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Abstract : 
 
Ferromanganese (Fe-Mn) deposits constitute a ubiquitous mineral type in oceanic settings, with metal 
(Cu, Ni, Zn, Co, Pt) and rare earth elements (REE) enrichments of potential economic interest. Routine 
analysis of trace elements by ICP-MS has advanced our understanding of the impact of hydrogenetic, 
diagenetic and hydrothermal processes on the mobility and interaction of high field strength elements 
(HFSE: Zr, Ti) and REE and yttrium (REY) with Fe-Mn oxyhydroxides. Recent discoveries in the French 
exclusive economic zone (EEZ) of Wallis and Futuna (southwest Pacific Ocean) have brought new 
insight to the formation of low temperature (LT) hydrothermal Mn deposits and lead us to reconsider the 
classification and discrimination diagrams for of Fe-Mn deposits and ore-forming processes. Using a 
suite of LT hydrothermal Fe-Mn crusts from Wallis and Futuna, we investigate how contrasting genetic 
processes influence the distribution of metals (Mn, Fe, Cu, Ni, Co), HFSE and REY in hydrogenetic, 
diagenetic, hydrothermal and mixed-type deposits from different environments in the global ocean. The 
interaction of the different metal oxide-forming processes indicates that: (i) enrichment of Co, HFSE and 
REY is favored by hydrogenetic precipitation, (ii) diagenetic processes produce higher Mn, Cu, and Ni 
concentrations with oxic remobilization in the sedimentary column, while suboxic conditions promote 
greater Mn and Fe remobilization that competes with the incorporation of Cu and Ni ions in nodules. 
HFSE and REY derived from seawater are usually low in diagenetic precipitates, which discriminate 
between hydrogenetic and diagenetic inputs within nodules, (iii) hydrothermal Fe-Mn deposits show 
strong depletion in HFSE and REY due to rapid formation and high contents of either Fe or Mn oxides. 
We present a new discrimination scheme for the genetic types of Fe-Mn deposits using a 10*(Cu + Ni + 
Co) – 100*(Zr + Y + Ce) – (Fe + Mn)/4 ternary diagram. The use of HFSE and REY in the classification 
allows for a more robust discrimination of: (i) each ore-forming process with well-delimited fields, without 
overlap of metal-rich hydrothermal samples and hydrogenetic samples, (ii) oxic and suboxic diagenesis 
within nodules, (iii) trends between hydrogenetic and diagenetic end-members forming a continuum, (iv) 
mixed genetic types such as the presence of hydrothermal particles within hydrogenetic crust layers. 
Alternatives are also explored to adapt our discriminative diagram to elements measurable by on-board 
instruments to aid in exploration at sea. 
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Graphical abstract  
 
Ternary diagram presenting the classification scheme and delimited areas for each genetic process 
involved in the formation of oceanic ferromanganese mineralizations using HFSE and REE data. The 
dotted arrows present the mixing trends between two genetic processes highlighting the continuum 
existing between hydrogenetic-hydrothermal crusts and hydrogenetic-diagenetic nodules. Solid arrows 
show evolution trends of a sample set related to only one genetic process without influence of another 
one. 
 

 
 

Highlights 

► Discovery of metal-rich, low temperature hydrothermal deposits in South Pacific Ocean ► Inability to 
fit in previous classification due to abnormal high metal content ► Satisfying discrimination obtained 
combining REE and HFSE with Mn, Fe, Cu and Ni ► New discrimination scheme is proposed for 
oceanic Fe-Mn deposits. ► Detailed relations highlighted between the various genetic processes 

 

Keywords : Ferromanganese mineralization, hydrogenetic crusts, nodules, hydrothermal deposits, rare 
earth elements, high field strength elements, classification 
 
 
 
 
1. Introduction 

 
Ferromanganese (Fe-Mn) deposits reflect common forms of mineralization in the modern ocean. They 
may contain significant metal (Cu, Ni, Zn, Co) and rare earth elements plus yttrium (REY) enrichments. 
Oceanic Fe-Mn deposits include ferromanganese crusts, also referred as cobalt-rich crusts, polymetallic 
nodules, and hydrothermal crusts and impregnations. Numerous reviews of Fe- Mn deposit genetic 
processes and distributions exist [Halbach et al., 1981; Aplin and Cronan, 1985; Halbach et al., 1988; 
Hein et al., 1997; Hein et al., 2000; Hein and Koschinsky, 2013; Hein et al., 2013]. These deposits are 
classified in three main categories: hydrogenetic, diagenetic and 
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hydrothermal [Bonatti et al., 1972; Hein et al., 1997; Bau et al., 2014; Schmidt et al., 2014] and are 

commonly discriminated by using characteristic variations of Fe, Mn, Cu, Ni, and Co contents. 

Crusts form by hydrogenetic precipitation of colloidal particles of Fe and Mn oxyhydroxides onto 

rock substrates [Dymond et al., 1984; Bau et al., 1996; Hein et al., 2000; Schultz, 2006]. Hydrogenetic 

crusts concentrate some trace metals (Co, Ni, Ti, HFSE and REY) at many orders of magnitude above 

their concentration in seawater [Bau et al., 1996; Hein and Koschinsky, 2013], which is promoted by 

high reaction surface area of Fe-Mn oxyhydroxides (average of 325 m²/g for bulk δ-MnO2 and 

FeOOH) [Hein and Koschinsky, 2013; Pourret and Davranche, 2013], slow oxidation reaction kinetics, 

and slow growth rates [Bau et al., 1996]. Polymetallic nodules constitute mixed-source deposits 

formed by hydrogenetic and/or diagenetic precipitation of Fe-Mn colloids around a nucleus on the 

surface of soft sediments. Interactions of both hydrogenetic and diagenetic processes lead to a 

range of bulk Mn/Fe ratios from 1 to 2.5 for oxic diagenesis and up to 50 when the sedimentary 

column is suboxic near the seabed [Calvert and Piper, 1984; Schultz, 2006]. Metals (Ni, Cu, Co), REY 

and HFSE in nodules are mainly derived from seawater through hydrogenetic precipitation and 

further enrichment in metallic elements (Mn, Cu, Ni and Zn) occurs via diagenetic precipitation [Ohta 

et al., 1999]. 

