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ABSTRACT 

 

A model of a humic substance (MHS) obtained from autooxidation of catechol and 

glycine, was aggregated at pH 6 and 8 with Al13 polycations. The fate of Al13 coagulant 

species upon association with MHS functional groups was studied using solid state 27Al 

MAS NMR and CP-MAS 13C NMR. Electrophoretic measurements and steady-state 

fluorescence spectroscopy with pyrene as a fluoroprobe, were combined to investigate 

structural re-organization of humic material with aluminum concentration. MAS 27Al 

NMR revealed that the coagulant species are Al13 polycations or oligomers of Al13 units 

at both pHs. CP MAS 13C spectra indicated that, at low Al concentration, hydrolyzed 

aluminum species bind selectively to carboxylic groups at pH 6 and to phenolic 

moieties at pH 8. At higher coagulant concentrations, the remaining functional groups 

also interact with hydrolyzed Al to yield similar CP MAS 13C spectra in the optimum 

concentration range. Negative values of electrophoretic mobility were obtained at 

optimum coagulant concentrations even though an overall charge balance was achieved 

between MHS anionic charge and Al13 cationic charge at pH 6. The polarity-sensitive 

fluorescence of pyrene revealed that the interaction of Al13 coagulant species with MHS 

functional groups induces the formation of intramolecular hydrophobic 

microenvironments. Such structural changes were reversed upon further addition of 

Al13 polycations. 

 

Key words: Coagulation, humic substances, Al13 polycation. 
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INTRODUCTION 

 

 Optimizing natural organic matter (NOM) removal by coagulation is a crucial 

challenge in drinking water treatment. Indeed, the organic material remaining within the 

clarified water is involved in most problems encountered in the treatment process such 

as reduced adsorption capacity in activated carbon beds, formation of carcinogenic 

chlorinated organic compounds during disinfection, taste and odour of the finished 

water, and biological regrowth in the distribution networks (Owen et al., 1995). Several 

mechanisms have been proposed to explain the interaction of NOM with hydrolyzed 

coagulant species. Charge neutralization is thought to occur at low pH as suggested by 

stoichiometric relationships between coagulant demand and dissolved organic matter 

concentration, or restabilization upon overdosing (Narkis and Rehbun, 1977), whereas 

under conditions favoring metal hydroxide precipitation, physical entrapment and/or 

adsorption of organic matter onto the freshly formed precipitate are assumed to play a 

major role in NOM removal (Bose and Reckhow, 1998). 

 However, none of the above destabilization mechanisms account for the low 

removal efficiency which does not exceed 60 percent in most cases (Jacangelo et al. 

1995). NOM is in fact a very complex mixture of organic components derived from 

soils or produced within surface waters and sediments by biological and chemical 

processes. Recent research has shown that larger molecular weight molecules are more 

effectively removed than smaller ones, and that the hydrophobic fraction of NOM is 

more easily destabilized by coagulation than hydrophilic compounds (Collins et al., 

1986; Bose and Reckow, 1998). Selectivity also depends on coagulant nature, as 

polysaccharides are more amenable to removal with aluminum polychlorosulfate, 

whereas polyhydroxyaromatics are preferentially eliminated by ferric chloride (Vilgé-

Ritter et al., 1999). Another difficulty in identifying NOM destabilization mechanisms 

concerns the speciation of hydrolyzable metal salts used as coagulants. Even though, the 

aqueous chemistry of aluminum and iron based coagulants is now much better 

described, the formation of hydrolyzed metal species can be altered in the presence of 
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NOM. Thus, the hydrolysis of ferric chloride is hindered to the trimer stage at both pH 5 

and 7 (Vilgé-Ritter et al., 1999), while hydrolyzed aluminum species have been shown 

to be depolymerized by natural organic ligands (Masion et al., 2000). 

 The aim of this work was to investigate the destabilization mechanism of a 

model of a humic substance (MHS) with Al13 polycations as a function of both pH and 

aluminum concentration. Al13 polycations are formed during hydrolysis of most 

commercial polyaluminum chloride coagulants (Wang et Hsu, 1994; Lartiges et al., 

1997), whereas humic substances generally represent more than 50% of the dissolved 

NOM in lake and river waters (Zumstein and Buffle, 1989). MHS was obtained from 

auto-oxidation of catechol and glycine (Jung et al., 2005). As the structure and basic 

chemical properties of natural humic substances are still a matter of debate, the 

definition and representativity of a synthetic model may always be discussed. 

