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Abstract 22 

1. To understand long-term ecosystem dynamics, several concepts have recently been proposed 23 

that consider ‘basins of attraction’ used to express resilience, and ‘tipping points’ that express 24 

sharp change in an ecosystem’s behavior. However, these temporal features remain difficult to 25 

identify and quantify, because current models usually only focus on a part of the whole 26 

ecosystem behavior, whereas a holistic approach should be preferred.  27 

2. We propose an original family of models based on discrete systems and designed to 28 

comprehensively characterize ecosystem dynamics holistically and over the long term. We 29 

developed a qualitative model based on Petri nets, made up of a relational graph (interaction 30 

network) that was then rigorously handled using transition rules. Unlike traditional modelling 31 

and graph theory approaches, transition rules can strongly modify the graph structure (i.e. a 32 

dynamic topology occurs).  33 

3. We examined the value of Petri nets when applied to the simple ecosystem of a termite colony. 34 

A termite colony comprises abiotic and biotic components and processes that we explored along 35 

all of their possible trajectories.  36 

4. Several temporal features were easily detected and quantified, such as basins of attraction (i.e. 37 

strongly connected states), tipping points (critical transitions along trajectories) and various kinds 38 

of collapses (functioning systems whose structures were nevertheless fixed). We propose that 39 

Petri nets developed for more complex ecosystems will provide original insights into their holistic 40 

behavior.  41 

 42 

Keywords: ecosystem resilience; ecosystem collapse; integrated model; discrete systems; 43 

formalization.    44 

 45 
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Introduction 46 

The concept of resilience is used to describe an ecosystem when it persists in the face of 47 

perturbations (Holling 1973; DeAngelis 1980; Scheffer 2009). This concept is the subject of continued 48 

debate, with several ongoing definitions, although most ecologists acknowledge its relevance to 49 

understanding ecosystem dynamics. While easily understandable, the concept of resilience remains 50 

difficult to quantify and predict (Walker et al. 2004; Hirota et al. 2011; Karssenberg, Bierkens & 51 

Rietkerk 2017). Recently, a conceptual view has been put forward to represent the richness of 52 

ecosystem dynamics. This approach proposes to plot the parameter zones in which the system is 53 

considered to be resilient, as ‘basins of attraction’ or ‘wells,’ whose depth is said to quantify the 54 

intensity of resilience (Scheffer et al. 2001; Scheffer et al. 2015). It is now necessary to develop the 55 

most appropriate methods to determine the behavior of these basins of attraction, therefore a new 56 

type of model needs to be developed for this purpose.  57 

An ecosystem can possess several potential basins between which it can alternate (Thom 1975; 58 

Gaucherel 2010). Consequently, the system possesses a range of possible trajectories, within or 59 

between these basins, that are considered relatively stable zones, i.e., where the system is more 60 

frequently found. When the system shifts from one basin to another, it is said to cross a tipping point 61 

(TP) or a catastrophic shift (Scheffer et al. 2001; Hirota et al. 2011). Several studies have shown that 62 

ecosystems and environmental systems experience sharp TPs (Scheffer et al. 1993; Carpenter 2003), 63 

over the short and/or long term (Hély et al. 2009; Lenton et al. 2012). However, TPs, like the 64 

resilience to which they are connected, are notoriously difficult to identify and quantify. It is 65 

therefore critical to correctly identify: i) the basins of attraction of an ecosystem, ii) basin depth, and 66 

iii) the relative locations of these basins in the potential landscape, if we are to deduce the possible 67 

TPs linking basins to each other (Walker et al. 2004; Scheffer et al. 2015).  68 

Several models have been proposed to describe resilience and tipping points in various systems. The 69 

pioneering approach in this field was the catastrophe theory developed by (Thom 1975). Thom 70 
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(1975) created powerful yet hard-to-handle algebraic tools to analyze and understand the potential 71 

of any system. In ecology, the common model used is usually a one dimensional ordinary differential 72 

equation handling the central state-variable (e.g. biomass, Scheffer et al. 2001; Van Nes & Scheffer 73 

2007). The direct consequences of using such equations are that they focus on the dominant 74 

behaviour in a system and reduce the study to a fixed phase-space defined by the state-variables. 75 

Conversely, more rare trajectories can occur, and most catastrophes may even require a qualitative 76 

shift in the system variables as well as in the phase-space (Thom 1975; Hély et al. 2019). For example, 77 

a shift from a forest to a grassland state will drastically change its vegetation composition, fire 78 

regime, faunal communities and trophic network (Hély et al. 2009; Hély et al. 2019). Tipping points 79 

will disrupt the entire system structure and functioning, and therefore should be examined using 80 

models dedicated to exhaustive behavior analysis.   81 

To model a rapidly changing ecosystem, we developed a method using Petri nets, which have been 82 

used successfully in theoretical computer science and systems biology (Pommereau 2010; Reisig 83 

2013). Petri nets are similar to Boolean networks (Kauffman 1969; Thomas & Kaufman 2001), as they 84 

are well adapted to formalize network topological changes. To our knowledge, such discrete and 85 

qualitative models have rarely been used in ecology (but see Ewing et al. 2002; Cordier, Largouët & 86 

Zhao 2014; Baldan et al. 2015; Gaucherel et al. 2017). Among discrete models, Petri nets are 87 

powerful tools that enable the rigorous formalization of exhaustive changes in an ecosystem’s 88 

structure. Petri nets can be used to scrutinize all possible fates of a system and to map every 89 

potential qualitative trajectory. Although qualitative, it is nevertheless possible to compute 90 

quantitative metrics from the model outputs and deduce many system properties (Koch, Reisig & 91 

Schreiber 2011).  92 

We examine the potential of Petri nets to model a simple ecosystem. Our objective is to manipulate 93 

an ecosystem-like structure, composed of biotic and abiotic (and anthropogenic-like) components 94 

working in close interaction, with potential disturbances occurring (Turner 2009; Gaucherel et al. 95 
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2017). Therefore, we chose to model a (Macrotermitinae) termite colony, because a full termite 96 

colony develops from reproductives (queen and king) and external resources, and can drastically shift 97 

into a different system when experiencing strong disturbance, e.g., mound destruction or attack. The 98 

termite colony could then reach a collapsed (or deadlock) state via various trajectories. We need a 99 

rigorous, formalized model to confidently identify resilience zones, such as basins of attraction, the 100 

tipping points separating them, and possibly other properties of system behavior such as collapse.  101 