Hydrothermal Fe-Mn deposits form under various conditions of temperature and geological settings; 

(i) plume fall-out deposits associated with high temperature venting [Bonatti, 1975; Corliss et al., 

1978; Barret et al., 1987; German et al., 2002] form when particles derived from hydrothermal 

solutions precipitate during mixing with cold oxidizing seawater and settle on the seafloor forming 

the well-known metalliferous sediments encountered near hydrothermal fields such as along the 

East Pacific rise (EPR) or the Mid-Atlantic Ridge (MAR) [Barret and Jarvis, 1988; Goulding et al., 

1998]. Enrichment of metals, REY and other critical elements in oxyhydroxides occurs by sorption 

from seawater onto colloids in seawater and on the surface of crusts and nodules after accretion of 

the colloids. (ii) Diffuse hydrothermal systems are usually associated with off-axis hydrothermal 

circulation along MOR and within submarine volcanoes along volcanic arcs and hot spot seamounts, 

or less commonly associated with fractures distant from oceanic ridges [Hein et al., 2008b; Edwards 

et al., 2011]. They form stratabound layers, crusts, and cement the sediment column with either Fe 

or Mn oxides by fluids percolating within porous sediment, pyroclastic deposits, and volcanic 

breccias [Fouquet et al., 1993]. These deposits show a distinct mineralogy and texture from 

hydrogenetic crusts [Burgath and Von Stackelberg, 1995; Schultz, 2006]. Fe-Mn hydrothermal 

deposits exhibit a wide range of Mn/Fe ratios from 0.001 (nearly no Mn) up to 4,000, as a function of 

fluid temperature and redox conditions [Burgath and Von Stackelberg, 1995; Schultz, 2006]. The 

rapid precipitation of these hydrothermal oxides commonly forms deposits with low minor metal 

contents; those influenced by hydrogenetic precipitation show an intermediate composition.  

In 2010 an Ifremer mission exploring the mineral resources potential of the Wallis and Futuna 

archipelago (SW Pacific) dredged Fe-Mn hydrothermal samples showing the strongest metal 

enrichments recorded in Fe-Mn oceanic deposits [Pelleter et al., 2016]. Hence the discovery of these 

metal-rich low temperature (LT) hydrothermal deposits requires explanation of (i) their mode of 

formation, (ii) the associated fluid geochemistry, and (iii) their economic potential as an oceanic 

resource, as well as (iv) the way we classify and discriminate Fe-Mn oceanic Fe-Mn deposits. 

Although we present bulk geochemical and mineralogical results for these unusual deposits, the first 

questions are presented elsewhere [Pelleter et al., 2016]. We develop here how these deposits 
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challenge our way of classifying Fe-Mn oceanic deposits and explore new geochemical tools for their 

discrimination. 

 

2. Material and methods 

 2.1. Material 

Hydrothermal samples were recovered during an Ifremer research cruise in the French exclusive 

economic zone (EEZ) of Wallis and Futuna in August 2010. The area studied is bordered by the North 

Fiji fracture zone, the active Tonga and Vanuatu subduction zones and associated Lau and North Fiji 

back-arc basins, and the currently active Samoan hotspot. Several extensional zones were 

recognized [Pelletier et al., 2001; Fouquet et al., 2015] including the Futuna and Alofi ridges and an 

area formed by a complex system of diffuse magmatism with multiple volcanic edifices. Three 

atypical low-temperature Fe-Si-Mn deposits were discovered during the cruise aboard R/V Atalante, 

Utu Uli, Anakele, and Utu Sega (Figure 1) from which samples were collected by dredging and HOV 

dive operations. The deposits found at Utu Uli and Anakele occur as massive, dense and laminated 

crusts of Mn oxyhydroxides from the summit of volcanic edifices composed of pyroclastic material, 

pillow lavas and more rarely sediments. Locally, the Mn crusts are crosscut by Fe-Si precipitates 

displaying ridge or vein-like structures up to 1 m high [Pelleter et al., 2016]. The mineralization 

extends below these crusts as Mn oxyhydroxides, Fe oxides and nontronite cementing basaltic 

pyroclastic facies and brecciated lavas [Pelleter et al., 2016]. Crusts have been observed covering 

three distinct volcanic edifices in the Utu Uli area representing an approximate area of 1.5 km² with 

thicknesses up to 5 cm, whereas sediment accumulation at the other sites prevented estimation of 

the extent of the deposits. No hydrothermal discharge was observed in the vicinity of the three sites. 

The present study focuses on 16 samples recovered from dredge hauls showing a range of 

composition from nearly pure Mn oxide to mixed Mn-Fe ± Si compositions. Sample FU-DR01-03 was 

later subdivided in three subsamples of oxides from the impregnated host sediment, an internal 

layer of the crust and the surface layer. See Pelleter et al. [2016] for bulk composition. 

 

2.2 - Methods 

Mineralogical identification was made through X-ray diffraction (XRD) at Ifremer using a BRUCKER 

AXS D8 Advance (with Bragg-Bentano goniometer and VANTEC-1 positive sensitive detector -PSD 

and BRUCKER AXS D2 Phaser. Prior to analysis, samples were dried at 60°C and milled with agate 

mortar then deposited on a XRD sample holder and flatten with a glass slide. Samples were analyzed 

using Cu-Kα radiation over 2θ ranging from 2° to 70° at 40 kV and 30 mA. Additional analyses were 

made to characterize clay minerals [Pelleter et al., 2016]. Minerals were identified using Eva search-

match software. 

 

Bulk chemical composition of each sample was determined. Samples were ground to a powder (90% 

of particles < 80µm) using an agate pestle and mortar.  Major elements and selected trace elements 
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were analyzed by X-ray fluorescence with a BRUCKER AXS S8 Tiger automated XRF spectrometer on 

pressed pellets [Pelleter et al., 2016]. 

Additional trace elements (Sr, Y, Zr, Nb, Th, REE) were analyzed by inductively coupled plasma mass 

spectrometry using an ELEMENT II magnetic field ICP-MS at Institut Universitaire Européen de la Mer 

(IUEM) in Brest. The dissolution procedure was as follows; 0.1 g of sample powder was digested in a 

Teflon bottle with 4 mL of 6 mol/L hydrochloric acid for 24 h on a hot plate (120°C) with a Tm spike. 

If present, the residual phase composed of mostly silicates and refractory minerals was then 

extracted by centrifuge and digested by a mixture of hydrofluoric and hydrochloric acid (3:1) for 48 h 

on hot plate (120°C), evaporated and then remixed with the previously digested phase. The solution 

(0.5 µL) was then evaporated on a hot plate and the residue was made up to 10 mL with a 2% nitric 

and 0.05% hydrofluoric acid solution for trace element analysis by ICP-MS. Data were corrected 

using internal calibrations, BHVO-2 standard, and a Tm spike correction [Barrat et al., 1996]. 

Concentrations are expressed as % for weight %.  

The rare earth and yttrium (REY) are discussed separately from the HFSE group for ease of 

description of their geochemical behavior and fractionation into Fe-Mn oceanic deposits although 

most lanthanides are HFSE from a geochemical point of view apart for Eu in its divalent state 

considered a large ion lithophile element (LILE). The Ce and Eu anomalies (Ce/Ce* and Eu/Eu*) are 

calculated as the ratio of the normalized values (subscript n) of an element by the interpolation of 

the adjacent elements (superscript *) such that;  

 

Ce/Ce* =
𝐶𝑒𝑛

√(𝐿𝑎𝑛∗𝑃𝑟𝑛)
 

and 

Eu/Eu* =  
𝐸𝑢𝑛

√(𝑆𝑚𝑛∗𝐺𝑑𝑛)
 

note that all following data of this study have been calculated using normalization to chondritic 

values, normalization to Post-Archean Australian Shale (PAAS, Taylor and Mclennan [1985]) is used 

for calculation of normalized Y/Ho ratio [Bau et al., 2014]. 

