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Abstract 

The competitive binding of rare earth elements (REE) to purified humic acid (HA) and MnO2 

was studied experimentally using various HA/MnO2 ratios over a range of pH (3 to 8). MnO2, 

humic acid and REE solutions were simultaneously mixed to investigate the kinetics of the 

competitive reactions. Aqueous REE-HA complex is the dominant species whatever the 

experiment time, pH and HA/MnO2 ratio. The value of the distribution coefficients between 

MnO2 and solution (log 2REE/MnO
dK ) increases with the HA/MnO2 ratio, indicating that part 

of the REE-HA complexes are adsorbed onto MnO2. The development of a Ce anomaly 

appears strongly limited in comparison with inorganic experimental conditions. Throughout 

the experimental run time, for HA/MnO2 ratios of less than 0.4, MnO2 acts as a competitor 

leading to a partial dissociation of the REE-HA complex. The majority of the dissociated REE 

is readsorbed onto the MnO2 surface. The readsorption of REE is expressed by an increased 

Ce anomaly on the log 2REE/MnO
dK pattern as well as a change in shape of the coefficient 

distribution of REE between soluble HA and solution pattern (log REE/HA
dK decrease for the 

heavy rare earth elements – HREE). Thus, REE are not only bound to MnO2 as a REE-HA 

complex, but also as REE(III). Moreover, the competition between HA and MnO2 for REE 

binding is shown to be higher at low pH (<6) and low DOC/Mn ratio. This study partially 

confirms previous work that demonstrated the control of REE adsorption by organic matter, 

while shedding more light on the impact of pH as well as complexation reaction competition 

on long-term REE partitioning between solid surface and organic solutions. The latter point is 

important as regards to REE speciation under conditions typical of rock and/or mineral 

alteration.  

Key-words- rare earth elements, humic acid, MnO2, kinetics, competition, complexation, 

dissociation. 
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1. Introduction 

 

Organic matter has recently been shown to be one of the key factors controlling rare 

earth element (REE) speciation in aquatic environments such as shallow groundwaters, 

surface waters and soil solutions. This fundamental role has been studied by direct techniques 

including ultrafiltration, electrochemical measurements of organic-rich waters (Tanizaki et al., 

1992; Viers et al., 1997; Dupré et al., 1999; Dia et al., 2000; Ingri et al., 2000; Johannesson et 

al., 2004) and laboratory studies and model calculations (Tang and Johanesson (2003); Sonke 

and Salters, 2006; Yamamoto et al., 2005; Pourret et al, 2007a). The dominantly organic 

speciation of REE has several consequences on the distribution and behaviour of these 

elements in aquatic environments. REE organic complexation suppresses the development of 

a Ce anomaly and limits the REE adsorption onto Fe- and Mn-oxides. Recently, Davranche et 

al. (2004 and 2005) designed laboratory experiments to study the impact of REE organic 

complexation during REE adsorption onto potential oxidative surfaces of HFO (hydrous ferric 

oxide) as well as MnO2. These authors introduced REE in the form of REE-humate complex 

into a suspension of oxidative solid. Their studies demonstrated (i) a strong decrease of REE 

adsorption onto MnO2, (ii) a suppression of the tetrad effect and (iii) a suppression of the Ce 

anomaly, when REE occurs as REE-humate complexes. These authors (op. cit.) attributed 

such phenomena to an anionic adsorption process mediated by organic matter (adsorption by 

the humate side of the REE-humate complex) as well as the fact that REE cannot behave 

independently from each other since they are collectively bound to the humate molecule. 

Concerning these data, Davranche et al. (2005) state that Ce anomalies may not be a reliable 

proxy of redox conditions in organic-rich waters or in precipitates formed in equilibrium with 

waters rich in humic substances. However, REE in soils, soil solutions and aquatic systems 

draw their source from rocks and rock-forming minerals subjected to weathering/alteration 

processes (e.g., Sholkovitz, 1995; Gaillardet et al., 2003). The chemical reactions involved in 
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these processes are mainly hydrolysis inducing the release of REE as free REE(III) species. In 

this context, released REE are likely to be complexed by the ligands occurring in solution, 

including carbonate, sulphate, soluble organic matter, colloids and the solid surfaces. The 

distribution of REE between all these different ligands is therefore controlled by 

complexation stability constants, reactions kinetics, element concentrations and physico-

chemical parameters (pH, Eh and T°). Furthermore, natural environments are often non 

steady-state systems, requiring kinetic approaches to determine more realistic chemical 

speciation of elements (Sekaly et al., 1999; Xue et al., 2001; Guthrie et al., 2003; Wang et al., 

2005). Therefore, there are two main drawbacks in Davranche et al. (2004 and 2005) 

conclusion that REE organic complexation suppresses the oxidative scavenging of Ce and 

limits REE adsorption onto MnO2. Firstly, these authors do not take into account the 

respective kinetics of REE complexation reaction by organic matter and MnO2 and, secondly, 

the REE-humate complex is completely stabilized before its interaction with MnO2. Kawabe 

et al. (1999) and Ohta and Kawabe (2000) noted similar suppression of Ce anomalies with 

both REE and REE(III)-carbonate complexes during adsorption onto FeOOH. They suggested 

that the Ce anomaly did not develop because Ce(III) complexation with carbonate was faster 

than Ce(III) oxidation kinetics. Thus, the key question concerning Ce anomaly suppression 

and, more generally, the REE partitioning between surface solid and organic solution is the 

rate at which REE are complexed by MnO2 and organic matter, respectively. If oxidation and 

adsorption kinetics were faster than organic complexation, a Ce anomaly could nevertheless 

develop, despite the presence of organic matter, and a high amount of REE could be adsorbed 

onto MnO2. Another concern is the stability of the REE-humate complex. Rate et al. (1993) 

indicated that reactions necessary to stabilize cation-humate complex take place at least after 

24 h. Several authors have also provided evidence that the time-dissociation of cation-humate 

complexes in the presence of a ligand competitor depends on the prior contact time between 

cations and organic molecules (Rate et al., 1993; Geckeis et al., 2002; Wang et al., 2005). 
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Under the experimental conditions used by Davranche et al. (2004 and 2005), organic REE 

complexes were completely stabilized before contact with MnO2. Thus, MnO2 could not 

destabilize the REE-humate complex. Clearly, the natural environment could be different 

when REE occurs in contact with organic matter and solid surface at the same time. 

Therefore, the conditions prevailing in nature need to be experimentally explored. 

