
HAL Id: hal-02265575
https://hal.science/hal-02265575v1

Submitted on 10 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a Tool-Supported Model-Based Approach for
Building Architectures and Roadmaps: The

MegaM@Rt2 Project Experience
Andrey Sadovykh, Wasif Afzal, Dragos Truscan, Pierluigi Pierini, Hugo

Bruneliere, Alessandra Bagnato, Abel Gómez, Jordi Cabot, Orlando
Avila-García

To cite this version:
Andrey Sadovykh, Wasif Afzal, Dragos Truscan, Pierluigi Pierini, Hugo Bruneliere, et al.. On a
Tool-Supported Model-Based Approach for Building Architectures and Roadmaps: The MegaM@Rt2
Project Experience. Microprocessors and Microsystems: Embedded Hardware Design , 2019, 71,
pp.102848. �10.1016/j.micpro.2019.102848�. �hal-02265575�

https://hal.science/hal-02265575v1
https://hal.archives-ouvertes.fr


On a Tool-Supported Model-Based Approach for

Building Architectures and Roadmaps:

The MegaM@Rt2 Project Experience

Andrey Sadovykha,b, Wasif Afzalc, Dragos Truscand, Pierluigi Pierinie,
Hugo Brunelieref, Alessandra Bagnatob, Abel Gómezg, Jordi Caboth,

Orlando Avila-Garćıai

aInnopolis University, 420500 Innopolis, Respublika Tatarstan, Russia
bSofteam, 21 avenue Victor Hugo, 75016 Paris, France

cMälardalen University, Sweden,
dÅbo Akademi University, 20520, Turku, Finland,
eIntecs S.p.A., Via U. Forti 5, 56121 Pisa, Italy,

fIMT Atlantique, LS2N (CNRS) & ARMINES, 44000 Nantes, France,
gIN3, Universitat Oberta de Catalunya, Spain,

hICREA, Spain,
iAtos, Subida al Mayorazgo, 24B, 38110 Tenerife, Spain,

Abstract

MegaM@Rt2 is a large European project dedicated to the provisioning of a
model-based methodology and supporting tooling for system engineering at
a wide scale. It notably targets the continuous development and runtime
validation of such complex systems by developing a framework addressing
a large set of engineering processes and application domains. This collab-
orative project involves 27 partners from 6 different countries, 9 industrial
case studies as well as over 30 different software tools from project partners
(and others). In the context of the MegaM@Rt2 project, we elaborated on
a pragmatic model-driven approach to specify the case study requirements,

Email addresses: a.sadovykh@innopolis.ru (Orlando Avila-Garćıa),
alessandra.bagnato@softeam.fr (Orlando Avila-Garćıa), wasif.afzal@mdh.se
(Orlando Avila-Garćıa), dragos.truscan@abo.fi (Orlando Avila-Garćıa),
pierluigi.pierini@intecs.it (Orlando Avila-Garćıa),
hugo.bruneliere@imt-atlantique.fr (Orlando Avila-Garćıa), agomezlla@uoc.edu
(Orlando Avila-Garćıa), jordi.cabot@icrea.cat (Orlando Avila-Garćıa),
orlando.avila@atos.net (Orlando Avila-Garćıa)

Preprint submitted to Microprocessors and Microsystems August 10, 2019



design the high-level architecture of a framework, perform the gap analysis
between the industrial needs and current state-of-the-art, and plan a first
framework development roadmap accordingly. The present paper describes
the generic tool-supported approach that came out as a result. It also de-
tails its concrete application in the MegaM@Rt2 project. In particular, we
discuss the collaborative modeling process, the requirement definition tool-
ing, the approach for components modeling, as well as the traceability and
document generation. In addition, we show how we used the proposed so-
lution to specify the MegaM@Rt2 framework’s conceptual tool components
centered around three complementary tool sets: the MegaM@Rt2 System
Engineering Tool Set, the MegaM@Rt2 Runtime Analysis Tool Set and the
MegaM@Rt2 Model & Traceability Management Tool Set. The paper ends
with a discussion on the practical lessons we have learned from this work so
far.

Keywords: Model-Driven Engineering, Requirement Engineering,
Architecture, Roadmap, UML, SysML, Traceability, Document Generation,
Modelio

1. Introduction

MegaM@Rt2 is a three-years project, funded by European Components
and Systems for European Leadership Joint Undertaking (ECSEL JU) un-
der the H2020 European program, that started in April 2017 [1, 2, 3]. The
main goal is to create an integrated framework incorporating methods and
tools for continuous system engineering and runtime verification and valida-
tion (V&V) [4, 5]. The underlying objective is to develop and apply scalable
model-based methods and tools in order to provide improved productivity,
quality, and predictability of large and complex industrial systems [6]. As
of writing this paper, the project has entered in its final year where the
MegaM@Rt2 framework is being validated on industrial use cases to assess
the quantified benefits. Up till now, a number of deliverables have been com-
pleted and the details of publicly available deliverables are on the project’s
website1.

One of the main challenges to overcome in MegaM@Rt2 is to cover re-
quirements coming from diverse and heterogeneous industrial domains, rang-

1https://megamart2-ecsel.eu/deliverables/

2

https://megamart2-ecsel.eu/deliverables/


ing from transportation and telecommunications to logistics. Among the
partners providing use cases in the project, we can cite Thales, Volvo Con-
struction Equipment, Bombardier Transportation and Nokia (among oth-
ers). These organizations have different product management and engineer-
ing practices, as well as regulations and legal constraints. This resulted in
a large and complex catalog of requirements to be realized by architecture
building blocks at different levels of abstraction. Thus, the development of
the MegaM@Rt2 framework has been based on a feature-intensive architec-
ture and a related implementation roadmap.

The MegaM@Rt2 framework plans to integrate more than 30 tools im-
plementing the above mentioned methods and satisfying requirements from
the case studies. The tool features are grouped in three complementary con-
ceptual tool sets:

1. MegaM@Rt2 Systems Engineering Tool Set regroups a variety of cur-
rent engineering tools featuring AADL, EAST-ADL, Matlab/Simulink,
AUTOSAR, Method B or Modelica, SysML and UML in order to pre-
cisely specify both functional and non-functional properties. Moreover,
system level V&V and testing practices will also be supported by this
tool set.

2. MegaM@Rt2 Runtime Analysis Tool Set seeks to extensively exploit
system data obtained at runtime. Different methods for model-based
V&V and model-based testing (MBT) will be rethought and/or ex-
tended for runtime analysis. Model-based monitoring will allow to ob-
serve executions of a system (in its environment) and to compare it
against the executions of corresponding model(s). Monitoring will also
allow a particular system to be observed under controlled conditions,
in order to better understand its performance.

3. MegaM@Rt2 Model & Traceability Management Tool Set is a key part of
the framework as it is dedicated to support traceability and integration
between models across all layers of the system design and execution
(runtime). This can go from highly specialized engineering practices
to low-level monitoring. Relying on the unification power of models,
it should provide efficient means for describing, handling and keeping
traceability/mappings between large-scale heterogeneous software and
system artifacts.