Pearson coefficient correlation matrix was calculated on the data set (n = 18) to observe correlated 

geochemical variations and extract information on possible phase associations during precipitation. 

SiO2, Al2O3, Fe, Mn, CaO, MgO, TiO2, P2O5, Co, Ni, Cu, Y, Zr, La, Ce, Eu, Yb, Ce/Ce*, Eu/Eu* and total 

REE content (ΣREE) were taken into account. As geochemical concentrations for each element do not 

follow a normal distribution, results are later reported as the median with a 95% confidence level.  

 

3. Results 

3.1. Mineralogy 

Bulk X-ray diffraction on the massive surface layer displaying a metallic grey luster shows birnessite 

and todorokite, 7 Å and 10 Å manganates respectively [Pelleter et al., 2016]. The presence of 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 
 

vernadite (poorly crystalline δ-MnO2) is suspected but could not be confirmed due to the overlap of 

reflections with birnessite and todorokite. Iron oxides are dominated by amorphous oxyhydroxides, 

with the presence of discrete goethite grains. Nontronite, the ferrous end-member of dioctahedral 

smectite, forms the cement for and replaces pyroclastic rocks onto which the Mn oxide layers 

developed. 

3.2. Bulk Geochemistry 

Bulk sample composition is dominated by Mn (40.5 ± 3.6%), SiO2 (3.5 ± 2.6% including 5 outliers 

ranging from 12.4 to 16.7%) and Fe (3.0 ± 2.2% including 4 outliers ranging from 10 to 16.5%), with 

Mn/Fe ratio ranging from 1.6 to 3929 (Table 1). Other major elements decrease in abundance as 

follow; Na2O (4.4 ± 0.4%), MgO (2.5 ± 0.4%), CaO (1.75 ± 1.0%), Al2O3 (0.64 ± 0.5%) and TiO2 (0.05 ± 

0.04%). Focus metal contents of some samples are anomalously high in comparison with typical 

hydrothermal Fe-Mn deposit metal concentrations [Hein et al., 1997], with 0.72 ± 0.7% Ni, 0.35 ± 

0.3% Co and 0.15 ± 0.2% Cu, with maximum values of 4.7% Ni, 2.2% Co and 1.5% Cu (Table 1). This 

enrichment in potential economic metals is unusual for LT hydrothermal deposits and suggests the 

absence of sulphide precipitation at depth at higher pressure and temperature conditions, which 

usually scavenge most of the Ni and Cu. These deposits might constitute the distal end-member of 

high temperature systems whereby metals were transported in a fluid with high oxygen fugacity. 

Continuous mixing with seawater lead to the precipitation of Fe and Mn oxides, rapidly scavenging 

transported metals [Pelleter et al., 2016]. Other trace elements fall into the expected range of 

concentrations for LT Fe-Mn hydrothermal deposits; Sr (329 ± 37 ppm), Y (18 ± 4 ppm) and Zr (5.3 ± 

3 ppm, excluding sample FU-DR15-06 with 85 ppm Zr). 

REE concentrations in these hydrothermal samples are low (ƩREE = 26.1 ± 11.5 ppm), with a 

maximum content of 126 ppm REE in sample FU-DR15-06 associated with the highest concentration 

in P2O5 (0.43%) and Zr. Normalized REE trends (Figure 2) show two distinctive signatures. One group 

includes all samples from dredge FU-DR22, while the second group includes the rest of the 

hydrothermal sample set. This latter group displays marked light-REE (LREE) enrichment with regards 

to middle-REE (MREE); LaCH/SmCH varies from 2.98 to 7.02 and GdCH/YbCH ratios from 0.88 to 1.20.  

Most patterns display a negative Eu anomaly (0.67 – 0.98) and Ho and Er enrichment forming the 

top of a smooth convex-up pattern on the HREE. On the other hand, samples from core FU-DR22 

have approximately flat LREE-MREE patterns (LaCH/SmCH = 0.83 – 1.52) with distinct heavy-REE 

(HREE) enrichment; average GdCH/YbCH = 0.47. A marked positive Eu anomaly is present as well as 

both positive and negative Ce anomalies for different samples. The YPAAS/HoPAAS ratio for these 

hydrothermal samples varies from 0.66 to 1.37, regardless of the REE pattern, showing a depletion 

in Y relative to shale for many of those samples. This signature is thought to represent precipitation 

of oxides from a fluid close to seawater composition [Bau et al., 2014; Schijf et al., 2015]. High 

temperature hydrothermal fluids associated with vent systems usually show well-developed positive 

Eu anomalies [Michard, 1989; Bau, 1991; Douville et al., 1999; Craddock et al., 2010]. Consequently, 

REE trends from Utu Sega samples (FU DRR 22) with small positive Eu* anomalies reflect a greater 

influence of a HT fluid than at the two other sites.  

 

The correlation coefficients (Table 2; n = 18) can be explained in terms of mineralogical control for 

most major elements. Iron and Si are strongly fractionated from Mn during precipitation as Fe and Si 
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precipitate under slightly reducing conditions to form nontronite, or amorphous silica and Fe 

oxyhydroxides as highlighted by the strong correlation of Fe and SiO2 (0.75). On the other hand, Mn 

forms oxyhydroxides at the seawater-sediment interface or impregnations within the volcaniclastic-

sedimentary pile under oxidizing conditions, showing a negative correlation with Fe (-0.72) and Si (-

0.80). Mn is negatively correlated to MgO, P2O5, Zr and Ce (-0.63 to -0.72). Aluminum is strongly 

positively correlated to TiO2 (0.96), CaO and MgO (r > 0.7). Copper, Ni and Co do not show significant 

correlations (-0.5 < r > 0.3) with elements considered here and behave independently from each 

other in this sample set. P2O5 correlation with Fe (0.96) is consistent with phosphate sorption onto 

Fe oxyhydroxides in hydrothermal systems [Edmonds and German, 2004]. Among HFSE and REY, all 

are positively correlated to P2O5 (0.62 to 0.90), except Yb which does not show significant 

correlations (0.39). The total REE content (ΣREE) correlates positively with P2O5 and Fe (0.82 and 0.69 

respectively) and not significantly to Mn (-0.48), suggesting that minor scavenging from open 

seawater occurred during formation of the Mn crusts with REE mainly derived from the LT 

hydrothermal fluids. 