In this study, competitive kinetic experiments were carried out to assess the impact of 

the competitive kinetic reaction between MnO2 and humic acid for REE complexation on Ce 

anomaly development and REE adsorption. The experiments were performed with MnO2 and 

purified humic acid in the presence of all 14 REE occurring simultaneously. To allow kinetic 

competition, MnO2, humic acid and REE solutions were prepared separately and mixed 

together simultaneously. The REE phases included organic and/or inorganic REE bound to 

MnO2 surface, REE complexed to aqueous humic acid and soluble REE in the inorganic 

solution. Each of these phases was separated using a combination of filtration/ultrafiltration 

techniques. Two series of experiments were designed to allow the determination of the 

respective roles of humic acid/MnO2 ratio and pH.  

 

2. Materials and methods 

 

All chemicals used were of analytical grade, and all the experimental solutions were 

prepared with doubly deionised water (MilliQ system, Millipore™). Complexes were 

prepared in polyethylene containers previously soaked in 10 % Ultrapure HNO3 for 48 h at 60 

°C, then rinsed with MilliQ water for 24 h at 60 °C to remove all possible REE contamination 

sources. Synthetic REE solutions were prepared from nitrate REE standards (10 ppm, Accu 

Trace™ Reference Standard). All experiments were carried out at room temperature, i.e. 20 

°C ± 2.  
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2.1. Humic acid 

 

Purified humate, referred to below as HA (humic acid), was obtained from synthetic 

Aldrich™ humic acid (Aldrich™, H1, 675-2) following the protocol described by Vermeer et 

al. (1998). The HA sample was freeze-dried and stored in a glass container at room 

temperature. HA obtained was ash free and in its protonated form, with the following 

elemental composition (in weight percent): C = 55.8 %, O = 38.9 %, H = 4.6 %, N = 0.6 %. 

REE concentrations REE in HA were below the detection limit of ICP-MS measurement (i.e. 

below 1 ppt). HA has a mean molecular weight of 23 kDa (Vermeer et al., 1998). Prior to use, 

the freeze-dried humate was resuspended overnight in an 0.001 mol L-1 NaCl electrolyte 

solution at pH = 10, to ensure complete dissolution of the sample (Davranche et al., 2004 and 

2005). 

 

2.2. Manganese oxide 

 

Synthetic MnO2 (Aldrich) was used in the adsorption experiments. The solid structure 

was analysed by X-Ray diffraction (XRD) on a Siemens D5000 diffractometer. The principal 

d spacing indicated a pyrolusite (MnO2) structure. The total surface site number of MnO2 was 

estimated using the solid CEC (Cation Exchange Capacity) and determined following the 

cobaltihexammine method, ISO 11260 (AFNOR, 1994). Ions bound with the solid surface are 

exchanged with cobaltihexammine ions, and the CEC is the concentration of 

cobaltihexammine ions eliminated from the solution. Five g of solid MnO2 were mixed with 

10 mL of 0.017 M cobaltihexammine solution for 3 h. The suspension was then centrifuged 

and the concentration of cobaltihexammine ion remaining in solution was measured at 470 

nm with an Uvikon Biotek Instruments UV spectrophotometer. The analyses indicated that 

the MnO2 used in this study has a CEC of 70 meq/100g. 
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Surface acidity constants were determined from potentiometric titrations of 5g.L-1 of 

solid with NaOH (0.1 M) and HNO3 (0.1 M), in 0.1 M NaCl solution as the supporting 

electrolyte (Davranche et al., 2003). Titrations were carried out with a Metrohm 794 DMS 

Titrino apparatus equipped with a Metrohm combined (3 M KCl) glass electrode. Measured 

acidity constants (pKa1 = 7.89 and pKa2 = 3.65) yielded a pHzpc equal to 5.8, a value that falls 

within the reported pHzpc range for MnO2 (i.e. 4.5 to 7.8; Langmuir, 1997). 

 

2.3. Adsorption/Complexation procedures  

 

Inorganic REE adsorption onto MnO2. These series of experiments were carried out  

to provide the inorganic reference baseline necessary to interpret the data obtained during the 

experiments with organic matter. REE adsorption onto MnO2 was carried out in batch reactor, 

in which 100 mL of 10-3M NaCl solution were prepared with 5 ppb of each REE (e.g., 36 

nmol.L-1 La to 28.6 nmol.L-1 Lu) and 100 mg.L-1 of MnO2. The pH was adjusted to the 

experimental value used, in the pH range from 3 to 8, by adding 0.1N HNO3 or 0.1N NaOH. 

Experimental solutions were stirred for 48 h (the equilibrium time was determined from 

preliminary kinetic experiments) to allow equilibration and partitioning of REE between the 

aqueous solution and MnO2. Suspension aliquots of about 10 mL were sampled at steady state 

and filtered through 0.2 µm cellulose acetate filters (Sartorius). The REE concentration of the 

filtrate was analysed to determine the concentration of REE in solution. The amount of REE 

adsorbed onto MnO2 was obtained by subtracting the REE concentration left in solution from 

the initial REE concentration taking into account sampling-induced volume variations as 

previously established elsewhere (Davranche et al., 2004, 2005; Pourret et al., 2007b).  

 

Experiments on REE complexation competition between humate and MnO2. All reactants 

were prepared separately and mixed together simultaneously to allow a detailed simulation of 
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the competition between humate and MnO2 for REE complexation over time. Therefore, three 

10-3 M NaCl solutions were prepared with HA, REE and MnO2. Their pH were adjusted to 5 

by adding HNO3 0.1N. The pH value of 5 was chosen for comparison with previous published 

data on the adsorption of REE-humate complexes onto MnO2 (Davranche et al., 2005). The 

three solutions were then mixed together to provide a suspension containing  100 mg.L-1 of 

MnO2, 5 ppb of each REE (e.g., 36 nmol.L-1 La to 28.6 nmol.L-1 Lu) and 2.5, 10, 20 and 40 

mg.L-1 of HA. All competition-experiments were performed in duplicate or triplicate. The pH 

was monitored periodically with a pH-meter and re-adjusted to 5, when necessary, by addition 

of 0.1 N HNO3 or 0.1 N NaOH. Suspension aliquots of 10 mL were sampled immediately to 

determine the initial concentration of REE and HA in suspension. In addition, 15 mL of 

aliquot suspension were regularly sampled and filtered at 0.2 µm, yielding a retentate 

representing the inorganic or organic (as REE-HA complexes) REE fraction complexed with 

MnO2.  10 mL of this sample were immediately digested for REE analysis, while the 

remaining 5 mL were stored for DOC analysis. An additional 10 mL volume was sampled and 

ultra-filtered at 10 kDa to separate the REE complexed with HA or MnO2 from the remaining 

inorganic REE. Ultrafiltrations were carried out by centrifuging the 10 mL solution samples 

through 15 mL centrifugal tubes equipped with permeable membranes of 10 kDa pore size 

(Millipore Amicon Ultra-15). All centrifugal filter devices were washed and rinsed with 0.1 

mol L-1 HCl and Milli-Q water two times before use to minimize contamination. 