 102 

Materials and methods 103 

Case study - a eusocial insect ecosystem 104 

Eusociality is characterized by cooperative brood care, overlapping adult generations, and division of 105 

labor between castes that leads to reproductive and sterile groups (Costa & Fitzgerald 2005). We 106 

chose to model eusocial insect colonies for their propensity to experience drastic changes (tipping 107 

points) over time, but any other ecosystem-like models may be used. We chose to work on 108 

Macrotermitinae termites, which construct large colonies (up to millions of inhabitants, Fowler et al. 109 

1986), (Turner 2009) . Termites cultivate fungi in special chambers, build aerial structures (called 110 

mounds) to improve air circulation, and divide each nest into a royal chamber, fungus chambers, and 111 

egg rooms (Fig. 1a, Suppl. Mat. Appendix 1). Given the ability for this eusocial species to produce 112 

fungi, termites might also be considered as mimicking agricultural (farmer) activities. One way of 113 

conceptualizing the ecosystem under study is to represent it as a network of elements in interaction 114 

(Fig. 1b). This ecosystem graph is then handled by the following model.  115 

Petri nets  116 

We propose a twofold approach: i) first, the interaction network of the ecosystem is represented by 117 

a graph designed to gather any kinds of ecological processes (not to be confused with purely trophic, 118 
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pollinator or parasitic networks, Thébault & Fontaine 2010; Campbell et al. 2011); ii) second, a 119 

rigorous model based on a Petri net is developed to formalize any change in the graph topology (i.e. 120 

neighboring relationships). Petri nets, developed in computer sciences (Pommereau 2010; Reisig 121 

2013) and also used in systems biology (Murata 1989; Blätke, Heiner & Marwan 2011; Koch, Reisig & 122 

Schreiber 2011), are powerful tools for rigorously formalizing changes in network topologies 123 

occurring during the system dynamics. The two major differences between a Petri Net model and 124 

other network models used in ecology (Thébault & Fontaine 2010; Kéfi et al. 2016) are that Petri net 125 

models deal with topological changes during simulations and can explore all possible dynamics of the 126 

system. Although the maximal interaction network remains predefined in our study, it is continuously 127 

modified within runs and any drastic changes are fully controlled (Gaucherel et al. 2017). These 128 

differences therefore make our model difficult to compare to existing models. For example, a 129 

predator-prey model would focus only on one ecosystem state of the dynamics produced. Such 130 

discrete models provide convenient and commonly used tools to exhaustively analyze the states of 131 

the system (called the state-space), the relatively stable (resilient) zones, the tipping points and any 132 

system trajectory (Walker et al. 2004; Scheffer et al. 2015). In this section, we start by presenting a 133 

simplistic predator-prey model and we then define multisets required to rigorously define Petri nets 134 

that will then be used to model the termite colony.  135 

A simplistic predator-prey Petri net  136 

We first illustrate Petri nets with a simplistic but unrealistic predator-prey system. In the predator-137 

prey system, only two nodes are defined as the prey and predator populations (these are not 138 

individuals, Fig. 2a). The state of the system is defined by the set of “+” and “-” nodes, graphically 139 

drawn as having a token (a mark) or not, representing the presence and absence of each system 140 

component, respectively (see next section for a formal definition). The maximal number of possible 141 

system states is 2#nodes and grows exponentially with the node number. The state of a node depends 142 

on the node states to which it is connected, while a connection between nodes exists as soon as one 143 

process makes this connection explicit (Fig. 2b). The rules correspond to any physicochemical, 144 
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biological and ecological and/or human-like processes (or sub-processes), and thus represent all 145 

interactions between nodes composing the ecosystem studied. In the predator-prey system, only 146 

two rules are defined: R1, the predation itself, and R2, the mortality (Fig. 2b).  147 

In the formalism of this ecosystem, a rule is made up of condition and realization parts written by 148 

convention as: “transition’s name: condition  realization”. In the predator-prey system, the rules 149 

are written as R1: P+, N+  N- and as R2: N-, P+  P-, with P and N the predator and prey 150 

populations, respectively. Since the rules modify node states, they also change the system state. 151 

Therefore, the system will shift from one state to another one through the successive applications of 152 

rules (Fig. 2b). These rules can then be translated into a Petri net in which the nodes are translated to 153 

pairs of places, and the rules are translated to transitions, both being connected through oriented 154 

arcs (Fig. 2c).  Such a Petri net has its own dynamics: a transition that has enough tokens in its input 155 

places (those for which an arc exists from the input place to the transition) may fire (trigger), 156 

consuming tokens in its input places and producing new tokens in its output places (those for which 157 

an arc exists from the transition to the input place). These dynamics of the Petri net produce the 158 

state space, which provides the set of all system states reachable by the rules defined (Fig. 2d). As a 159 

corollary, the states are also connected to each other by some of these rules in the state space. The 160 

size of the state space is usually much smaller than the number of possible system states, because 161 

the computation starts from a specific initial condition and because rules have specific application 162 

conditions.  163 

Formal definition of Petri nets 164 

We now give a rigorous definition of Petri nets. To this end, we first need to define a multiset over a 165 

set 𝑋 as a function 𝜇: 𝑋 → ℕ. We denote by 𝑋∗ the set of all the multisets over 𝑋. A multiset 𝜇 ∈ 𝑋∗ 166 

can be extended to a larger set 𝑌 ⊃ 𝑋 by defining 𝜇(𝑦) ≝ 0 for all 𝑦 ∈ 𝑌 ∖ 𝑋. Given 𝜇1 and 𝜇2 in 𝑋∗, 167 

we define: 168 

 the sum of 𝜇1 and 𝜇2 by (𝜇1 + 𝜇2)(𝑥) ≝ 𝜇1(𝑥) + 𝜇2(𝑥) for all 𝑥 ∈ 𝑋; 169 
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 the comparison of 𝜇1 and 𝜇2 by 𝜇1 ≤ 𝜇2 iff 𝜇1(𝑥) ≤ 𝜇2(𝑥) for all 𝑥 ∈ 𝑋; 170 

 the difference of 𝜇1 and 𝜇2 by (𝜇1 − 𝜇2)(𝑥) ≝ max(0, 𝜇1(𝑥) − 𝜇2(𝑥)) for all 𝑥 ∈ 𝑋;  171 

 the product by 𝑘 ∈ ℕ by (𝑘 × 𝜇)(𝑥) ≝ 𝑘 × 𝜇(𝑥) for all 𝑥 ∈ 𝑋. 172 

Multisets may be denoted in extended sets notation as 𝜇 = {𝑎, 𝑎, 𝑏} that is such that 𝜇(𝑎) = 2, 173 

