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Abstract 13 
 14 

 Wetlands are specific areas able to regulate metals mobility in the environment. Among metals, rare 15 

earth elements (REE) appear to be particularly interesting because of the information that could be provided by 16 

the REE patterns. Moreover, as REE are becoming a matter of great economic interest, their significant release 17 

into the environment may be expected over the next few decades. Wetlands would then play a key role in the 18 

regulation of their concentration in the environment. This review demonstrated that REE are released in wetland 19 

bound to colloidal organic matter. During the flood season, the released REE concentrations are largely higher 20 

than those released during the wet period. This solubilisation is related to the organic matter desorption caused 21 

by the pH rise imposed by the reducing reactions. The resulting REE patterns depend on the heterogeneity of the 22 

humic acid (HA) binding sites and the presence of potential competitive cations, such as Fe(III) and Al(III). At 23 

high REE loading, REE are bound to HA carboxylic groups and the pattern exhibit a MREE downward 24 

concavity. At low loading, REE are bound to phenolic and chelate groups and the pattern exhibits a lanthanide 25 

contraction. At low loading, REE seem to act as cationic bridges between two organic molecules, whereas at 26 

high loading they seem to be engaged in strong multidentate bonding. Moreover, the REE patterns can be 27 

modified with the competitive cations amount and speciation. The prime factor governing all these processes is 28 

pH, which drives the organic colloid production, REE loading and solubility of competitive cations.  29 

 30 

Keywords: rare earth elements, wetland, organic matter, colloids, sorption, Fe(III), Al(III), competition 31 

 32 

1. Introduction 33 

 34 
 Rare earth elements represent a group of 15 elements, specifically the lanthanides. They are often 35 

referred to as REE. These 15 elements share common physiochemical properties and therefore often occur 36 

together. In aquatic systems, with regards to their slight solubility, REE concentrations are low compared to their 37 
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concentrations in rocks. Over the past few decades, REE became of critical importance to many high-tech 38 

products and medical applications, and therefore are of great economic interest (U.S. GAO 2010). In 2008, the 39 

consumption of REE oxides was approximately 129,000 t (Goonan 2011). The diverse applications of REE, and 40 

the intense use of fertilizers in agriculture (0.1 to 1% REE in natural phosphates, Otero et al. 2005) may lead to a 41 

significant release of REE into the environment (Cidu et al. 2013). As such, Kulaksiz and Bau (2011) showed 42 

abnormally high concentrations of Gd and La in the Rhine River (France). These authors highlighted that La was 43 

extremely mobile in this environment since La contamination was present more than 400 km after the source of 44 

the contamination. Tagami and Uchida (2006) provided evidence that REE are able to accumulate in soils and 45 

waters and to bioaccumulate in the food chain. Sonich-Mullin et al. (2012) compiled the studies concerned with 46 

the specific human health effects of elevated REE concentrations. They only found a few studies which are, for 47 

the most part, dedicated to epidemiological data mixtures of REE rather than individual elements. These data 48 

indicate that the pulmonary toxicity of REE in humans may be a concern. Therefore, it appears especially 49 

important to assess and to fully understand the occurrence and fate of aqueous REE in the environment. 50 

 In aquatic systems, solution and interface chemistry appears to be the major factor controlling the REE 51 

concentration (e.g. Goldstein and Jacobsen 1988; Elderfield et al. 1990; Sholkovitz 1995). Rare earth elements 52 

can form strong complexes with a number of different ligands. Water is a strong ligand for trivalent (REE
3+

) and 53 

therefore forms a hydration shell around the REE
3+ 

ions. The number of water molecules that a REE
3+

 can bind 54 

varies between 8 and 9, depending on the element and species considered (Ohta et al. 2008). In aqueous 55 

environments, water molecules are only displaced if ligands with a small ionic radius are present at a high 56 

oxidation state and with high electronegativity. In general, REE
3+

 ions prefer donor atoms in the following order 57 

of affinity: O>N>S. The resulting chemical species tend to form mainly ionic bonds with REE within their 58 

unoccupied lower high-energy orbitals (Weber 2008). For the sake of convenience, the REE distribution in 59 

continental waters is usually illustrated by normalized REE patterns relative to the Upper Continental Crust 60 

(UCC) (Taylor et McLennan 1985). The REE patterns result from the combination of several processes able to 61 

induce their fractionation. These processes are themselves controlled by several physicochemical mechanisms 62 

and parameters. In between, three processes can be distinguished: (i) precipitation/dissolution, (ii) sorption onto 63 

colloids and particles, and (iii) complexation in solution with organic and inorganic ligands. The REE pattern 64 

therefore corresponds to the REE pattern for mineral sources that are modified by the sorption/complexation 65 

REE constants with ligands, colloids and particles. This results in a wide range of diverse REE patterns, which 66 

can be characterized by a depletion or enrichment degree relative to heavy REE (La/Yb or Sm/Yb ratios) or by 67 
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whether or not anomalies occur. More specifically, REE fractionation patterns and abundances have been used to 68 

investigate processes occurring in wetlands, such as the hydrological regime of the system, mineral phases 69 

activated during water saturation, trace element sources as well as fine sorption processes occurring onto wetland 70 

colloidal organic matter (Dia et al. 2000; Grybos et al. 2007, 2009; Pourret et al. 2007; 2010; Marsac et al. 2011; 71 

Davranche et al. 2011). In turn, these studies have produced information that can be used to identify and 72 

discriminate the biogeochemical parameters that control their distribution in this type of surface environment.  73 