Nevertheless, extensive characterization of MHS and comparison with humic extracts 

from Moselle river water, revealed that such a synthesis yields organic molecules with 

elemental composition, titration features, spectral and fluorescence characteristics, 

similar to that of naturally occuring humic substances (Jung et al., 2005). Furthermore, 

an Electron Energy Loss Spectroscopy (EELS) investigation of the coagulation of MHS 

and natural counterparts with a ferric salt, showed the same coagulation behavior for 

both organic colloids (Jung et al., in press), thus suggesting that MHS may represent a 

standard humic material suitable to compare the destabilization mechanism associated 

with various coagulants. 

In this study, Magic-angle spinning (MAS) 27Al NMR was used to investigate 

the fate of aluminum coagulant species during MHS aggregation, while cross-

polarization magic-angle spinning (CP-MAS) 13C NMR allowed to examine the nature 

of association reached between the aluminum polycations and the functional groups of 

MHS. Electrophoretic mobility provided valuable information about the overall charge 

of the MHS-coagulant association. Possible reconformation of the humic material may 

occur upon interaction with coagulant species. Fluorescence spectroscopy with pyrene 
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as a polarity-sensitive probe was then used to investigate the conformational changes of 

MHS in presence of Al13 polycations. 

 

 

MATERIALS AND METHODS 

 

Preparation of a model of a humic substance. MHS was synthesized by auto-

oxidation from an aqueous equimolar mixture of catechol and glycine (0.03 mol/L in a 

2 L flask) (Jung et al., 2005). The reaction was conducted in the dark under constant 

stirring for 5 days. The temperature was maintained at 20°C and the pH was fixed at 7.9 

with a phosphate buffer. The oxidative polymerization resulted in a dark-brown product 

which was purified by dialysis (6-8 kg/mol Spectra Por 6) against distilled water to 

yield a humic-like substance in a sodium form. MHS was then freeze-dried and stocked 

as a dry powder. 

 Humic substances are traditionally categorized into humins, humic acids, and 

fulvic acids, on the basis of their water solubility. At pH < 2, about 85% of our synthetic 

product is insoluble which defines MHS as a humic acid. Elemental analysis of MHS 

(Carlo Erba 1108 autoanalyser) indicated contents of 45.6% in C, 3.6% in H, 2.5% in N, 

and 48.3% in O. Such values are consistent with the mean composition of freshwater 

humic acids indicated in the literature (Krasner et al., 1996). The total titrable charge of 

MHS (3.7 meq/g between pH 3.5-10.5) and the contents in carboxylic and weakly 

acidic groups (respectively 3.1 and 0.6 meq/g), are also in good agreement with the 

values reported for river water humic substances (Christensen et al., 1998). However, 

even though humic molecules are known to aggregate, the use of a 6-8 kg/mol dialysis 

cut-off is expected to yield a material with a larger molecular weight than the 1-3 

kg/mol generally reported for aquagenic humic material (Beckett et al., 1987). Such a 

synthesis is also expected to yield organic polymeric colloids (Swift, 1999), rather than 

supramolecular assemblies (Piccolo, 2001). Nevertheless, fluorescence monitoring of 
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MHS synthesis suggested that the humic-like fluorescent compound was formed from 

the association of oligomeric quinonic species (Jung et al., 2005). 

 

Preparation of Al13 stock solution. The Al13 coagulant solution was prepared by 

dissolving analytical grade AlCl3.6H2O (Aldrich) in deionized water (MilliQ 18.5 M), 

and then by adding dropwise NaOH 0.45 M solution (0.4 mL/min) under vigorous 

stirring to an hydrolysis molar ratio OH/Al of 2.25 and a total Al concentration of 0.1 

M. Previous 27Al NMR investigations revealed that such synthesis conditions 

essentially yield AlO4Al12(OH)24(H2O)12 isolated polycations in the partially 

hydrolyzed solution (Bottero et al., 1980). The Al13 polycation possesses a Keggin 

structure, which consists of a central tetrahedrally coordinated aluminum (Al
IV

) 

surrounded by 12 edge-linked octahedral aluminum sites (Al
VI

). 