Model-based approaches for specification have been developed consistently
during almost two decades [7], and automated document generation was one

3



of the first benefits offered by the Model-driven Architecture (MDA) [8].
Indeed, models as the first-class entities of the engineering process should
contain all the necessary information for the design documentation. How-
ever, several challenges arise. Firstly, the architect team should decide the
right organization for the global architecture model(s). Secondly, it should
be carefully planned which level of details is appropriate for the design of
the individual contributions. Thirdly, it should be considered that the ar-
chitecture model(s) will be used during all the duration of the project for
numerous purposes. Thus they need to be prepared to accommodate for
changes in methodology. Fourthly, several documents need to be generated
by extracting the relevant information from all over the architecture model(s).

This article is an extension of our previous paper that introduced the
tool supported, model-driven architecture of the MegaM@Rt2 framework [9].
In the present article, we go in further detail to elaborate on MegaM@Rt2
architecture. In particular, we describe both the roadmap for the devel-
opment of architecture components throughout the project and the model-
driven oriented individual components for the three MegaM@Rt2 tool sets:
MegaM@Rt2 Systems Engineering Tool Set, MegaM@Rt2 Runtime Analysis
Tool Set and MegaM@Rt2 Model & Traceability Management Tool Set. We
also provide details on the functional interfaces as well as the details on the
subordinate components.

The rest of the paper is structured as follows. Section 3 presents the
model-driven approach we propose for architecture specification. Section 4
describes the tooling we developed in order to support this proposed ap-
proach. Section 5 explains the obtained results when applying our model-
driven approach to build the MegaM@Rt2 framework architecture. Section 6
presents the gap analysis between the framework requirements derived from
industrial needs and the tool purposes provided by different tool providers
as well as the roadmap. Section 7 ends the paper with discussions on the
practical lessons we have learned from all this work so far.

2. State-of-the-Art

Model-based design (MBD) has proven to be a powerful engineering
method for developing highly complex and critical embedded systems [10].
Using models, designers are able to capture the properties of the system.
They can also analyse its behaviour to detect errors and subsequently revise
the design in a very cost-effective manner [11]. Examples of systems devel-

4



oped using MBD include aerospace, medical, railway and automotive sys-
tems. Nevertheless, in most cases, software code in cyber-physical systems is
written directly using low-level programming languages, and without follow-
ing a model-driven development process. This makes the design and runtime
traceability more difficult. Thus, these various development processes and
practices need to be revisited and integrated accordingly, following such a
model-based methodology.

Several modelling methods for embedded systems based on UML/MARTE
have been proposed. The Co-Fluent methodology [12] captures applica-
tion and hardware architecture by means of composite diagrams and SysML
blocks. UML activity diagrams are used to specify application execution
flows. The MARTE HRM profile is used for capturing the hardware plat-
form.

MoPCoM [13] is a design methodology for the design of real-time em-
bedded systems which supports UML and the MARTE profile for system
modelling. Specifically, MoPCoM uses the NFP MARTE profile for the
description of real-time properties, the HRM MARTE profile for platform
description, and the Alloc MARTE profile for architectural mapping [14].

In [15], a UML/MARTE-based methodology relying on activity threads
is proposed in order to reduce the effort required to capture the set of archi-
tectural mappings. An activity thread is a UML activity diagram where each
path reflects a design alternative, that is, an architectural mapping. How-
ever, the main disadvantage of using UML is that, as a consequence of being
a general-purpose language and being initially tacked to an object-oriented
paradigm, it introduces what is called accidental complexity: models become
large, complex, and far from the domain.

The Aspect Oriented Software Development (AOSD) explores the idea of
Separation of Concerns (SoC) to identify concerns in software development
and encapsulate them in appropriate modules. This approach has been pro-
moted from the implementation phase, at code level, to other prior phases
in the software engineering life-cycle, at the model level: Aspect- Oriented
modelling (AOM). AOM combines the ideas behind AOSD with those of
model-based software development, where the main focus is placed on how
different concerns of the system can be modelled independently and combined
later on via composition mechanisms (e.g., model transformations). The ben-
efits of using AOM in industrial context as an enabler for scalable modelling,
reducing modelling complexity and facilitating model evolution have been
noted in [10]. In addition, controlled experiments have shown that using

5



aspect-oriented modelling techniques creates better quality models [16] and
significantly improves the readability of specifications [17].

There is a diversity of mature AOM approaches proposed in the litera-
ture, which roughly could be classified into i) asymmetric, which support the
distinction between cross-cutting and non-crosscutting concerns, ii) symmet-
ric, which do not. Due to this diversity of approaches, a conceptual reference
model (CRM) it is proposed [18] that provides a common understanding for
the basic ingredients of AOM concepts, aiming at supporting the comparison
of the different approaches. Different AOSD frameworks have been released
in last decade, and some of them have got distinct popularity (i.e. AspectJ).
Examples of how to use AOSD to inject support for cross-cutting concerns,
including logging are available in the literature [19].

Model driven engineering (MDE) aims at promoting models as the main
artefacts for software development, including at runtime. Having models
present at runtime is made with several objectives and techniques [20] [21].
Model execution consists in defining a model that is interpreted with a ded-
icated engine implementing an execution semantics [22]. With model execu-
tion, the ability to run a model prior to its implementation is a timesaving
and henceforth cost-saving approach, making possible detecting and fixing
problems at design time by simulating the model and directly reusing the
model at runtime through its execution. Another way to handle models at
runtime is to have models reflecting the system contents and being causally
connected with it. Such models (named models@runtime) can be used for
managing the system adaptation (QoS aspects, environment changes, etc.).
As shown in [23] the increasing maturity and success of models@runtime
techniques tends to blur the traditional distinction between design and run-
time, creating a long continuum that includes design, runtime, maintenance
and evolution. Through the application of runtime/real-time analysis (incl.
machine learning and data analytics) an increase in both the precision and
speed of pinpointing vital information can be expected. Reflecting models
can also be used in the fault localisation or verification purposes. Mod-
els can help in monitoring and storing the current state of the system by
defining, for instance, an execution trace. This trace can be analysed either
at runtime, in parallel with the system execution, or afterwards. Runtime
Validation consists of validating a design at runtime through additional mon-
itoring mechanisms and some kinds of recovery procedures. In general, this
does not require understanding the cause of the bug, but only the symptom
and the remedy [24].

6



Figure 1: Overview of the Architecture and Development Process in MegaM@Rt2.

3. Architecture Specification Approach

We adopted a practical approach for the architecture specification that is
particularly adapted to collaborative projects such as MegaM@Rt2, integrat-
ing tools coming from several parties [3, 25]. As modeling language, we took
a Systems Modeling Language (SysML) [26] subset for requirements specifi-
cation and a Unified Modeling Language (UML) [27] subset for the high-level
architecture specification. The approach to define the MegaM@Rt2 frame-
work architecture is depicted in Figure 1. We split the architecture model in
several parts, dividing the responsibilities among: the Work Package (WP)
leaders, the tool providers and the case study providers.