 The term wetland covers a number of various areas, the major common characteristic of which is the 74 

temporary or permanent water-saturation of the upper-most soil horizons. This permanent or temporary flooding 75 

induces the development of redox alternating or reducing conditions in soils and soils solutions (Ponnamperuma 76 

1972). Under reducing conditions, soil organic matter is partly metabolized by microorganisms, which 77 

successively used O2, NO3, Mn and Fe-oxides and SO4 as electron acceptors (Ponnemperuma 1972). In turn, Mn 78 

and Fe-oxides are reductively dissolved and released in solution with their respective metal/metalloid loading. 79 

Many authors have considered Mn and Fe-oxides to be a major parameter controlling trace metal mobility in 80 

wetland soils (Charlatchka and Cambier, 2000; Chuan et al. 1996; Davranche et al. 2003; Francis and Dodge 81 

1990; Green et al. 2003; Quantin et al. 2001; Quantin et al. 2002). Several studies report positive correlations 82 

between Mn(II) and Fe(II) concentrations in wetland soil solutions and dissolved organic matter (DOC). For all 83 

of these reasons, wetlands are of particular interest in the environment, as well as in the flow regulation of many 84 

elements such as REE. Kohler et al. (2014), who studied the mobilization of several chemical elements in a 85 

boreal catchment, indicated that landscape effects and processes in riparian soils are dominant over purely 86 

chemical in-stream processes. As a result, Barroux et al. (2006) showed that in the Amazon River main stream 87 

and its major tributaries surrounded by many floodplains, the highest concentrations of REE are released in 88 

winter during water saturation and when reducing conditions are established. They calculated that during the 89 

high-water season, the maximum Nd flux is equal to 1,277 t yr
-1

, constituting 30% of the required flux to the 90 

Atlantic Ocean (Tachikawa et al. 2003). Shiller (2010) suggested that the seasonal flooding of wetlands may be 91 

an important regulator of the REE concentrations in hydrosystems. 92 

In this paper, we therefore discuss which biogeochemical factors and processes control the distribution and 93 

transfer of REE in wetland waters. First, we will consider the various REE patterns available in the literature and 94 

second, the different physicochemical mechanisms that account for the displayed variability. 95 

 96 

2. Factors and processes controlling the distribution of REE released in wetland waters 97 
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 98 

 A systematic evolution of the REE patterns is observed between those displayed in wetland 99 

soil/sediments, on the one hand, and in shallow wetland groundwater, on the other. Figure 1 shows the REE 100 

patterns for soil samples and soil solutions recovered from a peatland (Cotentin, France) and a riparian wetland 101 

(Pleine-Fougères, France), respectively. For both studied areas, the amount of REE in the soil is significantly 102 

higher than in solution. The soil REE patterns are flatter than the soil solution REE patterns which, for both 103 

wetlands, exhibit heavy REE (HREE) enrichment. This discrepancy indicates that the soil cannot be the one 104 

single factor controlling REE dynamics in waters flowing in wetlands. It seems reasonable to state that the REE 105 

dynamics in the water–soil system depend on: (i) the fractionation characteristics of the host rock/sediment, (ii) 106 

the weathering processes that might promote the dissolution of a mineral that is either depleted or enriched in 107 

REE, (iii) the water physicochemical characteristics (pH, Eh, organic and inorganic ligands, colloids/particles) 108 

and (iv) the water dynamics. 109 

 110 

2.1. Seasonal flooding and redox conditions 111 

 112 

 In wetlands, redox conditions and their alternations are the main factors accounting for REE 113 

solubilization and mobilization in the environment. The gradual establishment of reducing conditions in wetland 114 

induces the release of redox-sensitive (or not) metals such as Fe or Mn, and Pb, Cd, etc., respectively but also 115 

large concentration of dissolved/colloidal organic matter (fraction <0.45 or 0.2 m) (Hagedorn et al. 2000; 116 

Olivié-Lauquet et al. 2001; Gruau et al. 2004). Grybos et al. (2009) demonstrated that organic matter is mainly 117 

released as humic substances desorbed from soil minerals in response to the rise in pH induced by reduction 118 

reactions (H
+
 consumption). Organic matter can act as a major sink for trace metals due to its high binding 119 

capacity for metallic contaminants (Cabaniss and Shuman, 1988; Frimmel and Huber, 1996; Kalbitz and 120 

Wennrich, 1998). Therefore, in permanently or temporarily flooded wetlands, the establishment of reducing 121 

conditions produces an increase in pH (H
+
 consumption by reductive reactions) which is responsible for the 122 

desorption of soil organic matter from the solid phases. This organic matter is therefore solubilized and its metal 123 

loading notably contains REE (Grybos et al. 2007; Pourret et al. 2007a; Pédrot et al. 2008; Shiller et al. 2010). 124 

Grybos et al. (2007) experimentally demonstrated that in wetland soil under reducing conditions, REE are 125 

mainly bound to dissolved organic matter in the solution. Moreover, using REE patterns as tracers of REE 126 

sources in wetland soils, Davranche et al. (2011) demonstrated that soil organic matter was the main source of 127 
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REE in solution. The flood period constitutes therefore the major input of REE into hydrosystems. Shiller (2010) 128 

calculated that the reducing conditions resulting from the spring flood of soil near Loch Vale (Colorado, USA) 129 

lead to an 8-fold increase in all REE concentrations. 130 

 Under oxidizing conditions, in the low water season, the exported flux of REE is low and is mainly 131 

controlled by the soil organic matter dynamics. Pourret et al. (2010) showed that REE speciation is controlled by 132 

colloidal organic matter present in wetland soil solution even under oxidizing conditions (Naizin, France; Table 133 