 

Preparation of suspensions and aggregation procedure. Suspensions were obtained 

by dissolving 30 mg of MHS in 1 L of deionised water, thus yielding a Total Organic 

Carbon (TOC) concentration of 12 mg/L. Such concentration is consistent with average 

TOC values usually reported for river waters (Meybeck, 1982). NaHCO3 (4 10
-3

 mol/L) 

was also added to the synthetic water to provide pH and ionic strength buffers similar to 

that of Seine river water. Prior to coagulant injection, the pH of suspensions was 

adjusted to pH 6 or 8 with dropwise addition of 0.5 M HCl. 

Aggregation of MHS with Al13 polycations was performed in a standard 1 L 

glass beaker (90 mm diameter, 150 mm high) fitted with four Plexiglas baffles. Stirring 

was carried out with a 15 mm x 54 mm blade positioned at one-third the height of the 

reactor from the bottom. A stirring rate of 100 rpm, which corresponds to a spatially 

averaged velocity gradient G of 135 s-1, was used for all the experiments. The required 

amount of Al13 solution was added under agitation with a syringe at a point just below 

the free surface of the suspension. The time of injection was about 3 s. pH was not 

readjusted after coagulant addition as the drop in suspension pH resulting from further 

hydrolysis of the coagulant never exceeded 0.4 pH unit for the largest aluminum 
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concentration used at pH 8. Stirring was continued at 100 rpm for 20 minutes, and at the 

end of mixing, the aggregated suspension was allowed to settle for 24 h in graduated 

Imhoff cones. The supernatant was then analyzed for its turbidity (Hach turbidimeter), 

TOC (Dorhman 190), and residual aluminum concentration (ICP-AES Jobin-Yvon 70 

type B model with external calibration). The sediment was collected and dialysed 

against deionized water for 5 days to remove added ions. It was then freeze-dried for 

NMR studies. Preliminary 27Al MAS NMR experiments indicated that the MHS-Al 

aggregates do not evolve significantly during settling and dialysis. 

 

Electrophoretic mobility. The electrophoretic mobility of unsettled aggregates was 

determined with a Zetaphoremeter III (Sephy, France) equipped with a CCD camera. 

Prior to the measurements, the supernatant of the settled suspensions was centrifuged at 

2500 rpm for 10 minutes in a lab-centrifuge (Eppendorf 5804) to increase the 

concentration in particles. The centrifugate was then re-suspended in 50 ml of original 

supernatant before being pumped into the electrophoretic cell. This procedure may 

induce a slight compaction of the floc structure. However, such a rearrangement occurs 

at a much larger scale than that associated with the diffuse double layer. The velocity of 

particles located at the stationary layer was directly computed from a video analysis 

obtained at fixed time intervals under an 80 mV applied voltage. 

 

Magic-angle spinning nuclear magnetic resonance (MAS-NMR). The MAS-NMR 

spectra were recorded on a Bruker ASX 500 instrument in 4 mm zirconia rotors with 

polyimide endcaps. One-pulse 27Al (I=5/2) spectra were recorded at 130.32 MHz, 

spinning at 14 kHz with recycle delays of 1 s and 400 transients. Small pulse widths (< 

π/2(2I+1) were used with duration of 0.5 s to obtain quantitative responses. {1H-13C} 

cross-polarization CP/MAS-NMR spectra were obtained at 125.77 MHz, spinning at 10 

kHz, with < π/2 1H pulse of 8 s, contact times of 1 ms, recycle delays of 5 s and around 

14000 transients. Line broadening procedure (100 Hz) was applied before Fourier 

transform, and the chemical shifts were quoted relative to Al(H2O)6
3+ and TMS for 27Al 
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and 13C respectively. Resonance intensities were obtained by integration for 27Al and 

by decomposition into lorentzian components for 13C. 

