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Abstract

We derivate analytic expressions for the effective permeability of a doubly porous
medium which contains cylindrical or spherical macropores. The homogenization
procedure is based on the consideration of a unit cell with a prescribed macroscopic
pressure gradient or macroscopic velocity on its boundary. Within the unit cell, we
have to solve the coupled Darcy-Stokes equations with appropriate interface models.
The effective permeability of the bi-porous solid is determined by considering the
composite cylinder and sphere assemblages. The solutions with prescribed macro-
scopic pressure gradient and velocity are provided and the influence in the choice
of the interface model on the effective permeability of the doubly porous solid is
studied. Finally, the results are compared with existing expressions provided in the
literature and the estimate for the case of a cylindrical macropore is compared with
finite element solutions.
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1 Introduction

Geomaterials such as concrete or rocks are naturally porous media and their
transport properties are classically described by the Darcy law and the per-
meability coefficient. The derivation of the permeability in the framework of
homogenization procedures has been largely documented in the literature us-
ing asymptotic approaches [5,43,30] or volume average methods [48,1]. In the
present paper, we focus on the permeability of a doubly porous material con-
stituted of an initially porous structures containing non interconnected macro-
pores. The apparition of the macropores is due to mechanical loading or chem-
ical reactions and the determination of their role on the mass transfer proper-
ties is of particular interest for various applications such as fluid/gaz storage.
Obviously, the geometry of fractures in geomaterials must be depicted by flat
ellipsoids (see for instance Budiansky and O’Connell [17]), however, in this pa-
per, we consider the case of cylindrical and spherical macropores by simplicity.
The case of ellipsoidal shapes would be investigated in a next study. Note how-
ever that the results in the case of the spherical shape can be used to estimate
the permeability of some bi-porous polymers (see for instance [31,32]).
The problem to study has three scales: the first is that of an interconnected
network of submicron channels, the second scale is associated with the random
distribution of non interconnected macropores, the last scale is the macroscopic
one. The macroscopic permeability can be determined by a double homoge-
nization approach along the lines of a method which has been derived for in-
stance, by the asymptotic expansion method (see Auriault and Boutin [6–8],
Royer et al. [40], Boutin et al. [11], Olny and Boutin [36]). At the intermediate
scale, a coupled Darcy/Stokes problem has to be solved. However, the asymp-
totic method is not able to deliver the conditions et the interface between
the Darcy region and the Stokes one. Two different approaches are generally
considered in the literature: (i) the first uses the interface model of Beavers-
Joseph-Saffman (BJS) [10,41] (see also [35] for a historical background), (ii)
the second one uses the Brinkman equation [14,15]. Some comparisons of these
two approaches has been also provided on the literature for 2d geometric con-
figurations (see for instance [19]).
Analytic models has been first provided by Markov et al.[34] introducing the
concept of an equivalent permeability for the macropores. The latter is deter-
mined by solving the coupled Darcy/Stokes equations with the BJS interface
model for an isolated cavity embedded in an infinite porous matrix. The re-
sults are provided in the cases of a cylindrical or spherical pore. The results
have been latter extended to the case of a spheroidal cavity by Rasoulzadeh et
al. [39] which can mimic fractures by taking an oblate spheroid with a small
value of the aspect ratio. Another analytic solutions has been derived by Silva
and Ginzburg [44] for a composite cylinder, i.e. two concentric cylinders in
which the flow obeys to the Brinkman equation but with different coefficients
in the core and in the coating.
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In the present paper, we derive the effective permeability of bi-porous materi-
als with cylindrical and spherical macropores by using the approach based on
Darcy-Stokes equations. The influence in the choice of the interface model on
the effective permeability is then analyzed. The effective permeability is de-
termined by considering the composite cylinder and sphere models which have
been often considered by the past by various authors in the context of porous
media [23,27,45,12]. The analytic solutions with prescribed macroscopic pres-
sure gradient or macroscopic velocity at the boundary of the representative
volume element are provided and the close form expression of the effective
permeability is given. The solutions are compared with finite element ones in
the case of a cylindrical shape. We also determine the equivalent permeability
of the Stokes region and it is compared with the results of Markov et al. [34].

