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Abstract- Adsorption experiments of rare-earths elements (REE) onto MnO2 have been 

conducted to evaluate the effects of REE organic complexation on both REE(III) adsorption 

kinetics and Ce(III) oxidation rates. Two types of aqueous solutions - NaCl and NaNO3 - were 

tested at pH 5 and 7.5. REE(III) adsorption kinetics and Ce(III) oxidation rates is evidenced to 

depend strongly on REE speciation. Time-series experiments indicate that a stationary 

exchange equilibrium is reached within less than 10 h when dissolved REE(III) occurs as free 

species whereas steady state is not reached before 10 d when REE occur as REE-humate 

complexes. Humate complexation also results in an inhibition of positive Ce anomalies and 

M-type lanthanide tetrad effect development in REE patterns. Monitoring of dissolved 

organic carbon (DOC) concentrations showed that ratios of DOC
d

REE

d
K logK log

organic
ratios 

were close to 1.0, implying that the REE(III) and humate remained bound to each other.  

The lack of Ce anomaly development when REE occurred as REE-humate complexes seems 

to arise from the humate shielding of the MnO2 surface and Ce(IV) preferential adsorption 

inhibition. The suppression of the lanthanide tetrad effect suggests that REE(III)-humate 

complexes is bound to MnO2 by the humate side (anionic adsorption). Thus, Ce cannot be 

used as a reliable proxy of redox conditions, in either organic-rich waters, or precipitates 

formed at equilibrium with organic-rich waters. Furthermore, they explain why despite the 
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development of strongly oxidizing conditions and the presence of MnO2 in the aquifer, no (or 

insignificant) negative Ce anomalies are observed in organic-rich waters.  

 

Key-words-Ce anomaly, REE, humic acid, Mn oxide, scavenging-oxidation, ternary surface 

complex. 

 

1. INTRODUCTION 

 

Studies of the behaviour of the rare earth elements (REE) have recently become an 

essential part of aqueous trace element chemistry. The reason for this is that REE represent a 

very coherent group of elements whose chemical properties vary gradually along the group. 

They exhibit similar chemical properties, which vary gradually along the group and are a 

highly sensitive to pH, sorption processes changes and strongly influenced by redox 

chemistry of Fe and Mn. Thus, they have been used as tracers in studies dedicated to the 

geochemistry of rivers, lakes, seawater, groundwater and geothermal fluids (Elderfield and 

Greaves, 1982; De Baar et al., 1983, 1985, 1988; Elderfield, 1988; Elderfield et al., 1990; 

Smedley et al. 1991; Gosselin et al., 1992; Johannesson and Lyons, 1994, 1995; Johannesson 

et al., 1995; Braun et al. 1998; Van Middlesworth and Wood, 1998; Elbaz-Poulichet and 

Dupuy, 1999; Dia et al., 2000; Leybourne et al., 2000; Yan et al., 2001; Aubert et al., 2002; 

Biddau et al., 2002; Möller et al., 2002). One of the major conclusions of these studies is that 

Ce can be fractionated from the remaining dissolved REE as revealed by the widespread 

occurrence of negative Ce anomalies in both oceanic and fresh waters. Seawater, for example, 

show a strong negative Ce anomaly which is mirrored by a positive anomaly in hydrogenic 

ferromanganese nodules (Piper 1974; Elderfield et al., 1981; De Carlo and McMurthy 1992). 

Groundwaters also show frequently negative Ce anomalies (Smedley et al. 1991; Braun et al. 
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1998; Dia et al., 2000; Leybourne et al., 2000). These studies evidence also that REE in 

solution (river, ground and soil waters) are generally not truly dissolved REE but correspond 

to colloidal-borne REE (Sholkovitz, 1995; Viers et al., 1997). 

REE exhibit a (+III) oxidation state in natural environments. However, among REE, 

Ce can occur in oxidizing conditions as Ce(IV). Ce oxidation can occur abiotically through 

oxidation/scavenging of dissolved Ce(III) by Mn and Fe oxyhydroxides (De Carlo et al., 

1998; Bau, 1999; Ohta and Kawabe, 2001), or biotically by microbially-mediated redox 

reactions (i) bacteria oxidize directly Ce(III) into Ce (IV), or (ii) bacteria oxidize Mn(II) into 

Mn(IV), the Mn oxyhydroxide formed using as an oxidation surface for Ce(III) (Moffet, 

1990). Because Ce(IV) is adsorbed more strongly than the other trivalent REE, the Ce(III) 

oxidation/scavenging reaction may result in solutions displaying a negative Ce 

anomaly,whereas the solids exhibit positive Ce anomalies. This feature has been largely used 

for geochemical fingerprinting of redox conditions and notably in the study of marine 

environments (De Baar et al., 1983, 1985, 1988; Elderfield, 1988; Smedley et al. 1991; 

Johannesson and Lyons, 1994, 1995; Braun et al. 1998; Leybourne et al., 2000; Kuss et al., 

2001) or paleo-environments (Wright et al., 1987; Macleod and Irving, 1996; Holser, 1997; 

Morad and Felitsyn, 2001). 

Much attention has also been paid in recent years to the potential application of Ce 

anomaly as either, a paleo-oceanographic indicator of widespread marine anoxia, or as a 

redox proxy in paleosols (Wright et al., 1987; Macleod and Irving, 1996; Gallet et al., 1996; 

Holser, 1997; Morad and Felitsyn, 2001; Picard et al., 2002).  