 

Fluorescence measurements. One liter solutions containing 30 mg MHS and 336 mg 

NaHCO3 in deionised water were first prepared and adjusted to either pH 6 or 8 with 

dropwise addition of 0.5 M HCL. 5 mL aliquots of MHS solution were then placed in 

glassware beakers and mixed with 5 µL of pyrene stock solution (10-3 M pyrene 

(Aldrich 99+%) in ethanol (Carlo Erba 99.5%), thus yielding a pyrene concentration of 

the order of 1 µM for all fluorescence measurements. The volumetric content of ethanol 

introduced in the samples did not exceed 0.1% and does not influence the solubility of 

pyrene in samples. Al13 coagulant was then injected, and the aggregated MHS-pyrene 

suspension was allowed to equilibrate for one hour. Prior to fluorescence 

measurements, the samples were re-homogeneized by over-hand shaking. 

 Steady-state fluorescence measurements were performed on a Fluorolog-2 

spectrofluorometer (SPEX, Edison), using 0.5 mm slits for the excitation and emission 

monochromators. All spectra were recorded at room temperature. In order to compare 

the fluorescence intensities of all fluorescence spectra and to avoid equipment baseline 

time drift, the fluorescence was normalised with a 0.16 mg/L fluorescein solution 

buffered at pH 10, using an excitation wavelength of 488 nm with emission recorded 

from 450 to 550 nm. Pyrene excitation wavelength was set at 332 nm and the emission 

was collected between 350 and 450 nm. Even though MHS absorbance remained 

significant at the excitation wavelength, the background emission of the synthetic 

material was negligible and represented less than 2% of the total measured pyrene 

probe fluorescence. The polarity sensitive ratio I1/I3 was calculated from the emission 

intensities at 372 (I1) and 383 nm (I3). 

 Preliminary blank experiments indicated negligible variations in MHS 

background emission in presence of various Al13 concentrations. It was also checked 

that pyrene fluorescence spectra were not affected by the addition of increasing 

concentrations of coagulants, and that the amount of Cl- anion contained in the 
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aluminum coagulant solution had no quenching effect in the concentration range used. 

Furthermore, the emission spectra failed to reveal any excimer peak. 

 

RESULTS AND DISCUSSION 

 

Aggregation results. The effect of varying concentrations of Al13 coagulant solution 

on MHS aggregation at both pH 6 and 8, is illustrated in figure 1. Three curves are 

shown, settled water turbidity, sediment volume, and residual aluminum concentration, 

each as a function of aluminum dosage. Figure 1a reveals that, at low aluminum 

concentration and for both pHs, the supernatant turbidity increases steadily with 

coagulant dosage to reach a maximum, and then decreases steeply upon further increase 

in aluminum concentration. The point where the extrapolated steep portion of the 

turbidity curve intersects the x-axis was chosen as the optimum coagulant concentration 

(OCC), and is indicated with an arrow on the graph. For our synthetic water, OCC 

values of about 2.4 10-4 and 4.2 10-4 mol/L were found at pH 6 and 8, respectively. 

Excellent organic removal is then provided as more than 95% TOC is eliminated at both 

optimum coagulant dosages. At higher aluminum concentrations, the residual turbidity 

remains very low at pH 8, whereas it increases strongly above a 4.7 10-4 mol/L 

coagulant concentration at pH 6 to reach a constant turbidity of about 12 NTU. 

 The drop in supernatant turbidity observed just before the OCC at pHs 6 and 8 

corresponds to the formation of settleable aggregates as evidenced by a rapid build-up 

in sediment volume in this concentration range (figure 1b). Above the OCC, the 

sediment volume increases slightly at pH 8 to reach a plateau value, while it diminishes 

sharply at pH 6 as MHS is restabilized. The evolution of residual aluminum 

concentration follows the same general pattern as the supernatant turbidity curve (figure 

1c): at low coagulant dosages, the residual aluminum concentration increases 

proportionally to the coagulant concentration, and then drops at the OCC to a similar 

3.10-5 mol/L value for both pHs. Such a behavior clearly reveals a strong association 

between MHS and hydrolyzed aluminum species. At pH 6, upon restabilization of the 
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suspension, the residual aluminum concentration resumes its linear increase with 

coagulant dosage. 

