepared by adding to SW1 the various dyeing auxiliary 

chemicals, i.e. urea (50g/l), Subitol RNC (5g/l), Rapidoprint XR (3g/l), and Migrasol MV 



- 5 - 

(10g/l). Prior to coagulation treatment, the synthetic waters were first heated at 50-70 °C for 

15 min to provide hydrolysis conditions similar to those encountered during dyeing. They 

were then left to cool down to room temperature (25°C). The EBRA concentration in 

synthetic effluents was determined from the initial dye concentration used by DENIM in 

industrial operation (100 mg/L) and from the dye fixation rate (70%). 

 

2.3 Aggregation procedure and supernatant characterization. In order to limit the 

consumption of reagents, coagulation studies were conducted in 150 mL reactors (60 mm 

diameter and 80 mm high) fitted with 4 Plexiglas baffles (8×70 mm). Stirring was carried out 

with a 3.15 cm x 1.5 cm blade positioned at one-third the height of the reactor from the 

bottom. The pH of synthetic waters was adjusted to 12, pH of DENIM textile effluents, by 

dropwise addition of NaOH 1N. The coagulant was then added under agitation using a micro-

pipette (Eppendorf) at a point just below the free surface of the effluent. Mixing followed a 

conventional jar test procedure with rapid mixing at 250 rpm for 3 min and slow stirring at 60 

rpm for 20 min. The pH was not readjusted after coagulant addition. 

At the end of mixing, the coagulated suspension was allowed to settle in graduated 

Imhoff cones for 2 h. The sediment volume was measured and 20 mL of supernatant were 

siphoned with a syringe for residual turbidity assessment (Hach 2100N turbidimeter). The 

collected supernatant was then filtered through a 0.22µm pore size cellulose-acetate filter 

(Macherey-Nagel) for pH (LPH330T pH-meter), conductivity (CD 810 Tacussel), and color 

measurements. EBRA absorbance was measured at  = 590 nm using a Shimadzu UV-2501 

spectrophotometer. The percentage of color removal was calculated by comparing the 

absorbance values of original synthetic effluent and supernatant. Ultrapure water served as 

reference. 

 

2.4 Aggregate size measurements. In addition to classical jar-tests, the coagulation dynamics 

was investigated by monitoring the floc size distribution obtained at optimal coagulant 

concentration under cyclic step changes in agitation. The floc size distribution was measured 

on-line with a Malvern Mastersizer using a particle size detection range of 1.2-600 μm. An 

experimental set-up similar to that described in Chaignon et al. [31] was used in this study. To 

avoid multiple scattering in the measurement cell, the coagulated suspensions were diluted 

with synthetic water prepared without EBRA dye and were adjusted to the pH of the 

corresponding suspension. The dilution was adjusted to yield a 5 % volume concentration for 

all coagulated suspensions. Size measurements were averaged over 1s and taken every 2s. 
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The floc size distributions are monomodal, and can be represented by their mean floc 

diameter dm.  The fractal structure of aggregates was determined from the equation  ~ dm
(3-

Df)
, where  is the volume fraction given by the particle sizer, and Df the mass fractal 

dimension of aggregates [31].  

 

2.5 Sediment characterization. The nature of aggregates obtained at optimal coagulant 

concentration was examined by (i) TEM-EDXS on centrifuged (Eppendorf 5804 – 2860 g for 

10 min.) and then freeze-dried sediment (EL 105 Sentry), (ii) FTIR on dialyzed (Spectro Por 

6 – MWCO 2000) and then freeze-dried sediment. Dialysis was required to remove excess 

salt originating from dyeing auxiliary chemicals. Electron microscopy observations were 

performed with with a Philips CM20 TEM (200kV) coupled with an Princeton Gamma Tech 

energy dispersive X-ray spectrometry. The freeze-dried sediment was first re-suspended in 

ethanol under ultrasonication, and a drop of suspension was then evaporated on a carbon-

coated copper grid. Elemental analysis were carried out with a 20 nm probe size, K X-ray 

emission lines of Na, S, Cl, Mg, Mn, being integrated and quantified after a 30 s counting 

time. Infrared analysis were conducted with a Bruker IFS 55 spectrophotometer in the 

transmission mode. 1 mg of freeze-dried sediment was mixed with 250 mg KBr (FTIR grade, 

Merck), and a pellet was prepared using a press connected to a vacuum pump. The spectra 

were recorded in the 4000-400 cm
-1

 range with 200 scans collected at 2 cm
-1

 resolution. 