1). REE speciation was determined from ultrafiltration with a pore-size between 30 and 5 kDa, and was 134 

supported by modeling calculations using Model VI (Tipping, 1998). Model VI is specific to cation binding with 135 

humic substances and its database is optimized for the binding parameters of REE-humic substances (Pourret et 136 

al. 2007a). The calculation demonstrated that the speciation of the REE was largely dominated by their binding 137 

with humic substances regardless of which water season was considered (Table 1).  138 

 Dia et al. (2000) did not observe any significant evolution in the REE patterns in shallow groundwater 139 

from the Naizin wetland (Brittany, France) between periods of oxidized and reduced conditions. Figure 2 shows 140 

that Eh decreases, whereas the Fe concentration increases in solution subsequently to the reductive solubilization 141 

of Fe(III). The establishment of the moderately reducing condition resulted in a rise in the dissolved REE 142 

concentration, but without any drastic modifications to the REE pattern (Fig. 2). The speciation of REE in the 143 

shallow groundwater was therefore not significantly modified between the oxidizing and reducing periods. 144 

Therefore, REE were bound to dissolved/colloidal organic matter occurring in the soil solutions and shallow 145 

groundwater under oxidizing and reducing conditions. 146 

 147 

2.2. Colloidal control 148 

 149 

 In wetland soil solution or shallow groundwater, REE are closely associated with colloids (particles < 150 

1m). Studies performed on surface waters that drain wetlands, wetland solutions or shallow wetland 151 

groundwater from various types of boreal, tropical, Mediterranean or temperate wetlands, used ultrafiltration 152 

analysis and various pore sizes to demonstrate that REE are mainly concentrated in the high-molecular weight of 153 

the ultrafiltrated fraction of the solution, namely bound to the colloid phases (Viers et al. 1997; Dia et al. 2000; 154 

Tang et Johannesson 2003; Pourret al. 2007a-b; Pédrot et al. 2008; Cidu et al. 2013; Vasyukova et al. 2012; 155 

Neubauer et al. 2013). Vasyukova et al. (2012), who studied the distribution of 50 major and trace elements in Fe 156 

and organic-rich boreal surface waters (either draining wetlands or not) between the colloidal (1 kDa–0.22 m) 157 
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and truly dissolved (< 1 kDa) phases, showed that the association of REE with colloids increases with increasing 158 

pH. 159 

 If colloids are regarded as the main transfer and binding phases of REE in wetland solutions and waters, 160 

the Fe and organic matter phases are the major components of the colloids encountered and formed in wetlands 161 

or waterlogged soils. The term wetland covers a large diversity of areas subject to various hydrodynamic and 162 

climatic conditions, which drastically influence the nature of the colloids released in solution. Andersson et al. 163 

(2006) demonstrated that in subarctic boreal rivers draining organic-rich soils, two different REE colloid phases 164 

can be distinguished. During the sole spring flood, subsequent to soil saturation, small organic-rich colloids (3 165 

nm) are released. By contrast, large Fe-rich colloids (12 nm) are formed during the winter and spring floods. 166 

Rare earth elements are bound to both C-rich and Fe-rich colloids. However, the amount of released REE is 167 

higher during the spring flood when organic-rich colloids are present. Moreover, the subsequent LREE-enriched 168 

REE pattern suggests that REE are released with the organic-rich colloids found in the litter of the organic-rich 169 

topsoil. In a temperate climate, in swamp water, speciation modeling and voltammetric titrations indicated that 170 

dissolved REE in Great Dismal Swamp waters are controlled by the complexation of REE with natural organic 171 

matter (Johannesson et al., 2004). Neubauer et al. (2013) applied Flow Field-Flow Fractionation analyses 172 

(FlowFFF) to waters sampled in a small stream draining an unpolluted wetland (Tanner Moor) in Upper Austria 173 

to study the REE colloidal distribution. They showed that the REE size distribution corresponds to that of 174 

organic matter, i.e. REE are bound to organic-rich colloids. Same results were obtained by Stolpe et al. (2013) 175 

using FFF separation for alaskan rivers water samples. This strong binding of REE by organic matter was 176 

confirmed by several field, experimental and modeling studies (Tang and Johannesson 2003; Johannesson et al. 177 

2004; Sonke and Salters 2006; Pourret et al. 2007a,b; Stern et al. 2007; Pédrot et al. 2008; Kerr et al. 2008; 178 

Marsac et al. 2011). Moreover, Davranche et al. (2011) demonstrated that Fe occurs mainly in wetland soils as 179 

amorphous Fe(III)-nanoparticles embedded within the organic matter which are poor in REE and trace elements.  180 

The controlling parameters of the REE distribution between organic and Fe-rich colloids probably does not 181 

account for climate or redox conditions. The same organic colloidal binding was demonstrated to dominate REE 182 

speciation in the humid tropical watershed in Cameroon (Viers et al. 1997; Braun et al. 1998). Moreover Pédrot 183 

et al. (2008), who performed leaching experiments on wetland soils under oxidizing conditions, provided 184 

evidence that REE speciation is dominated by their binding with organic colloids, such as under reducing 185 

conditions (Grybos et al. 2007). By contrast, it has been shown that REE patterns and therefore speciation in 186 

shallow groundwater along a catchment transect are strongly related to the topography (Dia et al. 2000; Gruau et 187 
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al. 2004; Pourret al. 2010) (Fig. 3). Ultrafiltration analyses coupled to modeling calculations using Model VI 188 

indicated that REE are mainly bound to colloids, which are Fe enriched in the top of the catchment and organic-189 

enriched at the bottom of the catchment, where riparian wetlands are encountered (Pourret et al. 2010).  190 