At the Requirements/Purposes level, the needs of industrial partners have
been collected and classified by means of Case Study Requirements, from
which we specified (Activity 1) the MegaM@Rt2 Framework Requirements.
For the latter, we identify (Activity 2) a set of Tool Component Purposes
that will realize the case study requirements. At the architecture level, each
Conceptual Tool Set Component and the relevant interfaces are identified
(Activity 3) to satisfy framework requirements. Then, for the Conceptual
Tool Set we specify (Activity 4) concrete Tool Set Components to realize
the desired functionality. Those Tool Set Components expose features (i.e.
purposes) that are progressively available, during the project time frame,

7



based on specific development plan. The roadmap is defined as the set of
tools components purposes available at each project milestone.

In addition, to support the integration of each Tool Set Component into
the MegaM@Rt2 Framework, the following additional elements have been
identified:

• Common Interfaces, specified by tool providers, to support data and
model exchange between tools

• Common Deployment Frameworks, specified by tool providers, to high-
light possible issues related to hardware and software platforms

4. Tooling Approach

Appropriate tooling support is important for the success of the model-
driven engineering process shown in Figure 1. In order to provide tool sup-
port for our architecture specification approach, we selected the Modelio and
Constellation tools [28] provided by one of the project participants, namely
SOFTEAM.

As mentioned in the introduction, there are different types of stakehold-
ers collaborating in this approach: case study providers, tool providers, work
package leaders, project managers, etc. In total, it resulted in around 50
users editing and reading the model. When collecting inputs from so many
stakeholders, it was important to provide guidelines and diagram templates.
Otherwise, the integration work would have become extremely challenging.
As such, we defined a set of template diagrams both for specifying require-
ments and for collecting tool purposes. Users were able to clone these tem-
plates inside the model to describe their concrete tools.

In the next subsections we are providing more details on how different
features of the tool were used to support our approach.

4.1. Architecture Specification

Modelio is an MDE workbench supporting standard modeling languages
such as UML and SysML, among others. All the modeling notations can be
stored in the same global model repository which is important, not only for
collaborative modeling, but also for model traceability and management.

8



Figure 2: Requirements Editing with Modelio.

4.1.1. Requirements Modeling

In our approach, requirements originated from 9 case study providers
and 22 tool providers. In order to have an uniform approach for require-
ment specification that would later on facilitate gap analysis and roadmap
identification, we defined requirement templates that were used to define the
expected requirements properties to be collected, such as criticality for the
case study requirements and planned release date for tool purposes.

Modelio allowed us to edit requirements in both a diagram view and
a tabular view (see Figure 2). The requirements were manually edited or
automatically imported from other documents, e.g. MS Excel.

4.1.2. Architecture Modeling

At the architecture level, we used Class and Deployment diagrams. We
limited modeling to a subset of UML to enforce the common understanding of
the architecture and to simplify editing. In particular, we chose to use UML
Components, Interfaces, Associations, Generalizations and Dependencies.

For collecting information about tool components, we defined a template
for the architecture specification that included: a class diagram – to specify
functional interfaces, tool components subordinates2 and the relation to the
conceptual tool set in the framework, and deployment diagrams – to iden-

2Subordinates refer to the constituent parts of the component.

9



Figure 3: Editing Architecture and Documentation with Modelio.

tify the execution environment of the tool component. In addition, Package
diagrams were used to define the high-level structure of the MegaM@Rt2
framework architecture.

For instance, Figure 3 shows that the MegaM@Rt2 framework architec-
ture is composed of three parts corresponding to the three WPs of the project:
System Engineering, Runtime Analysis, and Model and Traceability Manage-
ment, respectively.

In Modelio, the documentation can be added in the textual notes (as
shown in the lower part of Figure 3) or as separate documents. Both plain
text and rich text notes are supported. In our work, we deliberately restricted
editing to plain text notes to make sure that the generated documents are
formatted correctly.

4.1.3. Requirements Traceability

Once the requirements have been specified, for each tool component we
defined a traceability matrix to map case study requirements to framework
requirements, and respectively framework requirements to tool purposes as

10



Figure 4: Example: Traceability Links Among the Tool Set, Framework and Case Study
Requirements.

described by Activities 1 and 2 of the modeling approach in Figure 1. This
allowed us to use traceability diagrams, as the one in Figure 4, to visualise
the whole set of dependencies for a given requirement. This approach proved
beneficial not only for the requirement analysis and tool set integration plan-
ning, but also for identifying common interfaces for tool components and
visualising gaps for the requirements analysis.

4.1.4. Generating Documents

Modelio offers model query and document generation facilities that were
used for editing and maintaining specifications in the project. The template
editor (Figure 5) was particularly useful to implement custom extraction of
model elements in order to create specific sections of the document.

In the example below, the template specifies that the generator will search
for a Tool Components package, from which it will extract UML components
in order to generate the tool section of the document. This document section
will include introductory paragraph, Purpose subsection, subsections for all
class and deployment diagrams as well as section on the owned interfaces.

When editing the architecture model, it is quite useful to see the gener-
ation result. Thus, along with developing custom document templates, we
integrated the document generation to the Modelio interface. That way reg-
ular users could call the document generation directly from the tool using a
context menu (Figure 6).

4.2. Collaborative Model Editing

Modelio Constellation [28] is the model sharing, collaborative editing,
versioning and configuration management facility that allow modellers to

11



Figure 5: Example: Custom Document Generation Template for Individual Tools Section.

work together on the same common and shared model. Indeed, authoring the
architecture deliverables in MegaM@Rt2 project required the contributions
of 27 partners. Thus, around 50 users worked together on a single model. On
a regular basis, users connected to the Constellation server, synchronized the
local model with the central repository, edited the architecture and generated
the documents with always updated templates. The version control was
enabled by Apache Subversion3. The documentation templates and user
interfaces for document generation were developed continuously and had to
be rolled out to the whole large team of modellers without interrupting the
work process. It was important to provide versioning and conflict resolution
when editing touched the common artifacts. Last but not least, several
different deliverable were generated out of the same model. Therefore, the

3https://subversion.apache.org/

12

https://subversion.apache.org/


branching facility allowed to fix the state when the deliverable were released.

Figure 6: Example: Architecture Document Generated with Modelio Document Publisher.

5. The MegaM@Rt2 Framework

In this section, we describe the MegaM@Rt2 Framework and its con-
stituent parts. This framework is a result of the architecture specification
approach described in Section 3. This description follows a common pattern:

• We describe the high-level purpose of each component including possi-
ble roadmap for feature implementation;

• We outline the functional interfaces that help to figure out the main
features and possible means for integration;

• We shortly detail the subordinates the constituent parts of each com-
ponent;

13



Figure 7: MegaM@Rt2 Architecture Overview.

• For the individual tools, we clarify their relation to the MegaM@Framework
conceptual tools.

All in all we intend to provide traceability linking use case requirements
to conceptual tools of the framework to individual tools by partners.

The MegaM@Rt2 Framework is the main technical result of the MegaM@Rt2
project. The Framework regroups several interconnected tool sets including
tool sets for Holistic System Engineering, Model and Traceability Manage-
ment as well as for Runtime Analysis. Those tool sets are highly intercon-
nected to achieve the goal of linking system models with the runtime analysis
of large scale industrial systems. Figure 7 presents an architectural overview
of the MegaM@Rt2 framework.