Centrifugations were performed using a Jouan G4.12 centrifuge with swinging bucket rotor at 

3000 g for 30 min. This allowed the MnO2- and HA-REE complexes to be quantitatively 

separated from uncomplexed inorganic REE species. The selectivity of the 10 kDa membrane 

with regard to the REE-HA complexes was checked by monitoring the DOC contents of the 

ultrafiltrates. Results show that the latter were systematically lower or equal to blank values 

(below 0.1 ppm). Possible adsorption of inorganic REE species onto the membrane or onto 

cell walls was also monitored. Inorganic REE solutions of given REE concentration were 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 9 

ultrafiltered several times. Results showed that 100% of the REE present in solution were 

recovered in the ultrafiltrates, demonstrating that none of the REE was adsorbed, either on the 

membranes or on the walls of the cell devices. Moreover, to verify that no MnO2 colloids 

were present in the 0.2µm filtrate. Mn concentration was systematically analysed in each 

fractions (<0.2 µm and < 10 kDa). The concentration obtained was systematically lower than 

1% of the total Mn and equal is each fraction, indicating that Mn is not under colloidal form 

but under free inorganic species. 

The amount of (organic and/or inorganic) REE complexed with MnO2 corresponds to 

the difference between the initial REE concentration and the remaining REE concentration in 

the <0.2 µm filtrate, while the amount complexed with aqueous HA corresponds to the 

difference between the REE concentration in the < 0.2 µm filtrate and the <10 kDa 

ultrafiltrate. 

 Finally, to simulate the role of pH in the competition between HA and MnO2 for REE 

binding, the same protocol as previously described was performed from pH 3 to 8 for a 

HA/MnO2 ratio=0.1. Suspension aliquots were sampled after 48 h for comparison with the 

inorganic reference experiments (section 2.3). 

 

2.5. REE and dissolved organic matter analysis 

 

REE concentrations were determined with an Agilent Technologies TM HP4500 ICP-

MS instrument. Quantitative analyses were performed using a conventional external 

calibration procedure. Three external standard solutions with REE concentrations similar to 

the analysed samples were prepared from a multi-REE standard solution (Accu TraceTM 

Reference, 10 mg.L-1, USA). Indium was added to all samples as an internal standard at a 

concentration of 0.87 µmol.L-1 (100 ppb) to correct for instrumental drift and possible matrix 

effects. Indium was also added to the external standard solutions. Calibration curves were 
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calculated from measured REE/indium intensity ratios. As established from repeated analyses 

of multi-REE standard solution (Accu TraceTM Reference, USA) and the SLRS-4 water 

standard, the instrumental error on REE analysis in our laboratory is below 3 %. Organic 

samples used for REE determination were all immediately digested with sub-boiled nitric acid 

(HNO3 14 N) at 100°C, then resolubilized in HNO3 0.4 N after complete evaporation, to avoid 

interferences with organic matter during mass analysis by ICP-MS for the organic experiment 

samples. 

Dissolved organic carbon concentrations were determined at Rennes University using 

a Shimadzu 5000 TOC analyzer. The accuracy of DOC concentration measurements is 

estimated at ±5% as determined by repeated analysis of freshly prepared standard solutions 

(potassium biphtalate). 

(ICPMS REE detection limits and chemical blank reproducibility can be found in the supplementary file). 

 

3. Results  

(All experimental data can be found in the supplementary file) 

 

The complexation behaviour of REE onto the MnO2 surface and/or HA is described 

using the apparent partition coefficient Kd, expressed as follow:  

( )
( )a1

a
REE/MnO
d

 REE Aqueous µg.mL

oxideMn  gREE Adsorbed µg
K 2

−
=    (1) 

( )
( )b1

b
REE/HA
d

 REE aqueous Inorganic µg.mL

HA  Aqueous  g REE Adsorbed  µg
K

−
=    (2) 

(Adsorbed REE)a represents the concentration of REE adsorbed onto MnO2 obtained by 

substracting REE concentrations left in solution after filtration at 0.2 µm from the initial REE 

concentration. (Aqueous REE)a corresponds to the REE concentration left in solution after 

filtration at 0.2 µm. (Adsorbed REE )b represents the concentration of REE complexed with 

aqueous HA, and is calculated by substracting the REE concentrations left in solution after 
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filtration at 0.2 µm and the inorganic REE concentration in the 10-kDa ultrafiltrate. (Inorganic 

aqueous REE)b corresponds to the inorganic REE concentration in the 10-kD ultrafiltrate. 

Considering this method of calculation, REE adsorbed on the MnO2 surface could occur 

either, as inorganic REE or, as REE-HA complexed species. 

Ce anomalies on log REE
dK  patterns are determined as follows: 

( )
( ) ( )[ ]Pr

d
La
d

Ce
d

KlogK log2
1

Klog
*/

+
=CeCe     (3) 

Finally, DOC partitioning between MnO2 and solution are converted into apparent partition 

coefficients using:  

solutionin  DOC µg.mL

 oxideMn  gadsorbed DOC µg
K

1
DOC/MnO2
d −

=     (4) 

 

3.1. Impact of HA/MnO2 ratio on competition between HA and MnO2 for REE binding.  

  

(Reproducibility of log HA/REE
dK and log 2MnO/REE

dK  can be found in the supplementary file.) 

 
Kinetics. Figure 1 presents the time-series variation of log 2MnO/REE

dK  and 

log HA/REE
dK (HA not adsorbed at solid surface) for La, Gd and Lu as well as log DOC/MnO2

dK  

for HA/MnO2 ratios of 0.4, 0.1 and 0.025. Time-series variations of log REE/MnO2
dK  reveal that 

a pseudo-equilibrium was reached before 10 h (Fig.1). Previous studies by Davranche et al. 

(2005) provide evidence that, when REE are initially present as REE-humate complexes, a 

pseudo-equilibrium is attained more slowly after about 10 days (see Fig. 6 in Davranche et al., 

2005). Therefore, a pseudo-steady state is reached more rapidly when REE are introduced as 

free species in solution.  

For a given HA/MnO2 ratio, REE partition coefficients are higher for aqueous HA 

than on MnO2. This result suggests that REE are more complexed to HA than MnO2, 

whatever the initial concentration of HA in the solution. However, log 2REE/MnO
dK  decreases 
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progressively with the HA/MnO2 ratio. At 72 h, log 2La/MnO
dK  yields values of 3.68, 3.16 

and 2.50 for ratios of 0.4, 0.1 and 0.025, respectively. This contrasts strongly with the 

behaviour of log REE/HA
dK , which remains nearly constant. At 72 h, log La/HA

dK  is at around 

7.65, 7.70 and 7.61, for ratios of 0.4, 0.1 and 0.025, respectively. This implies that, when 

initial HA concentration is high compared to MnO2, a greater amount of REE could be 

adsorbed onto the MnO2 surface, probably as REE-HA complex, since values of 

log 2REE/MnO
dK and log 2DOC/MnO

dK  are closely similar for ratios of 0.4 and 0.1. 