 The difference in OCC concentration observed between pH 6 and 8 is the result 

of both an increased deprotonation of MHS functional groups and a decreased charge of 

coagulant species at pH 8. In the aluminum concentration range of OCCs, 

potentiometric titrations showed that the charge of the Al13 polycation is about 6+ at pH 

6, and 1+ at pH 8 (Furrer et al., 1992). It can then be calculated that at pH 6, the amount 

of charge brought by the coagulant species at OCC (~ 3.3 meq/g) is equivalent to the 

carboxylic acidity of the humic-like polymer (3.1 meq/g). On the other hand, at pH 8, 

the optimal coagulant demand represents a charge of 1.1 meq/g, i.e. about 3.3 times less 

than required to neutralize all the anionic groups available. This, at first, seems to 

substantiate previous literature indicating that different mechanisms are responsible for 

humic substances removal according to pH (e.g. Dempsey et al., 1984). 

 

Fate of coagulant species. Figure 2 shows the 27Al MAS NMR spectra obtained for 

MHS coagulated at both pH 6 and 8 with different aluminum concentrations. All spectra 

exhibit two prominent resonances at about 3 and 63 ppm, and two weaker less resolved 

peaks at about 33 and 64.5 ppm. 

 The 63 ppm signal can be unambiguously assigned to the central tetrahedrally 

coordinated aluminum in the Al13 polycation (Bottero et al., 1980). The strong slightly 

asymetric 3 ppm signal falls within the six coordinate chemical shift region of 

aluminum and is similar to values reported for the dimer Al2(OH)2
4+ (Masion et al., 

2000), and for monomeric and oligomeric species of aluminum complexed with low 

molecular weight organic acids (Masion et al., 1994). However, closer examination of 

the spectra reveals that the maximum of this resonance shifts gradually from 2 to 7 ppm 

with increasing aluminum concentration and pH (figure 3a). Previous NMR 

investigations of fresh Al13 precipitates have attributed such a shift to octahedral 

aluminum in polymeric species of Al13 units of increasing degree of polymerization 

(Bradley et al., 1993; Lartiges et al., 1997). Recent EXAFS and NMR studies of Ga13 
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aggregates have shown that the association of Keggin polycations occurs through 

double corner sharing coordinated water molecules (Lartiges et al., in preparation). In 

comparison with isolated Al13 polycations, an increase in symmetry and deshielding is 

then expected for the aluminum octahedra upon the formation of Al13 oligomers. The 

decrease of Full Width at Half Height (FWHH) of the octahedral resonance with 

aluminum concentration is consistent with such a view (figure 3b). 

 The peaks at 64.5 and 33 ppm have been previously identified in solutions of 

Al13 tridecamers aged at high temperature (Fu et al., 1991; Allouche et al., 2000), and 

in powders obtained from AlCl3/urea hydrolyzed sols (Wood et al., 1990). The 33 ppm 

signal, indicative of a five-coordinate Al (Wood et al., 1990), is not stable in solution 

and is necessarily generated during the freeze-drying of sediments. Assignment of the 

64.5 ppm resonance is controversial as it has been attributed (i) to the tetrahedral site of 

a 12 aluminum polycation (AlVI/AlIV = 11) arising from the loss of one octahedral Al 

from an Al13 unit (Fu et al., 1991), (ii) to an Al13 Keggin structure capped with 1 to 3 

AlO6 octahedra (Allouche et al., 2000). Nevertheless, both polycations have been 

described as intermediate species formed during the oligomerization of Al13 units, 

which is in accordance with the increase of the 64.5 ppm peak area with Al 

concentration (figure 2). 