2 Homogenization problem

2.1 Local equations and interface conditions

Consider a Representative Volume Element (RVE) of a doubly porous solid.
Both the porous solid and the macropores are fulfilled by a Newtonian vis-
cous fluid with the dynamic viscosity µ. We denote by Ωs the domain occu-
pied by the porous solid and by Ωf the domain of the pores. Obviously, the
permeability of the solid phase is associated with an interconnected porous
microstructure at a lower scale (see figure 1). The permeability of the matrix
is assumed to be known (obtained from experiments) and the macropores (the
first porosity) are assumed to be non interconnected. Denoting by h the char-
acteristic length of the channels of the initial interconnected microporous solid
(the second porosity), we assume that h is sufficiently small compared to cav-
ities radius a such that there is a scale separation between the two porosities.
The macropores are then embedded in a homogenous porous material having
the permeability k.

p = G.x or v.n = V .n

porous solid

macropores

h

Fig. 1. Schematic representation of the RVE

In the macropores, the fluid flow is described by the Stokes equations:
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µ∆v −∇p = 0 ∀x ∈ Ωf (1)

div v = 0 x ∈ ∀Ωf (2)

Within the solid, the fluid flow obeys to the Darcy law with the incompress-
ibility condition:

v = −k

µ
∇p ∀x ∈ Ωs (3)

div v = 0 ∀x ∈ Ωs (4)

At the interface between the fluid and the solid, the Beaver-Joseph (BJ) [10]
model is often used:

v
(s).ν = v

(f).ν ∀x ∈ Γ (5)

2µν.d(v(f)).τ = −α[v(f) − v
(s)].τ ∀x ∈ Γ (6)

2µν.d(v(f)).ν = p(f) − p(s) ∀x ∈ Γ (7)

in which p(f), v(f) and p(s), v(s) represents the pressure and velocity fields taken
at each side of the interface Γ, exponent (s) makes reference to the porous solid
and (f) to the fluid phase (i.e. the macropores). Also, ν and τ represent the
normal and the tangential unit vectors acting on Γ. In equation (6), α is a
coefficient of the BJ model, d(v(f)) represents the strain rate tensor computed
in the fluid region. These interface conditions represent: the continuity of the
mass flux (5), the discontinuity for the tangential velocity (6) and the conti-
nuity for the normal traction (7). At the interface Γ, the normal component
of the velocity field is then continuous but the tangential component and the
pressure are discontinuous.
Based on their experimental observations, Beaver and Joseph [10] proposed
the following expressions for the coefficient α:

α =
µ√
k
δ (8)

in which δ is a dimensionless coefficient called slip coefficient and is character-
istic of the geometry of the porous solid. This coefficient has been determined
experimentally by Beavers and Joseph [10] for Nickel foametal and found 0.78,
1.45 and 4.0 for porous microstructures having average pore size of 0.016, 0.034
and 0.045 inches respectively. For Aloxite they found a value of 0.1 with the
average pore size of 0.013 and 0.027 inches. Numerical studies have been also
provided by Sahraoui and Kaviany [42] for 2d periodic structure made of cylin-
drical particles and found a value of the slip coefficient closed to 2.
Some other theoretical support of the BJ model has been provided in the lit-
erature. For instance, Saffman [41] uses a statical treatment and found that
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the tangential velocity component in the porous solid could be neglected and
suggests to use the following condition for the tangential velocity:

2µν.d(v(f)).τ = −αv(f).τ x ∈ Γ (9)

This form has been considered in numerous works (see for instance [28,4,46]).
A tentative to demonstrate the BJS interface model has been provided by
Jager and Mikelic [24] using the asymptotic series expansion method and a
scale separation. Moreover, the authors show that the slip coefficient could be
determined through an auxiliary-layer type problem.
Auriault [9] analyses the interface condition at the frontier between a fluid and
a porous solid by the method of asymptotic series expansion and conclude that
the adherence condition could be used at the frontier between the Darcy and
the Stokes region:

v
(f).τ = 0 x ∈ Γ (10)

The adherence condition is a particular case of the BJS model corresponding
to α = +∞.
In order to avoid in confusion, the equations (5), (6) and (7) are called Beavers
and Joseph (BJ) conditions. We call Beavers-Joseph-Saffman (BJS) the inter-
face model which use conditions (5), (9) and (7). The adherence model corre-
sponds to conditions (5), (10) and (7).
For all the calculations provided in the next sections, it is preferable to use
the following unique equation for the jump of the tangential velocity:

2µν.d(v(f)).τ = −α[v(f) − ǫv(s)].τ x ∈ Γ (11)

where ǫ = 1 and α is given by (8) for the BJ model, ǫ = 0 and α is given by
(8) for the BJS model while α = +∞ and ǫ = 0 for the adherence condition.
Note that other interfacial conditions has been proposed in the literature (see
for instance [37,38,47]) but are not considered in the present study. Note that
the existence and uniqueness of the solution of Darcy/Stokes coupled problem
with the BJS interface condition has been studied for instance by Arbogast and
Lehr [3]. Note also that the velocity field is divergence free in the porous solid
and in the micro-pores. The pressure is then an harmonic function everywhere
in the RVE:

∆p = 0 ∀x ∈ Ωs ∪ Ωf (12)
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2.2 Boundary conditions and macroscopic permeability

In order to determine the macroscopic permeability of the porous material,
let Ω be subjected to the following prescribed pressure on its external surface
∂Ω:

p = G.x, ∀x ∈ ∂Ω (13)

or the prescribed normal velocity:

v.n = V .n, ∀x ∈ ∂Ω (14)

whereG represents the macroscopic pressure gradient, V represents the macro-
scopic velocity and n the normal unit vector taken on the boundary ∂Ω.
A velocity field is said admissible if it is divergence free in Ωf and in Ωs, if the
normal velocity v.ν is continuous across Γ and if v satisfies to the boundary
condition (14). For such velocity fields, we have the compatibility condition:

V =< v >Ω (15)

that is easily proved by using the divergence theorem.
A pressure field is said admissible if it is continuous and continuously differ-
entiable in each phase and satisfy to the boundary condition (13). For such
pressure field, we have the following compatibility condition:

G =< ∇p >Ω +
1

|Ω|
∫

Γ
[p]νdx (16)

where [p] = p(s) − p(f) represents the jump of p across Γ. The above condition
extends the classic average relation in the case of non continuous fields. For
instance, equivalent relation also appears for the average of stress in the case
of elastic composites with imperfect interfaces (see for instance [29]).
If the boundary condition (13) is applied to the RVE, due to the linearity of the
Darcy-Stokes equations, the local velocity and pressure fields linearly depends
on the applied macroscopic pressure gradient G. This mean that there exist a
localization tensor A(x) such that:

v = A(x).G (17)

Introducing this expression in the average relation (15), it leads to:

V = −1

µ
K

hom.G (18)

where we have introduced the macroscopic permeability:

K
hom = −µ < A(x) >Ω (19)
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Alternatively, if the boundary condition (14) is used, the local pressure gradi-
ent can be expressed as function of V by introducing the localization tensor
B(x):

p = B(x).V (20)

Introducing this expression in (16), it leads to:

[Khom]−1 = −1

µ

{

< ∇B(x) >Ω +
1

|Ω|
∫

Γ
ν

s
⊗ [B(x)]dx

}

(21)

The value ofKhom is different from the local permeability k due to the presence
of the macropores. Obviously, when the volume of the macropores is null, the
RVE is only constituted of the porous medium with the isotropic permeability
k and the macroscopic permeability is Khom = kI. The main objective of this
work is to determine the homogenized permeability tensor Khom as function
of the local permeability k, the macro-pores radius a and of the volume frac-
tion f . Also the choice of the interface model on the effective permeability is
investigated considering the BJ, BJS or the adherence interface model.

3 Exact solution for a cylindrical macropore

In this section, we aim to derive exact solutions of the Darcy-Stokes problem
in the case of a unit cell containing a single cylindrical pore. The cylinder
is made up of an isotropic porous solid with the permeability k containing a
macropore of radius a fulfilled by a viscous fluid which obeys to the Stokes
equations. At its external boundary, the pressure p = G.x is applied. The
external radius is denoted by b.

a

b

Fig. 2. Hollow cylinder with external radius b containing a cylindrical void of radius
a.

Regarding the boundary condition on the porous cylinder, it reads in the
cylindrical frame (r, θ, z):

p = G1b cos(θ) +G2b sin(θ) (22)
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The solution with a prescribed normal velocity at the boundary of the RVE is
provided in the appendix A.1. It leads to the same expression for the macro-
scopic permeability.
We assume that only the component G1 is non null. In order to satisfy the
boundary condition (22), we choose the following expression for the local pres-
sure:

p = F (r) cos(θ) (23)

in the fluid and in the solid.
Obviously, the function F (r) takes different expressions in the solid and in the
fluid regions. The pressure being a harmonic function, it leads to:

∆p =
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂θ2
=
[

F ′′(r) +
1

r
F ′(r)− 1

r2
F (r)

]

cos(θ) = 0 (24)

which is satisfied for:

F (r) =



















A1r +
B1

r
in the solid

A2r +
B2

r
in the fluid

(25)

where A1, B1, A2 and B2 are four constants. The term B2/r is eliminated since
it diverges at r = 0. The velocity field in the solid is given by the Darcy law:

vr = −k

µ
F ′(r) cos(θ) = −k

µ

[

A1 −
B1

r2

]

cos(θ) (26)

vθ =
k

µ

F (r)

r
sin(θ) =

k

µ

[

A1 +
B1

r2

]

sin(θ) (27)

In the macropore, the velocity field must comply with the Stokes equations,
which reads, in the cylindrical frame:

µ∆vr −
µ

r2

[

2
∂vθ
∂θ

+ vr

]

− F ′(r) cos(θ) = 0 (28)

µ∆vθ +
µ

r2

[

2
∂vr
∂θ

− vθ

]

+
F (r)

r
sin(θ) = 0 (29)

This suggests to use the following expressions for the components of the ve-
locity field:

vr = G(r) cos(θ), vθ = H(r) sin(θ) (30)

The introduction of these expressions in equations (28) and (29) leads to a lin-
ear system of differential equations for G(r) andH(r) which have the following
general solution:
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G(r) =
A2

8µ
r2 + C2 +

D2

r2
, H(r) = −3A2

8µ
r2 − C2 +

D2

r2
(31)

where C2 and D2 are two additional constants. Again, the term D2/r
2 is

eliminated since it diverges at r = 0.
The interface conditions must now be verified. The continuity of the flux reads:

v(f)r (r = a) = v(s)r (r = a) (32)

The interface condition for the tangential velocity is:

µ





1

r

∂v(f)r

∂θ
− v

(f)
θ

r
+

∂v
(f)
θ

∂r





(r=a)

= −α
[

v
(f)
θ − ǫv

(s)
θ

]

(r=a)
(33)

The continuity of the normal traction is:

2µ

[

∂v(f)r

∂r

]

(r=a)

=
[

p(f) − p(s)
]

(r=a)
(34)

and finally the boundary condition for the pressure is satisfied if:

A1b+
B1

b
= G1b (35)

Introducing expressions (26), (27) and (30) with (31) in Eqs. (32) to (34) leads
to a linear set of algebraic equations for the unknown coefficients. The solution
of this linear system is:

A1 =
G1

Q
[2aµ+ αa2 + 2α(1 + ǫ)k]

B1 = −G1

Q
(2µa+ αa2 − 2αk(1− ǫ))a2

A2 =
8kαG1

Q

C2 = −kG1

µQ
(4αǫk + 4aµ+ 3αa2)































































(36)

in which Q is given by:

Q = [αa2 + 2aµ+ 2αǫk](1− f) + 2αk(1 + f) (37)
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4 Exact solutions for spherical macropore

a

b

Fig. 3. Hollow sphere with external radius b containing a spherical void of radius a.

In this section, we consider the case of a spherical cell of radius b containing a
macropore of radius a. The permeability of the porous matrix is still denoted
by k and the same methodology follows in the case of a cylindrical macropore
is still considered. The boundary condition (13) reads in the spherical frame
(r, θ, ϕ):

p = G1r cos(θ) sin(ϕ) +G2r sin θ) sin(ϕ) +G3r cos(ϕ) (38)

The solution with a prescribed normal velocity at the boundary of the RVE is
provided in the appendix A.2. Again, the same expression for the macroscopic
permeability is obtained with this kind of boundary conditions.
Due to the symmetry of the problem, only the case G1 6= 0 and G2 = G3 = 0
is considered. The verification of the boundary condition suggests to use the
following expression for the pressure:

p = F (r) cos(θ) sin(ϕ) (39)

The pressure being harmonic, we deduce that the function F (r) has the fol-
lowing expression:

F (r) =



















A1r +
B1

r2
in the solid

A2r in the fluid

(40)

In the solid matrix, the velocity is given by the Darcy law:
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vr = −k

µ

[

A1 −
2B1

r3

]

cos(θ) sin(ϕ) (41)

vθ = −k

µ

[

A1 +
B1

r3

]

sin(θ) (42)

vϕ = −k

µ

[

A1 +
B1

r3

]

cos(θ) cos(ϕ) (43)

In the fluid phase, we use the following expressions for the velocity field:

vr = G1(r) cos(θ) sin(ϕ) (44)

vθ = G2(r) sin(θ) (45)

vϕ = G3(r) cos(θ) cos(ϕ) (46)