Furthermore, Fig. 1 displays lower and higher amounts of adsorbed DOC for HA/MnO2 ratios 

of 0.025 and 0.4, respectively. Several studies have shown that, in a ternary system composed 

of cations, organic matter and solid surface, the cation adsorption was not only enhanced 

compared with the corresponding binary system but also with the organic matter 

concentration, generally for low pH (Xiangke et al., 2000; Christl and Kretzschmar 2001; Wu 

et al., 2003).  

A slight decrease of log REE/HA
dK  appears vs. time (Fig.1),  with log La/HA

dK , for 

example, showing values of 7.61 and 7.38 at 8h and 72 h, respectively, for a HA/MnO2 ratio 

of 0.025. The decrease is even more pronounced for HREE (heavy rare earth elements), with 

log Lu/HA
dK  = 7.15 and 6.76 at 8 and 72 h, respectively. This decrease occurs simultaneously 

with a slight increase of log 2REE/MnO
dK , with log 2La/MnO

dK  = 2.48 and 2.52 and log 

2Lu/MnO
dK = 2.38 and 2.52 for ratio= 0.025 at 8 and 72 h, respectively. The log REE/HA

dK  

decrease is related to a decreasing HA/MnO2 ratio, suggesting that a more important partial 

dissociation of the REE-HA complex is occurring when MnO2 is in high amount as compared 

to that of HA.  
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Log REE
dK patterns in each compartment. In Fig. 2a, Log 2REE/MnO

dK  patterns are 

nearly flat except for the occurrence of a Ce anomaly for HA/MnO2 ratios of 0.1 and 0.025. 

Davranche et al. (2005) reported the same type of pattern when REE was initially present as 

REE-humate complex. They interpreted this pattern shape as reflecting the anionic adsorption 

of the REE-humate complex onto the MnO2 surface. As illustrated in Fig. 2a and Fig. 3, 

where Ce anomaly variations are expressed as Ce/Ce*, the Ce anomaly increases with 

decreasing HA/MnO2 ratio and increasing time. Moreover, the Ce anomaly develops rapidly 

in the first hour, for experiments conducted with a HA/MnO2 ratio of 0.025, and after 10h for 

experiments conducted with ratios of 0.1 and 0.2. Furthermore, at these three HA/MnO2 

ratios, the amplitude of the Ce anomaly is time-dependent. No steady state was reached at 

72h. Although the experiment at ratio = 0.2 continued until 288 h (data not shown here), there 

was no observed stabilization of the Ce-anomaly value (Ce/Ce* = 1.033 at 288 h). Such a 

result differs markedly from the study by Davranche et al. (2005), who report no development 

of Ce anomaly, even after 20 days of experiment run-time (Fig. 5, in Davranche et al. (2005)). 

The log REE/HA
dK  patterns presented in Fig. 2b show a slight increase in LREE log 

REE/HA
dK  (light rare earth element) and decrease in HREE log REE/HA

dK on each pattern. 

However, the pattern obtained for HA/MnO2= 0.4 is flatter. This type of pattern is different 

from the patterns for the REE-humate complex obtained by Davranche et al. (2005) and 

Pourret et al. (2007b). The present patterns exhibit downward-concave and convex shapes in 

the MREE for the HA fraction and the solution, respectively. The decrease observed for 

HREE is counterbalanced by the HREE concentration increase in the dissolved inorganic 

REE pattern. The discrepancy in HREE slopes between the patterns displayed in Figs. 2b and 

2c is due to the fact that the REE pattern in HA fraction is expressed in log Kd, while the REE 

pattern in solution is expressed in ppb. In Fig. 4, Gd/Yb ratio is plotted versus time for a 

HA/MnO2 ratio of 0.1. The Gd/Yb ratio calculated from log REE/HA
dK increases with time; 
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Gd/Yb = 1.03 and 1.08 at t  = 1 h and 168 h, respectively. On the contrary, the Gd/Yb ratio 

calculated from the inorganic REE concentration in solution decreases with time; Gd/Yb = 0.6 

and 0.27 at t = 1 h and 168 h, respectively. The variation of Gd/Yb ratio with time suggests 

that the HREE log REE/HA
dK decrease observed on log REE/HA

dK  patterns results from a 

transfer towards the inorganic solution of part of the HREE complexed to HA . 

 

3.2. Impact of pH on competition between HA and MnO2 for REE adsorption (HA/MnO2 ratio 

= 0.1 and t = 48 h) 

 

Experimental data are illustrated in Fig. 5 for four REE (La, Ce, Gd and Lu). Figure 5a 

represents log 2REE/MnO
dK  as a function of pH, without HA in solution. REE adsorption onto 

MnO2 is strongly dependent on pH with, for example, log 2La/MnO
dK ranging from 2.36 to 

5.88 when pH increases from 3 to 8. De Carlo et al. (1998) and Ohta and Kawabe (2001) 

observed the same pH dependence. As can be seen, Ce is more strongly adsorbed than the 

other REE. Figure 5b illustrates the log 2REE/MnO
dK  and log REE/HA

dK values for four REE (La, 

Ce, Gd and Lu) as well as log 2DOC/MnO
dK . Comparison of Figs. 5a and 5b provides evidence 

that the presence of HA strongly decreases the log 2REE/MnO
dK  at high pH, with log 

2La/MnO
dK displaying values of 5.88 and 3.67 at pH 8 without and with HA, respectively. 

Whatever the pH is, a major part of each REE is complexed with HA; e.g. log 2La/MnO
dK = 

3.67 and log La/HA
dK = 7.73 at pH 8. Thus, log REE/HA

dK  is also pH-dependent, with REE being 

more easily complexed to HA at alkaline than at acidic pH. However, we can observe a slight 

decrease in the log REE/HA
dK  value with increasing pH; e.g. log La/HA

dK = 8.07 and 7.73 at pH 6 

and 8, respectively. This decrease develops along with an increase in the adsorption of REE 

onto MnO2 (Fig. 6b). Several studies on the adsorption of organic matter onto solid surface 

have shown that the value of log 2DOC/MnO
dK  decreases with increasing pH (Gu et al., 1994; 
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Vermeer et al., 1997; Avena and Koopal, 1999). As a result, and in contrast to the experiment 

performed at pH 5, the ratio of log 2DOC/MnO
dK  to 2REE/MnO

dK deviates from 1 over the pH range 

concerned indicating that REE and HA are not entirely bound to each other when adsorbed 

onto the MnO2 surface. Figure 6 presents the patterns of log 2REE/MnO
dK  without HA, as well 

as the log REE/HA
dK  and log 2REE/MnO

dK  for the competitive complexation experiment under 

three pH conditions (4, 6 and 8) at 48 h. As expected, log 2REE/MnO
dK  patterns without HA 

exhibit a Ce anomaly that decreases with increasing pH (Fig. 6a). Log REE/HA
dK  patterns 

exhibit two types of shape, (i) a relatively flat shape and (ii) a shape characterized by HREE 