 

 4. Discussion 

4.1. Classification and alternatives 

 Fe-Mn deposits have typically been classified using the Bonatti ternary diagram [Bonatti et 

al., 1972] using major chemical characteristics (Fe, Mn, Cu-Ni-Co) to discriminate them. Our 

hydrothermal samples scatter on the Mn-(Co + Cu + Ni) side of the diagram as a result of the unusual 

metal enrichments which places them outside of the originally identified hydrothermal field (Figure 

3) [Bonatti et al., 1972]. Some samples have even higher minor metal contents than the polymetallic 

nodules. Nevertheless, apart from the atypical Ni-Co-Cu enrichments of these deposits, samples 

from Wallis and Futuna are similar in composition and mineralogy to LT hydrothermal deposit 

collected in the Gulf of Aden [Cann et al., 1977], the Mediterranean Sea [Dekov et al., 2009], the 

Mid-Atlantic Ridge [Mills et al., 2001; Severmann et al., 2004] and the Pacific Ocean [Corliss et al., 

1978; Alt, 1988; Fouquet et al., 1993; Hein et al., 1996; Kuhn et al., 2003; Fitzgerald and Gillis, 2006; 

Hein et al., 2008b; Sun et al., 2012; Zeng et al., 2012].  

In addition to the problem posed by this set of samples from the Wallis and Futuna EEZ, the ternary 

classification of Bonatti et al. [1972] does not clearly discriminate Fe-Mn deposits formed by mixed 

genetic processes such as nodules with various hydrogenetic/diagenetic proportions, hydrothermally 

derived particles incorporated during hydrogenetic crust growth, and our hydrothermal samples. 

The issue for nodules was discussed previously [Halbach and Puteanus, 1988] and hydrogenetic, 

diagenetic, and mixed-typed were identified within the existing diagram. 

 Alternative classification systems have been proposed and discussed recently for the 

discrimination of Fe-Mn deposits. Other ways have been explored using exclusively major [Conly et 

al., 2011], or minor and trace elements [Choi and Hariya, 1992; Nicholson, 1992; Bau et al., 2014]. 

Within a MgO*10 - Fe2O3t - MnO2 ternary diagram, Conly et al. [2011] described discriminating fields 

for oceanic and terrestrials Fe-Mn deposits. Despite some overlaps, this diagram allows samples 

separation due to the use of Mg as a discriminative feature for fluid chemistry; oceanic waters 

containing ~1,200 ppm of Mg while end member hydrothermal fluids are considered Mg-free [Conly 
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et al., 2011]. However, considering LT hydrothermal and distal HT hydrothermal deposits, fluid 

chemistry for major elements is close to seawater composition. Hence this classification scheme is 

not well-suited for the compositional range found for oceanic Fe-Mn deposits, although it does 

separate marine and continental Mn-oxide deposits that are not mixed with Fe oxides.  

Using trace-element mobility in hydrothermal fluids and seawater, Nicholson [1992] proposed a (Co 

+ Ni) vs (As + Cu + Mo + Pb + V + Zn) binary diagram with distinction between hydrogenetic, 

diagenetic, or supergene and hydrothermal precipitation. Nodules and hydrogenetic crusts are well-

discriminated on this diagram, however the unusually high Co and Ni contents of samples from 

Wallis and Futuna plot away from the designated hydrothermal field. A similar conclusion is reached 

for the classification proposed by Choi and Hariya [1992] using a Ni-Zn-Co ternary diagram. The 

binary discrimination diagrams of Bau et al. [2014] are based on Nd concentrations and fractionation 

of the geochemical twin Y and Ho against the Ce anomaly. These diagrams demonstrate the 

efficiency of REY as a discriminative feature for the various genetic types of marine Fe-Mn deposits. 

One of the most efficacious is the YPAAS/HoPAAS ratio, which if <1 characterizes a hydrogenetic or 

diagenetic process. Hydrothermal deposits exhibit a wider range of ratios, mostly >1 though a 

continuum towards hydrogenetic ratios is observed representing the evolution of the exchange 

equilibrium between seawater and scavenging Fe-Mn oxides [Bau et al., 2014]. Although really 

robust, this criterion can not be used when considering hydrogenetic samples affected by 

phosphatisation due to a shift of the YPAAS/HoPAAS ratio to values as high as 1.8 [Asavin et al., 2010] 

(Figure 4). We will therefore try to accommodate this characteristic of hydrogenetic samples within 

our discriminative diagrams including other common discriminative features of Fe-Mn deposits. 

 

4.2. New genetic discrimination diagrams 

The objective of a new discrimination scheme therefore lies on the incorporation of new elements 

allowing the discrimination of hydrothermal samples from hydrogenetic and diagenetic deposits 

without relying solely on the metal content.  

Fe-Mn deposits have long been known for their economic potential and accordingly most studies 

focused on the geochemistry of Fe, Mn, Cu, Ni and Co or a specific aspect of their trace element 

content with too few studies publishing a complete dataset including major, minor and trace 

elements. The published data used in the following plots were chosen to be representative of the 

diversity of Fe-Mn occurrences found throughout the deep ocean. Therefore data for polymetallic 

nodules include mixed hydrogenous-diagenetic samples from the central and north eastern part of 

the Pacific Ocean (n = 149) [Calvert and Price, 1977; Calvert and Piper, 1984; Dymond et al., 1984; 

Hein et al., 1997; Ohta et al., 1999; Wegorzewski and Kuhn, 2014], diagenetic nodules from the Peru 

basin (n = 31)[Von Stackelberg, 1997], as well as samples from the Indian Ocean (n = 18) [Pattan and 

Banakar, 1993; Balaram et al., 1995; Baturin and Dubinchuck, 2010]. Data used for hydrogenetic 

crusts come from samples of the open Pacific Ocean (n = 72) [De Carlo and Mc Murtry, 1992; Bau et 

al., 1996; Bau and Koschinsky, 2009; Asavin et al., 2010], including averaged compositions for 

diverse areas of the Pacific (n = 4) [Hein et al., 1997], samples from the Atlantic Ocean (n = 31) 

[Baturin and Dubinchuck, 2011; Muiños et al., 2013] and the Indian Ocean (n = 5) [Surya Prakash et 

al., 2012]. In addition to our own samples from Wallis and Futuna Archipelago, hydrothermal Fe-Mn 

samples from the literature include data from the Pacific Ocean; Mariana-Izu-Bonin Arc System (n= 
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6) [Hein et al., 2008b], East Diamante Caldera (n = 6) [Hein et al., 2014], Valu Fa Ridge system (n = 

13) [Sun et al., 2011], PACMANUS hydrothermal field (n = 18) [Zeng et al., 2012], Baby bare 

seamount (n = 9) [Fitzgerald and Gillis, 2006], Okhotsk Sea (n = 5) [Baturin et al., 2010], metalliferous 

sediment and silica-hematite deposits of the Blanco Fracture Zone (n = 12) [Hein et al., 2008a], 

ironstones from Central Pacific Seamounts (n = 3) [Hein et al., 1994], and bacterially mediated 

metalliferous sediment from Loihi Seamount, Hawaii (n = 13) [Edwards et al., 2011]. Data for 

hydrothermal samples from the Atlantic Ocean include the ultramafic hosted deposits from the Mid 

Atlantic Ridge (MAR) (n = 8) [Dekov et al., 2011]. Finally, data from the Eolo Seamount in the 

Tyrrhenian sea (n = 22) [Dekov et al., 2009] and the Indian ocean (n = 3) [Surya Prakash et al., 2012] 

are considered. Mixed type samples of hydrogenous and hydrothermal origin from the Central 

Indian Ridge (n = 17) [Kuhn et al., 1998; Takahashi et al., 2007] and the mercury- and silver-rich 

encrustation off the coast of California (n = 11) [Hein et al., 2005] are included as well. 