𝜇(𝑏) = 1 and 𝜇(𝑐) = 0 for all 𝑐 ∉ {𝑎, 𝑏}. A subset of a set 𝑋 may be considered as a multiset by 174 

identifying it to its characteristic function. 175 

A marked Petri net is a tuple 𝑁 ≝ (𝑆, 𝑇, 𝑊, 𝑀) such that: 176 

 𝑆 is the finite set of places; 177 

 𝑇, disjoint from 𝑆, is the finite set of transitions; 178 

 𝑊: (𝑆 × 𝑇) ∪ (𝑇 × 𝑆) → ℕ is the weight function that defines arcs; 179 

 𝑀 ∈ 𝑆∗ is the marking, a multiset of places representing the state of the Petri net (the 180 

number of tokens stored in each place). 181 

Petri nets are commonly depicted as graphs (Fig. 2c), whose nodes are places (depicted as round-182 

shaped nodes) and transitions (square-shaped nodes), and whose edges are the arcs connecting 183 

them with non-zero weight (i.e., an arc drawn as 𝑥 → 𝑦 is labeled by 𝑊(𝑥, 𝑦) > 0, with 1 usually 184 

omitted if 𝑊(𝑥, 𝑦) = 1), and the marking is depicted as black tokens ● within places (or the number 185 

of tokens when this is more readable). An arc from a place to a transition (or conversely from a 186 

transition to a place) is called an input (conversely output) arc (Fig. 2c). A pair of input/output arcs 187 

with the same weights and between the same place and transition may be replaced by a single arc 188 

with one arrow at each end (like the arcs connected to 𝐴𝑐+ in Fig. 3b).  189 

For every transition 𝑡 ∈ 𝑇, we define 𝑡 ≝ ∑ 𝑊(𝑠, 𝑡) × {𝑠} ∈ 𝑆∗
𝑠∈𝑆  and 𝑡 ≝ ∑ 𝑊(𝑡, 𝑠) × {𝑠} ∈ 𝑆∗

𝑠∈𝑆 . 190 

For instance, we have 𝑅1 ⃖    = {𝑁+}, and 𝑅1     ⃗ = {𝑃+, 𝑁−} in Fig. 2c. 191 

Let 𝑁 ≝ (𝑆, 𝑇, 𝑊, 𝑀) be a marked Petri net. A transition 𝑡 ∈ 𝑇 is enabled at marking 𝑀 iff 𝑡 ≤ 𝑀. In 192 

such a case, 𝑡 may be fired yielding a new marking 𝑀′ ≝ 𝑀 − 𝑡 + 𝑡, which is denoted by 𝑀[ 𝑡 ⟩ 𝑀′. 193 
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The marking graph (also called the reachability graph) of 𝑁 is the smallest graph [ 𝑁 ⟩ ≝ (𝑉, 𝐸) such 194 

that 𝑀 ∈ 𝑉 and for all 𝑀′ ∈ 𝑉 such that 𝑀′[ 𝑡 ⟩𝑀′′ for a transition 𝑡 ∈ 𝑇, then we also have 𝑀′′ ∈ 𝑉 195 

and (𝑀′, 𝑡, 𝑀′′) ∈ 𝐸. Here, V stands for vertices (nodes) and E for edges. As an example, the marking 196 

graph of the predator-prey Petri net depicted in Fig. 2a is shown in Fig. 2d.  197 

Essentially, a Petri net models the possible states of a system and the possible transitions between 198 

them, while the Petri net marking additionally uses tokens to indicate which state the system is 199 

currently in.  200 

 201 

Results 202 

Formal definition of a termite colony ecosystem 203 

We modelled a termite colony as an ecosystem made up of biotic and abiotic components. 204 

Therefore, we defined an interaction network (i.e. a relational graph between system components) 205 

connecting nodes of various natures, with edges modelling various interactions and processes (Fig. 206 

1b, Appendix 1). A system node could belong to any one of the five categories: the permanent 207 

environment outside the colony (plotted in orange), resources (green), spatial structures (violet), 208 

inhabitants (blue), and competitors/predators (black) (Figure 1). A node could only take either one or 209 

the other of two Boolean states (Gaucherel et al. 2017): On or + (presence of the node in the 210 

ecosystem) and Off or - (node is absent). We modelled Boolean values through pairs of 211 

complementary places, which is the usual way to work with the absence of test-to-zero in Petri nets 212 

(as a transition cannot test for the absence of a token). For termite ecosystems, an extended graph 213 

made up of 12 nodes was defined as the best compromise between over and under-simplified 214 

descriptions (Table 1).  215 
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The formal specification of such an ecosystem consists in a triplet (𝔼, 𝑠0, 𝑅) such that 𝔼 is a set of 216 

entities, 𝑠0 ⊆ 𝔼 is the initial state, and 𝑅 is a set of reaction rules (a process may fire several rules and 217 

transitions). Entities can be declared with their respective names and initial states (Table 1). The 218 

initial state 𝑠0 is the set of all the entities declared as initially ‘On’. Here, we chose 𝑠0 ≝219 

{𝑅𝑝, 𝑆𝑙, 𝐴𝑡, 𝐴𝑐}, representing reproductives, soil, atmosphere and competitors, respectively. A state 220 

of such a system is defined, like the initial state, by a subset of 𝔼. For instance, having 𝑠0 ≝221 

{𝑅𝑝, 𝑆𝑙, 𝐴𝑡, 𝐴𝑐} as above means that every entity in 𝑠0 is present (+) in this system state and, 222 

consequently, every entity in 𝔼 ∖ 𝑠0 is absent (-) from this system state.  223 

The dynamics of the system is described by a set of reaction rules of the form (𝛼+, 𝛼−, 𝜔+, 𝜔−) ⊆ 𝔼4 224 

such that 𝛼+ ∩ 𝛼− = 𝜔+ ∩ 𝜔− = ∅. For convenience, the rules may be numbered and denoted as 225 

𝑛: 𝛼 → 𝜔 where 𝑛 is the identifying number, 𝛼 is the list of entities in 𝛼+ followed by a + sign, plus 226 

the list of entities in 𝛼− followed by a – sign, and 𝜔 is similarly defined with 𝜔+ and 𝜔−. For example, 227 

rule 12 in Table 2 is ({𝐴𝑐}, {𝑆𝑑}, ∅, {𝑊𝑘, 𝑅𝑝}) and is more conveniently written as 12: 𝐴𝑐+, 𝑆𝑑− →228 

𝑊𝑘−, 𝑅𝑝− as in rewriting systems (Lindenmayer 1978; Gaucherel et al. 2012). This rule specifies that 229 

if 𝐴𝑐 is present and 𝑆𝑑 is absent, then the system may evolve by switching 𝑊𝑘 and 𝑅𝑝 to the 230 