Log REE/HA
dK value decrease, such as developed in the log REE/HA

dK  pattern obtained at pH 

5 for the various HA/MnO2 ratios (Figs. 2b and 6b). Fig. 7 illustrates the evolution of the 

Gd/Yb ratio relative to pH for the competitive complexation experiment. The evolution of 

Gd/Yb ratio on HA reflects the HREE Log REE/HA
dK value decrease. At low pH, when low 

amounts of REE are complexed by HA, the ratio is equal to ~1, namely, no HREE Log 

REE/HA
dK decrease occurs. From pH 4 to 5, the ratio increases to an average value of 1.045, 

and decrease takes place. At higher pH, the value of Gd/Yb ratio decreases, while the shape of 

the log REE/HA
dK pattern becomes flat once again. These results suggest that HREE Log 

REE/HA
dK value decrease on the log REE/HA

dK  patterns occurs only over a limited pH range 

(pH = 3-6). 

 

4. Discussion 

 

As previously suggested by Davranche et al. (2004 and 2005), the present data provide 

evidence that REE organic complexation results in a decrease of the REE adsorption onto 
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MnO2 and a strong limitation of the development of a Ce anomaly at the mineral surface. 

However, we point out here two significant differences compared with previous studies: (i) 

the Ce anomaly develops through time and with decreasing HA/MnO2 ratio, (ii) some of the 

REE-HA complexes are unstable, and are dissociated through time in the presence of MnO2.   

 

4.1. Slowdown and reduction in the development of Ce anomalies  

 

Figures 2a and 3 provide evidence that the development of a Ce anomaly at the MnO2 

surface is strongly attenuated with increasing HA/MnO2 ratio. In previous studies, Davranche 

et al. (2004 and 2005) investigated the impact of HA complexation on REE adsorption onto 

MnO2 and HFO (hydrous ferric oxide). In their experiments, REE were complexed to HA 

prior to contact with the solid surfaces. When comparing the organic experiments with the 

inorganic experiments, these authors either observed only very weakly positive Ce anomalies 

on the log 2REE/MnO
dK pattern or no anomaly at all (see Figs. 5 and 7 in Davranche et al., 2005). 

To interpret their data, they proposed two hypotheses. Firstly, under their experimental 

conditions, the REE-HA complex was adsorbed at the MnO2 or HFO surface by an anionic 

adsorption mechanism. REE-HA was then absorbed by the humate side of the complex. 

Therefore, Ce was not in direct contact with the potential oxidative MnO2 or HFO surface, so 

Ce(III) was unlikely to be oxidized into Ce(IV). Secondly, different REE could not behave 

independently from each other in the organic experiments since they were collectively bound 

to humate molecules. In this way, the Ce anomaly is unable to develop, simply due to the 

binding of the entire REE pool to humate. Davranche et al (2004 and 2005) based their two 

hypotheses on the fact that log 2REE/MnO
dK / log 2DOC/MnO

dK  ratios were close to 1.0 at pH 5 and 

7.5, suggesting that REE and HA remain bound to each other during adsorption of the REE-

HA complexes onto the MnO2 and HFO surfaces. However, the new experimental dataset 

presented here provides a distinct interpretive framework. Even if the Ce anomaly is greatly 
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attenuated compared with inorganic experiments (Davranche et al., 2005), a slight Ce 

anomaly is developed whose amplitude increases with time and decreasing HA/MnO2 ratio 

(Fig. 3). Moreover, competitive experiments conducted as a function of pH demonstrate that 

both log 2REE/MnO
dK  and log 2DOC/MnO

dK  values are quite different relative to the pH and for 

low HA/MnO2 ratios as well. Therefore, REE and HA are not entirely bound to each other 

when adsorbed onto the MnO2 surface (Fig. 6b). Linked with the time-dependent 

development of the Ce anomaly (Fig. 3), this observation  suggests that (i) part of Ce 

adsorbed onto MnO2 is directly in contact with the surface and is therefore oxidized by MnO2 

and (ii) there is a time-dependent ‘source’ of Ce in the suspension, which becomes oxidized in 

Ce(IV). As shown above in Fig.1, log REE/HA
dK  decreases with time and decreasing 

HA/MnO2 ratio. This decrease indicates a dissociation of the REE-HA complex with time. 

The inorganic Ce required for the development of a Ce anomaly on MnO2 likely draws its 

source from dissociation of the organic complex. Moreover, Figs. 2a and 3a indicate a 

dissociation of the REE-HA complex that increases with increasing HA/MnO2 ratio. The 

amount adsorbed from the dissociation of the REE-HA complex is easily accessible if we 

consider the time when the Ce anomaly appears as the reference time after which readsorption 

occurs (readsorption of inorganic REE). However, it is impossible to assess the amount of 

REE bound as inorganic and/or REE-HA complex in the first stage of the experiment. 

Consequently, calculations can only yield the proportion of inorganic REE that is adsorbed 

onto MnO2 from the dissociation of inorganic REE-HA complexes (Tables 1 and 3). For the 

experiment at HA/MnO2= 0.1 and pH 5, Table 1 reports the proportion of Ce bound to each 

phase of the suspension and the proportion of inorganic Ce supplied by Ce-HA complex 

dissociation and readsorbed onto MnO2. The data show a time-dependent increase of the 

inorganic Ce bound onto MnO2, supplied by dissociation of the organic complex, which 

represents from 16.2 % to 32.3 % of all the Ce adsorbed onto MnO2 at 8 h and 72 h, 
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respectively. At 72 h, this proportion corresponds to 5.6 % of the total Ce present in the 

suspension.  

 

4.2. REE-HA complex dissociation  

 

Another major result of the present study is the evidence of a dissociation of the REE-

HA complex with time and with decreasing HA/MnO2 ratio. Table 2 presents the proportion 

of REE dissociated from REE-HA complex, the proportion of REE dissociated from REE-HA 

complex and reabsorbed onto MnO2, as well as the proportion of REE dissociated from REE-

HA complex and removed to the inorganic solution during the experiment with HA/MnO2 = 

0.025. These data imply that most of the dissociated REE is readsorbed onto the MnO2 

surface. LREE exhibit higher readsorption than HREE: 98.9% for La as against 95.8% for Lu. 