However, many oxidizing waters do not exhibit negative Ce anomalies. In fact, 

evidence exists that the occurrence of organic ligands in the solutions may prevent Ce(III) 

oxidation. Such evidence was provided by Dia et al. (2000) who reported time series data for 

REE, dissolved organic carbon (DOC) (DOC content ranging from 7 to 32 mg.L-1), Fe, and 
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Mn concentrations for organic-rich, shallow groundwater from a small catchments in western 

France. Despite the development of temporary oxidizing conditions and neoformation of Mn 

oxides, no (or insignificant) negative Ce anomalies were observed ((Ce)>0). Similar results 

were reported by Viers et al. (1997) who investigated the major, trace element and REE 

chemistry of organic-rich shallow groundwaters from a small tropical catchments in western 

Africa. In such organic-rich, shallow groundwaters, the so-called "dissolved" REE pool 

generally occurs as REE(III)-humate complexes (Viers et al., 1997). This observation is 

consistent with the high conditional stability constants of these complexes (Byrne and Li, 

1995; Takahashi et al., 1997, 1999). These studies strongly suggest that complexation of REE 

by humic substances might be the key factor that prevents oxidative scavenging of Ce(III) in 

these waters. 

Understanding the sensitivity of REE(III) sorption properties and Ce(III) oxidation rates 

to REE(III) speciation is especially important since Ce anomaly has often been proposed as 

paleoredox proxy, both in the ocean and in soils. This application certainly has potential, but 

requires a more thorough understanding of the processes that control the oxidation and 

reduction of Ce in both the marine and continental environments. The aim of this study is to 

compare apparent REE distribution coefficients and apparent Ce(III) oxidation rates from 

MnO2 suspensions in which the REE(III) occurred alternatively as REE(III)-humate complex 

and free REE(III) inorganic species. 

 

2. EXPERIMENTAL SET UP 

 

All chemicals used in this study were of analytical grade. All solutions were prepared 

with doubly de-ionized water (Milli-Q system, Millipore). The polyethylene containers used 

in the adsorption experiments were soaked in 10% Ultrapure HNO3 for 48 h at 60°C, then 
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rinsed with Milli-Q water for 24 h at 60°C, to remove all possible REE contamination 

sources. Synthetic REE solutions were prepared from nitrate REE standards (10 ppm; Accu 

TraceTM Reference Standard). REE concentrations were determined by ICP-MS – HP 4500, 

Agilent Technologies – at Rennes University (Appendix 1). 

 

2.1. Manganese oxide 

 

Synthetic MnO2 (Aldrich) was used in the adsorption-oxidation experiments. The solid 

structure was analyzed by X-Ray diffraction (XRD) on a Siemens D5000 diffractometer. The 

principle d spacing indicated a pyrolusite (MnO2) structure. The total surface site number of 

MnO2 was estimated using the solid CEC (Cation Exchange Capacity) and determined 

following the cobalthexammine method, ISO 11260 (AFNOR, 1994). Ions bound with the 

solid surface are exchanged with cobalthexammine ions, and the CEC is the concentration of 

cobalthexammine ions eliminated from the solution. Five g of solid MnO2 were mixed with 

10 mL of 0.017 M cobalthexammine solution for 3 h. The suspension was then centrifuged 

and the concentration of cobalthexammine ion remaining in the solution was measured at 470 

nm with a Shimadzu-160 A U.V.-spectrophotometer. These analyses indicate that this MnO2 

has a CEC of 70 meq/100g. 

Surface acidity constants were determined from potentiometric titrations of 5 g.L-1 of 

solid with NaOH (0.1 M) and HNO3 (0.1 M) in 0.1 M NaCl solution as the supporting 

electrolyte (Davranche et al., 2002). Titrations were carried out with a Metrohm 794 DMS 

Titrino apparatus equipped with a Metrohm combined (3 M KCl) glass electrode. Acidity 

constants obtained are pKa1 7.89 and pKa2 3.65 and pHzpc is equal to 5.8, a value that falls 

within the reported pHzpc range of MnO2 (ie. 4.5 to 7.8; Langmuir, 1997). 
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2.2. REE(III)-humate complexes 

 

Humate, referred to below as humate (purified humic acid), was obtained from the 

synthetic Aldrich humic acid (Aldrich, H1,675-2) according to the process described by 

Vermeer et al. (1998). The humate obtained in this way is ash free and in its protonated form, 

with the following elemental composition (in weight percent): C = 55.8%, O = 38.9%, H = 

4.6%, N = 0.6%. Purified humic acid has a mean molecular weight of 23 000 Daltons 

(Vermeer et al., 1998). Prior to use, the freeze-dried humate was resuspended overnight in a 

NaOH solution (pH 10) to ensure complete dissolution of the sample. 

Rare-earth element-humate complexes were prepared as follows. Twenty mg of 

dissolved humate were enclosed in a 250-mL sodium-acetate dialysis bag with a pore size of 

12 000-14 000 Daltons. The bag was introduced into 1000 mL of a 5 ppb REE solution, the 

ionic strength being fixed at 10-3 M with NaCl or NaNO3 and the pH adjusted to 7 with HNO3. 

Both NaCl and NaNO3 were used as neutral electrolytes. The suspension was stirred for 48 h 

(equilibrium time determined from preliminary kinetic experiments), to allow equilibration 

and partitioning of the REE between the aqueous solution and the humate suspension. The 

dialysis bag was then removed and the REE- humate complexes recovered. The 

concentrations of REE in solution both inside and outside the dialysis bag were monitored vs. 

time in order to quantify the amount of REE complexed to humate. Possible REE adsorption 

onto the dialysis bag was checked by analysing REE content of the membrane (dissolved by 

acidic digestion with HNO3 14 N). The results show that complexation rates increase 

regularly from the heavy to the light REE, which is consistent with the stability constant order 

determined by Takahashi et al. (1997) and Tang and Johannesson (2003) for REE(III)-humate 

complexes. Around 75 to 52 % with NaCl and 95 to 87% with NaNO3 of the REE initially 
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present in the solution were complexed to the humate. The remaining 25-48 or 5-13 % were 

left in solution outside the membrane or adsorbed onto the dialysis bag.  