14



5.1. MegaM@Rt2 Systems Engineering Tool Set

Model-based design (MBD) has proven to be a powerful engineering
method for developing highly complex and critical embedded systems. In
most cases, software code in cyber-physical systems (CPSs) is written directly
using low-level programming languages, and without following a model-driven
development process. This makes the design and runtime traceability more
difficult. Thus, these various development processes and practices need
to be revisited and integrated accordingly, following such a model-based
methodology. MegaM@Rt2 Systems Engineering approach integrates a vari-
ety of current engineering practices like AADL, EAST-ADL, but also Mat-
lab/Simulink, AUTOSAR and Method B or Modelica as required by the
project’s industrial case studies. Artefacts (requirements specifications, de-
sign models, software components) produced by each of these heterogeneous
practices will be represented and combined in a global system model provid-
ing a complete and holistic view of the CPS. Notably, the system model will
include a precise specification of the desired functional and non-functional
properties on the system level.

5.1.1. Purpose of System Engineering Tool Set Component

The System Engineering Tool Set must integrate, formalize and coordi-
nate both general purpose and domain-specific existing languages, method-
ologies and tools to support modelling, analysis and validation of complex
heterogeneous systems.

5.1.2. Functional Interfaces

Following Figure 8 presents the functional interfaces (used & realized) of
the System Engineering Tool Set.

5.1.3. Subordinates

Figure 9 shows the constituent parts of the MegaM@Rt2 System Engi-
neering Tool Set.

The details of the subordinate components of the MegaM@Rt2 System
Engineering Tool Set is as following:

• Metamodel and Support: This tool component provide functionality for
working with standard and domain-specific metamodels. In addition,
it provides the support services such as document generation.

15



Figure 8: Functional Interfaces (Used & Realized) of the MegaM@Rt2 System Engineering
Tool Set.

• Requirement Modelling: Requirements modelling is an important part
of the engineering process. This component provide tools for specifying,
eliciting and tracing the requirements.

• System Architecture Modelling: MegaM@Rt2 targets bringing the run-
time trace information to the system architecture level. This compo-
nent deals with the system level of the engineering process.

• Detailed Design Modelling: This component provides capability to
specify the detailed design models, which may include specific mod-
els for software and hardware.

• Model Verification & Validation: This component provides a set of
capabilities for design-time verification and validation.

5.1.4. Interfaces Specific to System Engineering Tool Set Component

The interfaces that are specific to System Engineering Tool Set Compo-
nent are described below:

• IF-MODEL-EDIT-GUI: A Graphical User Interface (GUI) that sup-
ports the user in all the modelling activities,

16



Figure 9: Constituent Parts (Subordinates) of the MegaM@Rt2 System Engineering Tool
Set.

• IF-SYSTEM-MODEL: Interface to provide model artifacts for manage-
ment and traceability purposes and exchange runtime analysis results
and feedback,

• IF-SYSTEM-LEVEL-VERIFICATION&VALIDATION: Interface to pro-
vide verification and validation technique and results for management
and traceability purposes and exchange runtime analysis results and
feedback,

• IF-DOC: Document generation facility is dedicated to derivation of
various documentation from the models,

17



• IF-XMI: XML Metadata Interchange, Version 2.5.1, XMI.

Publication Date: June 2015 Link: https://www.omg.org/spec/XMI

• IF-REQIF: OMG Requirements Interchange Format, Version 1.2, Re-
qIF Publication Date: July 2016 https://www.omg.org/spec/ReqIF/

• IF-UML2: Object Management Group Unified Modeling Language,
Version: 2.5.1 (UML2) Publication Date: December 2017 IPR Mode:
RF-Limited Link: https://www.omg.org/spec/UML/

A specification defining a graphical language for visualizing, specify-
ing, constructing, and documenting the artifacts of distributed object
systems.

• IF-SysML: OMG System Modeling Language, Version 1.5, SysML Pub-
lication Date: May 2017 Link: https://www.omg.org/spec/SysML/

• IF-MARTE: Object Management Group (OMG): UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems, Version 1.1
(MARTE) Publication Date: June 2011 Link: https://www.omg.org/
spec/MARTE

• IF-fUML: OMG Semantics of a Foundational Subset for Executable
UML Models, Version 1.3, FUML

Publication Date: October 2017 Link: https://www.omg.org/spec/

FUML

• IF-DSL: this interface allows exchanging DSLs artifacts across different
system engineering components, i.e. between different tools covering
different parts of the system engineering process.

5.2. MegaM@Rt2 Runtime Analysis Tool Set

Model-based design approaches aim to obtain a running application thanks
to productive models defined at design time. In the MegaM@Rt2 project,
we apply such an approach by using and combining automated code gener-
ation, model execution, runtime verification, trace analysis [29] and online
model-based testing. To achieve these goals, we propose to use executable
models, which are related to aspect-oriented modelling (AOM) for models at
runtime. Such models specify the behavior of an application and are either
interpreted or compiled. The interpreted approach consists in implementing

18

https://www.omg.org/spec/XMI
https://www.omg.org/spec/ReqIF/
https://www.omg.org/spec/UML/
https://www.omg.org/spec/SysML/
https://www.omg.org/spec/MARTE
https://www.omg.org/spec/MARTE
https://www.omg.org/spec/FUML
https://www.omg.org/spec/FUML


an execution engine that takes as input a model and interprets its contents.
The running system is then the couple formed by the execution engine and
the model it interprets. The compiled view consists in generating another
model or code for a dedicated execution platform. Executable versions of the
system will be obtained at runtime either by automatically generating the
code from runtime models or employing models which can be executed at
runtime, either standalone or part of a system implementation. Therefore,
we will develop specific code generators and model interpreters enabling to
manage large-scale models at runtime, as well as model execution tools to per-
form monitoring and tracing for analysis, online verification and model-based
testing. In this context, traditional methods for analysis, online verification
and model-based testing need also to be rethought and/or extended in order
to fully tackle the specifics of runtime models and contained information.
Verification and testing methods need to target large models that take into
account traceability information and modularization (e.g., using AOM).

5.2.1. Purpose of Runtime Analysis Tool Set Component

The Runtime Analysis Tool Set Component realizes the following pur-
poses:

• To use AOM techniques to facilitate code generation, runtime verifica-
tion and validation.

• To support runtime analysis methods combining model-based develop-
ment, validation and verification techniques.

• To use AOM techniques to facilitate code generation, runtime verifica-
tion and validation.

• To support runtime analysis methods combining model-based develop-
ment, validation and verification techniques.

• To be able to manage complex and large-scale models.

• To take advantage of the relationships between a set of runtime models.

• To offer partial verification and validation methods, able to give an
answer under strong time constraints but with only a certain confidence
level.

• To provide requirement traceability facilities at runtime.

19



Figure 10: Functional Interfaces (Used & Realized) of the MegaM@Rt2 Runtime Analysis
Tool Set.

• To improve trace analysis results and localization of faults because of
trace monitoring and online testing at runtime.

• To verify functional as well as non-functional properties in a synergic
way by combining trace monitoring and online testing at runtime.

• To enable the trace analysis tools to collect and analyse information
from different sources and using different techniques.

5.2.2. Functional Interfaces

Following Figure 10 presents the functional interfaces (used & realized)
of the Runtime Analysis Tool Set.

5.2.3. Subordinates

Figure 11 shows the constituent parts of the MegaM@Rt2 Runtime Anal-
ysis Tool Set.