By contrast, in the inorganic solution, the LREE make up a lower proportion than HREE: 1.1 

% for La as against 4.2% for Lu. This contrasted behaviour of HREE and LREE is recorded 

in the shapes of the log  REE
dK and dissolved inorganic REE patterns (Fig.1). 

Several authors have proposed that a cation-humate (natural or synthetic) complex 

could be dissociated in the presence of a competitive ligand (Rate et al., 1993; Geckeis et al., 

2002; Artinger et al. 2002; Monsallier et al. 2003; Wang et al., 2005). Generally, the 

competitors used in these studies were chelating resins (Chelex 100 Biorad), ligands 

(metallochromic ligands, PAR) or cation exchanger resin (Dowex 50, HYPHAN). All these 

authors have established that humate complex dissociation is time-dependent, showing that 

dissociation of the cation-humate complex decreases with increasing reaction time. By 

studying the dissociation of an Eu-humate and Am-humate complex in the presence of a resin, 

Geckeis et al. (2002) and Wang et al. (2005) demonstrated that Eu and Am shift from a fast to 

a slow dissociation species with increasing time. Rate et al. (1993), Geckeis et al. (2002), 

Monsallier et al. (2003) and Wang et al. (2005) investigated the influence of predissociation 
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cations and humate contact time, pH of solution and humate initial concentration on the 

dissociation time. Rate et al. (1993) and Geckeis et al. (2002) showed that a longer duration of 

cation-humate pre-equilibration decreases the complex dissociation. They suggested a 

complex ripening process where, after an initial sorption step, the cations migrate to stronger 

binding sites or move to inner sites of the macromolecular structure of the humic molecule. 

Rate et al. (1993) further showed that long-term reaction between cation and humate may 

induce molecular conformation changes that can influence the dissociation reaction rate. 

Concerning the influence of pH, Rate et al. (1993) demonstrated that complex dissociation 

falls sharply between pH 5 and 7, in contrast to Monsallier et al. (2003) and Wang et al. 

(2005), who showed an enhancement of the dissociation of Eu-humate and Am-humate 

complex between pH 3 and 6. Monsallier et al. (2003) attributed their result to different humic 

colloid structures for the different pH values. Finally, Rate et al. (1993) and Monsallier et al. 

(2003) provided evidence that increasing the humic concentration decreases the cation-

humate complex dissociation rate. Regarding the influence of these parameters on 

dissociation, and hence the stability of the cation-humate complex, Rate et al. (1993) inferred 

that thermodynamic complex stability is more determinant in complex dissociation than non-

diffusive processes.  

The present experimental set-up may be regarded as similar to that of previous cited 

studies. HA represents the humic molecule, REE the cation and MnO2 can be considered as 

the competitive ligand. The present experiments were designed to study the kinetics of REE 

binding to HA and MnO2, and therefore all reactants were added simultaneously. While a 

major proportion of the REE appears to be immediately complexed to HA, the complex is not 

immediately stabilized thermodynamically due to the competitive presence of MnO2. REE 

could be dissociated from the earlier-formed REE-humate complex, and then readsorbed 

partly onto MnO2. Experiments conducted as a function of HA/MnO2 ratio show that the 

dissociation-redistribution process increases with decreasing HA/MnO2 ratio, i.e. with 
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decreasing HA concentration, as demonstrated by Rate et al. (1993) and Monsallier et al. 

(2003). The log REE/HA
dK  pattern for the competitive experiment (Fig. 6) and the variation of 

Gd/Yb ratio (Fig. 7), both represented as function of pH, show that HREE log REE/HA
dK  

decrease is not developed for pH >6. Such decrease is characteristic of HREE dissociation 

from the REE-HA complex, implying that the dissociation increases up to pH 6 and decreases 

thereafter. Therefore, this new dataset agrees with the results of Monsallier et al. (2003) and 

Wang et al (2005). These latter authors demonstrated an increase in complex dissociation 

between pH 3 and 6, while Rate et al. (1993) obtained a dissociation decrease between pH 5 

and 7. 

The last point concerns the quantitative redistribution of the REE between MnO2 and 

inorganic solution. As expected by the dissociation process, the major part (about 98%) of the 

REE dissociated from REE-HA is readsorbed onto the MnO2 surface. However, a difference 

in behaviour appears between LREE and HREE, the latter being more efficiently removed to 

inorganic solution (Table 2). A possible explanation could be that REE-MnO2 adsorption 

constants are higher for LREE than HREE, thus inducing a higher concentration of HREE in 

solution. In the literature, there are no REE-MnO2 adsorption constants available for the 

whole REE series. However, experiments of REE adsorption or coprecipitation with MnO2 

have provided some evidence that HREE are more effectively adsorbed than LREE onto the 

MnO2 surface (Koeppenkastrop and De Carlo, 1992; De Carlo et al., 1998; Bau, 1999; Ohta 

and Kawabe, 2001; Davranche et al., 2005). Moreover, Quinn et al. (2006) recently provided 

a data-set of REE-HFO complexation constants, showing that log REE
HFOß  increases with the 

REE atomic number. In view of the above considerations, some other explanations are 

required. For instance, HREE could be complexed with an inorganic ligand that allows its 

stabilisation in the inorganic solution. The experimental conditions in our study involve very 

few possible ligands, in fact only Cl- and CO3
2-. The stability constants of REE-Cl2+ 
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complexes show lower values with increasing atomic number of the REE, thus excluding the 

role of Cl- as a stronger HREE complexant (Wood et al., 1990). In the literature, HREE 

enrichment in solution has often been interpreted in terms of a preferential carbonate 

complexation (Millero, 1992; Lee and Byrne, 1993; Johanesson et al., 1996). However, in the 

present study, even if each experiment was performed under atmospheric conditions, the pH 

value of 5 rules out a significant complexation of HREE by carbonate. Wood et al. (1990) 

calculated the distribution of Eu among the various carbonate and bicarbonate complexes as a 

function of carbonate activity, proposing that Eu speciation is dominated by the free Eu(III) 

form at pH 5. Consequently, further investigations are required to explain the distribution of 

HREE between MnO2 surface and inorganic solution. 

 

4.3. Implications regarding Ce and REE adsorption when organic matter occurs 

 

The results demonstrate that, as previously observed by Davranche et al. (2004 and 

2005), the REE adsorption onto MnO2 decreases with respect to inorganic experiments. 

Nevertheless, the adsorption rate is not totally controlled by the REE-HA adsorption. 

Experiments performed as a function of pH provide evidence that log 2REE/MnO
dK  is not 

directly linked to log 2DOC/MnO
dK . This is supported by the results given on Fig. 1c, where log 

2REE/MnO
dK  values are slightly higher than log 2DOC/MnO

dK . Such a discrepancy indicates that a 

significant amount of REE is bound to the MnO2 surface as REE(III) inorganic species. 