The verification of the Stokes equations leads to:

G1(r) = C1 + C2r
2 +

C3

r
+

C4

r3
(47)

G2(r) = G3(r) =
A2

4µ
r2 + C1 −

C2

2
r2 +

C3

r
− C4

2r3
(48)

This field is divergence free for C2 = A2/(10µ).
Obviously, the term in ”1/r” and ”1/r3” are discarded since they diverge à
r = 0. Finally, the constants are determined with the boundary condition at
r = b and the interface conditions:

v(f)r (r = a) = v(s)r (r = a), (49)

µ





1

r sin(ϕ)

∂v(f)r

∂θ
− v

(f)
θ

r
+

∂v
(f)
θ

∂r





(r=a)

= −α
[

v
(f)
θ − ǫv

(s)
θ

]

(r=a)
, (50)

µ

[

1

r

∂v(f)r

∂ϕ
− v(f)ϕ

r
+

∂v(f)ϕ

∂r

]

(r=a)

= −α
[

v(f)ϕ − ǫv(s)ϕ

]

(r=a)
, (51)

2µ

[

∂v(f)r

∂r

]

(r=a)

=
[

p(f) − p(s)
]

(r=a)
(52)

Equations (50) and (51) correspond to the discontinuity of the tangential
velocity components, along direction eθ and eϕ respectively. These conditions
have found to be equivalent since G2(r) = G3(r).
Additionally, the boundary condition for the pressure is satisfied for:

A1b+
B1

b2
= G1b (53)

The identification of the constants leads to:
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A1 =
G1(a

2α + 6αk(2 + ǫ) + 3aµ)

Q
, (54)

B1 = −G1a
3

Q
(a2α + 3aµ− 6α(1− ǫ)k), (55)

C1 = −3G1k

µQ
(3aµ+ 2a2α + 6αǫk), (56)

A2 =
30G1αk

Q
(57)

with:

Q = [αa2 + 3aµ+ 6kαǫ](1− f) + 6αk(2 + f) (58)

5 Effective permeability

5.1 Analytic solution for cylindrical/spherical macropores

The macroscopic velocity is computed from the average rule (15). The in-plane
permeability is Khom = KhomI2 where I2 is the identity in 2d dimension.
Expressions of Khom are:

Khom = k

{

1 + 2f
δ + 2

√
κ

[δ + 2
√
κ](1− f) + 4δκ

}

BJ model

Khom = k

{

1 + 2f
δ(1− 2κ) + 2

√
κ

[δ + 2
√
κ](1− f) + 2δκ(1 + f)

}

BJS model

Khom = k

{

1 + 2f
1− 2κ

1− f + 2κ(1 + f)

}

Adherence model

(59)

The dimensionless coefficient κ is defined by:

κ =
k

a2
(60)

and the dimensionless coefficient δ has been introduced in equation (8). Coef-
ficient κ accounts for the macropores size.
In the case of a spherical macropore, the permeability tensor is isotropic,
Khom = KhomI where Khom is defined by:
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Khom = k

{

1 + 3f
δ + 3

√
κ

[δ + 3
√
κ](1− f) + 18κδ)

}

BJ model

Khom = k

{

1 + 3f
δ(1− 6κ) + 3

√
κ

[δ + 3
√
κ](1− f) + 6κδ(2 + f))

}

BJS model

Khom = k

{

1 + 3f
1− 6κ

1− f + 6κ(2 + f)

}

Adherence model

(61)

Considering coefficient κ, it depends on the permeability k of the microporous
matrix and on the radius of the macropores. For geomaterials, the permeability
is typically inferior to 10−12m2 (i.e. one Darcy). Assuming that the macropores
radius is superior to 10−6m, we deduce that the value of κ is strictly inferior
to 1. The value of κ can reach very small values, considering for instance
a geomaterial with very low permeability (k = 10−18m2 for example) and
macropores of 10µm, it gives κ = 10−8.
From a homogenization point of view, it is raisonnable to suppose that κ is a
small parameter. Indeed, the permeability of the porous matrix is k = O(h2)
where h is the characteristic length of the first (sub-micron) porosity, then
κ = O(h2/a2). Moreover, h << a since we assumed a separation of scales
between the two porosities. Assuming that h/a < 0.1, that is the limit for
having the scale separation, we deduce that κ ≤ 10−2. Consequently, in all the
applications proposed in the paper, we limit the value of κ by 10−2.
Regarding expression (59), the macroscopic permeability decreases with f if:

δ(1− 2κ) + 2
√
κ < 0 (62)

and regarding expression (59), if:

κ >
1

2
(63)

This obviously leading to non physical results since it is expected that the
presence of the macropores increases the effective permeability. Similar con-
ditions could be derived for the spherical macropore. As mentioned above, it
is reasonable to assume that κ is small and then the above conditions are
never attained. It must be mentioned that the effective permeabilities derived
with the BJ interface model are monotonously increasing functions with the
porosity f whatever the value of δ and κ.
On figure 4, we represent the variations of the dimensionless permeability
Khom/k for a cylindrical macropore as function of the porosity f and for dif-
ferent values of the slip coefficient δ and parameter κ. On figure 5, we display
the same results but for the spherical macropore.
It is observed, for the cylindrical macropore, that the effective permeability
obtained with the three interface models leads to the same estimation. There
is slight differences when considering the adherence model instead of the BJ
or BJS models when δ = 0.1 and κ = 10−2. In the case of the spherical macro-
pore, the three interface models leads to the same estimate when κ = 10−4.
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However, when κ = 10−2, the estimate obtained with the adherence model
differs from two others. As a first conclusion, we observe that the BJ and BJS
interface models leads to the same estimates for the effective permeability for
any values of κ and δ. Consequently, the hypothesis formulated by Saffman
[41], which supposes that the tangential components of the velocity field in the
Darcy region is negligible compared to its counterpart in the Stokes region, is
verified for microstructures with isolated spherical and cylindrical macropores.
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Fig. 4. Case of a cylindrical macropore. Variations of the dimensionless permeability
Khom with the porosity f for δ = 1 and κ = 1e− 4.
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Fig. 5. Case of a spherical macropore. Variations of the dimensionless permeability
Khom with the porosity f for δ = 1 and κ = 1e− 2.

The variations of the effective permeability with the coefficient κ is now pro-
vided in Fig. 6, 7 and 8 for the slip coefficient values δ = 0.01, δ = 1 and
δ = 100 respectively. The porosity if f = 0.5. On each figure, it can be ob-
served that the three models (BJ, BJS and adherence) are equivalent at small
values of κ (typically inferior to 10−4). Moreover the estimate reach a plateau
for very small values of κ. When the slip coefficient is small (see for instance
the case δ = 0.01 on Fig. 6), the estimates obtained with the BJ and BJS
interface conditions are equivalent but are very different to that derived with
the adherence condition. The latter provides a lower estimate for the effective
permeability in the range 10−3 ≤ κ ≤ 1. Moreover the dependence of Khom/k
with κ is important for the adherence but less significant with the BJ and BJS
interface conditions. At an intermediate value of δ (see for instance the case
δ = 1 on Fig. 7). The effect of κ on the effective permeability is more promi-
nent for the BJ and BJS models than in the case δ = 0.01. Also, the three
estimates are different in the range 10−3 ≤ κ ≤ 1. This suggests that the tan-
gential velocity in the microporous solid (that is neglected in the BJS model)
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is no longer negligible compared to the tangential velocity in the fluid region.
For large values of the slip coefficient (see for instance the case δ = 100 on Fig.
8), the permeability with the BJS and adherence conditions are equivalent but
differs from that which uses the BJ interface condition.
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Fig. 6. Case of a spherical macropore. Variations of the dimensionless permeability
Khom/k with κ for δ = 0.01 and f = 0.5.
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Fig. 7. Case of a spherical macropore. Variations of the dimensionless permeability
Khom/k with κ for δ = 1 and f = 0.5.
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Fig. 8. Case of a spherical macropore. Variations of the dimensionless permeability
Khom/k with κ for δ = 100 and f = 0.5.

Comparisons with finite element solutions are now provided to evaluate the ac-
curacy of the analytic solutions. The calculations are performed on a squared
unit cell containing a circular macropore. The periodic conditions are applied
for the velocity and the pressure field on the boundary of the cell. The dimen-
sion of the unit cell is L = 10µm. The calculations are performed by consid-
ering two values of the permeability of the microporous matrix: k = 10−15m2