 

2.3. Adsorption procedure  

 

Five time-series experiments (in duplicate or triplicate) were conducted to assess the 

effects of organic complexation on REE(III) adsorption by MnO2. All suspension were 

performed with a 100 mg.L-1 MnO2 and allowed to equilibrate with a 10-3 M NaCl or NaNO3 

aqueous solution at pH 5 (both inorganic and organic speciation) and 7.5 (organic speciation 

only). Experiments were carried out at room temperature, i.e. 20°C2. The pH was monitored 

periodically with a pH-meter and adjusted to 5 and 7.5 by addition of HNO3 (4.6 N) or NaOH 

(4 N). The 5-pH condition was chosen to promote REE adsorption (but to avoid total REE 

sorption that might mask an eventual Ce anomaly development) and 7.5-pH condition to 

promote cationic adsorption. The choice of NaNO3 as one of the two tested neutral 

electrolytes was imposed by the occurrence of high NO3
- concentrations (up to 5.10-3 M) in 

the organic-rich, shallow groundwaters studied by Dia et al. (2000). In inorganic experiments, 

solutions were made up from 5 ppb REE and in organic experiments, concentrations were 20 

mg.L-1 for humate,  3.8-2.6 ppb with NaCl and  4.8-4.3 ppb with NaNO3 for REE, 

respectively (concentration obtained after REE/humate complexation). 

The first set of experiments carried out with free REE(III) (5 ppb, corresponding to the 

molar concentration range of 36 to 29 nM) were conducted to validate the experimental and 

analytical set-up used in this study. Data concerning inorganic REE(III) scavenging onto 

MnO2 already exists in the literature and could be used for comparison (Koeppenkastrop and 

De Carlo, 1992, 1993; Ohta and Kawabe, 2001). In the other time-series experiments, 

equilibrations were conducted using the above described REE(III)-humate complexes. 
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 Here, we quantify the adsorption behaviour of the REE by using the apparent partition 

coefficient Kd, expressed as: 

solutionin  REE μg.L

oxideMn  gadsorbed REE μg
K

1d 
     (1) 

Ce anomalies are quantified using the (Ce) notation (Grandjean et al, 1987) where: 

(Ce) 1logK/logK/logK Pr
d

La
d

Ce
d 






 )  (2)  

Suspension aliquots of about 10 mL were regularly sampled and filtrated through 0.2 

m cellulose acetate filters (Sartorius) and the REE concentrations analysed to determined Kd 

variations through time. Sample aliquots used for REE determination were all immediately 

digested with suboiled nitric acid (HNO3 14 N) at 100°C, then resolubilized in HNO3 0.4 N 

after complete evaporation, in order to avoid interferences with organic matter during mass 

analysis for the organic experiments. Precisions on REE concentrations and REE
d

K log  values 

of individual experiments are estimated at 2% (Appendix 1). Duplicate and triplicate 

experiments show that the overall reproducibility of the REE
d

K log values is better than 10% 

(Appendix 2). 

 The adsorption behaviour of the REE(III)-humate complexes was also monitored by 

measuring the dissolved organic carbon (DOC) content of the experimental solutions. DOC 

measurements can be converted into apparent partition coefficients using Eqn. (3):  

solutionin  DOC μg.mL

 oxideMn  gadsorbed DOC μg
K

1d 
     (3) 

Dissolved organic carbon concentrations were determined at Rennes University using a 

Shimadzu 5000 TOC analyzer. Precision and reproducibility are estimated at 1.5% and 

10%, respectively (Appendix 2). 
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3. RESULTS  

 

3.1. Adsorption of inorganic REE(III)(aq) 

 

The experimental results of Log Kd for La, Ce, Pr and Sm are plotted vs. time in Fig. 2. 

The values were almost constant over 10 h to 12 d, NaCl run exhibiting a faster adsorption as 

compared with those conducted with NaNO3. The data point to the same conclusion to that 

reached by Ohta and Kawabe (2001), namely, that steady state is attained within less than one 

d (<10 h, here) when REE occur in the solution as free inorganic species, a result which was 

already apparent in the works of Koeppenkastrop and De Carlo (1992, 1993). The 

discrepancy between the equilibrium Kd values obtained here and those reported by Ohta and 

Kawabe (2001) appears to be a direct consequence of the lower MnO2 concentration used in 

our experiment: -100 mg.L-1 against 3.2 mg.L-1 in Ohta and Kawabe (2001)-. 

 All patterns exhibit large positive Ce anomalies (Figs. 3 and 6) as well as convex 

tetrad curves or "M" shape, two features already evidenced by Ohta and Kawabe (2001). The 

tetrad effect corresponds to small discrete features in REE patterns of geological materials 

(Mc Lennan, 1994). In the present study, the low analytical uncertainty on REE
d

K log values 

from adsorption experiments (2%) combined with the large amplitude between REE
d

K log  

values from different tetrad groups (e.g. 8.2% between log
inorganicEu

d
K and log 

inorganicGd

d
K for 

the NaNO3adsorption experiment) suggest that the tetrad effect is effective and not an 

artefact.  

Ceinorganic anomalies, experessed as (Ce) values, were all positive and almost constant 

over the 12 d of the experiment, ranging from 0.16 to 0.22 (Fig. 6). As with the log 
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inorganicREE

dK values, these values are slightly less than the Ce anomaly values published by Ohta 

and Kawabe (2001) for similar pH conditions (around 1.7 time lower). 

 

3.2. Comparison of REE adsorption kinetics and log organicREE

d
K and log inorganicREE

d
K  at 

pH 5 

 

 The experimental results of log organicREE

dK  for La, Ce, Pr, and Sm are plotted in Fig. 4. 

The data show that the complexation of REE(III) by humic acid had large effects on both 

REE adsorption kinetics and REE
dK equilibrium values. Time series variations of log 

organicREE

dK  values reveal that equilibrium was not reached before around 10 d when REE 

occurred as REE(III)-humate complexes (Fig. 4), against 10 h when dissolved REE were in 

solution as free metal ions (Fig. 2; Ohta and Kawabe, 2001). As regards to the partition 

coefficients, log REE
dK values were lower in the two organic experiments as compared to the 

inorganic case, ranging from 3.4 to 3.5 in the NaNO3 solution experiment and from 3.35 to 

3.40 in the NaCl solution experiment against 3.3 to 4.2 in the inorganic run (Fig. 3). Ratios of 

DOC
d

REE

d
K logK log

organic
 were close to 1.0 indicating that the REE(III) and the humic acid 

remained bound to each other during interaction of the REE(III)-humate complexes with the 

MnO2 surface.  