The details of the subordinate components of the MegaM@Rt2 Runtime
Analysis Tool Set are as following:

20



Figure 11: Constituent Parts (Subordinates) of the MegaM@Rt2 Runtime Analysis Tool
Set.

• Traces analysis tool set: Tool for reasoning on system properties based
on traces analysis.

• Traces collection tool: Tool for capturing and collecting traces in a
unified format for further analysis.

• Runtime verification and online testing tools: Algorithms and tools for
verification of runtime models as well as model-based test generation
and execution in a continuous and simultaneous manner.

Verification and testing/monitoring methods targeted at large models,
and which take into account traceability information and modulariza-
tion e.g, using AOM will be developed.

• Monitoring and logs analysis tool set: Tools for monitoring system,
network events and execution traces to synthesize related runtime mod-
els [30]. AIPHS supports the monitoring action on target by distribut-
ing sniffer elements into target architecture. It stores logs on internal

21



buffers to be read at the end of the application execution. In the near
future, logs will be stored automatically in memory thanks to a Direct
Memory Access (DMA).

• Probes injection tool: Tool for probes injection to runtime artifacts
based on the properties defined on the system level.

• Code generation facilities help to translate the various models into the
code for specific targets such as Java, C++, C programming languages.

5.2.4. Interfaces Specific to Runtime Analysis Tool Set Component

The interfaces that are specific to Runtime Analysis Tool Set Component
are described below:

• IF-EXECUTABLE-ENVIRONMENT: The Runtime and Analysis Tool
Set has an interface with the executable environment in order to capture
the traces of execution.

• IF-RUNTIME-MODEL: Interface to manage and configure model ex-
ecution at runtime.

• IF-TRACE-GENERATION: Interface to manage and parameterize the
generation of execution traces during runtime execution.

• IF-TRACE-COLLECTION: Interface to collect execution traces and
to arrange/filter the related information into a given format.

• IF-TRACE-ANALYSIS: Interface to manage and execute runtime anal-
ysis of collected execution traces.

• IF-PROBES-INJECTION: Interface to inject monitoring capabilities
during execution at runtime.

• IF-RUNTIME-VERIFICATION: Interface to define properties to be
checked and to configure their verification at runtime.

• IF-ONLINE-TESTING: Interface to configure and perform online test-
ing.

• IF-MONITORING&LOG-ANALYSIS: Interface to configure monitor-
ing directives and log analysis rules to be applied during model or
system execution.

22



5.3. MegaM@Rt2 Model & Traceability Management Tool Set

A key ingredient of MegaM@Rt2 is its dedicated support for traceability
across all layers of the system design and execution, from highly specialized
engineering practices to low-level log entries. This is what enables continuous
integration practices at the Systems Engineering level. To make this possible,
MegaM@Rt2 combines, in a highly scalable infrastructure, metamodeling and
trace impact inference techniques.

Relying on the unification power of models and model-based techniques,
megamodelling (also called Global Model Management or modeling in the
large) provides efficient means of describing, handling and managing the
many different heterogeneous artifacts (models, metamodels, transforma-
tions, generators, logs etc.) implied by the large-scale industrial scenarios
in MegaM@Rt, including the different kinds of relationships between them
(refinement, extension, equality, combination, etc.). A megamodel is a model
but a very special kind of a model, one whose model elements are models
themselves. Therefore, a megamodel is way to register and manage all engi-
neering resources available in a given project via model-based techniques.

Megamodelling will be used in MegaM@Rt2 in order to deal as efficiently
as possible with the many involved (modelling) artifacts, workflows or con-
figurations required at both design time and runtime. It will also be used
to preserve the relevant traceability information between these two levels,
notably in order to allow providing proper reusable feedback from runtime
to design time. Thus, we will develop a methodological loop between models
at design time and runtime levels. Relying on this same general approach as
well as on common generic interfaces and language, we expect to develop sev-
eral solutions covering different technical environments used by partners in
the project. This includes a fully open source Eclipse/EMF-based solution,
and a Modelio based-one.

5.3.1. Purpose of Model & Traceability Management Tool Set Component

The Model & Traceability Management (MTM) Tool Set Component
realizes the following purposes:

• To provide base model management capabilities.

• To provide model indexing/referencing capabilities for large sets of
models.

• To provide model storage capabilities for large scale (sets of) models.

23



• To provide model querying capabilities for large scale (sets of) models.

• To provide model cartography/view capabilities over large sets of in-
terrelated models.

• To provide model cartography/view capabilities over large sets of in-
terrelated models.

• To provide model versioning capabilities over large sets of interrelated
models.

• To provide model access-control capabilities over large sets of interre-
lated models.

• To provide model import/export capabilities from/to WP2-WP3 &
other modeling solutions.

• To provide integration with source code repositories & continuous de-
velopment solutions.

• To provide traceability capabilities between design/system models and
runtime models.

• To provide inter-model trace storage capabilities for large scale (sets
of) models.

• To provide inter-model trace querying capabilities for large scale (sets
of) models.

• To provide inference capabilities from runtime models to design/system
models.

• To provide automated inference computation capabilities (from runtime
to design models).

• To provide inference information analysis capabilities (from runtime to
design models).

5.3.2. Functional Interfaces

Following Figure 12 presents the functional interfaces (used & realized)
of the Model & Traceability Management Tool Set.

24



Figure 12: Functional Interfaces (Used & Realized) of the MegaM@Rt2 Model & Trace-
ability Management Tool Set.

5.3.3. Subordinates

Figure 13 shows the constituent parts of the MegaM@Rt2 Model & Trace-
ability Management Tool Set.

The details of the subordinate components of the MegaM@Rt2 Model &
Traceability Management Tool Set are as following:

• Base Model Management Infrastructure: Scalable infrastructure for
performing base operations and manipulations on models of different
kinds.

• Advanced Model Management Infrastructure: More advanced infras-
tructure for dealing with complex model management activities: views,
access-control, etc.

• Model Integration Infrastructure: Integration infrastructure for allow-
ing model interchanges with other environments (notably model-based
ones).

• Model Traceability Infrastructure: Infrastructure for dealing with inter-
model traceability and feedback from the available traceability infor-
mation.

5.3.4. Interfaces Specific to Model & Traceability Management Tool Set Com-
ponent

The interfaces that are specific to Model & Traceability Management Tool
Set Component are described below:

25



Figure 13: Constituent Parts (Subordinates) of the MegaM@Rt2 Model & Traceability
Management Tool Set.

• IF-MODEL-CARTOGRAPHY: Advanced cartography capabilities for
efficiently obtaining relevant views on models, either design/system
ones or runtime ones, which are parts of large sets of interrelated mod-
els.

• IF-MODEL-REFERENCING: Advanced referencing capabilities for ef-
ficiently indexing different models, either design/system ones or run-
time ones, which are parts of large sets of interrelated models.

• IF-MODEL-ACCESS-CONTROL: Advanced access-control capabili-
ties for efficiently providing restricted views over different models, ei-
ther design/system ones or runtime ones, which are parts of large sets
of interrelated models.

• IF-MODEL-QUERY: Advanced querying capabilities for efficiently re-
trieving different models, either design/system ones or runtime ones,
which are parts of large sets of interrelated models.