 A rough estimate of the AlIV to Alt contributions reveals that the AlIV/Alt ratio 

is greater than 8 in the aluminum concentration range investigated by solid state 27Al 

NMR (figure 3c). Therefore, Al13 polymers and aluminum polycations with a AlVI/AlIV 

< 12, are the dominating species within dialyzed coagulated MHS. Previous reports 

indicated that low molecular weight organic acids hinder aluminum hydrolysis (Masion 

et al., 2000) and depolymerize preformed Al13 polycations (Molis et al., 1996; 

Amirbahman et al., 2000). Our results suggest that, in the OCC range and in the 

timescale of the experiment, the Al13 coagulant species seem to be stable in presence of 

MHS, which is consistent with previous evidence of Al13 polycations found in organic 

soil horizons (Hunter and Ross, 1991). Nevertheless, some depolymerization of Al13 

polymers may occur as the AlIV/Alt ratio is observed to decrease at lower coagulant 
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dosages. Attempts to determine the speciation of aluminum with liquid state 27Al NMR 

at low aluminum concentration were unsuccessful, thus indicating that the aluminum 

species are strongly associated with the humic material. 

 Interestingly, Figure 3 reveals some kind of continuity as a function of 

aluminum concentration between values obtained at pH 6 and 8 for percent of 

tetrahedral aluminum, FWHH of octahedrally coordinated species, and octahedral 

aluminum chemical shift. This suggests that the size and degree of polymerization of 

Al13 units increase regularly with coagulant concentration irrespective of pH. In other 

terms, 27Al NMR does not reveal any contrasting behavior in the formation of 

coagulant species between pH 6 and 8, or low and high aluminum concentrations. Thus, 

the formation of a voluminous mass of aluminum hydroxyde precipitate usually 

reported in the sweep-flocculation domain (e.g. Edwards and Amirtharajah, 1985) is not 

detected. 

 

Interaction between coagulant species and MHS functional groups. The CP-MAS 

13C NMR spectra of MHS coagulated with various aluminum concentrations at pH 6 

and 8 are shown in figure 4. All spectra display major signals at about 176, 145, and 

117 ppm which are easily assigned to carboxylic carbon, phenolic ring carbon 

(aromatic-oxygen bound), and aromatic ring carbon, respectively (Inbar et al., 1989). In 

addition, the original non coagulated MHS exhibits a small peak at about 85 ppm, 

which is characteristic of aliphatic carbon singly bonded to oxygen or nitrogen 

(Stuermer and Payne, 1976). 

 The main characteristic of the CP-MAS technique is that the magnetization is 

transferred to 13C from neighboring protons 1H through dipolar coupling which is 

strongly distance dependent: in other terms, 13C that are close to protons generally 

cross-polarize more efficiently than 13C that are some distance away from a proton. 

Applied to MHS-Al aggregates, 13C CP-MAS NMR may be used to probe the presence 

of highly hydrated coagulant species in the vicinity of a given functional group. Thus, at 

pH 6, the relative abundance of the peak at 176 ppm increases with aluminum 
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concentration to become predominant for [Al] ≥ 2.6 10-4 mol/L. Such a result is then in 

agreement with the picture of positive coagulant species anchored on negatively 

charged carboxylic groups. Likewise, the 117 ppm resonance, poorly resolved at low 

coagulant concentration, is enhanced at higher aluminum dosage. Previous studies have 

shown that MHS carboxylic groups originate in part from the cleavage of catechol 

aromatic rings during oxydative polymerization (Hänninen et al., 1987). Therefore, it is 

not surprising that the evolutions of carboxyl and aromatic carbon resonances can be 

related. Interestingly, the carboxylic to aromatic C ratio increases linearly with 

aluminum concentration up to the COC as illustrated in figure 5a. Finally, just before 

restabilization of aggregates, the 117 ppm signal increases strongly. This suggests that 

phenolic groups are available for association with Al13 polycations in presence of 

excess coagulant. 

 At pH 8, the 13C CP-MAS NMR spectra obtained above the OCC closely 

resemble the spectra at pH 6 with similar proportions of carboxyl, phenolic ring, and 

aromatic ring carbons in the optimal concentration range. However, at pH 8, the 

intensities of carboxyl, phenolic, and aromatic peaks are almost equivalent at low 

coagulant dosages (figure 4), with the aromatic peak significantly dominating at [Al] = 

4.10-4 mol/L. This suggests that the ionized functional groups of MHS do not interact 

with Al13 polycations in the same order according to pH. Thus, the enhanced aromatic 

carbon signal at pH 8, indicates that the aluminum hydrolyzed species preferentially 

associate with phenolic moieties in the low coagulant concentration range, and then 

with carboxylic functional groups at higher aluminum dosages. The carboxylic to 

aromatic carbon ratios obtained at pH 8 further illustrate such a view (figure 5b). 