‘absent’ state (regardless of their current states, Fig. 3a). For example, translated into ecological 231 

terms, rule number 12 means that if ant competitors are present when termite soldiers are absent, 232 

then termite workers and reproductives can be killed (i.e. if the rule is applied).  233 

A rule 𝑟 ≝ (𝛼+, 𝛼−, 𝜔+, 𝜔−) is enabled at a state 𝑠 ∈ 𝔼 iff (𝛼+ ⊆ 𝑠) ∧ (𝛼− ∩ 𝑠 = ∅); in such a case, 𝑟 234 

may be fired, yielding a new state 𝑠′ ≝ (𝑠 ∖ 𝜔−) ∪ 𝜔+, which is denoted by 𝑠 
𝑟
→ 𝑠′. We ignore firings 235 

that do not change the state (so-called self-loops), for instance, applying Rule 9 when 𝐹𝑔 and 𝑆𝑑 are 236 

already absent does not bring new information (Table 2). The state space of a model is the smallest 237 

graph (𝐸, 𝑉) such that the initial state is in 𝐸 and whenever 𝑠 ∈ 𝐸 and 𝑠 
𝑟
→ 𝑠′ for some rule 𝑟, then 238 

we also have 𝑠′ ∈ 𝐸 and there is an edge (𝑠, 𝑟, 𝑠′) ∈ 𝑉. 239 
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Petri nets semantics of reaction rules models 240 

By defining the state-space from a set of reaction rules, we have provided its semantics, which is the 241 

definition of its behavior. Hence, the reaction rules are just syntactic artefacts; by defining their 242 

semantics, they become the specification of a behavior. Similarly, marking graphs are the semantics 243 

of Petri nets. In this section, we provide another semantics for reaction rules in terms of a translation 244 

to Petri nets. While the state-space semantics is useful to understand systems at a high level of 245 

abstraction, it is not convenient for automated analysis since no tool exists for reaction rules. The 246 

Petri net semantics is a convenient solution to enable the use of the numerous existing theoretical 247 

and software tools to analyze Petri nets. Crucially, at the end of the section, we demonstrate that 248 

both semantics are equivalent (and see Appendix 2), which is a common way of proceeding (Best, 249 

Devillers & Koutny 2001). The Petri net semantics of such systems is computed in two successive 250 

steps. First, (ecological) rules are normalized to make them simpler and unambiguous, then a Petri 251 

net is computed.  252 

Rule normalization 253 

The need for normalization arises from the structure of reaction rules that do not enforce the left- 254 

and right-hand sides of rules to involve exactly the same entities. To illustrate the need for 255 

normalization, consider rule 12: 𝐴𝑐+, 𝑆𝑑− → 𝑊𝑘−, 𝑅𝑝− given above (Fig. 3a). This rule has two 256 

ambiguities: i) it may be applied regardless of the current state of 𝑊𝑘 and 𝑅𝑝, which corresponds to 257 

four distinct situations; and ii) it is not complete as it does not specify what happens to 𝐴𝑐 and 𝑆𝑑 258 

after the rule is fired. So, an ecological process may often be considered as a meta-rule in the Petri 259 

net, and the normalization procedure aims at producing unambiguous and complete (exhaustive) 260 

transitions from the meta-rules provided in the specification.  261 

For this purpose, we apply two transformations corresponding to the two cases above. Consider a 262 

rule 𝑟 ≝ (𝛼+, 𝛼−, 𝜔+, 𝜔−), then take 𝛼 ≝ 𝛼+ ∪ 𝛼−, 𝜔 ≝ 𝜔+ ∪ 𝜔−, and 𝜒 ≝ 𝜔 ∖ 𝛼, 𝑟 is replaced by 263 

the set of rules 𝑅𝑟 ≝ { (𝛼+ ∪ 𝑥, 𝛼− ∪ (𝜒 ∖ 𝑥), 𝜔+, 𝜔−) ∣∣ 𝑥 ∈ 2𝜒 }. Intuitively, the left-hand side of 𝑟 264 
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is augmented in every possible manner so that it becomes a partition of the entities involved in 𝑟, 265 

i.e., those from 𝛼 ∪ 𝜔. Note that the new rules are still somewhat ambiguous because their left-hand 266 

side still lacks the entities that are not involved in the original rule, but this will be neatly handled in 267 

the Petri net semantics. Then, the right-hand sides of the new rules are augmented with the entities 268 

that appear in 𝛼 but not in 𝜔 so that they are left untouched when the rule is fired, i.e. a change that 269 

is not explicitly specified should not occur, which is consistent with the semantics defined above in 270 

which 𝛼 is not involved in the computation of successor states. So the normalized set of rules 271 

originated from 𝑟 is { (𝛼+, 𝛼−, 𝜔+ ∪ (𝛼+ ∖ 𝜔), 𝜔− ∪ (𝛼− ∖ 𝜔)) ∣∣ (𝛼+, 𝛼−, 𝜔+, 𝜔−) ∈ 𝑅𝑟 }. 272 

For example, rule 12: 𝐴𝑐+, 𝑆𝑑− → 𝑊𝑘−, 𝑅𝑝− is first replaced with the four new rules below by 273 

completing its left-hand side (Fig. 3b): 274 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘−, 𝑅𝑝− → 𝑊𝑘−, 𝑅𝑝− 275 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘−, 𝑅𝑝+ → 𝑊𝑘−, 𝑅𝑝− 276 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘+, 𝑅𝑝− → 𝑊𝑘−, 𝑅𝑝− 277 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘+, 𝑅𝑝+ → 𝑊𝑘−, 𝑅𝑝− 278 

Then, the right-hand sides of these rules are completed in order to preserve 𝐴𝑐 and 𝑆𝑑:  279 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘−, 𝑅𝑝− → 𝑊𝑘−, 𝑅𝑝−, 𝐴𝑐+, 𝑆𝑑− 280 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘−, 𝑅𝑝+ → 𝑊𝑘−, 𝑅𝑝−, 𝐴𝑐+, 𝑆𝑑− 281 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘+, 𝑅𝑝− → 𝑊𝑘−, 𝑅𝑝−, 𝐴𝑐+, 𝑆𝑑− 282 

  𝐴𝑐+, 𝑆𝑑−, 𝑊𝑘+, 𝑅𝑝+ → 𝑊𝑘−, 𝑅𝑝−, 𝐴𝑐+, 𝑆𝑑− 283 

 284 

Translation into Petri nets 285 

The normalized rules can be easily translated into Petri nets in two steps: i) for each entity 𝑒 ∈ 𝔼, two 286 

places are created: 𝑒+ and 𝑒− to represent the present and absent states of the entity respectively. 287 