 The major feature of this evolution in the REE patterns is the decrease in the Ce anomaly, Ce/Ce*, 191 

(Ce/Ce* = 2CeUCC/[PrUCC + NdUCC]}) with the topography. Pédrot et al. (2014 under press) observed that this 192 

spatial variation is strongly correlated with the soil organic carbon/Fe ratio. From soil leaching experiments, they 193 

observed that for a low organic C/Fe ratio, the negative Ce anomaly amplitude in the soil solution was high, 194 

whereas for a high organic C/Fe ratio, the negative Ce anomaly was small or insignificant. Subsequent reductive 195 

dissolution experiments with ascorbate (as a reducing agent) on the soil sample with a low organic C/Fe ratio 196 

demonstrated that the REE pattern for the soil Fe oxyhydroxides exhibited a positive Ce anomaly and HREE 197 

enrichment, indicating that in the upland, the REE signature may be sourced in the Fe-oxyhydroxides in the 198 

upper soil horizons. Iron oxides are indeed able to present this positive Ce anomaly with regards to their capacity 199 

to oxidize Ce(III) in Ce(VI) and preferentially trap Ce(IV) compared to the other REE(III) (Bau 1999; 200 

Davranche et al. 2005). By contrast, in wetland soils with a high organic C/Fe ratio, the REE patterns solubilized 201 

under reducing conditions did not exhibit any Ce anomaly. Davranche et al. (2004; 2005) demonstrated that the 202 

suppression of the Ce anomaly in organic-rich water is explained by the organic speciation of the REE. In this 203 

type of water, REE and Ce are bound to organic molecules. Although Fe and Mn could be present in the 204 

medium, this organic matter-mediated complexation prevents any Ce(III) scavenging/oxidation by Fe and Mn 205 

oxides from occurring. Therefore, in the bottomland, the REE signature is sourced in the organic matter in the 206 

uppermost soil and its solubilization as an organic colloid in the wetland soil solution.  207 

 Therefore along a toposequence, REE patterns, speciation and transfer are mainly controlled by organic 208 

colloids in bottom land soils (wetland soils) or Fe-rich colloids in the upland soil (well-drained soils). The 209 

composition, organic or Fe-rich, of such colloids is dependent on the soil composition.  and on mechanisms that 210 

control colloid formation and transfer in solution such as, for instance, hydrodynamic conditions.  211 

 212 

2.3 Impact of biological parameters 213 

 214 

 Biological parameters could potentially influence the REE distribution in wetland waters through direct 215 

and indirect mechanisms. Several authors have demonstrated the ability of the bacterial cell surface to bind REE 216 

(Takahashi et al. 2005; 2010; Ngwenya et al. 2009; 2010). The resulting REE pattern exhibits a tetrad effect and 217 

a prominent enrichment in HREE (from Er to Lu). Based on EXAFS evidence and modeling calculations, this 218 
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shape was further attributed to the binding of REE as inner sphere complexes with carboxylic and multiple 219 

phosphate sites occurring on the surface cells (Takahashi et al. 2010; Ngwenya et al. 2010; Martinez et al. 2014). 220 

Simpson et al. (2007) suggested that bacterially derived biomass could constitute more than 50 % of the total soil 221 

organic carbon in aerobic soils. However, in wetlands, with regards to the temporary or permanent saturation of 222 

the soil, the bacterial activity is low, the nitrate respiratory or Mn and Fe reduction is less energetic compared to 223 

the O2 respiratory in soil where aerobic conditions prevailed. A direct consequence is that organic molecules are 224 

transformed into humic substances rather than being degraded. The proportion of bacterial biomass as compared 225 

to humic ligand is therefore potentially lower than 50%. Moreover, bacteria and cells residues have also to 226 

compete with the soil organic ligand present in high amounts for REE binding. Therefore, it is unlikely that REE 227 

binding by bacterial cells could account significantly for the REE pattern and distribution . Another mechanism 228 

that can be inferred in the REE behavior in wetlands is the mechanism used by plants (Tyler 2004). Plants 229 

growing in sediments/waters with high elemental loading have developed tolerance or avoidance mechanisms 230 

(Freeman and Salt 2007). To avoid the uptake of metals and metalloids, they are able to excrete exudates by the 231 

roots, to bind elements in the roots and to leaf cells or to trap elements in the cell vacuole (Schaller et al. 2013). 232 

High amounts of chemical elements in plant tissues can also be accumulated through transpiration (Schaller et al. 233 

2013). However, the absorption of REE by plants is low (Lima e Cunha et al. 2012). The REE concentration 234 

varied from 1 to 500 ppm depending on the plant species (e.g. for La, about 700 ng g
-1

 in fern (Matteuccia) and 235 

less than 10 ng g
-1

 of La in Norway spruce needles (Ding et al., 2005))organs (leaves, roots), organs age (HREE 236 

amount decreased from the older to the younger leave, (Ding et al. 2005))and REE abundance in soils (Ding et 237 

al., 2006). In china, oncentrations up to 7000 ppm of LREE have been reported to accumulate in the leaves of the 238 

specific hyper-accumulator Dicropteris dichotoma (Shan et al. 2003). Nevertheless, the internal processes of 239 

plants can fractionated the REE (Ding et al., 2006; Lima e Cunha et al. 2006,; Stille, 2006; Brioschi et al., 2013). 240 