 

Major differences occur among Fe-Mn deposits when considering concentrations in high field 

strength elements such as Zr, Ti and the REY. Geochemical divergences for each mineral-forming 

process are illustrated in cross-plots (Figure 4). Using characteristics of REY fractionation such as the 

Ce anomaly, one of the most distinctive features encountered in the various types of Fe-Mn 

deposits, the YPAAS/HoPAAS ratio [Bau et al., 2014], Zr or Ti content plotted against Mn/Fe ratio,  and 

metal enrichments provide fairly good discrimination for each type of deposit. Relationships in 

Figures 4 and 5 reflect the control of growth rates, precipitation kinetics, and pH conditions during 

mineral-forming processes and overall metal concentrations and trace element budget in the source 

fluid. The HFSE and REY are highly depleted in hydrothermal deposits (by one order of magnitude) 

and richer in hydrogenetic deposits, while polymetallic nodules of mixed hydrogenetic-diagenetic 

origin display more limited enrichments in comparison with hydrogenetic deposits due to low 

contents of such elements in pore fluids. Hydrothermal deposits depletion in HFSE relates to the 

poor capacity of these elements to bind with the dominant chloride complex in hydrothermal fluids 

therefore implying a HFSE-depleted source fluid for Fe-Mn hydrothermal deposits [Douville et al., 

2002]. Furthermore, the fast precipitation of hydrothermal Fe-Mn deposits limits hydrogenetic 

enrichment of Zr, Ti and REY [Schmidt et al., 2014]. In contrast, crusts and nodules growing at 

extremely slow rates benefit from extensive contact with seawater and pore fluids to scavenge 

dissolved trace metals. Of these two deposits, nodules display the largest range in composition 

considering Mn/Fe ratios and minor and trace element contents due to influence of both diagenetic 

and hydrogenetic precipitation. As exemplified in figure 4, phosphatized samples of hydrogenetic 

crusts [Asavin et al., 2010] do not follow the discriminative features of the YPAAS/HoPAAS ratio [Bau et 

al., 2014] and these samples could not be distinguished from non-phosphatized crusts using other 

criteria (Ce, REE, Zr). 

The ratio of diagenetic to hydrogenetic input to nodules, and their associated minor metals, can be 

shown qualitatively by the Mn/Fe ratio. The higher the Mn relative to Fe, the higher is the diagenetic 

input. Nodules analyzed from the global ocean show that there is a continuum between the 

diagenetic and hydrogenetic end-members (Figure 5). Metals (Ni, Cu, Co), HFSE and REY in Fe-Mn 

deposits are mainly derived from seawater with hydrogenetic precipitation in Fe-Mn crusts and 

nodules. Further enrichment in elements such as Mn, Cu, Ni and Zn occur during diagenesis whereby 

metals are released to pore fluids through the dissolution of the Mn oxyhydroxide fraction of the 
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sediment releasing carried metals which become available to migrate up to the nodules at the oxic-

suboxic interface [Ohta et al., 1999; Koschinsky et al., 2001]. The diagenetic process does not link to 

Fe, Co, REY and HFSE enrichment in polymetallic nodules as Fe is mainly re-precipitated in the 

sediment as Fe oxyhydroxides or associated with silica to form nontronite (Calvert and Piper, 1984). 

Moreover Co, REY, and HFSE limited mobility in interstitial waters compared to Cu, Ni, and Zn 

explains their relative enrichment in the most hydrogenetic samples and depletion with increasing 

diagenetic input [Jung and Lee, 1999; Ohta et al., 1999; Schultz, 2006; Baturin and Dubinchuck, 

2009].  

Therefore, Co, HFSE and REY enrichment in Fe-Mn deposits characterize hydrogenetic precipitation 

and it would be tempting to associate them in a new diagram to discriminate diagenetic and 

hydrothermal formation. However with unusual Co concentration averaging 0.6% and up to 2.2% in 

hydrothermal samples from Wallis and Futuna, it is essential not to combine Co, HFSE and REY to 

separate metal-rich hydrothermal deposits from crusts and nodules.   

 

4.3. Incorporating REE and HFSE in a new classification scheme 

 

The choice of elements to incorporate in a new discrimination diagram should accommodate 

variations in hydrogenous or diagenetic inputs to nodules, oxic/suboxic diagenesis in nodule bulk 

compositions, mixed hydrothermal-hydrogenetic formation, and metal-rich Fe-Mn hydrothermal 

deposits. We propose to use a first apex representing combined Fe and Mn concentrations (Fe + 

Mn)/4 (wt.%), an index that represents the main constituent of Fe-Mn samples. The second apex 

represents the various metal enrichments produced by the three precipitation processes: 10 • (Cu + 

Ni in wt.%). Cobalt is deliberately left out of this apex as a common marker of hydrogenetic 

precipitation although its addition does not change fundamentally samples positioning, and could be 

considered in the case of extreme Co enrichment. HFSE and REY allow for the separation of 

hydrothermal samples from hydrogenetic and diagenetic deposits (Figure 4). The last apex should 

therefore be formed by a combination of these elements. As studies of Fe-Mn deposits have not 

always presented complete minor and trace element data, we will focus on the most commonly 

published HFSE (e.g. Ti and Zr) and REY. The enrichment in REY and other HFSE is a function of 

growth rate, fluid source and chemistry, and also represents uptake of seawater complexes by Fe 

and Mn oxyhydroxides/oxides. Carbonates are the main complexing agent for REE; REE-CO3
+ and 

REE-CO3
2- accounting for at least 85% of REE ligands in seawater [Schijf et al., 2015], while Zr or Ti 

are dominantly complexed with hydroxides [Bruland, 1983; Bau et al., 1996] and enriched by surface 

complexation. Combining these elements that are fractionated by sorption on either Fe- or Mn-

oxides has the objective of creating a restricted field for hydrogenetic precipitates in the diagram by 

including both scavenger phases and eliminates the influence of Mn/Fe ratios. Cerium constitutes 

probably the most efficient element amongst the REE series to use as a discriminative feature for Fe-

Mn deposits. Indeed, Ce is easily hydrolyzed and continuously and irreversibly scavenged from 

seawater on the surface of Mn oxides [Takahashi et al., 2007] and positive Ce anomalies in Fe-Mn 

deposits are therefore regarded as typical of hydrogenetic precipitation. Owing to the differences in 

precipitation kinetics among the different Fe-Mn deposits and irreversible Ce uptake from seawater, 
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this element will be most enriched in hydrogenetic deposits, lower in diagenetic deposits, and 

depleted in hydrothermal deposits.  