However, the increase of log 2REE/MnO
dK and the lack of large Ce anomalies with increasing 

HA/MnO2 ratio also implies that part of the REE occurs as REE-HA complexes themselves 

adsorbed onto the solid surface. Thus, REE are not only sorbed onto MnO2 as inorganic 

species but also as REE-HA complexes. We performed calculations to estimate the amount of 

REE bound onto MnO2 as REE-HA and as inorganic species in the experiment at pH 5 with 
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an HA/MnO2 ratio of 0.01 (Table 3). At 72 h, a non-negligible proportion of REE is bound in 

an inorganic form onto MnO2, at the expense of REE-HA dissociation, i.e. between 13.5 % for 

La and 32.5 % for Ce, representing 1.9 to 5.7 % of the total REE in suspension, respectively. 

Experiments conducted as a function of pH reveal that competition between HA and MnO2 

increases with the pH value. However, even if MnO2 appears to compete with HA for REE 

complexation, the major part of the REE remains as a soluble REE-HA complex, i.e. 82.5% at 

72h for La, in the experiment conducted at pH= 5 with HA/MnO2 ratio = 0.01. In the 

suspension, REE speciation is thus dominated by organic complexed species. It is important 

to note that the role of soluble REE organic complexation could become less dominant with 

increasing pH (Fig. 5 b). 

However, in the context of ongoing solid alteration processes (in soils, or aquifers) 

where REE are released in a soluble inorganic form, the present work provides evidence that 

REE speciation will be dominated by organic complexation and also partially by solid 

adsorption. As a function of pH and organic matter/solid surface ratio, an increasing 

proportion of REE might be sorbed, particularly as ionic species. This latter point is of major 

importance. The present study implies that the development of a Ce anomaly can be limited 

but not entirely suppressed in organic-rich solution as suggested previously, according to the 

pH conditions and organic matter/oxidative surface ratio. Therefore, we could raise the 

question of whether the HA/MnO2 ratios used in the experiments are comparable with natural 

conditions. To address this question, DOC/Mn ratios were calculated from 16 natural soil 

samples (Alfisols, Aridisols, Inceptisols, Mollisols and Ultisols), using the estimated Mn 

concentrations (mg.kg-1) in Mn oxide form and the DOC concentrations (mg.kg-1) provided in 

Jiang et al. (2005). DOC/Mn ratio varies from 0.3 to 11.9. The HA/MnO2 ratios used in the 

present experiments are expressed in terms of DOC/Mn ratio, with values varying between 

3.6 and 0.2. The mechanism described here could therefore potentially occur in natural 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 23 

environments. However, the competition between HA and MnO2 for REE complexation will 

be more markedly expressed on the REE patterns for low DOC/Mn ratio and pH from 3 to 6. 

A decrease of REE adsorption onto MnO2 is observed in the presence of organic 

matter, while the development of a Ce anomaly is effectively limited but not suppressed. 

Therefore, the present study leads to the same restriction on the use of the Ce anomaly as a 

redox proxy as previously stated by Davranche et al. (2005). However, the new experimental 

dataset sheds more light on these surface processes, by allowing us to assess the impact of pH 

and competition between complexation reactions. The formation and dissociation of REE-HA 

complexes are indeed both pH-dependent. Increasing the pH decreases the concentration of 

REE-HA complexes in solution and favours the sorption reaction onto MnO2. Indeed, the 

dissociation of REE-HA complexes is at a maximum in the 3 to 6 pH range, implying that 

solid surfaces behave as a competitive ligand especially over this pH range. Furthermore, 

MnO2 and HA competition for REE binding not only influences the REE distribution between 

the solution and the relevant solid but also the kinetics of the adsorption and dissociation 

reactions, and hence the development of a Ce anomaly. As a result, in the experiment carried 

out for 288 h (results not shown here), the amplitude of the Ce anomaly never reached a 

steady state, meaning that REE-HA dissociation and inorganic REE readsorption onto MnO2 

were still occurring at that time. This last point raises questions on the impact of such 

mechanisms in the context of a long-term rock or mineral alteration. What will be the 

amplitude of the Ce anomaly? Will the amount of adsorbed REE at the solid surface always 

remain negligible compared to the amount of REE complexed with organic matter?  

Finally, the present dataset provides evidence that complexation mechanisms are 

involved depending on the initial REE chemical species present.  
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5. Conclusions 

 

Experimental studies of the kinetic competition between HA and MnO2 for REE 

complexation were carried out using a combination of filtration/ultrafiltration techniques to 

study the impact on Ce anomaly development and REE fractionation. REE speciation is 

dominated by the REE-HA complex. Accordingly, in contrast with inorganic conditions, there 

is a decrease in the amount of REE adsorbed by MnO2 and the development of a Ce anomaly 

is strongly limited as previously shown by Davranche et al. (2005). Nevertheless, for the 

tested HA/MnO2 ratios below 0.4, the present data show that MnO2 acts as a competitor able 

to induce a slight dissociation of the REE-HA complex. Most of the dissociated REE is 

subsequently readsorbed onto the MnO2 surface, and this readsorption is recorded by an 

increase in development of the Ce anomaly, despite the overall REE organic speciation. 

Moreover, the increase of log 2MnO/REE
dK  with increasing HA/MnO2 ratio also indicates that 

REE are partially bound to HA, which is itself adsorbed onto the solid surface. Consequently, 

the REE are adsorbed onto MnO2 surfaces as REE(III) and REE-HA complex. The processes 

described in this study are pH-dependent. At alkaline pH, the REE-HA complex becomes less 

dominant and dissociation does not occur since no modification is observed in the shape of 

the REE-HA pattern. The competition for REE complexation between HA and MnO2 is more 

intensive at low DOC/Mn ratio and pH from 3 to 6. 

The present study corroborates Davranche et al. (2004 and 2005) conclusions 

regarding the use of Ce anomalies as a redox proxy in paleoenvironments. However, this new 

dataset highlights the importance of (i) competition between ligands for REE binding and (ii) 

pH control on REE distribution. When the REE-HA complex is not stabilized, the presence of 

competitive surface could induce dissociation of the organic complex and a redistribution of 

the REE between the solid surface and the inorganic solution. This would not only lead to 

modifications of the solution composition but also the REE pattern in solution, which itself 
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exhibits a negative Ce-anomaly. Moreover, the competition between HA and MnO2 involves 

a drastic slowdown of the reaction kinetics, inducing at long-term modification of the REE 

distribution as well as an increase in the amplitude of the Ce-anomaly. The process described 

above should play a major role when REE are released in the form of inorganic REE(III) 

species, notably during rock alteration/weathering. When present in free ionic form, REE are 

available for complexation with each ligand occurring in solution. As shown in this study, the 

kinetics of the complexation reactions and the stability of the complexes so formed will 

impose the REE speciation at equilibrium. 
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Tables and figure captions 

 

Table 1 

Ce distribution in each phase of the suspension, estimate of Ce involved in anomaly 

development and amount of inorganic Ce adsorbed onto MnO2, for the experiment with 

HA/MnO2 ratio = 0.1 and pH=5. 