 

Electrophoretic mobility of Al-MHS aggregates. The electrophoretic mobilities of 

MHS coagulated at pH 6 and 8 with various concentrations of Al13 polycations, are 

shown in figure 6. Up to the OCC, the aggregates present a constant negative mobility 

at both pH 6 and 8 although the humic-like substance coagulated well in this 

concentration range. Therefore, in contrast to oxide or clay colloidal particles 
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aggregated with metal hydrolyzable coagulants (e.g. James et al., 1977), the mobility 

curve of MHS aggregates provides no indication of the optimal coagulation zone. This 

implies that the destabilisation mechanism operating at pH 6 can not correspond to a 

simple charge neutralization of MHS with Al13 polycations. Above OCC, the 

electrophoretic mobilities reduce to less negative values until charge reversal of 

aggregates. Comparison with the Jar test results indicates that at pH 6, the 

restabilization of aggregates begins with nearly neutral aggregates, whereas at pH 8, the 

lower positive electrophoretic mobilities obtained in presence of excess coagulant seem 

insufficient to trigger MHS redispersion. This effect can be ascribed to a difference in 

binding strength between the coagulant species formed at pH 6 and 8. Indeed, Al13 

polycations, charged 6+ at pH 6 should be more effective in changing the conformation 

of humic chains, than the lesser charged coagulant species formed at pH 8. Such a 

reorganization of MHS chains around positive coagulant species would then yield the 

negative electrophoretic mobilities observed in the optimal removal range at both pH 6 

and 8. 

 

Pyrene fluorescence in MHS coagulated suspensions. Figure 7 illustrates the 

aluminum concentration dependence of the I1/I3 fluorescence intensity ratio at pHs 6 

and 8. In order to facilitate the discussion, electrophoretic mobility results are also 

plotted on the same graph. The intensity ratio of the first and third vibronic peaks in the 

pyrene fluorescence spectrum is known to provide a good solvent polarity sensor at the 

local scale (Kalyanasundaram and Thomas, 1977). In pure water, I1/I3 is about 1.9, 

while it is much lower in an apolar medium (e.g. I1/I3 ~ 0.6 in hexane). The recorded 

value of I1/I3 is then an average of that reported for pyrene associated with MHS and 

pyrene in the bulk aqueous phase. 

 In the original MHS suspension, I1/I3 is equal to 1.8 which indicates an average 

solvent environment of pyrene slightly less polar than water. Upon addition of the 

aluminum coagulant, I1/I3 decreases at both pH 6 and 8 to reach a minimum for [Al] = 

1.4 10-4 mol/l. This suggests that the pyrene probe has been solubilized within a more 
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hydrophobic environment. Such a behavior can be explained by (i) an increased 

partition of pyrene into newly created hydrophobic domains, and/or (ii) a reorganization 

of humic chains in the vicinity of previously sorbed pyrene molecules. However, as the 

fluoroprobe is expected to be largely associated with MHS prior to the addition of Al13 

polycations (Chin et al., 1997; Kopinke et al., 2001), the second hypothesis is favored. 

The minimum values measured for I1/I3, about 1.75 at both pH 6 and 8, are in close 

agreement with I1/I3 intensity ratios found for Latahco silt loam humic acid in the 

presence of MgCl2 (Engebretson and von Wandruszka, 1997). 

 Further increase in coagulant dosage reverts the evolution of I1/I3, and the initial 

environmental polarity around pyrene molecules is restored for aluminum 

concentrations of 4.4 10-4 and 7 10-4 mol/l at pHs 6 and 8, respectively. This peculiar 

phenomenon can be compared with a demicellization process at the macromolecule 

scale. As increasing amounts of Al13 polycations are added to the MHS suspension, the 

coagulant species are expected to compete for the negatively charged moieties of humic 

chains. Therefore, instead of being attached onto functional groups of more than one 

chain thus determining intramolecular bridging links, the positive coagulant species 

become associated with individual carboxylic and phenolic groups, which eventually 

results in electrostatic repulsion between humic chains. The gradual reduction in 

electrophoretic mobility of MHS-Al aggregates to zero in this range of concentration, 

corroborates such a view. 