The patterns of log organicREE

dK differ markedly from those recovered during the 

inorganic experiments (compare Figs 3 and 5). Firstly, the organic patterns do not show the 

same conspicuous tetrad effect or "M" shape (Fig. 3). This general lack of a conspicuous "M" 

shape in the organic patterns is highly significant with regards to the adsorption mechanism(s) 

of the REE(III)-humate complexes onto MnO2. We note that all the adsorption experiments 
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conducted so far between REE(III)(aq) and either MnO2 or Fe oxyhydroxides yielded patterns 

of log REE
dK that showed invariably convex tetrad effects (De Carlo et al., 1998, 2000; Bau, 

1999; Ohta and Kawabe, 2001; Fig. 3). Secondly, a significant positive Ce anomaly was not 

observed in the patterns corresponding to the REE(III)-humate adsorption (Figs. 5 and 6).  

 

3.3 Comparison of REE adsorption kinetics and log organicREE

d
K at pH 5 and 7.5 

 

Sorption experiments of REE(III)-humate complexes onto MnO2 at pH 7.5 are 

presented in Fig. 5. Adsorption kinetics are faster at pH 7.5 (4 d) than at pH 5 (10 d), 

equilibrium log organicREE

dK values being lower at pH 7.5 than pH 5. As with the experiments at 

pH 5, development of a positive Ce anomaly or tetrad effect is not observed at pH 7.5. Ratios 

of DOC
d

REE

d
K logK log

organic
 remained also close to 1.0 suggesting that the rise in pH had 

essentially no effect on the stability of the REE(III)-humate complexes upon adsorption  

Note that the fairly large relative standard deviations obtained from the triplicate 

experiments conducted at pH 7.5 (Table 8; Appendix 2) is due to difficulties in pH regulation 

when pH approaches neutrality.  

 

4. DISCUSSION  

 

4.1. Mechanism of Ce anomaly and tetrad effect inhibition  

 

REE adsorption experiments onto MnO2 with REE(III) occurring as REE(III)-humate 

complexes evidence the same evolutionary features (i.e. slow-down of REE adsorption 

kinetics; inhibition of tetrad effect and Ce anomaly development) whatever the supporting 
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electrolyte (NaNO3 or NaCl). A clear distinction appears between these results and those 

stemming out of the inorganic experiments (this study; Ohta and Kawabe, 2001). In this 

context, one key question is how does complexation of REE(III) by humic acid inhibit the 

development of a positive Ce anomaly at the surface of the MnO2 oxides?  

The lack of positive Ce anomalies in log REE
dK  patterns does not necesseraly mean that 

all the adsorbed Ce occurs as Ce(III). In Mn or Fe oxyhydroxides suspensions where REE 

occur as inorganic species, the development of a positive Ce anomaly is due to 

oxidative/scavenging which is the sum of (i) oxidation of Ce(III) into Ce(IV) and (ii) 

preferential sorption of Ce(IV).This decoupling of Ce(IV) from the REE(III) upon adsorption 

is due to the change in ionic charge and radius imposed by the oxidation process. However, 

cationic adsorption onto oxyhydroxides increases with increasing pH. In strong pH-

conditions, Ce(IV) is present onto the oxyhydroxide surface, but hid in the large amount of 

REE(III) adsorbed, any positive Ce anomaly is developed despite the occurrence of Ce(IV). 

This effect of pH on Ce anomaly was studied by Bau (1999) for Fe hydroxide and by Ohta 

and Kawabe (2001) for MnO2. According to Bau's (1999) results, the amount of extra Ce 

scavanged onto Fe hydroxide due to oxidation of Ce(III) to Ce(IV) could not be detected 

above a pH of ca. 5 (no occurrence of a mesurable positive Ce anomaly). As regards MnO2, a 

positive Ce anomaly was still present at pH 7 - the highest pH value investigated by Ohta and 

Kawabe (2001) -, but the size of the anomaly was found to start decreasing above a pH of 6.5.  

For REE-humate complex, Ce adsorption mechanism is complicated by the bound of 

REE to high molecular weight humate and be their distinct sportive properties - humate 

adsorbed at low pH (Avena and Koopal, 1999), aqueous trace metals adsorbed at high pH-. 

Humate are large polyfunctionnal macromolecules, potentially able to complex without 

selection hundreds of REE. This lack of selectivity among the REE group is consistent with 

the regular log REE
dK  patterns of REE-humate complexes (no sign for any preferential Ce 



 13 

complexation). Both characteristics of humate – i.e. high complexation capacity; lack of Ce 

complexation selectivity – are strong obstacle to the preferential Ce(IV) adsorption necessary 

to develop positive Ce anomalies. This could be the main reason (rather than inhibition of 

Ce(III) oxidation) why positive Ce anomalies were not observed in experiments where REE 

occurred as REE(III)-humate complexes. 

This "buffering" effect of humate on Ce/REE fractionation is confirmed by pH 5 and pH 

7.5 experiments. Cation ligand complexes, denoted as ML (with M and L representing, the 

cation and the ligand respectively) can adsorb onto a solids ( S ) to form ternary surface 

complexes. These complexes could exist in two forms (i) LMS  (cation linked to the 

mineral surface over the ligand) or (ii) MLOS   (ligand linked to the surface over the 

cation) (Schindler, 1990, Nowack and Sigg, 1996). The formation of both types of complexes 

depends on whether the surface groups of the oxide can participate in exchanging their OH- 

with the cation-ligand complex. These reactions depend strongly on pH. When pH is lower 

than the solid pHzpc (pH for which positive and negative charges occur in equal number) 

adsorption is of anionic type ( LMS ). In pH 5-experiments, pH was slightly lower than 

the pHzpc of the MnO2 used in this study (5.8). Consequently, anionic adsorption occurred (eq. 