For example, Ding et al. (2006) observed MREE enrichment in the roots and MREE and HREE enrichment in 241 

the leaves. These results suggest that the REE patterns observed in the wetland solution could potentially be 242 

inherited from their fractionation in wetland plants (Akagi et al., 2002). However, further studies need to be 243 

carried out in order to confirm or dispel this hypothesis. 244 

 Therefore, the major biological mechanism that seems to account significantly for the behavior and 245 

distribution of REE in wetlands is an indirect mechanism, the bioreduction of Mn(IV) and Fe(III). This reaction 246 

which is mediated by the bacteria consortium occurring in wetlands, indirectly controls the organic matter 247 

solubility. The saturation of wetland soil with water promotes the use of Mn and Fe oxides as the electron 248 
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acceptor by the bacteria for their growth. This reduction involves the concomitant dissolution of Mn and Fe 249 

oxides and the rise in pH which is responsible for the organic matter, with its REE loading, solubilization. 250 

 251 

3. Factor controlling the REE pattern variability in wetland water 252 

 253 

 As previously demonstrated, in shallow wetland groundwater, REE are mainly associated with organic 254 

colloids. However, although the speciation determination using modeling calculations (Model V, Model VI), 255 

voltametry and ultrafiltration showed that REE are bound to organic molecules at more than 90% (Fig. 4),several 256 

types of REE patterns can be observed (Gruau et al. 2004 ; Johannesson et al. 2004; Pourret et al. 2007a). The 257 

first REE pattern type, observed in acidic pH waters, displays a middle REE (MREE) enrichment compared to 258 

LREE and HREE (Figs. 4a, 4b and 4c). The REE pattern in the Great Dismal Swamp waters, for which Eu is 259 

determined, exhibit substantial negative Eu anomalies, Eu/Eu*, (Eu/Eu*, = {2EuUCC/[SmUCC + GdUCC]}, which 260 

range from 1.07 to 0.44 (Fig. 4b). Pourret et al. (2007b) experimentally demonstrated that the distribution 261 

coefficients (Kd) between REE and humic acid (HA) increased for MREE at a pH  7 and high REE 262 

concentrations with respect to HA (Fig. 5a). The second type of pattern exhibits an HREE enrichment (Fig. 4c). 263 

The same REE pattern was reproduced experimentally by both Sonke and Salters (2006) and Stern et al. (2007) 264 

from pH = 6 to 9 and a low REE concentration with respect to HA (Figs. 4c and 5b).  265 

 The first hypothesis, which was provided to explain both REE specific signatures this specific feature 266 

was that the REE patterns were controlled by the chemical weathering or the precipitation of specific minerals. 267 

Therefore, the MREE downward concavity was explained by the dissolution/leaching of Fe-iron oxides, apatite, 268 

rhadophane, etc. or the precipitation of LREE and HREE with phosphates (e.g. Johannesson and Lyons 1995; 269 

Byrne et al. 1996; Taunton et al. 2000). However, more recent studies have demonstrated that in organic-rich 270 

waters in which REE speciation is dominated by their binding with organic molecules, the REE pattern is 271 

controlled by the surface properties of the organic matter itself (e.g. Pourret at al. 2007b; Kautenburger 2009; 272 

Marsac et al. 2010; 2011; Kautenburger et al. 2014).  273 

It important to note that many of these experimental studies concerns REE association with humic acid, and in 274 

particular, commercially available material Aldrich Humic Acid and Leonardite, both manufactured from coal. 275 

However, as previously demonstrated, the REE patterns are controlled by both functional surface sites 276 

distribution and composition. When surface sites of Leonardite and Aldrich are compared to those of humic 277 

acids extracted from organic soils, no drastic differences appear (e.g. Leonardite: 7.46 and 2.31 meq g
-1

 C for 278 
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carboxylic and phenolic groups, respectively against for Elliot soil: 8.28 and 1.87 meq g
-1

 C for carboxylic group 279 

and phenolic groups, respectively) (Ritchie and Perdue, 2003). Furthermore, even if humic acid represent 15% of 280 

DOC in wetlands versus 10% of DOC in rivers (Thurman, 1985), it is well known that fulvic acids are generally 281 

much more abundant in natural waters. However, for experimental convenience such as product avaibility and 282 

REE-humic complexes separation from solution, humic acid remains generally chosen. If fulvic acids are more 283 

soluble than humic acids, both present higher abundance of carboxylic weak sites than phenolic strong sites and 284 

the sorption mechanisms on their surface are identical. The REE pattern resulting from binding with fulvic acids 285 

would therefore not differ from those corresponding to humic acids-mediated binding. The only 286 

carboxylic/phenolic site ratio between humic and fulvic acids could weakly modify the REE pattern developed 287 

when identical physico-chemical conditions prevail. 288 

 289 

3.1. REE loading and HA surface heterogeneity 290 

 291 

 Marsac et al. (2010; 2011) demonstrate that the discrepancy between these two types of REE patterns is 292 

explained by the combined effect of metal loading and the surface heterogeneity of HA. At low loading, REE are 293 

complexed to strong but less abundant HA sites, namely phenolic and/or multidendate/chelating sites. The 294 

resulting REE patterns show a lanthanide contraction. By contrast, at high metal loading, REE are complexed to 295 

weak but more abundant HA sites, namely the carboxylic group. The resulting REE pattern exhibits a MREE 296 

downward concavity. These authors developed two approaches to obtain this result. In a first step, they 297 

compared their experimental log Kd REE-HA patterns with the pattern for the stability constants (log K) of 298 