 

2.6 Adsorption isotherms. The adsorption experiments were performed using the precipitate 

obtained from the treatment of SW1 without EBRA dye at optimal coagulant concentration. 

Various amounts of the pigment dye were then added under slow mixing for 30 min, and the 

amount of adsorbed EBRA dye was calculated from the difference between the total added 

concentration and the supernatant concentration after 2 hours settling. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Jar test results. Figures 1 and 2 compare the performance of MnCl2 and MgCl2 solutions 

in terms of turbidity removal, sediment volume, final pH, and conductivity after coagulation, 

for the two synthetic effluents SW1 and SW2. Similar patterns are observed for both 

coagulants: thus, residual turbidities (fig. 1a and 2a) increase at low coagulant concentration 

to reach a maximum, and then decrease with further coagulant addition. The optimum 
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coagulant concentrations (OCC) are defined as the minimum dosages to attain the low 

residual turbidity values (arrows in fig. 1a and 2a). The OCC values found with a MnCl2 

treatment are slightly lower than those obtained with a MgCl2 application, whereas the 

required coagulant demands for treating SW2 are almost double than those determined for 

SW1. This suggests that the negatively charged molecules of dyeing auxiliaries compete with 

the reactive dye for the coagulant species. Furthermore, the residual turbidity at OCC is lower 

for the manganese coagulant in the case of SW1, whereas in presence of all dyeing auxiliary 

chemicals (SW2), an equivalent turbidity removal is observed for both chemicals. Above 

OCC, the residual turbidities characterizing SW1 treatment are stable, and then strongly 

increased in the case of MnCl2 coagulation. For turbidity curves obtained with SW2,  the 

range of optimal dosing is reduced, as the residual turbidities slightly increase at higher 

coagulant concentrations. 

All the sediments build-up from the lowest coagulant concentrations to reach a plateau 

around OCC (fig. 1b and 2b). It is worth noting that MnCl2 is clearly more effective than 

MgCl2 in terms of sludge production, sediment volumes at OCC being 25-30% lower in the 

first case. Furthermore, the presence of dyeing auxiliary chemicals does not significantly 

increase the sediment volume generated by coagulation. The pH measurements show a 

marked decrease until OCC to reach a pH of about 9.4 and 8.3 for MgCl2 and MnCl2, 

respectively. Above OCC, the pH diminishes with a lesser slope in all cases. On the other 

hand, the conductivity slightly decreases at underdosages, and then increases proportionally 

with coagulant concentration above OCC. The color removal is illustrated in figure 3 as 

abatement rate vs coagulant concentration. For both SW1 and SW2, the percentage of EBRA 

dye removal strongly increases at low coagulant concentration and reaches about 90% at 

OCC. A complete removal can even be observed at slight overdosages.  

 

3.2 Fate of dye and nature of coagulating species. At first approximation, the variations in 

turbidity, settled volume, pH, and conductivity, may simply be related to coagulant 

hydrolysis: the formation of an hydroxide precipitate can increase both residual turbidity and 

sediment volume, the associated OH
-
 consumption implying a drop in pH, and the 

corresponding decrease in conductivity being, in our case, likely compensated by the release 

of chloride ions from the added coagulants. Examination of hydroxide precipitates by TEM-

EDXS shows that, during SW1 coagulation, both well-crystallized though irregular shaped 

platelets and small pseudo-cubic units are obtained with MnCl2 (fig. 4a), whereas 

monodispersed, but more poorly crystallized particles are formed with MgCl2 (fig. 4c). In 
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contrast, nearly amorphous phases are precipitated during SW2 coagulation with either MnCl2 

or MgCl2 (fig. 4b and 4d), the crushed sheet texture of coagulating species being nevertheless 

reminiscent of previous plate-like particles. 