4) 

-OH   REE-PHASPHA    -REE       OHS      (4) 

In such a situation Ce was not in contact with the oxidative MnO2 surface and Ce(III) 

was consistently not oxidized in Ce(IV) (no possibility of developping a positive Ce 

anomaly). In the second series of experiments, however pH was rise at 7.5, i.e. a value well 

above the pHzpc of the MnO2 . Under such a situation, cationic adsorption could occur (eq. 5): 

 H  PHA -REE-O-S  PHA    -REE       OHS  (5) 

In this case, Ce(III) could become oxidized, and Ce/REE fractionation could develop. 

However, it is clear from Figure 5 that no Ce/REE fractionation occurred in the experiments 
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at pH 7.5. The equilibrium time and log organicREE

dK  values decrease is meaningful with regards 

to the REE-humate complex adsorption. The REE-humate complex seems to have the same 

behaviour onto solid surface than an ‘uncomplexed’ humate (decrease of adsorption rate at 

high pH). Unlike in the inorganic experiments where Ce and REE can adsorb onto MnO2 

surfaces independently from each other, REE (including Ce(IV)) are physically linked 

together by the humate molecule in the organic experiments. Ce can thus be oxidized by the 

MnO2 surface. However, a positive anomaly cannot develop. The preferential Ce(IV) sorption 

cannot proceed due to binding of the entire REE pool to humate. 

Finally, we are concerned by the lack of tetrad effect for the log organicREE

dK values in 

the patterns. It was suggested that the growth of convex tetrad effect may reflect the change of 

coordination state of the REE(III) adsorbed onto either MnO2 or Fe oxyhydroxides (Bau, 

1999; Ohta and Kawabe, 2001). Ohta and Kawabe (2001) hypothesized that REE(III) 

adsorbed onto MnO2 are linked with hydroxyl ions, water molecules and oxygen bound with 

Mn(IV). According to these authors (op. cit.), this coordination would explain the increase of 

convex tetrad effect with pH, by the increasing proportion of hydroxyl ion bonding REE(III). 

When REE(III) are complexed by humic acid, interaction of the ternary complex thus formed 

with the MnO2 surface occurs dominantly by the humate side, implying that a large part of the 

REE(III) pool is probably not directly bound to the MnO2 surface. The presence of the 

lanthanide tetrad effect reveals that during the interaction of dissolved REE(III) with MnO2, 

the behaviour of these elements cannot fully be described by differences between their ionic 

radii, requiring instead changes of the coordination state of the REE(III) adsorbed onto MnO2. 

The latter mechanism would be hardly activated since REE (III) cannot directly interact with 

the MnO2 surface in the organic experiment. 

Moreover, the tetrad effect expresses the differences in Racah parameters for 4f 

electron repulsion between the pair of REE complexes. Ohta and Kawabe (2001) suggested 
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that Racah parameters in REE(III) ions decrease with increasing covalence of bonding of 

REE(III) with ligands. If REE-humate complexes are adsorbed onto MnO2 as 

MLOS  (eq. 5, cationic adsoption), Racah parameters are smaller and, consequently, a 

conspicuous M-type tetrad effect should be observed. Thus, the lack of tetrad effect in the log 

organicREE

d
K  patterns suggests that REE(III)-humate complexes is bound to MnO2 by the 

humate side confirming the chemical mechanism of eq. 4. 

 

4.3. Comparison with natural waters and inferences on the use of Ce anomaly as a redox 

proxy in paleosols. 

 

Shallow organic-rich waters from several continental areas (e.g. western Europe and 

Africa) have been shown to be characterized by no, or only very small negative Ce anomalies 

despite the occurrence in these waters of strongly oxidizing conditions and of Mn oxides in 

associated aquifers (Viers et al., 1997; Braun et al., 1998; Dia et al., 2000; Gruau et al., 2003). 

Figure 8 presents (Ce) vs. Mn and (Ce) vs. DOC plots that illustrate both two 

characteristics. Particularly interesting are the data from the Kervidy-Naizin catchment in 

western France (Dia et al., 2000). As can be seen, the hydrochemical dataset from this 

catchment shows clear evidence of Mn oxidation and MnO2 precipitation at the soil-water 

interface as revealed by the marked decrease of dissolved Mn concentrations; yet, (Ce) 

decrease only very slightly (Fig. 8).  

 In their paper, Dia et al. (2000) stated that "it is clear that the lack of Ce anomaly is a 

rather surprising feature given the redox sensitive chemistry of this element and the 

occurrence of seasonal redox variations” in the Mercy wetland (i.e. the precise name of the 

site from which the Kervidy-Naizin waters were sampled). Taking into account the fact that 

Ce and REE do not occur as free metal ions in these waters, but occur predominantly as 
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dissolved and colloidal organic complexes, Dia et al. (2000) put forward two hypotheses to 

account for this lack of Ce anomalies: (i) either Ce precipitation and oxidation became 

impossible because of the complexation of Ce(III) by organic matter or, (ii) CeO2 precipitated 

onto colloids being then considered as part of the solution. The experimental data reported in 

this study favour the first hypothesis, though showing that the true ultimate cause of the lack 

of Ce anomly development in these waters is more likely to be inhibition of prefrential Ce(IV) 

sorption rather than inhibition of Ce oxidation reaction 

Another implication of the results of this study concerns the use of Ce anomalies in 

paleosols as paleoclimatic proxies. In the last two decades, many environmental proxies have 

been explored on paleaosol sequences, including Ce anomalies (Rankin and Child, 1976; 