The rule that corresponds to the initial state given in the specification is marked with one token, the 288 
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other place is left empty (no token); ii) for each normalized rule in order to preserve Wk and Te: 𝑟 ≝289 

(𝛼+, 𝛼−, 𝜔+, 𝜔−), a transition 𝑡𝑟 is added with arcs such that: 290 

 𝑊(𝑒+, 𝑡𝑟) ≝ 1 for all 𝑒 ∈ 𝛼+, 291 

 𝑊(𝑒−, 𝑡𝑟) ≝ 1 for all 𝑒 ∈ 𝛼−, 292 

 𝑊(𝑡𝑟, 𝑒+) ≝ 1 for all 𝑒 ∈ 𝜔+, 293 

 𝑊(𝑡𝑟, 𝑒−) ≝ 1 for all 𝑒 ∈ 𝜔−, 294 

 𝑊(𝑡𝑟, 𝑝) ≝ 0 for any other place 𝑝. 295 

The last item above shows how we handle the entities that are not at all involved in a rule. 296 

Moreover, in order to eliminate self-loops here too, we ignore transitions that fire but do not change 297 

the marking (i.e. we do not construct a transition 𝑡 whenever 𝑡 = 𝑡, for instance we shall not 298 

construct the top-most transition in Fig. 3b). 299 

At this stage, we demonstrate a theorem that proves a strong equivalence between the reaction 300 

rules and their translation into a Petri net (Appendix 2). In general terms, we prove that the state-301 

space built from the reaction rules is strongly similar to the marking graph of the Petri net obtained 302 

through the translation of reaction rules into Petri nets (Best, Devillers & Koutny 2001). Both graphs 303 

are isomorphic (i.e. they are identical, yet with labeling that needs to be translated from one graph 304 

to the other). This property is both usual and essential in computer sciences when several layers of 305 

formalism are handled. A precise relationship exists between the two formalisms and their semantics 306 

(Appendix 2, Fig. S1) and the theorem provides a mathematical guarantee that we can study the 307 

marking graph instead of the state-space of the original system.  308 

Theorem 1: Let (𝔼, 𝑠0, 𝑅) be a reaction rules model and (𝑆, 𝑇, 𝑊, 𝑀) be its Petri net semantics. Then, 309 

the state space of (𝔼, 𝑠0, 𝑅) is isomorphic to the marking graph of (𝑆, 𝑇, 𝑊, 𝑀) (see the proof in 310 

Appendix 2).  311 
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State space analysis  312 

The Petri net of the termite ecosystem is made of 12 ecological components (i.e. nodes, Table 1, Fig. 313 

1b), and 15 ecological processes (i.e. rules, Table 2). The exact Petri net obtained quickly becomes 314 

unreadable (i.e. too many nodes and edges), as the system becomes more complex, but there is no 315 

need to draw it to analyze the system. Rather, as a first analytical step, we can compute its marking 316 

graph (theorem 1). Modelling of the termite colony reaches only 109 states (among 212 possible 317 

states), so that we can draw the exhaustive state-space to visualize it (Fig. 4a). For larger systems, the 318 

analysis can be performed automatically and without drawing the state space too. The state-space 319 

graph obtained here comprises several (colored) elements which we will further describe and 320 

interpret in ecological terms: the initial state (numbered 0, and drawn as a hexagon, Fig. 4a-A), two 321 

topological structures usually called strongly connected components (Fig. 4a-B and 4a-B’), some 322 

decisive paths (e.g. ecosystem trajectories and tipping points, Fig. 4a-C), ultimately leading upward to 323 

some basins and their associated deadlocks (i.e. states from which no other states are reachable, Fig. 324 

4a-D and 4a-D’, squares).  325 

Any strongly connected component (SCC) is defined as a set of system states (nodes of the state 326 

space) in which every state may be reached from any other state of the SCC. As such, SCCs are 327 

important as they allow the termite ecosystem to run indefinitely, in a kind of dynamic (structural) 328 

equilibrium (see Discussion). From the initial state 0, the system may rapidly evolve to deadlock 2, 329 

always through the execution of rule 12 corresponding to the death of reproductives in the presence 330 

of ant competitors (Fig. 3). Otherwise, the system reaches SCC B (Fig. 4a-B, orange color) when it 331 

fires rules 5, 6, and then 3. So, as a first observation, the system can stay “alive” only if it successively 332 

executes these three rules. If the system stays alive, it reaches the large SCC B. From SCC B, the 333 

system may reach the second large SCC B’ (Fig. 4a-B’, green). From both SCCs, the system may exit 334 

towards two deadlocks at the left and right hands of the state space, respectively (Fig. 4a-D and 4a-335 

D’). Deadlocks correspond to states in which the system can no longer evolve, which, in our case, 336 
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corresponds to ecosystem collapses (i.e. they contain no more termites and cannot recover from any 337 

previous state).  338 

Strongly connected components 339 

The termite system exhibits two large SCCs labeled B and B’ (Fig. 4a-B and 4a-B’), within which the 340 

colony may circulate forever. Here, we propose that any SCC is a kind of (qualitative and structural) 341 

stability which behaves like a basin (not to be confused with a “basin of attraction”) where it is 342 

possible to stay or occasionally leave. When considered statistically, such SCCs channel the 343 

ecosystem through states which are more numerous for larger basins and take longer to leave for 344 

trajectories further away from the SCC exit. Although the model is qualitative, the number of states 345 

in the SCC and the maximal distance to its exit appear as relevant proxies to quantify the associated 346 

basin.  347 

From each state of SCC B where 𝑆𝑑 is present, we can fire rule 11 (soldiers kill ants, Table 2) to reach 348 

a state of SCC B’ (but not conversely) that is exactly the same, except that competitors (𝐴𝑐) have 349 

switched to the ‘absent’ state (both SCCs are isomorphic). This has been checked programmatically 350 

on the state space. However, from every state in SCC B where 𝑆𝑑 is absent, we can fire rule 12 (ants 351 

kill termites) or rule 13 (the absence of fresh air kills termites) and leave the SCC in a deadlock (and 352 

its basin). Considering this isomorphism, we can concentrate on SCC B’ only, and zoom in on it by 353 

hiding states outside the SCC (Fig. S3a). The higher the distance to exit (in steps) the SCC, the less 354 

likely the system leaves the SCC and reaches another basin containing a deadlock leading to the 355 

inevitable (structural) collapse of the system. A state labeled with a null exit distance does not 356 

necessarily mean that the system will exit, rather that it may exit into a single move. By more finely 357 

studying the SCC B’ graph, it is possible to list many other observations on the termite system 358 

behavior (see Appendix 3 and Fig. S3 for a refined analysis).  359 
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System trajectory, tipping points and collapses 360 