REE-organic model ligands. Humic acids can be considered as a group of discrete sites. The major sites 299 

identified on the HA surface are the carboxylic and phenolic groups, which can form monodentate or 300 

multidentate complexes. Using this simplified representation, HA binding properties can be compared with the 301 

binding properties of model organic ligands. Figure 6 displays the pattern of the log K REE-carboxylic model 302 

ligand, namely acetic acid (Fig. 6a), the REE-phenolic model ligand, namely catechol (Fig. 6b) and the REE-303 

chelate ligand model, namely nitrilotriacetic acid (NTA) (Fig. 6c) (Byrne and Li 1995). The REE patterns 304 

corresponding to the binding of REE with acetate (carboxylic group) exhibit a MREE downward concavity, 305 

whereas catechol and NTA (phenolic and chelate group) exhibit a lanthanide contraction effect corresponding to 306 

both REE-HA patterns obtained at high and low metal loading, respectively. Figure 6d plots the evolution of the 307 

log(K Lu-organic ligand /K La-organic ligand) relative to the average log K REE-organic ligand for the 101 308 
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organic ligands compiled by Byrne and Li (1995). The ratio La/Lu is a useful tool to fingerprint the shape of the 309 

REE pattern. This ratio shows that when the ligand is stronger, HREE are more strongly bound to the ligand 310 

compared to LREE. This result is supported by Infra-Red spectroscopy results which demonstrate that HREE are 311 

preferentially bound to strong organic matter aromatic functional groups such as phenolic sites compared to 312 

LREE (Gangloff et al. 2014). 313 

 In a second step, Marsac et al. (2011) used a modeling approach to confirm this hypothesis and to gain 314 

access to the REE speciation on each HA site. They combined Model VI, a model specific to cation-humic acid 315 

binding (Tipping 1998) with PHREEQC, a generic speciation model (Parkhurst and Appelo 1999). This coupling 316 

allowed to dissociate the binding parameter of the carboxylic and phenolic sites (log KMa and log KMb), which 317 

were previously linked by a linear relationship in Model VI. This linear relationship between both parameters 318 

means that the REE have to be bound to the HA phenolic groups via a MREE downward concavity pattern, 319 

which does not correspond to the pattern developed with the corresponding single organic ligand, catechol, as 320 

shown in Figure 6. This is the reason why this relationship was removed. This coupling also allowed to access 321 

the distribution of the REE onto each binding group described in PHREEQC-Model VI. Simulations of the 322 

experimental datasets available in the literature (Sonke and Salters 2005; Pourret et al. 2007b; Marsac et al. 323 

2010; 2011) provided evidence that HREE and LREE are not complexed to HA via the same functional sites. At 324 

high loading and acidic pH, LREE are bound to carboxylic groups and HREE to carboxylic and chelate groups. 325 

At a circumneutral pH, LREE are bound to carboxylic groups and HREE via phenolic groups (Fig. 7). The 326 

denticity of the REE-HA complex is also dependent on the metal loading. Using PHREEQC-Model VI, the 327 

simulations showed that the average number of HA groups coordinated to REE increased with decreasing metal 328 

loading (Marsac et al. 2011; 2014). More recently, Kautenburger et al. (2014) studied the binding of REE to 329 

modified HA with blocked phenolic or carboxylic sites. The data obtained suggeste that REE binding to strong 330 

sites can be assumed to be chelating complexes consisting of a combination of phenolic and carboxylic groups. 331 

Marsac et al. (2014, submitted) obtained EXAFS records on Yb-HA complexes synthesized at low and high 332 

loadings. Their results showed that at a low loading, REE are bound to HA through bi-ligand complexes without 333 

any chelation effect in which REE act as a cation bridge between two organic molecules. By contrast, at high 334 

loading, REE are bound to HA via multi-carboxylic chelate ligands. 335 

  336 

3.2. Competitive cations 337 

 338 
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 Competition between cations and REE in solution in terms of their binding to HA also appear to be 339 

another important controlling factor on the REE patterns developed in shallow organic-rich wetland groundwater 340 

(Tang and Johannesson 2003; Marsac et al. 2012; 2013). By contrast to laboratory experiments, in which the 341 

REE/HA ratio can vary from 10
-4

 to 10
-2

 mol REE/mol organic C, REE/HA ratios are often very low in natural 342 

waters, ranging from 10
-6

 to 10
-4

 mol REE/mol organic C (Tang and Johannesson 2010). In natural waters, the 343 

HA metal loading is therefore generally imposed by other dissolved metals, such as Fe and Al, which occur in 344 

much higher concentrations than REE. Marsac et al. (2012; 2013) used REE-Al(III) and REE-Fe(III) competitive 345 

complexation experiments for HA and the modeling of experimental datasets with PHREEQC-Model VI to 346 

demonstrate that (i) Fe
3+

 competes more strongly with HREE than LREE, whereas Fe(III) species formed at 347 

higher pH values (i.e. FeOH
2+

 or Fe polymer) compete equally with LREE and HREE (Figs. 8b and 8c). For 348 

Al(III), they show that Al
3+

 has the same competitive effect on REE-HA binding as Fe
3+

, but at higher pH 349 

values, AlOH
2+

 mainly competes with LREE (Figs. 8a and 8b). In turn, since the HA binding sites for the REE 350 

are previously estimated, this effect of competition on the REE patterns gives information about the own binding 351 

sites of Fe and Al. Thereby, at acidic pH values, Fe(III) as Fe
3+

 is bound with carboxylic and multidendate sites 352 

and Al(III), Al
3+ 

is bound to phenolic and multidendate sites (Figs. 8a and 8c). At a circumneutral pH, Fe(III) as 353 

FeOH
2+

 is bound to all HA binding sites and Al(III) as AlOH
2+

 is mainly bound to carboxylic sites. The effect of 354 

competition on the REE patterns appears to be totally dependent on the speciation of Al(III) and Fe(III) with 355 

respect to the physicochemical conditions. For example, in wetland solutions with an acidic pH < 5 and low REE 356 

loading, the theoretical REE pattern without any competitive cations should exhibit HREE enrichment 357 