• IF-MODEL-STORAGE: Advanced storing capabilities for efficiently
saving different models, either design/system ones or runtime ones,
which are parts of large sets of interrelated models.

• IF-MODEL-VERSIONING: Advanced versioning capabilities for effi-
ciently managing over time different models, either design/system ones
or runtime ones, which are parts of large sets of interrelated models.

26



• IF-INFERENCE-ANALYSIS: (Semi-)automated mechanisms to effi-
ciently use at the system/design model-level the previously computed
inference information (from the runtime models).

• IF-INFERENCE-COMPUTATION: Automated mechanisms to calcu-
late relevant inference information from the runtime models (e.g. repre-
senting execution traces) to be then further used at the system/design
model-level.

• IF-TRACE-STORAGE: Advanced storing capabilities for efficiently
saving traceability links between different models within large sets of
interrelated models.

• IF-TRACE-QUERY: Advanced querying capabilities for retrieving al-
ready existing traceability links between different models within large
sets of interrelated models.

6. Gap Analysis and Roadmap

6.1. Gap Analysis

As mentioned in the introduction of this article, another goal of our ap-
proach was to perform a gap analysis between the framework requirements
derived from industrial needs and the tool purposes provided by different
tool providers. During this process we identified two different types of gaps:
unsatisfied framework requirements and unused tool component purposes.
The unsatisfied framework requirements are framework requirements that
are not satisfied by any tool component purpose. These requirements were
addressed either by the tool providers in the project by creating additional
development plans and corresponding tool purposes, or they were deferred
to be satisfied by tools external to the project. The unused tool component
purposes are those tool features that are available from the tools provided
by tool providers participating in the project, but which are not explicitly
requested by any case study provider. Creating such a list of unused tool pur-
poses allowed tool providers to increase awareness about their tools among
project participants, and in some cases resulted in case study providers in
defining additional case study requirements.

Having all information centralized in one single model, different stake-
holders involved in defining the MegaM@rt2 architecture were able to easily
query and visualize the case study requirements, framework requirements and

27



Table 1: Example of Allocating Tool Purposes to Framework Requirements Depending on
Their Release Date (MODELIO = https://www.modelio.org/, PAPYRUS = https://

www.eclipse.org/papyrus/, CERTIFYIT & MBEETLE = https://www.smartesting.

com/)

ID Baseline (M0) Initial
(M15)

Intermediate
(M20)

Final (M32)

1 MODELIO PAPYRUS,
MODELIO

PAPYRUS,
MODELIO

2 CERTIFYIT MBEETLE

tool component purposes, and to incrementally update the mapping among
them.

The gap analysis was done per work package. In total, we have elicited
106 case study requirements from 9 case study providers, and based on them
we extracted 91 megaM@Rt framework requirements, as follows: 37 for WP2
- System Engineering , 39 for WP3 - Runtime Analysis, and 15 for WP4 -
Model & Traceability Management. These were analyzed and linked against
28 tools which provided 223 tool purposes. During the gap analysis, we
identified 2 case study requirements not satisfied by any tool purpose (one
in WP2 and one in WP3) and 10 unused tool purposes (all in WP3).

6.2. Roadmap – Planning and Tracking

As discussed in Section 5, when we collected tool purpose specifications
from the tool providers in MegaM@Rt2, we also collected information re-
garding at which project milestone the tool feature corresponding to a tool
purpose will be available. In MegaM@rt2, we have had four different release
milestones: baseline - M0 (beginning of the project), initial - M15, interme-
diate - M20, and final - M32. An excerpt from the generated roadmap for
different framework requirements is shown in the Table 1.

By analyzing the release date of the tool purposes, we could also provide
a general view of when different framework requirements will be completely
satisfied in the project. In Figure 2 given in Section 4, one can observe that
for instance framework requirement SYS-010100 is satisfied already at the
beginning of the project (shown as ‘Baseline’), whereas framework require-
ment SYS-000001 will be satisfied only at the final milestone of the project
(shown as ‘Final’).

Having such a holistic approach to traceability and development plans
for tool components allowed not only for individual project participants to

28

https://www.modelio.org/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.smartesting.com/
https://www.smartesting.com/


Table 2: An Example Status Report.

Purpose Properties Comments/Release
notes

Affected
CSR

MODELIO-060:
Modelio shall sup-
port extra-functional
properties in holistic
system engineering
approach.

Criticality:
High Re-
lease: In-
termediate
Status:
Postponed

Holistic system en-
gineering support is
postponed till fur-
ther progress on the
methodological aspects
in WP2 and clarifica-
tion of requirements
and scenarios by the
case study providers.

CSY 01,
NOK 02,
NOK 01,
TRT 03,
TEK 09,
TRT 02,
TRT 04,
TRT 05

plan their activity in the project in detail, but it also facilitated the project
level management activities. In addition, defining the initial plan for the
development of the MegaM@Rt2 framework allowed us to easily monitor the
evolution of the project and check for deviations for the plan at different
reporting periods. For instance, WP leaders could see what set of features
are planned for the framework components at which release for tracking.

The information provided by tool providers was regularly revisited and
updated when needed to reflect the latest status of development. They in-
dicated whether a feature development is planned, done, postponed or can-
celled. The roadmap and traceability documentation enabled the WP leaders
and case study providers to assess the progress of the entire framework and
plan the case study execution accordingly. Table 2 provides an example of a
status report where the MODELIO-060 tool purpose, that was supposed to
be available at in the intermediate release, is delayed. In addition, it shows
which are the case study requirements affected by this release.

7. Discussion and Conclusion

In this paper, we presented the generic approach we used in order to iden-
tify and specify the architecture of the MegaM@Rt2 framework using model-
driven principles and practices. Our approach, supported by corresponding
tooling dedicated to its application in actual projects, enforced coordination
and collaboration among many different stakeholders. This way, it also con-
tributes to improve the manageability of complex projects. Indeed, the main
benefit of our model-driven approach is that all information is collected from

29



different stakeholders and stored using one single common model (and using
a single tool in our case). In our particular MegaM@Rt2 context, we further
elaborated on the proposed framework and its various components centered
around three different complementary tool sets.

The produced general architecture model was used as a common and
shared reference (stored in a central repository), that every project part-
ner can access and update using model versioning techniques. In addition,
having all the required information in one single location allowed us 1) to
constantly monitor the status of the process and to trace the requirements of
the framework components, 2) to easily generate the necessary artifacts (such
as documents, tables, diagrams) from the model whenever needed. Although
the architectural modeling of the MegaM@Rt2 framework is realized using a
subset of UML/SysML (for a better common understanding and to simplify
editing, as mentioned in Section 4.1.2), the MegaM@Rt2 approach and tool
sets themselves are by no way limited to any subset of UML or even to any
particular metamodel or domain specification language (DSL). Indeed, many
tools from these tool sets can potentially handle any model of any type when
required in the context of a particular use case or scenario (cf. the different
MegaM@Rt2 use cases and corresponding types of models for example).