To focus on system trajectory instead of system states, it is possible to compute the marking graph in 361 

which SCCs have been reduced to a single node (also called the SCC graph or merged state space, Fig. 362 

4b). When not reduced, this trajectory graph may rapidly become unreadable. It is possible to 363 

automatically (via programming) simplify this SCC graph by merging basins to a single node including 364 

the deadlock they lead to (Fig. 4b). From this convenient reduction of the ecosystem trajectories, it 365 

becomes easy to identify specific and contrasting paths leading to the ecosystem collapse (Fig. 4b, 366 

squares), and the tipping points separating them (e.g. Fig. 4a, red segment, see Appendix 3 for a 367 

refined analysis of trajectories).  368 

 369 

Discussion 370 

A goal of ecology is to develop strategies and tools for mapping an ecosystem’s long-term dynamics, 371 

as well as some dynamical properties such as basins and sharp transitions (e.g. tipping points, TPs). 372 

This issue is a real challenge and with current models it can be hard to quantify the resilience and 373 

changes associated with such properties (Walker et al. 2004; Scheffer et al. 2015). For this purpose, 374 

we have defined and illustrated–for the first time to our knowledge–a powerful model class to 375 

formalize ecosystem behaviors. No restriction on types of ecological components (biotic, abiotic or 376 

anthropic) and interactions (e.g. ecological or socio-economical) are imposed by such integrated 377 

models. Petri nets, already widely used in biology and in social sciences (Murata 1989; Blätke, Heiner 378 

& Marwan 2011; Koch, Reisig & Schreiber 2011) along with other qualitative models (Kauffman 1969; 379 

Thomas & Kaufman 2001), have demonstrated here their ability to model a theoretical complex 380 

ecosystem.  381 

The Petri net model developed here rigorously and successfully computed every possible state and 382 

trajectory encountered by the termite ecosystem (Fig. 4a). The model also automatically computed 383 
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qualitatively stable (resilient, SCC) and unstable (tipping point) zones (Fig. 4b). Although qualitative, 384 

such models can compute many quantitative metrics from the large state space provided.  385 

 386 

Understanding the termite ecosystem  387 

The termite colony was represented as a relational network between biotic and abiotic components 388 

that was allowed to initiate, grow and die, depending on ecological rules and disturbances applied to 389 

the network (Fig. 4). We stress the conceptual difference between system functioning, focusing on 390 

the (often short term) abundance and flux variations between system components, whilst keeping 391 

the system structure unchanged, and system development, focusing on the (often long term, 392 

topological) system structure changes (Odum & Odum 1971; Gaucherel et al. 2017). While this 393 

qualitative model allows the modeling of a large and complex interaction network, it identifies only 394 

possible fates, without their occurrence probabilities. As a perspective, a quantitative Petri net model 395 

would also provide the confidence interval for frequent (highly probable) and unrealistic (highly 396 

improbable) trajectories.  397 

As soon as the ecosystem model is built and its simplifications assumed, the state space of the 398 

modeled ecosystem is automatically computed and reveals insights into the ecosystem dynamics 399 

(called the development, Fig. 4). Starting with the system growth from an initial state composed only 400 

of reproductives (and the permanent soil and atmosphere environment), two kinds of colony 401 

collapse can occur. Collapse of the termite colony, i.e. states in which the system is paralyzed, are 402 

always reached after reproductive death, due to the lack of breathing air in the nest (rule 13) or an 403 

attack by ant competitors (rule 12) (Turner 2009). Reproductives are the sole component in the 404 

model that are able to produce workers and egg chambers (rules 4 and 2). Hence, our model allows 405 

for the rigorous detection of decisive rules, i.e. tipping points with irreversible effects, that inevitably 406 

lead to system collapse (Costa & Fitzgerald 2005; Turner 2009). Conversely, if reproductives remain 407 

alive, the system may remain indefinitely in similar states by first producing workers and 408 
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termitomyces (mushrooms), and then by traveling through many trajectories of creation/destruction 409 

cycles. The “resilient” states (SCCs B and B’) act as structural basins of attraction and remain 410 

unchanged as long as no ant competitors arrive in the system. Such non-trivial global features (see 411 

Appendix 3 for other added values) would not have been detected without the use of this model 412 

exploring exhaustively the system behavior.  413 

These results confirm the central roles of the reproductives and air quality of the nest, as well as the 414 

minor roles of workers, soldiers and other components that the termite system can rapidly 415 

regenerate, as found in real colonies (Costa & Fitzgerald 2005; Turner 2009). The result also 416 

highlights the importance of modeling assumptions. For example, adding a new rule allowing the 417 

workers to regenerate reproductives would have drastically changed the ecosystem fates, while 418 

many other rules would not have changed the state space at all. Adding such a decisive rule mimics 419 

ecological engineering practices designed to restore a disturbed ecosystem (DeAngelis et al. 1998; 420 

Pfadenhauer 2001). From another perspective, our discrete model could also be used to qualitatively 421 

study the system’s sensitivity to additional rules (ecological processes) and the way such rules may 422 

degrade or improve the ecosystem’s resilience (rules 2 and 4, or 7, Fig. 5). The sensitivity of discrete 423 

models to changes in the rules driving the behavior has also been studied in the context of Boolean 424 

networks applied to the modelling of biological systems  (Saadatpour et al. 2011; Gaucherel et al. 425 

2017).  426 

Discrete and qualitative ecosystem models 427 

The main originality of our work not only lies in the use of discrete models (e.g. Petri nets) in ecology, 428 

as some other studies started to explore the promising avenue of discrete models too (Ewing et al. 429 

2002; Gaucherel et al. 2012; Baldan et al. 2015; Gaucherel et al. 2017). Rather, it concerns the 430 

discrete and qualitative conception of the integrated ecosystem forming, we think, the backbone of 431 

any ecosystem. The discrete engine behind our model then allows an exhaustive and rigorous 432 

exploration of the ecosystem behaviour. This observation is striking considering that almost all 433 
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ecosystem or species community models focus on more continuous and gradual changes (Thébault & 434 

Fontaine 2010; Kéfi et al. 2016).  435 

The formal modeling of dynamic ecological systems has traditionally been carried out using 436 

differential equations (Thébault & Fontaine 2010; Kéfi et al. 2016). However, discrete modelling 437 

developed in computer sciences has proven to be successful, in particular in systems biology 438 