 EDXS microanalyses yield an atomic ratio Mg/O close to 0.5 for particles obtained 

with the MgCl2 coagulant, which likely identifies a Mg(OH)2-brucite precipitate. In the case 

of SW2 sediments, Mg/O is sometimes lower than 0.5 because of the oxygen content of the 

auxiliary dyeing chemicals associated with the precipitate. A slightly higher Mn/O of 0.6 

characterizes the particles formed by hydrolysis of MnCl2. Elemental analyses also indicate 

that minor amounts of sulfur, originating either from Subitol or Meropan, are associated with 

the hydroxide precipitate generated during SW2 coagulation. The electron diffraction patterns 

(insets fig. 4c and 4d) confirm the presence of brucite in both SW1 and SW2 sediments 

(spacings at 2.39, 4.72, 1.82, 1.55 Å), but additional spacings at 3.05 and 2.04 Å suggest that 

part of original brucite has been converted to MgO-periclase under the electron beam [32]. 

Similarly, electron diffractograms of Mn-precipitates (insets fig. 4a and 4b) reveal the 

presence in SW1 of feitknechite -MnOOH (spacings at 4.62 and 2.64 Å), MnO2-ramsdellite 

(weaker reflections at 4.04, 2.54 and 1.9 Å) that certainly results from electron beam damage 

to feitknechite, and hausmannite Mn3O4 (peak at 3.09 Å). The latter mineral may account for 

the Mn/O mean atomic ratio of 0.6 measured by EDXS. The precipitation of a mixture of 

feitknechite and hausmannite is actually expected when divalent manganese is hydrolyzed at 

basic pH under aerated conditions [33]. 

 The infrared spectra taken from freeze-dried sediments allow to verify the presence of  

both brucite and hydrous manganese oxide (fig. 5a). Brucite is characterized by a very sharp 

and intense peak at 3698 cm
-1

 (OH stretching vibration), a broad shoulder around 3212 cm
-1

 

(strongly bonded water), and bands in the low frequency region at 638, 568, and 436 cm
-1

 

(MgO translation modes) [34]. On the other hand, the absorption bands around 629, 525 and 

418 cm
-1

 may be assigned to stretching vibrations of Mn-O bonds [35, 36]. The bands of 

inorganic species largely dominate all spectra, even though EBRA dye (e.g. bands at 2924 

and 2854 cm
-1

) can be recognized in SW1 sediments, and urea and Migrasol (see Table 2 for 

peaks assignment) can be readily distinguished in SW2 sediments. It should be noted that part 

of EBRA dye molecules and auxiliary dyeing chemicals may have been removed during 

dialysis. The infrared spectra of various dyeing auxiliaries are presented in fig. 5b. Peak 

positions and assignments are listed in Table 2. Closer examination of EBRA dye infrared 

features provides supplementary information on the molecule structure. Indeed, peaks at 
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1560, 1504, 1449 and 1410 cm
-1

 can be assigned to a triazine structure, the remaining bands 

corresponding to a substitution of aromatic rings. 

 No obvious interaction between the hydroxide precipitates and the EBRA dye pigment 

or the dyeing auxiliary chemicals could be evidenced using infrared spectroscopy. Actually, 

neither Mg(OH)2 nor manganese hydrous oxide precipitation should alter the nature of EBRA 

dye. In the case of MgCl2 addition, the sludge obtained remains bright blue, whereas the 

sediments generated by the MnCl2 treatment process of SW1 and SW2 turn greenish because 

of the presence of strongly colored manganese minerals. Indeed, as illustrated in fig. 6, almost 

identical UV-visible spectra are obtained from both initial SW1 solution at pH 7 and 

sediments coagulated with a slight overdose in MgCl2 or MnCl2 (0.32 mol/L) and then 

redissolved by acidification at neutral pH. The slight change in absorption around 600 nm is 

attributed to a small difference in dye concentration between the original and the redispersed 

sediments that results from the acidification.  