Yttrium and La were also considered as these elements show strong enrichment in Fe-Mn deposits 

and are commonly analyzed in published studies. Combinations using Zr and Ce with either La or Y 

give similar results owing for the consistent fractionation of Y and La across the diverse 

environments of formation of Fe-Mn deposits. On the other hand, using an apex combining Zr, Y and 

La brings scatter in samples distribution. Notably, mixed-type deposit deviate from their predicted 

position between hydrothermal and hydrogenetic deposits. The absence of discrimination using La 

and Y relates to their common levels of enrichment in hydrogenetic and mixed hydrogenetic-

hydrothermal deposits whereas using Ce brings more weight to the HFSE-REY apex. Indeed Ce will be 

strongly enriched (positive Ce anomaly) in purely hydrogenetic precipitate whereas the faster 

growth rate of mixed hydrogenetic-hydrothermal deposits (up to 29 mm/Ma) will prevent the 

formation of a positive Ce anomaly due to slow Ce oxidation kinetics [Kuhn et al., 1998]. 

Consequently, using a combination of the most distinctive features of REE and HFSE behavior 

highlighted here, an apex with 100 * (Zr + Y + Ce in wt.%) is a viable discriminant (Figure 6). 

In the resulting ternary diagram, hydrogenetic crust samples define a well-delineated group close to 

the HFSE and REY apex (Figure 6A). These elements can be used as a marker for hydrogenetic input 

over diagenetic input, allowing discrimination of these contributions for polymetallic nodules that 

are otherwise ambiguous. Following the genetic classification of polymetallic nodules in Figure 5 

[Dymond et al., 1984], we observe a partitioning of nodule data (Figure 6B) in accord with the 

position of hydrogenetic crust data. The transition from hydrogenetic to diagenetic favors high 

concentration in Ni and Cu at the expense of HFSE and REY defining a trend from the potential 

economic-metal apex with diagenetic nodules towards the REY-HFSE apex with mixed hydrogenetic-

diagenetic samples. Data for diagenetic suboxic samples from the Peru Basin [Von Stackelberg, 1997] 

lack Y concentrations. Concentrations included in the calculation of the HFSE apex therefore used 

the average Y concentration of 69 ppm for Peru Basin samples from Hein and Koschinsky [2013] 

including a standard deviation of ±30 ppm calculated from the nodule dataset used in this study (n = 

184). These samples define here a line moving towards the Fe-Mn apex with a consistent HFSE-REY 

index at the expense of the metal content. This specific nodule trend is consistent with the evolution 

of the bulk Ni + Cu content in polymetallic nodules described by Halbach et al. [1981]. Indeed, 

transition from hydrogenetic to oxic diagenetic nodules favors metal enrichment with high grades of 

Ni + Cu with Mn/Fe ratios as high as 5. However, transition to suboxic diagenetic samples from the 

Peru Basin [Von Stackelberg, 1997] with bulk Mn/Fe ratio up to 100 display decreasing metal 

contents [Halbach et al., 1981; Dymond et al., 1984].  Dominant suboxic conditions favor formation 

of a strong gradient of Mn and Fe in the pore waters by dissolution of Mn oxides and reduction of 

ferric iron in the sediment in the presence of required quantities of organic carbon.  This abundance 

of Mn2+ and Fe2+ therefore compete with Cu2+ and Ni2+ for incorporation in the todorokite lattice 

promoting the shift observed in the ternary diagram [Halbach et al., 1981; Hein and Koschinsky, 

2013]. Detailed analysis of nodule microlayers from the Peru Basin [Wegorzewski and Kuhn, 2014] 

have shown that these trends are only valid when considering bulk composition and that otherwise 

nodules are made of alternating layers of hydrogenetic and diagenetic composition in various 

proportions. In the scope of this new discrimination diagram, only bulk compositions are considered. 
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In Figure 6C, the use of REY and HFSE separates the overlap of metal-rich hydrothermal samples with 

those of hydrogenetic or diagenetic origins as compared to other schemes. Metal-rich samples from 

Wallis and Futuna are spread between the Fe-Mn and Cu-Ni apex. Most hydrothermal samples fall 

otherwise close to the Fe-Mn apex in accordance with their typical depletion in HFSE and minor 

metals (Cu, Ni, Co, Zn).  

 4.4 - Limits of the discrimination diagram 

Samples which do not fit the major trends observed for the majority of the dataset are presented in 

Figure 6D. Most of these samples present specific atypical characteristics or constitute mixed-type 

deposits and allow for the exploration of the diagram’s limits as to which samples can be correctly 

classified using this discrimination scheme. Mixed hydrothermal-hydrogenetic crusts samples [Hein 

et al., 2005; Muiños et al., 2013] result from the incorporation of hydrothermally derived elements 

into hydrogenetic crusts either as fall-out particles or acquire a hydrothermal signature through the 

input of LT hydrothermal fluids. Hydrogenetic samples from the Indian Ocean Ridge display such 

characteristic with a faster growth rate supported by distal hydrothermal supply which in turn 

impacts the time available for HFSE and REY uptake from seawater [Kuhn et al., 1998; Takahashi et 

al., 2007]. Samples from the Southern California Borderland present Hg-Ag enrichment, Ce positive 

anomalies, Co and REE concentration intermediate between hydrogenetic and hydrothermal 

deposits which highlight a mixed hydrothermal-hydrogenetic geochemical signature [Hein et al., 

2005]. As observed on Figure 6D, these samples plot in an intermediate position between 

hydrogenetic crusts and hydrothermal deposits, supporting the use of HFSE and REY as a 

discriminant in this diagram. 

Some hydrothermal samples from the silica-hematite deposits [Hein et al., 2008a] display a nearly 

pure Silica composition with less than 3% Fe. These samples are scattered in the middle of the 

diagram due to the lack of representability of each apex considering silica dilution. Samples with Si > 

70% and at least 6% Fe plot well within the hydrothermal field (Figure 6C). It is possible to consider 

an apex (Fe + Mn + Si)/5 as a substitute to better accommodate specific samples with extreme Si 

enrichment, usually of hydrothermal origin (Supplementary Figure S1). Comparable mineralogical 

impact is observed for a hydrogenetic crust sample [Muiños et al., 2013] where δ-MnO2 is 71% and 

todorokite is present, compared to 85-99% δ-MnO2 for the rest of the sample set from this area; 

todorokite is uncommon for open-ocean hydrogenetic crusts but common in continental margin 

hydrogenetic crusts [Conrad et al., 2016] which might account for the unusual signature of this 

sample. With regard to other samples from Muiños et al. [2013], the important presence of non Fe-

Mn phases (30% of calcite and dolomite) shift the sample position towards the Fe-Mn apex.  