 

Table 2 

Proportions of (i) REE dissociated from REE-HA complex, (ii) REE reabsorbed onto MnO2 

and (iii) REE removed to the inorganic solution. Percentages are calculated for the 

competition experiment with HA/MnO2 ratio = 0.025 between 1 and 72 h. 

 

Table 3 

Proportions of REE adsorbed onto MnO2 irrespective of their chemical form, as well as 

proportions of inorganic REE adsorbed onto MnO2 and inorganic REE readsorbed onto 

MnO2, with respect to the total amount of REE resulting from dissociation of the REE-HA 

complex. Calculations are presented for the competition experiment with HA/MnO2 ratio = 

0.1, pH = 5 and t = 72 h. 

 

Fig. 1. Time variation of log REE
dK  on MnO2 and aqueous HA (not adsorbed on MnO2) and 

log DOC
dK  on MnO2 for a mixture of HA, REE (5 ppb) and MnO2 (100mg.L-1) at pH 5, as a 

function of the HA/MnO2 ratio, a) R = 0.4, b) R= 0.1 and c) R= 0.025. Errors bars correspond 

to σ for three replicates; error bars are generally smaller than the symbol size. 
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Fig. 2. Log  REE
dK  patterns for a) MnO2, b) aqueous HA and NaCl solution, c) REE 

concentration (ppb) in solution at pH 5. Values plotted vs. increasing atomic number within 

REE series after 72h of experiment for three HA/MnO2 ratios (R = 0.4, 0.1 and 0.025). 

 

Fig. 3. Time variation of Ce anomaly expressed as Ce/Ce* in the mixture of MnO2 and HA at 

pH 5 for four HA/MnO2 ratios (R= 0.4, 0.2, 0.1 and 0.025). Ce anomalies were calculated 

from log Kd values. Error bars corresponds to s  for three replicates, error bars are generally 

smaller than the symbol size. 

 

Fig. 4. Gd/Yb ratio versus time calculated from log REE/HA
dK and soluble inorganic REE 

concentrations for HA/MnO2 ratio = 0.1 

 

Fig. 5. Variation of log REE
dK  versus pH a) on MnO2 and b) aqueous HA (not adsorbed on 

MnO2) and log DOC
dK  on MnO2 in a mixture of HA, REE (5 ppb) and MnO2 (100 mg.L-1) for 

HA/MnO2 ratio = 0.1. 

 

Fig.6. Patterns of a) log 2REE/MnO
dK  without HA, b) log REE/HA

dK  and log 2REE/MnO
dK  for 

competitive complexation experiments at three pH values (4, 6 and 8) with 48 h equilibration-

time. 

 

Fig. 7. Gd/Yb ratio versus pH, calculated from log REE/HA
dK  for competitive complexation of 

REE between HA (10 mg.L-1) and MnO2 (100 mg.L-1). 
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Time 
(h) 

Ce adsorbed 
onto MnO2

 * 

(%) 

Ce bound to 
aqueous HA 

(%) 

Inorganic Ce 
in solution 

(%) 

inorganic Ce 
readsorbed onto MnO2 

from Ce-HA 
dissociation/total 
adsorbed Ce** 

(%) 

Ce involved in Ce 
anomaly 

development/total Ce 
concentration** 

(%) 

1 8.1 91.6 0.3 - - 

3 11.8 88.0 0.2 - - 

8 14.1 85.9 0.5 16.2 2.3 

24 14.3 85.6 0.1 17.4 2.5 

48 16.5 83.4 0.1 28.6 4.7 

72 17.4 82.5 0.1 32.3 5.6 

*: Ce bound as inorganic species and/or Ce-HA complexes 

**: % Ce involved in development of the Ce anomaly, calculated with respect to % Ce bound 

to MnO2 at 3 h, just prior to development of the Ce anomaly  and Ce-HA 

dissociation.(
[ ] [ ]

[ ] [ ] 100*
CeorCe

CeCe
%

totalMnO  onto  adorbed

MnO  onto  adsorbed
3t

MnO  onto  adsorbed
xt

2

22
== −

= ) 

 

Table 1 
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REE dissociated from 

REE-HA complex/ REE total 

concentration 

(%) 

REE readsorbed 

onto MnO2/ REE 

dissociated from REE-HA 

(%) 

REE removed 

to inorganic solution/ REE 

dissociated from REE-HA 

(%) 

La 7.9 98.9 1.1 

Ce 11.3 99.1 0.9 

Pr 8.4 99.0 1.0 

Nd 7.4 98.1 1.9 

Sm 8.6 99.1 0.9 

Eu 8.6 99.0 1.0 

Gd 6.8 98.9 1.1 

Tb 7.5 98.8 1.2 

Dy 7.0 98.2 1.8 

Ho 6.8 98.6 1.3 

Er 6.8 97.5 2.4 

Tm 6.8 96.9 3.0 

Yb 6.9 96.2 3.8 

Lu 7.0 95.8 4.2 

 

Table 2 
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REE bound to MnO2 

(%) 

Inorganic REE adsorbed onto 

MnO2 from the REE-HA complex 

dissociation/ total adsorbed REE* 

(%) 

Inorganic REE readsorbed 

from the REE-HA complex 

dissociation/ REE total 

concentration  

(%) 

La 13.9 13.5 1.9 

Ce 17.7 32.3 5.7 

Pr 14.6 22.4 3.3 

Nd 14.7 17.5 2.6 

Sm 13.1 17.4 2.3 

Eu 12.8 25.5 3.3 

Gd 13.5 25.9 3.5 

Tb 12.0 20.5 2.5 

Dy 10.7 19.3 2.1 

Ho 11.7 21.1 2.5 

Er 11.8 16.8 2.0 

Tm 11.9 17.0 2.0 

Yb 12.0 13.8 1.7 

Lu 12.1 13.6 1.6 

*: percent of inorganic REE adsorbed onto MnO2, calculated with respect to percent of REE 

bound to MnO2 at 3 h, just prior to development of Ce anomaly  and REE-HA dissociation, 

(
[ ] [ ]

[ ] [ ] 100*
REEorREE

REEREE
%

totalMnO  onto  adorbed

MnO  onto  adsorbed
3t

MnO  onto  adsorbed
xt

2

22
== −

= ) 

Table 3 
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Fig. 4 
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