 

3.3 Characteristics of the precipitation/adsorption mechanism. Eventually, though the 

treatment with MgCl2 and MnCl2 chemicals has been attributed hitherto to a coagulation with 

hydrolyzed species, the actual dye removal mechanism might better be described as a sorption 

phenomenon onto newly precipitated particles. The adsorption isotherms of EBRA molecules 

onto hydrous manganese oxide and magnesium hydroxide precipitates obtained from the 

respective optimal coagulant concentrations, are shown in figure 7. For magnesium hydroxide 

surfaces, the adsorbed amount of EBRA dye pigment increases steadily with the equilibrium 

concentration, whereas it shows two well-defined steps for hydrous manganese oxide particles 

thus confirming the dual nature of that precipitate. In addition, at any given equilibrium 

concentration, a larger adsorbed amount of EBRA dye pigment is consistently observed on 

manganese-based sorbents, which can be then related with the better removal efficiency 

obtained with the MnCl2 treatment. 

 Such a precipitation/adsorption mechanism was initially proposed by Leentvaar and 

Rehbun [30] when investigating the action of MgCl2 on domestic sewage. However, both 

EBRA molecule and dyeing auxiliary chemicals necessarily interfere with the hydrolyzing 

processes of MgCl2 and MnCl2. Indeed, the TEM micrographs and the electron diffraction 

patterns reveal a drastic change in the appearance and the cristallinity of precipitates 

generated during the treatment of SW1 and SW2 effluents. This can be attributed to an 

inhibition of hydroxide precipitate growth in the presence of EBRA molecule and/or dyeing 

auxiliaries. The latter effect can be readily evidenced by comparing EBRA dye removal onto 
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already precipitated Mg(OH)2 or MnOOH particles at various MgCl2 or MnCl2 

concentrations, with the original jar-tests carried out with SW1 solutions. As shown in fig. 8, 

both the turbidity and the color removal curves are shifted towards higher coagulant 

concentrations when the dye is added after the formation of precipitates, thus implying a 

poorer elimination of the contaminant. The higher removal efficiency observed during jar-

tests can be explained by the adsorption of EBRA dye pigment to the active growth sites of 

the precipitate, thus limiting the size of particles formed, and hence increasing both its 

specific surface area and its adsorption capacity. In the case of SW2 effluents, the presence of 

a larger amount of additives further inhibits the formation of particles (fig. 4b-4d).  

 

3.4 Behavior of aggregated suspensions under agitation. In accordance with the 

precipitation/adsorption mechanism suggested above, the pHs reached at the optimal 

coagulant concentration are (i) close to the pH of Mg(OH)2 formation in high alkalinity 

solutions [37], (ii) similar to the point of zero charge (8.3) determined for hydrous manganese 

oxide in the case of MnCl2 treatment [38]. Therefore, the surfaces of precipitated particles 

should carry no net charge at the optimal treatment concentration, and the aggregates thus 

obtained should behave according to a charge neutralisation mechanism [45]. Figure 9 shows 

the variation in mean aggregate size under cyclic step changes in agitation intensity, for SW1 

and SW2 treated with optimal concentrations of MnCl2 and MgCl2, respectively. In all cases, 

the size of aggregates slowly decreases at the initial constant stirrer speed of 100 rpm. As 

those aggregates were prepared from the coagulated suspensions redispersed in their 

respective synthetic solutions, the observed decrase in aggregate size can certainly be 

attributed to that dilution stage provided that a dynamic exchange between the aggregated 

material does exist [31]. Upon an increase in stirring (300 rpm), the flocs break up first 

rapidly and then more slowly. When the agitator speed is reset to its initial value (100 rpm), 

the aggregate re-form rapidly but to a size about half smaller than that obtained just before 

initiating the first increase in shearing. Further cycling of agitation conditions between high 

and low levels of intensity, reveals that floc break-up and floc re-aggregation become nearly 

reversible for aggregates generated with a MnCl2 treatment. Such behavior is consistent with 

a charge-neutralisation destabilisation mechanism [31]. In contrast, the aggregates obtained 

after a MgCl2 application only partially reforms after shearing. This may be attributed to the 

nature of brucite precipitate which, as illustrated in figure 4c, looks like intergrown 

agglomerates that may not rebuild once broken. 
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 The insets of figure 9 show typical log-log plots of aggregate volume fraction versus 