It is important to notice that MegaM@Rt2 framework is meant to be
generic in the way both functional and non-functional requirements (such
as safety and security, for instance) can be expressed. The modeling lan-
guages that are part of MegaM@Rt2 framework (e.g., MARTE and SysML)
are well-suited for modeling a variety of requirements at different levels (e.g.
from component to system level), as shown by existing studies [31, 32, 33].
Some industrial use cases from the project have specific non-functional re-
quirements to meet, for example explicit safety requirements of the train
control management system for Bombardier Transportation, Sweden. These
requirements can be met by the MegaM@Rt2 framework that provide such
support, e.g., Modelio [34] or EMF Views [35] allow creating viewpoints with
specific metamodels using MARTE sub-profiles (for example).

The MegaM@Rt2 framework is also designed to be extensible and open, in
order to provide connectivity with other existing tools and technologies. The
interfaces of the three complementary tool sets (cf. Sections 5.1.4, 5.2.4 and
5.3.4) have been specified to enable extensions with other tools and compo-
nents implementing these interfaces. Thus, it is possible to integrate, import
and then use external tools whenever necessary as part of a process following
the MegaM@Rt2 approach. Moreover, in order to integrate non-compatible

30



models, there is always the option to design and implement model transfor-
mations from/to model formats supported in MegaM@Rt2. Note that we
are also currently working to standardize the framework interfaces as much
as possible to facilitate extensibility. For example, Common Trace Format
(CTF)4 is being investigated as a possible solution for sharing runtime data
in an uniform way and to better connect related tools altogether.

Using a model-based architectural approach, such as in the MegaM@Rt2
project, also comes with open challenges and current limitations. We discuss
them in what follows.

The first of such challenges was that different project participants had
different levels of familiarity with modeling tools in general (and with Mod-
elio and Constellation in particular, as used in our MegaM@Rt2 context).
This issue has been addressed by providing several project-wide online we-
binars along with proper documentation on describing how the tools can be
used to support the architecture specification approach. The tooling support
team was helpful in solving the licensing issues, helping with installation and
resolving model versioning conflicts. This contributed to facilitate the de-
ployment and adoption of the proposed approach and corresponding tooling.

A second challenge came from the fact that 50 modellers worked collabo-
ratively with the models. This could potentially trigger many inconsistencies,
conflicts and omissions in the collected information. We were able to support
model versioning and collaborative modeling thanks to the features provided
by the selected repository solution (Constellation). In addition, we decided
to split the model in several parts (one corresponding to each work package)
and we provided clear guidelines on how the it is/has to be organized. In
this way, we have been able to ensure that our central architectural model
stays consistent and correctly maintainable over time.

A third challenge came from the limitations of the selected tools. For
instance, there were different restrictions on how the styling of the documents
generated from the models could be configured and how the information
could be visualized using different types of diagrams. Moreover, manual
effort is also required in order to create the initial document templates and
to configure the document generators accordingly. However, once all this
generation infrastructure was created, it could be easily reused whenever
relevant. It allowed to (re)produce the targeted documentation in an efficient

4https://diamon.org/ctf/

31



(semi-automated) way, and as many times as needed.
In addition to the challenges and limitations discussed before, some in-

dustrial partners were already using an existing company/internal tool chain
that is not supposed to be part of our project tool sets. In this case, they still
provided their requirements which were then mapped (currently manually)
in order to fit with the MegaM@Rt2 tool set capabilities. However, in such
cases, the industrial partners had to perform an additional validation step:
they had to consider the acceptance of their requirements using both the
MegaM@Rt2 tool set capabilities as well as the capabilities of their in-house
solution. Despite of this, and from a more general project consortium per-
spective, the benefits of using the common shared approach and tooling we
proposed are still interesting.

Overall, the feedback collected from the different partners (industrial and
academic ones) in the MegaM@Rt2 project showed that the application we
made of our approach was mostly positive in terms of both productivity and
user experience. Moreover, we already plan to capitalize on this effort. Thus,
the corresponding tooling support that has been developed and deployed will
be further reused in the context of other architecture documents later in the
project, and possibly in the context of other large collaborative projects in
the future.

Acknowledgments

This project has received funding from the Electronic Component Sys-
tems for European Leadership Joint Undertaking under grant agreement No.
737494. This Joint Undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and from Sweden, France,
Spain, Italy, Finland and Czech Republic. Wasif Afzal is also sponsored in
part by the Swedish Knowledge Foundation under Grant 20160139 (Test-
Mine).

References

[1] ECSEL JU MegaM@Rt2 Project Website, https://megamart2-ecsel.
eu/, online; accessed 15 January 2019.

[2] W. Afzal, H. Bruneliere, D. D. Ruscio, A. Sadovykh, S. Mazzini, E. Car-
iou, D. Truscan, J. Cabot, A. Gmez, J. Gorroogoitia, L. Pomante,

32

https://megamart2-ecsel.eu/
https://megamart2-ecsel.eu/


P. Smrz, The MegaM@Rt2 ECSEL project: MegaModelling at Runtime
– Scalable model-based framework for continuous development and run-
time validation of complex systems, Microprocessors and Microsystems
61 (2018) 86 – 95.

[3] W. Afzal, H. Bruneliere, D. D. Ruscio, A. Sadovykh, S. Mazzini,
E. Cariou, D. Truscan, J. Cabot, D. Field, L. Pomante, P. Smrz, The
MegaM@Rt2 ECSEL project: MegaModelling at runtime – Scalable
model-based framework for continuous development and runtime val-
idation of complex systems, in: 2017 Euromicro Conference on Digital
System Design (DSD), 2017.

[4] B. Fitzgerald, K.-J. Stol, Continuous software engineering: A roadmap
and agenda, Journal of Systems and Software 123 (2017) 176 – 189.

[5] ISO/IEC/IEEE International Standard - Systems and Software
Engineering – Life cycle processes – Requirements engineering,
ISO/IEC/IEEE 29148:2018(E) (2018) 1–104.

[6] ISO/IEC Systems and Software Engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models, ISO/IEC 25010:2011 (2011) 1–34.

[7] D. Di Ruscio, R. F. Paige, A. Pierantonio, Guest editorial to the spe-
cial issue on success stories in model driven engineering, Sci. Comput.
Program. 89 (PB) (2014) 69–70.

[8] OMG: Model Driven Architecture (MDA) Guide rev. 2.0, http://www.
omg.org/cgi-bin/doc?ormsc/14-06-01, online; accessed 15 January
2019.

[9] A. Sadovykh, A. Bagnato, D. Truscan, P. Pierini, H. Bruneliere,
A. Gomez, J. Cabot, O. Avila-Garćıa, W. Afzal, A Tool-supported
Approach for Building the Architecture and Roadmap in MegaM@Rt2
Project, in: The 6th international Conference in Software Engineering
for Defense Applications (SEDA 2018), Vol. Advances in Intelligent Sys-
tems and Computing: Selected Papers from the 6th international Con-
ference in Software Engineering for Defense Applications (SEDA 2018),
Springer, 2018.

33

http://www.omg.org/cgi-bin/ doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/ doc?ormsc/14-06-01


[10] S. Ali, L. C. Briand, A. Arcuri, S. Walawege, An industrial application
of robustness testing using aspect-oriented modeling, uml/marte, and
search algorithms, in: J. Whittle, T. Clark, T. Kühne (Eds.), Model
Driven Engineering Languages and Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011, pp. 108–122.