(Lindenmayer 1978; Campbell et al. 2011; Gaucherel et al. 2012). The two approaches can be 439 

considered as complementary: while traditional differential equations usually provide quantitative 440 

mean field behavior for the system, discrete modelling enables a qualitative analysis of every 441 

behavior. This is notably done through the inventory of the system states, of some system 442 

characteristic events, through the decomposition of the system trajectories, of causality, and of 443 

independence (Pommereau 2010; Koch, Reisig & Schreiber 2011). Discrete models often capture the 444 

trajectories of the dynamic system more accurately (Cordier, Largouët & Zhao 2014; Gaucherel et al. 445 

2017). For example, in the termite colony we modeled, differential equations would have certainly 446 

identified the pivotal role of rules 12 and 13 in the system collapse (Fig. 4a-C), but it would have been 447 

difficult to confirm that these rules are the only ones that are dangerous for the colony. For the same 448 

reason, differential equations would not have easily identified and characterized the termite colony-449 

specific scenarios on both sides of the tipping point. While some property identifications here could 450 

have been perceived a posteriori as trivial, Petri nets show the same power for identifying any 451 

(potentially complex) basins and tipping points.  452 

Our formal model defined two semantics that we showed were equivalent. The first semantics is 453 

called operational, because it defines states and provides the operations to execute one transition 454 

(rule) to reach another state. The second semantics is called denotational because it transforms 455 

states and rules into new objects, i.e., Petri nets that are associated with their own semantics. 456 

Operational semantics is useful to describe ecological aims with formal modeling as directly as 457 

possible: it rigorously grasps the notions needed to understand the ecosystem at the adequate level 458 
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of abstraction (Koch, Reisig & Schreiber 2011). However, semantics is a mathematical definition only, 459 

and no software tool exists to handle it. These tools may be developed, but it is more straightforward 460 

to define an equivalent denotational semantics and the tool required for the translation only.  461 

To define the denotational semantics of this study, we chose a Petri net translation well adapted to 462 

network handling, although other formalisms exist (Lindenmayer 1978; Thomas & Kaufman 2001; 463 

Gaucherel et al. 2012; Giavitto, Klaudel & Pommereau 2012). Petri nets are widely acknowledged as 464 

a useful modelling formalism for building discrete models of biological systems. Among their 465 

benefits, the following are often emphasized (Machado et al. 2009): simplicity, as Petri nets are easy 466 

to understand and adopt for biological situations, while still allowing a large flexibility (called 467 

expressivity); graphical representation that both conveys intuition and allow topological analysis; 468 

modularity that allows the building of large models by assembling smaller blocks and the potential to 469 

be extended in many different ways (see below).  470 

On the benefits of Petri nets 471 

We note three key benefits of using Petri nets: the adequacy to express the denotational semantics 472 

of our nodes/rules-based formalism, the wide range of analyzing techniques and available tools, and 473 

the flexibility that opens the way to future extensions. For example, it is straightforward to add 474 

features like priorities, time, stochasticity and quantitative data (David & Alla 2010). Any Petri net 475 

may become quantitative by adding a number of tokens in various places (multivalued nets, 476 

Pommereau 2010; Reisig 2013). This flexibility allows us to foresee in ecology many possible 477 

extensions of the current setting. Yet, the ‘reachability graph’ of Petri nets suffers from the well-478 

known ’state explosion‘ problem, that is, the reachability graph may be exponentially larger than the 479 

corresponding Petri net. This observation limits the size of the models providing an explicit 480 

computation of their reachability graphs, although we already manage large graphs composed of 481 

more than four million states. However, symbolic techniques exist, such as decision diagrams 482 

(Hamez, Thierry-Mieg & Kordon 2008), to alleviate the explosion of the state space.   483 
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When considering extensions to Petri nets, a wide range of methods and software tools are available 484 

to develop and analyze them (Haustermann et al. 2017). Here, we used a custom marking graph 485 

analysis, with the aggregation of strongly connected components and the basins (Fig. 4). We used the 486 

SNAKES toolkit (Pommereau 2015) to implement the denotational semantics, the TINA toolkit to 487 

compute the marking graph (Berthomieu 2017), and custom tools to perform the analyzing steps. In 488 

the future, we plan to extend the structural analysis available with Petri nets and in particular to 489 

exploit its transitions- and places-invariants, or traps.  490 

To adapt Petri nets for an ecological system, we first designed a modelling language (reaction rules) 491 

intended to be directly used by ecologists and to explicitly define the concepts dealt with, e.g., 492 

ecological components, and elementary processes. This formalism has to be self-contained and to 493 

include operational semantics, including diagnostics, to allow the modeler a high-level of abstraction. 494 

In addition, we need a denotational semantics to access existing analyses and software tools. Petri 495 

nets are suitable for translating the high-level formalism, as nodes and rules naturally map onto 496 

places and transitions, respectively. Other methods such as automata or process algebra are also well 497 

suited to define parallel processes, but communication is usually handled through transition 498 

synchronization, whereas ecologists need resource sharing with concurrent accesses. Boolean 499 

networks are well suited for modelling ecological nodes (Gaucherel et al. 2017), but they handle 500 

deterministic processes only and are not as open to extensions as in Petri nets. Petri nets are 501 

probably the most versatile discrete modeling framework in life sciences (Machado et al. 2009), 502 

which explains their recent popularity growth in systems biology.  503 

Ecosystem resilience and tipping points  504 

The Petri net model is powerful in describing ecosystem development, and other ecosystem-related 505 

concepts. SCCs and associated basins play the role of relatively stable zones (Walker et al. 2004; 506 

Scheffer et al. 2015; Karssenberg, Bierkens & Rietkerk 2017), as the termite ecosystem may run 507 

indefinitely into such structures. Such resilient states of the ecosystem, automatically identified by 508 
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the Petri net analysis, are reminiscent of phenotypes of a living organism in biology (Blätke, Heiner & 509 

Marwan 2011; Koch, Reisig & Schreiber 2011). Phenotypes can be likened to basins keeping the 510 

system in a specific set of states although, in our model, such zones locally “attract” the system only 511 

when it enters these SCCs. It is possible to quantify the width of the basin by the number of states it 512 

contains (or by any other related variable) (e.g. 20 states in SCC B’, Fig. 4 and Fig. S3). It is also 513 

possible to quantify the precariousness of the system at any state by the distance to exit the SCC, 514 

while the maximal distance to exit may naturally quantify the maximal system resilience in this basin 515 