and k = 10−13m2. We vary the radius of the macropore a, by doing so, we
modify simultaneously the porosity f = πa2/L2 and coefficient κ = k/a2.
Incompressible fluid flow problems generally contain velocity and pressure as
the unknown variables and fall in the category of mixed formulations [49]. It
was recognized that the solutions strongly depend upon the particular pair
of velocity and pressure interpolations employed. The spaces of discretization
must satisfy the inf-sup condition or the Ladyhenskaya-Babuska-Brezzi con-
dition (see Brezzi [16]). Following [28], we use a mixed variational procedure
with the Raviart-Thomas elements for Darcy region and MINI element for
the Stokes region and the periodic boundary conditions are accounted with
Lagrange multipliers. More details can be also found in [33].
The variation of the effective permeability with the radius of the macropore
is represented on figs 9 and 10 for k = 10−15 and k = 10−13 respectively. The
finite elements (FE) solutions are compared with the analytic expressions in
(61). The slip coefficient is δ = 1. A good agreement between the FE solutions
and the analytic estimates of the effective permeability is observed. Differ-
ences are however observed for the higher values of the macropore radius that
is probably attribuable to the shape of the unit cell: squared for the FE so-
lution and circular for the analytic solutions. Also the differences could be
attributed to the kind of boundary conditions, periodic for the squared unit
cell and Dirichlet for the hollow cylinder.
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Fig. 9. Case of a cylindrical macropore. Variations of the effective permeability with
the porosity for k = 10−15 and δ = 1. Comparison between FE solutions and the
analytic expressions.
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Fig. 10. Case of a cylindrical macropore. Variations of the effective permeability
with the macropores radius for κ = 10−13 and δ = 1. Comparison between FE
solutions and the analytic expressions.

5.2 Approximation with an equivalent Darcy medium

A simplification of the homogenization problem consists to replace the Stokes
region by an equivalent Darcy medium with the permeability k′. This simplifi-
cation has been used in various works to determine the effective permeability
of doubly porous solids with applications to fractured petroleum reservoir
[26,21,2]. By combining two Darcy media, the boundary value problem use
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the same equations for both regions and the problem fall into classic homog-
enization boundary value problems. Indeed, the Darcy problem is equivalent
to the thermal conduction and various results coming from the homogeniza-
tion theory can then be used. From a numerical point of view, the problem
is strongly simplified by considering two Darcy media. The numerical imple-
mentation of the coupled Darcy-Stokes problem involves mixed variational
formulations and specific interpolation functions which satisfy to the inf-sup
BBL condition. This has been already discussed in the previous section.
Now, the use of an equivalent Darcy medium also raise the question of the
choice of k′. It can be identified from the exact solutions derived in this paper.
Consider a composite cylinder or sphere with two Darcy media. The core has
the permeability k′ and the surrounded matrix has the permeability k. We still
consider the boundary conditions given by 13. The solutions can be found in
the book of Milton (established for the thermal conduction) and the resulting
macroscopic permeability is:

Khom = k

{

1 +
2f(c− 1)

(1− f)c+ 1 + f

}

(64)

for the cylindrical shape and:

Khom = k

{

1 +
3f(c− 1)

(1− f)c+ 2 + f

}

(65)

for the spherical shape and where the coefficient c is given by:

c =
k′

k
(66)

where c represents the contrast between the two permeabilities (that of the
macropore and that of the bulk microporous solid). Regarding first the case of a
cylindrical macropore, the equivalent permeability is determined by comparing
Eq. (64) to Eqs (59), (59) and (59). This leads to:

k′ =
a2

2

(

1 + 2κ+
2
√
κ

δ

)

BJ model

k′ =
a2

2

(

1 +
2
√
κ

δ

)

BJS model

k′ =
a2

2
Adherence model

(67)

For the spherical macropore, the equivalent permeability is:
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k′ =
a2

6

(

1 + 6κ+
3
√
κ

δ

)

BJ model

k′ =
a2

6

(

1 +
3
√
κ

δ

)

BJS model

k′ =
a2

6
Adherence model

(68)

The equivalent permeability is proportional to the square of the radius of the
macropore. For the BJ and BJS models, the equivalent permeability also de-
pends on the permeability of the microporous matrix and of the slip coefficient
δ. We observe that the equivalent permeability k′ is different for a cylindrical
and a spherical macropore. This suggests that the equivalent permeability de-
pends on the shape of the macropore.
The present results differs from that of Markov et al. [34] who obtained (for
the BJS interface model), the following expressions for the equivalent perme-
ability:

k′ =
a2

2

(

1− 3
√
κ

δ

)

cylinder

k′ =
a2

6

(

1− 4
√
κ

δ

)

sphere

(69)