mean floc size obtained during the consecutive cyclic step changes in stirring. Obviously, the 

range of mean floc size determined here limits the applicability of the power-law relationship 

to barely one decade in length, which can not be considered sufficient to define a true fractal 

dimension. In the particular case of the synthetic effluent SW2 treated with the MgCl2 

solution, such exponent can not even be determined (fig. 9d). Nevertheless, the Df values thus 

obtained are consistent with classical aggregation mechanisms reported in the literature. Thus, 

the Df value close to 1.7 calculated for aggregates resulting from the application of MgCl2 to 

the SW1 effluent, may be ascribed to a diffusion-limited cluster aggregation mechanism [39]. 

Likewise, the scaling exponent slightly above 2 found with MnCl2 treatments (fig. 9a-b) could 

be attributed a reaction-limited aggregation. However, in the latter case, the aspect ratio of the 

hydrous MnOOH particles likely influences the arrangement of elementary particles within 

the aggregates. 

 At first approximation, the constant Df values during the cyclic changes in stirring 

suggest that no major aggregate restructuring has occurred. However, as shown in figures 10 

and 11, both residual turbidity and sediment volume decreased significantly after increased 

agitation at 300 rpm except in the case of SW2 effluent treated with MgCl2 (fig. 11c-d). A 

rearrangement of aggregates to more compact fractal structures when the flocs are exposed to 

increased shear has already been demonstrated in the literature [40]. In our case, such 

restructuring certainly occurs at a smaller length scale than that investigated by the laser sizer. 

Figures 10 and 11 suggest that such phenomenon can be exploited to decrease the amount of 

sediment generated by the application of MnCl2 or MgCl2. Indeed, simple centrifugation at 

2860 g allows to further diminish the sludge volume after treatment. 

 

4. CONCLUDING REMARKS 

The results presented in this paper shed new light on the mechanisms involved when 

either MnCl2 or MgCl2 solutions are used for removing dye pigment from textile effluents. In 

both cases, the removal mechanism can be attributed to the adsorption of the dye pigment 

onto the forming hydroxyde precipitate. Most dyeing auxiliary chemicals compete with the 

reactive dye for the precipitated particles, and hence significantly increase the required 

coagulant demand for optimal dye elimination. 

Previous literature has shown that the use of MgCl2 is economically viable [23], 

especially since magnesium can be easily recovered and reused [29]. In textile manufacturing 

plants close to the sea, further cost reduction can certainly be achieved if sea water is used as 
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a source of magnesium ion. The application of MnCl2 for the treatment of textile dye wastes 

appears to represent a promising alternative approach since both optimal dosage and sludge 

production are significantly lower than those achieved with MgCl2. The residual manganese 

concentrations measured by Atomic Absorption spectroscopy are less than 0.01 ppm  and 

0.37 ppm for the treatment of SW1 and SW2, respectively. Such values comply with the 

environmental standards on liquid effluent disposal in surface waters. The application of 

MnCl2 to textile wastes can also certainly be optimized to preferentially yield the hydrous 

manganese oxide mineral that is the most efficient for colour removal. 
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Table 1: Nature of dyeing auxiliary chemicals. 

 

Product Chemical nature Use 

Migrasol MV 

Meropan  XR Pearls  

Subitol RNC 

Urea  

Amide acrylic polymer / Sodium acrylate 

Mononitrobenzene sulphonate of sodium 

Special sulfonates  

Diamide carbonic acid 

Anti-migrating agent  

Oxidizing agent 

Dampening agent 

Stabilizing agent 
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Table 2: Main infrared absorption bands of EBRA dye pigment and dyeing auxiliaries. Peaks 

are assigned according to [42-44]. 