(lanthanide contraction). However, when Fe(III) and Al(III) are present as Fe
3+

 and Al
3+

 in such acidic water, the 358 

REE pattern should exhibit a MREE downward concavity. This MREE enrichment is subsequently produced by 359 

the competition of Fe
3+

 and Al
3+

 with LREE for their binding to weak carboxylic sites and with HREE for their 360 

binding with phenolic and strong chelating sites. By contrast, in wetland solutions at a circumneutral pH and 361 

high REE loading, the presence Fe(III) as hydrolyzed species (FeOH
2+

 or Fe polymer) should not modify the 362 

MREE downward concavity pattern since FeOH
2+

 competes for all REE. Only the amount of REE bound to HA 363 

should decrease (Fig. 8d). Furthermore, for the same wetland solution at neutral pH and high REE loading, the 364 

presence of Al(III) as AlOH
2+

 should modify the MREE downward concavity to a HREE enriched pattern since 365 

Al competes with LREE for the carboxylic sites (Fig. 8b). Kohler et al. (2014) studied the mobilization of REE, 366 

Al, Fe and U in a boreal catchment and demonstrated that organic matter controls their speciation in solution. 367 

However, the increase in pH downstream from the catchment promotes the precipitation of Fe and Al as 368 
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ferrihydrate and gibbsite, respectively. This selective removal of Al and Fe from the organic matter binding sites 369 

results in a higher La concentration downstream, i.e. a higher amount of La bound to colloidal organic matter 370 

occurring in solution. Therefore the pH, which controls the chemical species of the competitor cations present in 371 

the solution, appears to be the major driver of this competition between trivalent cations and REE. 372 

 373 

4. Conclusions 374 

 375 

 With regards to the hydrodynamic conditions prevailing in wetlands, the biogeochemical process 376 

occurring in these specific areas strongly influence the mobility and speciation of many elements in solution. 377 

Among them, REE is a unique group of elements in terms of the information that can be supplied by the REE 378 

patterns. REE patterns and abundances thereby can be used to discriminate between the most important 379 

mechanisms that occur. This review demonstrates that organic matter, pH and reducing conditions are the main 380 

factors controlling REE behavior in wetland areas. The first operator is soil organic matter. This organic matter 381 

strongly binds REE. The heterogeneity of the functional groups present on its surface results in a specific REE 382 

pattern in the solution in which organic matter is solubilized. However, this REE pattern is dependent on the 383 

other potential competitive cations, notably the trivalent cations that are able to compete with REE for the 384 

organic matter binding sites, namely Fe(III) and Al(III). The second operator is pH, which occurs at several 385 

steps. First, not only does pH control the solubility and speciation of REE, but also that of their competitors - Fe 386 

and Al - and therefore their ability to compete with REE. Second, pH is responsible for the solubilization of soil 387 

organic matter as organic colloids by controlling its adsorption/desorption from the soil solid phases. Last, 388 

reducing conditions appear to be a second order operator. The establishment of reducing conditions subsequent 389 

to wetland soil saturation drastically increases the amount of organic matter and its REE loading in shallow 390 

groundwater. However, reduction acts indirectly through the increase in pH caused by H
+
 consumption in the 391 

reducing reactions. When the conditions become progressively reducing, the increase in pH promotes organic 392 

matter desorption as colloids from the soil matrix, and potentially a decrease in the amount of competitive Al by 393 

its precipitation as gibbsite, for example. This results in a strong release of REE, the speciation of which is 394 

dominated by their binding to organic colloids.  395 

  396 
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Table and figure captions 606 

 607 
Table 1 608 

REE speciation in shallow groundwater from the Naizin (France) riparian wetland (Pourret et al. 2010). 609 

Calculations were performed using Model VI and the optimized data produced by Pourret et al. (2007a). 610 

 611 

Fig. 1. a) REE patterns for a solid peat sample and peat solutions from the Cotentin marshlands (France) 612 

(Auterives, 2007). b) REE pattern for the uppermost soil horizon and its soil solution at various sampling dates 613 

from the riparian Le Home wetland (Brittany, France) (modified from Gruau et al., 2004). The peat and soil REE 614 

patterns are flat, whereas the peat and wetland soil solution patterns exhibit a LREE depletion reflecting REE 615 

fractionation during their solubilization. 616 

 617 

Fig. 2. a) REE pattern evolution relative to time in the shallow groundwater from the Naizin wetland (Brittany, 618 

France), b) Evolution of the Eh and Fe concentration indicating the establishment of moderately reducing 619 

conditions and the reductive dissolution of soil Fe oxides (Dia et al., 2000). Although the redox conditions 620 

became moderately reduced, the REE pattern was not significantly modified, suggesting that no drastic REE 621 

speciation change occurs. 622 

 623 

Fig. 3. Evolution of the REE pattern in shallow groundwater relative to the topography in the Mercy sub-624 

catchment (Brittany, France) (Pourret et al. 2010). 625 

 626 

Fig. 4. UCC normalized REE patterns in the dissolved fraction (< 0.2 m) of the organic-rich wetland solutions 627 

from the a) Kervidy Naizin wetland (France) (DOC ≈ 15 ppm), c) Great Diswal swamp (USA) (DOC from 5.3 to 628 

115 ppm) and c) Le Home-Pleine Fougères wetland (France) (DOC ≈ 27 ppm). The REE patterns are different 629 

although the modeling calculations using Model V, Model VI, Voltammetry and ultrafiltration analysis showed 630 

that REE are bound at more than 90% to colloidal organic matter (Gruau et al., 2004; Johannesson et al., 2005; 631 