Gallet et al., 1996; Braun et al. 1998). It was stated that the redox state of a paleosol at the 

time of its formation should correlate with climatic factors such as rainfall intensity or/and 

ambient atmospheric temperature. From a paleoclimatic point of view, it is indeed possible 

that wet periods led to the dominance of oxidizing conditions in paleosols due to the 

continuous recharge of the soil solution by oxygen-rich rainwater, a process which would 

stabilize Mn oxide phases in the weathering front. Considering solely the inorganic 

experimental results of Ohta and Kawabe (2001), one could then consider that both negative 

or positive Ce anomalies would be expected to occur in paleosols formed under such 

conditions, depending on whether the latter incorporated the stabilized Mn oxide phases 

(positive Ce anomaly) or contained secondary mineral phases precipitated from fluids in 

equilibrium with the Mn oxide solids (negative Ce anomaly). However, these new 

experimental results show that the complexation of REE(III) by humic substances - a process 

likely to occur during formation of organic-rich paleosols - could possibly destroy such a 

pattern by partially inhibiting the development of a positive Ce anomaly on soil Mn oxides, 

hence making Ce anomalies in paleosols a poor paleo(redox)climatic proxy. In previous 
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studies dedicated to test the occurrence of paleoclimatic proxies in the loess-paleosol 

sequences of China, Gallet et al. (1996) and Jahn et al. (2001) showed that the soils from 

these sequences yielded variable Ce anomalies, uncorrelated with well-established climatic 

proxies such as the magnetic susceptibility or the chemical index of alteration. In their 2001 

paper, Jahn and co-workers failed to find any satisfactory explanation for this discrepancy in 

term of climatic variability or differences in pedogenetic or alteration intensity. Then, the 

interplay between variable redox conditions and REE(III) organic speciation may lead to 

complex REE patterns in paleosols which may not unambiguously reflect the climatic 

conditions at time of their genesis.  

 

5. SUMMARY 

 

 Free REE(III) and REE(III)-humate complexes adsorption behaviour onto MnO2 point 

out that humate complexation strongly modified the REE sorptive properties. Time-series 

experiments indicate that a stationary exchange equilibrium is reached within less than 10 h 

when dissolved REE(III) occurs as free and 10 d when REE occur as REE(III)-humate 

complexes. Humate complexation also resulted in an inhibition of positive Ce anomalies and 

M-type lanthanide tetrad effect development.  

The strong REE complexation capacity of humate coupled to their inability to 

preferentially complex Ce prevent the preferential adsorption of Ce(IV) necessary to positive 

Ce anomalies development. As regards inhibition of the lanthanide tetrad effect is attributed 

the the anions adsorption of the REE-humate complex (eq. 4), REE(III)-humate adsorbed onto 

the MnO2 surface by the humate side. Under this condition, the changes in ionic radii 

required for the lanthanide terad effect to develop cannot proceed. 
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These new experimental data show that Ce anomalies may not be a reliable proxy of 

redox conditions in organic-rich waters or in precipitates formed in equilibrium with humic 

substances rich waters. These data help to explain why no, or insignificant negative Ce 

anomalies may be observed in shallow organic-rich groundwaters despite the development of 

strongly oxidizing conditions and the presence in the aquifer of MnO2. 
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FIGURES CAPTIONS 

 

Fig. 1. Purification procedure of Aldrich humic substances. 

 

Fig. 2. Equilibrium time of Log inorganic REE
dK

 in the suspension of MnO2 and NaCl (a) or 

NaNO3 (b) at pH 5, expressing the partitioning of 5 ppb REE between 100 mg MnO2 and 

1000 mL water within 2 weeks 

 

Fig. 3. Log inorganic REE
dK  patterns between MnO2 suspension and NaCl or NaNO3 aqueous 

solution plotted vs. increasing atomic number within REE series. Initial concentration of each 

REE was 5 ppb and solid phase concentration was 100 mg.L-1. Errors bars correspond to  for 

two replicates, some errors bars are within the symbol size. 

 

Fig. 4. Equilibrium time of log organic REE
dK

 in the suspension of MnO2 and NaCl (a), 

NaNO3 (b) at pH 5 and NaCl (c) at pH 7.5 aqueous solutions, expressing the partitioning of 

REE-humate complexes between 100 mg solid and 1000 mL water within 3.5 weeks 

 

Fig. 5. Log organic REE
dK  pattern in the suspension of MnO2 and NaCl or NaNO3 at pH 5 

and 7.5. Errors bars correspond to  for three replicates, some errors bars are within the 

symbol size. 

 

Fig. 6. Time variation of (Ce) in the suspension of MnO2 and NaCl or NaNO3 at pH 5 

expressing the Ce anomaly development. Errors bars corresponds to  for two replicates in 
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inorganic and three replicates in organic experiments, some errors bars are within the size of 

the datum symbol. 

 

Fig. 7. Relationships between (Ce), DOC and Mn concentrations in organic-rich, soil 

waters from selected catchments from Western Europe, Pleine-Fougères and Kervidy-Naizin 

wetland. The dataset from the Kervidy-Naizin catchments was particularly meaningful as no, 

or only slight variation of the (Ce) occurred in these soil waters despite the evidence of Mn 

oxidation and precipitation as showed by the marked decrease of dissolved Mn concentrations 

and increase of Eh data. Data sources: Dia et al. (2000); Gruau et al. (2004). 
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Appendix 1 – Mass analyses and instrumental  errors  

 

Rare earth concentrations were determined using an Agilent TechnologiesTM HP4500 ICP-

MS Normal plasma conditions were used, with the instrumental parameters reported in Table 1.  

 

Table 1. Instrumental and data acquisition parameters 

 

RF power 1360 W 

Plasma gas flux 15 L/min 

Auxiliary gas flux 1.0 L/min 

Carrier gas flux 1.13 L/min 

Nebulizer type Cross-flow 

Spray chamber temperature 2°C 

Integration time 3 sec/mass 

CeO+/Ce+ 0.6 % 

Ce++/Ce+ 1% 

 

Quantitative analyses were performed using a conventional external calibration procedure. 