[11] B. Selic, The pragmatics of model-driven development, IEEE Software
20 (5) (2003) 19–25.

[12] T. Robert, V. Perrier, COFLUENT Methodology for UML:
UML SysML MARTE Flow for CoFluent Studio, https:

//www.next-community.de/fileadmin/media/whitepaper/files/

163_cofluent_methodology_for_uml_wp_v1_0.pdf, online; accessed
30 May 2019.

[13] A. Koudri, J. Champeau, J.-C. Le Lann, V. Leilde, Mopcom method-
ology: Focus on models of computation, in: T. Kühne, B. Selic, M.-
P. Gervais, F. Terrier (Eds.), Modelling Foundations and Applications,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 189–200.

[14] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, J. Diguet, A co-design
approach for embedded system modeling and code generation with uml
and marte, in: 2009 Design, Automation Test in Europe Conference
Exhibition, 2009.

[15] A. W. Liehr, K. J. Buchenrieder, H. S. Rolfs, U. Nageldinger, Gen-
eration of MARTE Allocation Models fromActivity Threads, Springer
Netherlands, Dordrecht, 2009.

[16] S. Ali, T. Yue, L. Briand, Assessing quality and effort of applying aspect
state machines for robustness testing: A controlled experiment, in: 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation, 2013.

[17] S. Ali, T. Yue, L. C. Briand, Does aspect-oriented modeling help improve
the readability of uml state machines?, Software and Systems Modeling
13 (3) (2014) 1189–1221.

[18] M. Wimmer, A. Schauerhuber, G. Kappel, W. Retschitzegger,
W. Schwinger, E. Kapsammer, A survey on uml-based aspect-oriented
design modeling, ACM Computing Surveys 43 (4) (2011) 28:1–28:33.

34

https://www.next-community.de/fileadmin/media/whitepaper/files/163_cofluent_methodology_for_uml_wp_v1_0.pdf
https://www.next-community.de/fileadmin/media/whitepaper/files/163_cofluent_methodology_for_uml_wp_v1_0.pdf
https://www.next-community.de/fileadmin/media/whitepaper/files/163_cofluent_methodology_for_uml_wp_v1_0.pdf


[19] S. Chiba, R. Ishikawa, Aspect-oriented programming beyond depen-
dency injection, in: Proceedings of the 19th European Conference
on Object-Oriented Programming, Springer-Verlag, Berlin, Heidelberg,
2005.

[20] M. Szvetits, U. Zdun, Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime, Software &
Systems Modeling 15 (1) (2016) 31–69.

[21] G. Blair, N. Bencomo, R. B. France, Models@ run.time, Computer
42 (10) (2009) 22–27.

[22] E. Cariou, O. Le Goaer, F. Barbier, S. Pierre, Characterization of adapt-
able interpreted-dsml, in: Proceedings of the 9th European Conference
on Modelling Foundations and Applications, Springer-Verlag, Berlin,
Heidelberg, 2013.

[23] A. Filieri, C. Ghezzi, G. Tamburrelli, Run-time efficient probabilistic
model checking, in: Proceedings of the 33rd International Conference
on Software Engineering, ACM, New York, NY, USA, 2011.

[24] A. A. Bayazit, S. Malik, Complementary use of runtime validation and
model checking, in: Proceedings of the 2005 IEEE/ACM International
Conference on Computer-aided Design, IEEE Computer Society, Wash-
ington, DC, USA, 2005, pp. 1052–1059.

[25] H. Bruneliere, S. Mazzini, A. Sadovykh, The MegaM@Rt2 Approach
and Tool Set, in: DeCPS Workshop, 22nd International Conference on
Reliable Software Technologies - Ada-Europe 2017, 2017.

[26] OMG: OMG Systems Modeling Language (OMG SysML), Ver. 1.4,
http://www.omg.org/spec/SysML/1.4/, online; accessed 15 January
2019.

[27] OMG: Unified Modeling Language (UML), Ver. 2.5, http://www.omg.
org/spec/UML/2.5/, online; accessed 15 January 2019.

[28] P. Desfray, Model repositories at the enterprises and systems scale the
modelio constellation solution, in: 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD), 2015.

35

http://www.omg.org/ spec/SysML/1.4/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/


[29] D. Flemström, E. Enoiu, W. Afzal, D. Sundmark, T. Gustafsson, A. Ko-
betski, From natural language requirements to passive test cases using
guarded assertions, in: 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), 2018.

[30] D. Brahneborg, W. Afzal, A. Causevic, A black-box approach to latency
and throughput analysis, in: 2017 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 2017.

[31] A. Tsadimas, M. Nikolaidou, D. Anagnostopoulos, Extending sysml to
explore non-functional requirements: The case of information system
design, in: Proceedings of the 27th Annual ACM Symposium on Applied
Computing, ACM, New York, NY, USA, 2012.

[32] M. R. Sena Marques, E. Siegert, L. Brisolara, Integrating UML, MARTE
and sysml to improve requirements specification and traceability in the
embedded domain, in: 12th IEEE International Conference on Industrial
Informatics, 2014.

[33] M. Jamro, Sysml modeling of functional andnon-functional require-
ments foriec61131-3 control systems, in: R. Szewczyk, C. Zieliński,
M. Kaliczyńska (Eds.), Progress in Automation, Robotics and Mea-
suring Techniques, Springer International Publishing, Cham, 2015, pp.
91–100.

[34] A. Bagnato, L. S. Indrusiak, I. R. Quadri, M. Rossi, M. Bourdellés,
S. Li, I. Quadri, E. Brosse, A. Sadovykh, E. Gaudin, F. Mallet,
A. Goknil, D. George, J. Kreku, Fostering analysis from industrial em-
bedded systems modeling, in: A. Bagnato, L. S. Indrusiak, I. R. Quadri,
M. Rossi (Eds.), Handbook of Research on Embedded Systems Design,
IGI Global, Hershey, PA, USA, 2014, Ch. 11, pp. 283–300.

[35] H. Bruneliere, F. M. de Kerchove, G. Daniel, J. Cabot, Towards scalable
model views on heterogeneous model resources, in: Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS 2018), ACM, 2018, pp. 334–344.

36


	Introduction
	State-of-the-Art
	Architecture Specification Approach
	Tooling Approach
	Architecture Specification
	Requirements Modeling
	Architecture Modeling
	Requirements Traceability
	Generating Documents

	Collaborative Model Editing

	The MegaM@Rt2 Framework
	MegaM@Rt2 Systems Engineering Tool Set
	Purpose of System Engineering Tool Set Component
	Functional Interfaces
	Subordinates
	Interfaces Specific to System Engineering Tool Set Component

	MegaM@Rt2 Runtime Analysis Tool Set
	Purpose of Runtime Analysis Tool Set Component
	Functional Interfaces
	Subordinates
	Interfaces Specific to Runtime Analysis Tool Set Component

	MegaM@Rt2 Model & Traceability Management Tool Set
	Purpose of Model & Traceability Management Tool Set Component
	Functional Interfaces
	Subordinates
	Interfaces Specific to Model & Traceability Management Tool Set Component


	Gap Analysis and Roadmap
	Gap Analysis
	Roadmap – Planning and Tracking

	Discussion and Conclusion