Pourret et al., 2007a). 632 

 633 

Fig. 5. (a) Log Kd REE pattern on the colloidal HA surface at pH = 6 (Pourret et al., 2007b). (b) Apparent log  634 

REE-HA at pH = 6 (Sonke and Salters, 2006). 635 

 636 

Fig. 6. Pattern of log K REE with (a) acetate, (b) catechol and (c) NTA. (d) log(KLu-organic ligand/KLa-organic 637 

ligand) relative to the average log KREE-organic ligand for the 101 organic ligands compiled by Byrne and Li 638 

(1995). 639 

 640 

Fig. 7. Evolution of REE speciation on the HA site described in PHREEQC-Model VI relative to the pH at high 641 

loading. 642 
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Fig. 8. REE-HA log Kd pattern in the high loading condition and Al(III) or Fe(III)/REE ratio = 1, a) with and 644 

without Al(III) at pH 3, b) with and without Al(III) at pH 6, c) with and without Fe(III) at pH = 3 and d) with and 645 

without Fe(III) at pH = 6. Figure modified from Marsac et al. (2012). 646 
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Fig. 1. a) REE patterns for a solid peat sample and peat solutions from the Cotentin marshlands (France) (Auterives, 2007). b) REE pattern for the uppermost soil horizon and its soil 

solution at various sampling dates from the riparian Le Home wetland (Brittany, France) (modified from Gruau et al., 2004). The peat and soil REE patterns are flat, whereas the peat 

and wetland soil solution patterns exhibit a LREE depletion reflecting REE fractionation during their solubilization. 
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Fig. 2. a) REE pattern evolution relative to time in the shallow groundwater from the Naizin wetland (Brittany, 

France), b) Evolution of the Eh and Fe concentration indicating the establishment of moderately reducing 

conditions and the reductive dissolution of soil Fe oxides (Dia et al., 2000). Although the redox conditions 

became moderately reduced, the REE pattern was not significantly modified, suggesting that no drastic REE 

speciation change occurs. 

6E-09

6E-08

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

[R
E

E
]/

U
C

C

12/17/97 01/07/1998 1/14/98 1/21/98 02/03/1998
2/18/98 03/05/1998 3/17/98 04/01/1998 04/03/1998
04/08/1998 4/22/98 05/06/1998 5/20/98

Oxidizing period

sligtly to 
moderately 

reducing period

a)

0

100

200

300

400

500

0

4

8

12

16

E
h

(m
V

)/
S

H
E

[F
e
] 

(p
p

m
)

Fe

Eh (mV)

sligtly to moderatly 
reducing period

Oxidizing period

b)

http://www.editorialmanager.com/aqua/download.aspx?id=17708&guid=098fed84-251a-4cf6-8880-26bbff323f2e&scheme=1


 

 

Fig. 3. Evolution of the REE pattern in shallow groundwater relative to the topography in the Mercy sub-catchment (Brittany, France) (Pourret et al. 2010). 
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Fig. 4. UCC normalized REE patterns in the dissolved fraction (< 0.2 m) of the organic-rich wetland solutions 

from the a) Kervidy Naizin wetland (France) (DOC ≈ 15 ppm), c) Great Diswal swamp (USA) (DOC from 5.3 to 

115 ppm) and c) Le Home-Pleine Fougères wetland (France) (DOC ≈ 27 ppm). The REE patterns are different 

although the modeling calculations using Model V, Model VI, Voltammetry and ultrafiltration analysis showed 

that REE are bound at more than 90% to colloidal organic matter (Gruau et al., 2004; Johannesson et al., 2005; 

Pourret et al., 2007a). 
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Fig. 5. (a) Log Kd REE pattern on the colloidal HA surface at pH = 6 (Pourret et al., 2007b). (b) Apparent log  

REE-HA at pH = 6 (Sonke and Salters, 2006). 
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Fig. 6. Pattern of log K REE with (a) acetate, (b) catechol and (c) NTA. (d) log(KLu-organic ligand/KLa-organic ligand) relative to the average log KREE-organic ligand for 

the 101 organic ligands compiled by Byrne and Li (1995). 
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Fig. 7. Evolution of REE speciation on the HA site described in PHREEQC-Model VI relative to the pH at high 

loading. 
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Fig. 8. REE-HA log Kd pattern in the high loading condition and Al(III) or Fe(III)/REE ratio = 1, a) with and without Al(III) at pH 3, b) with and without Al(III) at pH 6, c) with and without 

Fe(III) at pH = 3 and d) with and without Fe(III) at pH = 6. Figure modified from Marsac et al. (2012). 

 

REE/Al 

competition

mainly for 

phenolic and  

multidendate

sites 

REE/Al 

competition

for 

carboxylic

sites 

REE/Fe

competition

for 

carboxylic and  

multidentate

sites

REE/Fe

competition

for 

all binding

sites 

a) Al(III), pH = 3 b) Al(III), pH = 6

c) Fe(III), pH = 3 d) Fe(III), pH = 6

http://www.editorialmanager.com/aqua/download.aspx?id=17719&guid=bcd5b7ce-3edd-4931-b65f-0957ae79a9f9&scheme=1


 

Species % 

(in shallow wetland groundwater) 
La

3+
 LaSO4 La-HS 

Other 

species 

November 

(beginning of the saturated season) 
0.0 0.0 100 0.0 

May 

(beginning of the unsaturated season) 
7.0 0.5 92.5 0.0 

 

 

Table 1 

REE speciation in shallow groundwater from the Naizin (France) riparian wetland (Pourret et al. 2010). 

Calculations were performed using Model VI and the optimized data produced by Pourret et al. (2007a). 
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