Three external standard solutions displaying REE concentrations similar to those of the samples 

analysed in this study were prepared from a multi-REE standard solution (Accu TraceTM 

Reference,10 mg.L-1, USA). Indium was added to all samples as an internal standard at a 

concentration level of 0.87 M (100 ppb) to correct for instrumental drift and possible matrice 

effects. Indium was also added to external standard solutions. Calibration curves were calculated 

from measured REE/Indium intensity ratios. 

Detection limits (DL) of the Agilent Technologies ICP-MS set up at Rennes University 

(Table2) were calculated using the following equation: 

 



 35 

BS

CSD
LpmolDL


 .3

).( 1      (5) 

where SD is the standard deviation obtained during instrumental blank measurements, C the 

REE concentration of a standard solution (between 29 and 36 pM depending of the REE), S and 

B, the ion counts obtained during standard solution and instrumental blank analyses, 

respectively.  

 

Table 2. Detection limits and chemical blanks (in pM) measured during the course of this 

study 

Isotope DL 
Chemical 

Blanks 

La 139 1.15 4.37 

Ce 140 3.21 5.71 

Pr 141 0.64 2.35 

Nd 146 3.54 7.28 

Sm 147 5.52 0.64 

Eu 153 0.92 0.76 

Gd 158 2.67 2.07 

Tb 159 0.38 1.50 

Dy 163 1.29 2.76 

Ho 165 0.49 1.08 

Er 166 1.26 0.88 

Tm 169 0.59 1.27 

Yb 174 1.44 1.14 

Lu 175 0.51 0.85 

DL: detection limits 

 

Chemical blanks of individual REE were all lower than 10 pM which is negligible (Table 

2), being by three to four orders of magnitude lower than concentrations measured in the 

synthetic solutions used in the adsorption experiments. 

Isobaric interferences due to the formation and ionisation of oxides and/or hydroxides in 

the ICP-MS can alter Sm, Eu, Gd and Tb concentration determination. The interference list is 
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given in Table 3 along with the equations used in our laboratory to correct REE concentrations 

from this potential error source. Note that Ce and its neighbours La and Pr - and thus the 

calculation of the Ce anomaly - are not affected by isobaric interference problems. There was no 

need for BaO and/or BaOH corrections onto Eu and Sm as our synthetic solutions did not 

contain any Ba.  

 

Table 3. Summary of isobaric interferences encountered during REE analysis and correction 

equations used at Rennes University to correct measured concentrations from this effect 

 

Isotope Interference Corrections 

147Sm+ 130BaOH+ negligible 

153Eu+ 

137BaO+; 

136BaOH+ 
]Int[137

Ba

)(
Int[153]

137

BaOHBaO,
153

153]Eu[  

158Gd+ 

142CeO+; 

142NdO+; 

141PrOH+ 

Gd[158]=Int[158]-
Pr

Pr

141

158 )( OH
Int[141]-

Ce

CeO

140

158 )(
Int[140]-

Nd

NdO

142

158 )(
Int[142] 

159 Tb+ 143 NdO+ Tb[159] = Int[159] - 
Nd

NdO

143

159 )(
 Int[143] 

 

Amplitude and efficiency of the Gd and Tb corrections can be evaluated from Table 4 

where measured and corrected concentrations of Gd and Tb obtained for the SLRS-4 water 

geostandard are pooled together. Correction amplitudes are moderate, being 6% for Gd and only 

2% for Tb, with the corrected values being in both cases by 2.5% within the range of the 

reference values published for the SLRS-4 water geostandard (Yeghicheyan et al.. 2001). These 

values should be regarded as maximum values for the results presented here as the ratios of 
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[Interfering Element]/[Interfered Element] are close to unity in our synthetic solutions against 10 

to 65 in the SLRS-4 geostandard. 

 

Table 4. Amplitude and efficiency of oxyde and hydroxide corrections on Gd and Tb during 

analysis of SLRS-4 water standard. Concentrations are in nM. 

 

Isotope 

Reference  

values* 

Measured 

 values 

Corrected  

values 

Correction 

 (%) 

Gd 158 0.210 0.228 0.213 6.4 

Tb 159 0.026 0.026 0.026 2.4 

* Yeghicheyan et al. (2001) 

 

Table 5. Replicates analyses (n=10) of multi-REE standard solution (Accu TraceTM 

Reference, USA). Concentrations are in nM. 

 

Isotope 
Standard REE 1 (2.5 nM) Standard REE 2 (5.1 nM) 

mean rsd mean rsd 

La 139 2.49 0.5 5.10 0.6 

Ce 140 2.49 0.7 5.11 0.7 

Pr 141 2.49 1.0 5.12 0.6 

Nd 146 2.50 0.5 5.07 0.7 

Sm 147 2.49 0.6 5.08 0.4 

Eu 153 2.50 0.3 5.08 0.5 

Gd 158 2.50 1.0 5.10 1.0 

Tb 159 2.48 0.9 5.10 0.5 

Dy 163 2.47 0.6 5.09 0.5 

Ho 165 2.47 0.7 5.08 0.3 

Er 166 2.48 0.4 5.06 0.5 

Tm 169 2.47 0.6 5.06 0.4 

Yb 174 2.47 0.6 5.09 0.6 

Lu 175 2.46 0.8 5.07 0.5 

rsd: relative standard deviation 
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Finally, the overall validity of the analytical procedure can be checked from Table 5 where 

replicates analyses (n=10) of multi-REE standard solution (Accu TraceTM Reference, USA) are 

reported and from Table 6 where concentrations of the SLRS-4 standard measured during the course 

of this study are compared with published reference values (Yeghicheyan et al., 2001). Altogether, 

these two tables show that the instrumental error on REE analysis in our laboratory is < 2%.  

 

Table 6. Comparison of the analytical accuracy of the Agilent Technology HP4500 ICP-

MS set up at Rennes University against published reference values of the SLRS-4 water 

geostandard. Concentrations are in nM. 