Some hydrothermal sediments from Eolo Seamount scatter along the Fe-Mn – HFSE-REY side of the 

diagram far from other hydrothermal samples. This distribution highlights a strong enrichment in 

HFSE that is attributed to the remobilization and redeposition of hydrothermal particle mixing with 

detrital material (> 65% clays in bulk sample) [Dekov et al., 2009].  

Another limit of this diagram lies in the distinction between metal-rich hydrothermal deposits and 

suboxic diagenetic nodules that cover similar fields. However, although these two deposit types 

might plot in a similar area on the diagram, they can be distinguished by mineralogy or by plotting 

the Mn/Fe ratio vs (Zr + Y + Ce). Besides, these two sample types would have been collected from 

quite different environments and have very different appearances.  
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The use of this diagram as a genetic discriminant therefore requires that samples plotted in it 

contain more than 5% Fe and Mn when the major phase is silica like in the case of the silica-hematite 

deposits. Silica dilution of the Fe-Mn fraction can be significant (up to 95%) without changing much 

the appropriate positioning of samples because silica is not known to be associated with more than 

trace amounts of metals, HFSE and REY. If non Fe-Mn oxide minerals are present, then a >70% Fe-

Mn portion is necessary to correctly discriminate sample genesis; for example with >30% carbonate, 

clays or sulphides, samples cannot be correctly discriminated on this diagram. Titanium and Zr must 

be used with caution because these elements are abundant in both volcanic rocks hosting most Fe-

Mn deposits and in detrital clay minerals that may be incorporated in Fe-Mn deposits. It is therefore 

recommended to look for potential contamination by mafic volcanic grains from the substratum by 

looking for high Al2O3 contents in bulk samples and determine, when possible, the carbonate- and 

clay-free fraction of metalliferous sediments to avoid the contamination by non-metalliferous 

material as exemplified by samples from Eolo Seamount [Dekov et al., 2009]. 

4.5 - New discrimination diagram for Fe-Mn oceanic deposits 

The data distribution in Figure 6 supports the efficacy of HFSE and REY as a discriminant for Fe-Mn 

oceanic deposits, as introduced by Bau et al. [2014]. As highlighted here, previously proposed 

discrimination schemes do not completely distinguish metal-rich hydrothermal samples from the 

two other dominant types of Fe-Mn deposits, as well as separation of mixed deposit types. In 

addition, phosphatized hydrogenetic crust samples are positioned within this diagram among other 

crusts. Consequently this new scheme provides increased sensitivity for discrimination among the 

genetic processes that produced these various deposit types, and thus provides a powerful tool.  

Based on data distribution on this ternary diagram, we propose the following identification of 

genetic fields for the formation of oceanic Fe-Mn deposits (Figure 7). This figure displays the detailed 

relations among the three genetic processes through well-defined fields for each deposit-forming 

process without overlap of metal-rich hydrothermal samples and hydrogenetic samples. This scheme 

allows for the identification of fields possibly representative of oxic and suboxic diagenesis within 

nodules, the trend between hydrogenetic and diagenetic end-members that forms a continuum, and 

identifies mixed genetic types such as the presence of hydrothermal particles within hydrogenetic 

crusts. This scheme does group hydrothermal Fe oxides and Mn oxides into a single field. 

 

4.6. Alternative classifications for driving exploration at sea 

Although robust, the new discrimination scheme (this study) and the discrimination diagrams 

proposed by Bau et al. (2014) cannot be easily applied to historical data because of the lack of REE 

and HFSE data. Additionally, analyses of REE requires land-based analytical techniques and thus 

discrimination of Fe-Mn mineralization using REE cannot be done at sea, which would help direct 

exploration. As a consequence, we investigated alternatives to the 100*(Zr+Ce+Y) apex using 

elements that are widely available in the literature (e.g. Ti, Co and Ce) and/or that can be analyzed at 

sea using a compact, benchtop ED-XRF spectrometer (e.g. Ti, Co, Zr and Y). The ship-board proposed 

apexes for ternary diagrams include:  (A) 20*Ti, (B) 50*Co, (C) 50*Ce, (D) 30*(Co+Ce), (E) 50*(Ti/5 + 

Ce), (F) 200*(Zr+Y) (Supplementary Figure S2), with all elements expressed in wt.%.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 
 

A Ti apex brings a lot of uncertainty and scattering, notably for hydrothermal samples, probably due 

to contamination of samples by the protolith, which increases the HFSE elements. The presence of 

protolith within the mineralized sample is relatively common during sampling and its influence can 

be verified in this configuration by checking the amount of aluminum. Compared with the 

hydrothermal field identified in Figure 7, samples spreading towards the HFSE apex exhibit 

increasing Al content mostly above 2% and up to 7.7% whereas samples correctly positioned have 

less than 0.9% Al.  

 

Combinations using Co works well as a discriminant for most Fe-Mn deposits but fail to 

accommodate Co-rich hydrothermal deposits such as samples from Wallis and Futuna. The use of 

only Ce as an apex also works in the absence of Zr and Y data, however it therefore represents 

incorporation dominantly through Mn oxides. In addition, discrimination between hydrothermal 

samples and diagenetic nodules cannot be made solely on the basis of this diagram owing to their 

similar contents of Ce. As exemplified in previous combinations, Ce constitutes the most effective 

discriminant among the REE and HFSE for deep-sea Fe-Mn deposits. It can therefore be used as a 

viable apex in absence of more complete data, although it is not adapted for on-board exploration as 

instrumental errors are important for Ce measurement by ED-XRF. Consequently, the scheme which 

uses the 200*(Zr+Y) apex represents the best alternative to our preferred discrimination diagram to 

use at sea. In the absence of data for Ce, the zone for hydrogenetic crust is less restrictive but 

interestingly, Zr and Y can be easily determined at sea using compact, benchtop ED-XRF 

spectrometer (Figure S3; Supplementary Information). This easy-to-use discrimination diagram, 

aside from deciphering the nature of Fe-Mn±Si mineralization (i.e. hydrogenetic crusts, polymetallic 

nodules and metal-rich/metal-poor hydrothermal precipitates), would be useful for driving deep-sea 

exploration campaigns. 

 

5. Conclusions 

Oceanic Fe-Mn deposits have major differences in HFSE enrichments and REE signatures. Such 

features can be used and incorporated into a new discrimination scheme. Hydrogenetic crusts 

possess high HFSE concentrations with strong positive Ce anomaly, followed closely by 

concentrations in polymetallic nodules, whereas hydrothermal Fe-Mn precipitates show relative 

depletion in HFSE, with a negative Ce anomaly. The relation between deposit-forming processes and 

Fe, Mn, Cu, Ni, Co, HFSE and REY concentrations has also been demonstrated for each type of Fe-Mn 

deposit. Trace element enrichments such as Co, Zr, Ti and REY are favored by hydrogenetic 

precipitation, whereas diagenetic processes provide higher Mn, Cu, Ni concentrations when 

diagenetic remobilization occurs in the sediment column. Hydrothermal Fe-Mn deposits show strong 

depletion in Zr, Ti and REY due to rapid formation and strongly variable metal contents of fluids. 