 

Band (cm
-1

) Peak assignment 

Urea 

1158 

1463 

1627 

1674 

 

C-N stretching 

N-H deformation 

NH2 deformation 

C=O stretching 

 

Subitol 

903 

1000-1100 

1100-1250 

1378 

1469 

1639 

 

S-O stretching 

SO3 symmetrical stretching 

SO3 asymmetrical stretching 

CH3 deformation 

CH2 deformation 

O-H deformation 

 

Migrasol 

1177 

1349 

1408 

1456 

1564 

1616 

1668 

 

C-N stretching 

C-H deformation 

N-H deformation 

CH2 deformation 

NH2 deformation 

C=C stretching 

C=O stretching 

 

Rapidoprint 

1000-1100 

1100-1250 

1350-1550 

800-1650 

 

SO3 symmetrical stretching 

SO3 asymmetrical stretching 

Ar- NO2 

Ø  meta substituted 

 

EBRA dye 

157, 1444, 1410 

1000-1100 

1100-1200 

1300-1400 

1400-1650 

 

Triazine 

Aromatic rings stretching 

Ar-F 

NH-Ar 

Aromatic rings deformation 
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Figure captions 
 

Figure 1: Comparison of MnCl2 () and MgCl2 () coagulation performances for SW1: (a) 

Residual turbidity, (b) sediment volume, (c) pH after coagulation, (d) conductivity after 

coagulation. The arrows indicate the optimal coagulant concentrations. 

 

Figure 2: Comparison of coagulation performances for SW2 (SW1 + dyeing auxiliaries): (a) 

Residual turbidity, (b) sediment volume, (c) pH after coagulation, (d) conductivity after 

coagulation. The arrows indicate the optimal coagulant concentrations. 

 

Figure 3: Percentage of color removal as a function of coagulant concentration. () MnCl2  

and () MgCl2. The arrows indicate the optimal coagulant concentrations. 

 

Figure 4: Electron micrographs and electron diffraction patterns of freeze-dried coagulated 

sediments: (a) SW1 at MnCl2 optimal concentration; well-crystallized platelets correspond to 

feitknechite whereas small pseudo-cubic minerals identify hausmannite. (b) SW2 at MnCl2 

optimal concentration. (c) SW1 at MgCl2 optimal concentration. (d) SW2 at MgCl2 optimal 

concentration. 

 

Figure 5: (a) FTIR spectra of dialyzed and freeze-dried coagulated sediments: (1) SW1 at 

MgCl2 optimal concentration; (2) SW1 at MnCl2 optimal concentration; (3) SW2 at MgCl2 

optimal concentration; (4) SW2 at MnCl2 optimal concentration. 

(b) FTIR spectra of EBRA dye and dyeing auxiliary chemicals: (5) EBRA dye; (6) Urea; (7) 

Migrasol; (8) Subitol; (9) Rapidoprint. The peak assignments are given in Table 2. 

 

Figure 6: UV-visible spectra of (a) EBRA dye solution acidified at pH 7; (b) SW1 coagulated 

with a slight overdose in MgCl2 and then redissolved by acidification at pH 7; (c) SW1 

coagulated with a slight overdose in MnCl2 and then redissolved by acidification at pH 7. 

 

Figure 7: Adsorption isotherms of EBRA dye onto hydrous manganese oxide at pH 8.3 () 

and brucite at pH 9.4 (). 

 

Figure 8: Comparison of  EBRA dye removal by coagulation () and adsorption onto brucite 

or hydrous manganese oxide precipitated at various concentrations (). (a) Residual turbidity 

vs MnCl2 concentration; (b) Color removal vs MnCl2 concentration; (c) Residual turbidity vs 

MgCl2 concentration; (d) Color removal vs MgCl2 concentration. 

 

Figure 9: Evolution of average floc size as a function of time under consecutive cyclic step 

changes in agitation intensity. The insets show examples of the determination of the floc mass 

fractal dimension. (a) SW1 treated with MnCl2; (b) SW2 treated with MnCl2; (c) SW1 treated 

with MgCl2; (d) SW2 treated with MgCl2. 

 

Figure 10: Effect of further agitation at 300 rpm and centrifugation at 2860 g on residual 

turbidity and sediment volume. (a-b) SW1 treated with MnCl2; (c-d) SW2 treated with MnCl2. 

 

Figure 11: Effect of further agitation at 300 rpm and centrifugation at 2860 g on residual 

turbidity and sediment volume. (a-b) SW1 treated with MgCl2; (c-d) SW2 treated with MgCl2. 

 

 