 

Isotope mean (n=13) 
reference 

concentrations  

La 139 2.069 2.066 

Ce 140 2.548 2.569 

Pr 141 0.493 0.492 

Nd 146 1.842 1.865 

Sm 147 0.371 0.382 

Eu 153 0.055 0.053 

Gd 158 0.219 0.217 

Tb 159 0.027 0.027 

Dy 163 0.143 0.149 

Ho 165 0.028 0.028 

Er 166 0.081 0.080 

Tm 169 0.011 0.010 

Yb 174 0.068 0.069 

Lu 175 0.011 0.011 

 

Appendix 2 – Reproducibility of adsorption experiments  

 

Equilibrium log REE
dK  values obtained during duplicate and triplicate experiments 

conducted in order to determine the overall exeperimental uncertainties of  the method used  in 
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this study are presented in Tables 7 (REE(III) occurring as free, inorganic species) and 8 

(REE(III) as REE(III)-Humate complexes).  The two tables show that the overall experimental 

uncertainties on the Log REE
dK  values discussed in this paper is better than 10%. 

Equilibrium log DOC
dK values were also monitored in the adsorption experiments using 

REE as REE(III)-humate coomplexes. Table 9 shows that the overall analytical uncertainties 

obtained on this parameter as determined from triplicate run results is better than  10%.  

 

Table 7. Reproducibility of log Kd(REE, inorganic) at pH 5. 

 

inorganic, NaCl, pH 5 inorganic, NaNO3, pH 5 

 A B mean rsd A B mean rsd 

La 3.15 3.50 3.32 7.46 3.32 3.29 3.30 0.45 

Ce 4.07 4.22 4.14 2.62 4.14 3.96 4.05 3.23 

Pr 3.54 3.71 3.63 3.48 3.55 3.51 3.53 0.71 

Nd 3.57 3.73 3.65 3.16 3.55 3.53 3.54 0.43 

Sm 3.71 3.86 3.79 2.85 3.67 3.66 3.66 0.19 

Eu 3.73 3.86 3.80 2.54 3.68 3.68 3.68 0.02 

Gd 3.59 3.76 3.68 3.40 3.58 3.56 3.57 0.38 

Tb 3.58 3.75 3.67 3.35 3.55 3.55 3.55 0.03 

Dy 3.60 3.76 3.68 3.07 3.56 3.57 3.56 0.28 

Ho 3.49 3.70 3.59 4.15 3.49 3.49 3.49 0.14 

Er 3.50 3.71 3.61 4.07 3.52 3.50 3.51 0.26 

Tm 3.52 3.73 3.62 3.98 3.53 3.51 3.52 0.40 

Yb 3.57 3.75 3.66 3.55 3.57 3.56 3.56 0.25 

Lu 3.56 3.76 3.66 3.77 3.56 3.55 3.56 0.07 

rsd: relative standard deviation 

 

 

 

 

 



 40 

Table 8. Reproducibility of log Kd(REE, organic) at pH 5 and 7.5 

 

 Organic, NaCl, pH 7.5 Organic, NaCl, pH 7.5 Organic, NaNO3, pH 5 

 A B C mean rsd  A B C mean rsd  A B C mean rsd  

La  3.26 3.25 3.29 3.27 0.7 3.11 3.01 2.91 3.01 3.3 3.26 3.25 3.29 3.47 0.66 

Ce  3.49 3.37 3.41 3.42 1.7 3.21 3.07 2.92 3.07 4.7 3.49 3.37 3.41 3.51 1.65 

Pr  3.37 3.29 3.33 3.33 1.1 3.26 3.07 2.94 3.09 5.2 3.37 3.29 3.33 3.46 1.06 

Nd  3.28 3.26 3.29 3.28 0.6 3.27 3.15 2.88 3.10 6.4 3.28 3.26 3.29 3.43 0.53 

Sm  3.31 3.26 3.26 3.28 0.9 3.15 3.09 2.74 3.00 7.4 3.31 3.26 3.26 3.43 0.81 

Eu  3.27 3.21 3.31 3.27 1.6 3.09 2.92 2.76 2.93 5.6 3.27 3.21 3.31 3.42 1.49 

Gd  3.31 3.25 3.34 3.30 1.5 3.13 2.91 2.84 2.96 5.1 3.31 3.25 3.34 3.40 1.42 

Tb  3.25 3.22 3.31 3.26 1.5 3.13 3.04 2.74 2.97 6.8 3.25 3.22 3.31 3.37 1.42 

Dy  3.25 3.19 3.32 3.25 1.9 3.16 3.14 2.72 3.01 8.3 3.25 3.19 3.32 3.36 1.88 

Ho  3.21 3.23 3.32 3.25 1.7 3.17 3.08 2.80 3.02 6.4 3.21 3.23 3.32 3.36 1.65 

Er  3.21 3.24 3.31 3.25 1.7 3.15 3.05 2.81 3.00 5.7 3.21 3.24 3.31 3.35 1.64 

Tm  3.24 3.25 3.35 3.28 1.9 3.15 2.96 2.78 2.96 6.3 3.24 3.25 3.35 3.36 1.81 

Yb  3.27 3.28 3.41 3.32 2.4 3.04 2.96 2.81 2.94 4.0 3.27 3.28 3.41 3.37 2.32 

Lu  3.29 3.29 3.41 3.33 2.1 3.03 3.00 2.66 2.89 7.0 3.29 3.29 3.41 3.37 2.07 

rsd: relative standard deviation 

 

Table 9. Reproducibiliy of log Kd
OC at pH 5 et 7.5. See text for explanations 

 

 A B C mean rsd 

NaCl, pH 5 3.46 3.53 3.56 3.52 1.4 

NaNO3, pH 5 3.56 3.74 3.52 3.61 3.2 

NaCl, pH 7.5 3.36 3.00 2.96 3.11 7.2 

r.s.d. relative standard deviation 