These results has been derived by considering an isolated macropore embed-
ded in an infinie microporous matrix. These expressions are different to that
obtained in the present paper. Since the equivalent permeability is indepen-
dent of the first porosity f , it would be expected to obtain the same results
for k′. Moreover the equivalent permeability obtained by Markov et al. [34] is
negative if δ > 3

√
κ for the cylinder and if δ > 4

√
κ for the sphere. This can

lead to some non physical results that are illustrated on Fig. 11. The effective
permeability corresponding to spherical macropores is represented as function
of the slip coefficient δ for κ = 10−2 and for two values of the porosity, namely
f = 0.1 (on the figure at the left) and f = 0.5 (on the right). On these figures,
we compare the estimate obtained in the present paper with the BJS model
and the estimate derived by Markov et al. [34]. The results of the present paper
show a very low influence of the slip coefficient on the effective permeability
in the range [0, 1] while, the estimate of Markov et al. [34] has a singularity
in that range. This singularity is observed when the denominator in Eq. (65)
is null, that corresponding to c = −(2 + f)/(1 − f) that is possible only if
the equivalent permeability is negative. When the equivalent permeability is
positive, c > 0, no singularity could be noted for the effective permeability.
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Fig. 11. Case of a spherical macropore. Variations of Khom/k as function of the
slip coefficient δ for κ = 10−2 and f = 0.1. Comparison between the Markov et al.
(2010) estimate and that provided in the present paper with the BJS model.

6 Conclusion

The permeability of doubly porous solids with cylindrical and spherical macro-
pores has been derived in a homogenization framework. The approach consists
to solve a RVE problem with prescribed macroscopic pressure gradient at its
boundary. In the RVE, we solve the coupled Darcy-Stokes problem and we use
different interface conditions between the darcy and the stokes region (Beavers-
Joseph, Beavers-Joseph-Saffman and adherence conditions). Close form solu-
tions are derived by considering a composite cylinder or sphere models. The
results show that the interface model has no influence on the macroscopic per-
meability when there is a strong scale separation between the two porosities.
At smaller scale separation, the choice of the interface model, and the value
of the slip coefficient has a significant influence on the macroscopic permeabil-
ity. The analytic estimates have been compared with FE solutions and show
a good accuracy. Finally, an equivalent permeability for the Stokes region is
identified. The results showed that this equivalent permeability depends on
the shape of the macropore (cylindrical or spherical) and on the choice of the
interface model. Such results are however not applicable to fractured porous
solids, the fractures would depicted by considering ellipsoidal shapes.
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A Solution with prescribed velocity on the boundary

A.1 The cylindric macropore

Consider first the case of the in plane solution. The boundary condition (14)
reads in the cylindrical frame:

vr = V1 cos(θ) + V2 sin(θ) (A.1)

Only the case V1 6= 0 and V2 = 0 is considered.
The general expressions for the velocity and pressure fields with prescribed
macroscopic velocity remains the same than that determined with the applied
macroscopic pressure gradient G1. These expressions are given in section (3)
in which the expressions of the constants A1, B1, A2, C2 are different.
Only Eq. (35) in section (3), that corresponds to the applied pressure gradient,
must be changed. Considering Eq. (A.1) with the expression of the velocity
given by (30), we deduce that the boundary condition is G(b) = V1 which also
read:

−k

µ

(

A1 −
B1

b2

)

= V1 (A.2)

Finally, the expressions of the constants are:

A1 = −µV1

kP
[2aµ+ αa2 + 2α(1 + ǫ)k]

B1 =
µV1

kP
(2µa+ αa2 − 2αk(1− ǫ))a2

A2 = −8kαµV1

kP

C2 =
V1

P
(4αǫk + 4aµ+ 3αa2)



























































(A.3)

in which Q is given by:

P = [2aµ+ αa2 + 2αǫk](1 + f) + 2αk(1− f) (A.4)
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A.2 The spherical macropore

In the case of a spherical macropore, the condition (53) must be replaced by:

−k

µ

(

A1 − 2
B1

b3

)

= V1 (A.5)

The identification of the constants leads to:

A1 = −µV1(a
2α + 6αk(2 + ǫ) + 3aµ)

kP
, (A.6)

B1 =
µV1a

3

kP
(a2α + 3aµ− 6α(1− ǫ)k), (A.7)

C1 =
3V1

P
(3aµ+ 2a2α + 6αǫk), (A.8)

A2 = −30µV1α

P
(A.9)

with:
P = [αa2 + 3aµ+ 6kαǫ](1 + 2f) + 12αk(1− f) (A.10)
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