Taking these differences into account, a ternary diagram was developed that clearly discriminates 

the various Fe-Mn deposit types. The ternary diagram uses Metals – HFSE – Fe-Mn that distinguishes 

the main deposit-forming processes and the interaction of those processes that form mixed-type 

diagenetic-hydrogenetic nodules and hydrogenetic-hydrothermal crusts, as well as possibly 

distinguishing oxic-suboxic bulk diagenetic deposits, and variable metal enrichment in hydrothermal 

deposits. Finally, we propose an easy-to-use version of this diagram to discriminate seafloor Fe-Mn 
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precipitates that can be used on-board ship for driving deep-sea exploration projects using XRF 

measurements. 
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A New Discrimination Scheme for Oceanic Ferromanganese Deposits using High Field Strength and 

Rare Earth Elements 

 

P. Josso1, 4, E. Pelleter1, O. Pourret2, Y. Fouquet1, J. Etoubleau1, S. Cheron1, C. Bollinger3 

 

Figures 

 

Figure 1: Wallis and Futuna map showing the position of the main hydrothermal mounds (stars) 

discovered during Ifremer’s cruises. 
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Figure 2: Chondrite-normalized REE patterns of hydrothermal samples from Wallis and Futuna EEZ. 

 

 

Figure 3: Ternary discrimination system of hydrothermal samples from Wallis and Futuna after 

Bonatti et al. [1972]. Note the abnormal distribution of samples away from the hydrothermal field 

due to unusual metal enrichments. 
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Figure 4: Discrimination diagrams displaying HFSE concentrations, Ce anomalies and YPAAS/HoPAAS 

ratios [Bau et al., 2014] against changes in Mn/Fe ratios and potentially economic metals for oceanic 

Fe-Mn deposits.  
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Figure 5: Co/(Ni + Cu) vs Mn/Fe ratio diagram highlighting the relationship of hydrogenetic and 

diagenetic inputs to the composition of polymetallic nodules. Oxic and suboxic diagenetic field 

follow Dymond et al. [1984]. See text for details on data used for hydrogenetic crusts.  
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Figure 6: Alternative discriminative diagram for oceanic Fe-Mn deposits using high field strength and 

rare earth elements. A. hydrogenetic crusts, B. polymetallic nodules, C. hydrothermal deposits, D. 

mixed deposits and outliers 
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Figure 7: (A) Ternary discriminative diagram for genetic classification of oceanic ferromanganese 

deposits displaying all samples used in this study and (B) corresponding genetic fields. The dashed 

arrows present the mixing trends between two genetic processes highlighting the continuum 

between hydrogenetic-hydrothermal crusts and hydrogenetic-diagenetic nodules. Solid arrows show 

trends of a sample set related to only one genetic process. 
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Table 1: Geochemical data for hydrothermal samples from Wallis and Futuna. 
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Table 2: Pearson Coefficient correlation matrix for hydrothermal samples from Wallis and Futuna (n 

= 18) 

 
SiO2 Al2O3 Fe Mn CaO MgO TiO2 P2O5 Co Ni Cu Y Zr La Ce Eu Yb Ce/Ce* Eu/Eu* 

Al2O3 0.568735 
                  Fe 0.747663 0.100589 

                 Mn -0.79544 -0.58987 -0.72652 
                CaO 0.051305 0.698972 -0.34959 -0.25225 

               MgO 0.436206 0.767908 0.111644 -0.63126 0.503977 
              TiO2 0.623521 0.967027 0.150492 -0.53246 0.576407 0.694079 

             P2O5 0.664924 0.161775 0.960537 -0.72197 -0.25872 0.155431 0.215378 
            Co -0.39322 -0.00576 -0.43934 0.157463 0.29228 0.081866 -0.06573 -0.40203 

           Ni -0.14988 -0.27626 0.004443 0.303373 -0.50157 -0.33983 -0.16238 -0.00873 -0.17982 
          Cu -0.06702 0.0394 0.006447 -0.18411 0.041681 0.237914 -0.04129 -0.0065 0.346705 -0.35753 

         Y 0.221157 0.250393 0.472955 -0.49285 0.074076 0.354644 0.242684 0.625055 -0.00369 0.08207 -0.0002 
        Zr 0.528992 0.309583 0.797846 -0.64316 -0.04674 0.280181 0.345846 0.901268 -0.32517 -0.1282 0.009769 0.741298 

       La 0.28386 -0.04971 0.682528 -0.27257 -0.38722 -0.05875 0.061285 0.78364 -0.21258 0.244949 -0.03913 0.758344 0.822937 
      Ce 0.461612 0.321525 0.717067 -0.60877 0.052211 0.252436 0.348961 0.837461 -0.22813 -0.15874 0.049042 0.755922 0.973839 0.799314 

     Eu 0.257957 0.372293 0.455706 -0.57419 0.175507 0.437783 0.331438 0.600485 -0.03183 -0.1056 0.080356 0.917156 0.794824 0.646561 0.83314 
    Yb 0.084553 0.317537 0.256953 -0.52591 0.319181 0.503891 0.207125 0.394881 0.117808 -0.22235 0.220391 0.860125 0.59099 0.425281 0.639921 0.921624 

   Ce/Ce* 0.227307 0.760726 -0.18772 -0.42883 0.916921 0.593823 0.636615 -0.13081 0.196981 -0.46071 0.052749 0.09114 0.051195 -0.37431 0.156456 0.26731 0.379188 
  Eu/Eu* -0.26706 0.298811 -0.44734 -0.13368 0.631802 0.457778 0.110786 -0.3969 0.330377 -0.31895 0.003643 0.116292 -0.2093 -0.49765 -0.14567 0.269953 0.517461 0.668989 

 
Σ REE 0.345145 0.158285 0.693932 -0.48263 -0.14926 0.167058 0.207963 0.819019 -0.17535 0.051819 0.053767 0.87873 0.926843 0.935918 0.931109 0.859331 0.67695 -0.08988 

-
0.22656 
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Graphical abstract 

Ternary diagram presenting the classification scheme and delimited areas for each genetic process 

involved in the formation of oceanic ferromanganese mineralizations using HFSE and REE data. The 

dotted arrows present the mixing trends between two genetic processes highlighting the continuum 

existing between hydrogenetic-hydrothermal crusts and hydrogenetic-diagenetic nodules. Solid 

arrows show evolution trends of a sample set related to only one genetic process without influence 

of another one. 
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Highlights 

Discovery of metal-rich, low temperature hydrothermal deposits in South Pacific Ocean  

Inability to fit in previous classification due to abnormal high metal content 

Satisfying discrimination obtained combining REE and HFSE with Mn, Fe, Cu and Ni 

New discrimination scheme is proposed for oceanic Fe-Mn deposits 

Detailed relations highlighted between the various genetic processes 