 

CONCLUSION 

In the pH range relevant to drinking water treatment, the removal of humic 

substances is generally described by at least two destabilization mechanisms according 

to pH and coagulant concentration. Contrary to this widely accepted view, our results 

suggest a similar MHS/Al13 aggregation at both pHs 6 and 8. A comparable conclusion 

was reached by Vilgé-Ritter et al. (1999b) in her combined EXAFS and SAXS study of 

NOM destabilization with ferric chloride at pH 5.5 and 7.5. 
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 Until a consensus can be reached regarding the structure and conformation of 

humic substances, any investigation carried out with a synthetic anologous of humic 

material will remain arguable. However, our study suggests that a reorganization of 

anionic humic chains occurs upon association with the positively charged coagulant 

species. Such a conclusion is consistent with humic acids viewed as soft and permeable 

structures (Duval et al., 2005). It is also in accordance with previous EELS results, 

obtained with both MHS and natural humic substances, suggesting that the optimal 

coagulant concentration depends on the interplay between the rate of collisions of 

humic colloids/coagulant species, and the rate of organic material reconformation (Jung 

et al., 2005). In that case, for a given collision rate, larger molecular weight material 

with lower reconformation rate, should be removed prior to lower molecular weight 

organic colloids. 
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FIGURE CAPTIONS 

 

Figure 1. Evolution as a function of aluminum concentration of (a) residual turbidity (b) 

Sediment volume (c) Residual aluminum concentration in supernatant. pH 6 filled 

symbols - pH 8 open symbols. 

 

Figure 2. 27Al MAS NMR spectra of freeze-dried MHS coagulated with different 

concentrations of aluminum at pHs 6 and 8. 

 

Figure 3. Evolution as a function of aluminum concentration of (a) Peak chemical shift 

of 
27

Al octahedral resonances. (b) Full Width at Half Height for octahedrally 

coordinated species. (c) Percentage of Al
IV

/Alt ratio. pH 6 (filled circles) and at pH 8 

(open circles). 

 

Figure 4. 13C CP MAS NMR spectra of freeze-dried MHS coagulated with various 

aluminum concentrations at pHs 6 and 8. 

 

Figure 5. Intensity ratio of carboxylic carbon and aromatic carbon peaks calculated from 

13C NMR spectra of coagulated MHS (a) pH 6 and (b) pH 8. 

 

Figure 6. Evolution of the electrophoretic mobility of MHS-Al aggregates as a function 

of Al concentration at pHs 6 and 8. 

 

Figure 7. Evolution of pyrene I1/I3 ratio intensity and electrophoretic mobility of MHS-

Al aggregates. (a) pH 6, (b) pH 8. 
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Figure 1 

 

 

 

Fig. 1. (a) Turbidity removal of 30mg/L of humic acid. (b) Sediment volume of aggregates after
 	 24 hours settling. (c) Residual aluminum in supernatant. All parameters are measured as 
	 a function of aluminum dose and pH. Filled circles, diamonds and squares show 		
	 variations at pH 6. Open circles, diamonds and squares show variations at pH 8.	 	
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Fig. 3. (a) Peak chemical shift of 27Al octahedral resonances. (b) Percentage of AlIV/Alt ratio. 
 	 (c) Full Width at Half Height for octahedrally coordinated species.  All parameters are 	 	
	 measured as a function of aluminum dose and pH. Measurements are done at pH 6 
	 (filled circles) and at pH 8 (open circles).
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Figure 5 
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Figure 5. (a) Intensity ratio of carboxylic carbon and aromatic carbon peaks calculated from 
13C NMR spectra of coagulated HA suspensions at pH 6. (b) Intensity ratio of carboxylic 
carbon and aromatic carbon peaks calculated from 13C NMR spectra of coagulated HA 
suspensions at pH 8.
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Figure 6 
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Figure 7a 

 

 

 

 

 

Figure 7b 

 