(e.g., a depth of 3 in SCC B’, Fig. S3). In addition, any shift between distinct SCCs or between any SCC 516 

and a basin containing a deadlock  corresponds precisely to tipping points (Hirota et al. 2011; van Nes 517 

et al. 2014). The state-space provides a rigorous way to exhaustively identify these ecological 518 

features and other, e.g. specific trajectories, for any ecosystem, theoretically and as long as the 519 

system has been accurately understood and modeled.  520 

So far, we have justified the qualitative conception of ecosystems by long term dynamics under 521 

study. However, our model is not dedicated to any spatial or temporal scale or to closed ecosystems, 522 

as matter and energy inputs(e.g. due to global changes or to evolution, Weber et al. 2017) may be 523 

integrated as additional nodes. The qualitative assumption rather assumes that the ecosystem graph 524 

forms the backbone of the system and provides deep insight into its overall behaviour (called the 525 

ecosystem development, Gaucherel et al. 2017). In the future, we aim to apply Petri nets to more 526 

complex spatial and temporal scales, ranging from a small pond over days to a continent over million 527 

years, with coherent management of each scale. In addition to methodological advantages previously 528 

mentioned, the advantages we see for all these ecological applications of discrete and qualitative 529 

models are the abilities: i) to integrate components of distinct natures, ii) to easily handle changing 530 

topologies of the ecological interactions involved, iii) to formalize the model and rigorously 531 

demonstrate its outputs, and iv) to capture the causality of the system dynamics (in the state space).  532 

 533 
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In conclusion, we suggest that Petri nets provide a new class of models for analyzing ecosystem 534 

behaviors and formalizing ecosystem development over the long term. The development concept is 535 

fully coherent with drastic regime shifts and with resilience in ecosystem dynamics, and Petri nets 536 

are a powerful and rigorous class of discrete models able to identify, handle and quantify ecosystem-537 

related concepts. In our conceptual view, any ecosystem may be modelled in an integrated way and 538 

such a model provides the exhaustive trajectories based on the model assumptions. Using Petri nets 539 

supposes that every ecosystem can be represented on the basis of its relational graph (interaction 540 

network) connecting every relevant component of the ecosystem through any relevant process. The 541 

ecosystem graph is then rigorously handled with a discrete model exhaustively modifying graph 542 

topology, which is the real added value of our model. To our knowledge, this approach has not yet 543 

been used in an example of an ecological situation. The existence of a wide range of disturbed 544 

ecological networks opens an avenue to this new way of identifying resilience and tipping points over 545 

the long term.  546 

 547 

  548 
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Tables 668 

 669 

Table 1. Node categories, names, abbreviations, and descriptions of the extended termite ecosystem 670 

graph (see Fig. 1a for their interactions and associated colors).  671 

 672 

Name initially family description comment 

𝑅𝑝 present inhabitants reproductives the queen, the king, the eggs and the 

nymphs 

𝑊𝑘 absent inhabitants workers all termites able to work: the larvae, 

workers, pseudo-workers 

𝑆𝑑 absent inhabitants soldiers the termite soldiers 

𝑇𝑒 absent inhabitants termitomyces the fungus cultivated by the termites 

𝐸𝑐 absent structures egg chambers all egg chambers plus the royal chamber 

𝐹𝑔 absent structures fungal gardens all the gardens in which the fungus is grown 

𝑀𝑑 absent structures mound the upper structure of the colony 

𝑊𝑑 absent resources wood the wood stored inside the colony 

𝐴𝑖 absent resources air of the nest the air inside the colony 

𝑆𝑙 present environment soil the soil around the termite nest 

𝐴𝑡 present environment atmosphere the air around the termite nest 

𝐴𝑐 present competitors ant competitors all the ant species in competition with the 

termites 

 673 

  674 
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Table 2. List of the rules modeling the termite ecosystem functioning and development. The order of 675 

priority (sequence), the conditions of application, the products (consequences), and a detailed 676 

explanation are given for each rule. The rule arrows indicate the transformation (rewriting) of the 677 

network at next step.  678 

 679 

Rule comment 

1: 𝑊𝑘+, 𝑇𝑒+ → 𝑊𝑑−, 𝐴𝑖− the workers and the fungi are consuming wood 

and air 

2: 𝐹𝑔− → 𝑇𝑒− the fungi need the fungal gardens in order to 

survive 

3: 𝑊𝑘+, 𝑆𝑙+ → 𝑊𝑑+, 𝑇𝑒+, 𝐹𝑔+, 𝐸𝑐+, 𝑀𝑑+ the workers are foraging in the soil for wood and 

fungus; from the soil, the workers are building 

the fungal gardens, the egg chambers, and the 

mount 

4: 𝑊𝑑− → 𝑊𝑘−, 𝑇𝑒− the workers and the fungus need to eat wood to 

survive 

5: 𝑅𝑝+, 𝑆𝑙+ → 𝐸𝑐+ for the soil, the queen and the king can also build 

egg rooms 

6: 𝑅𝑝+, 𝐸𝑐+ → 𝑊𝑘+ in the egg chambers, the queen and the king are 

producing eggs that are becoming workers 

7: 𝑊𝑘+, 𝑊𝑑+ → 𝑆𝑑+, 𝑅𝑝+ eating some wood, the larvae are 

metamorphosing into soldiers and/or nymphaea 

8: 𝑀𝑑+, 𝐴𝑡+ → 𝐴𝑖+ the air of the nest is being refreshed by passing 

through the mound and exchanging with the 

atmosphere 
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9: 𝑊𝑘− → 𝐹𝑔−, 𝑆𝑑− the soldiers cannot survive without the workers 

to feed them, and the fungal gardens need some 

maintenance by the workers 

10: 𝑊𝑘−, 𝑅𝑝− → 𝐸𝑐− the egg chambers need some maintenance by the 

workers or the reproductives, otherwise they 

collapse 

11: 𝑆𝑑+ → 𝐴𝑐− the soldiers are killing ant competitors intruding 

into the colony 

12: 𝐴𝑐+, 𝑆𝑑− → 𝑊𝑘−, 𝑅𝑝− without the soldiers, the ant competitors are 

invading the colony and killing the workers and 

the reproductives  

13: 𝐴𝑖− → 𝑅𝑝−, 𝑊𝑘−, 𝑇𝑒− the reproductives, the workers and the fungus 

need to breath the air of the nest to survive 

 680 

  681 



32 
 

Figures 682 

 683 

Figure 1. Graphic of a termite colony (a) and its simplified interaction network (b). Termites modify 684 

their environment and build a mound with various chambers to host the colony (a). The original 685 

ecosystem graph is composed of 12 nodes (Table 1) with five colors representing their different 686 

natures (b, left). Their 15 respective interactions (processes, Table 2) are oriented (b, edges are 687 

directed from the thin to the thick end).  688 

 689 

Figure 2. Illustration of a simplistic predator-prey system (a), with its qualitative dynamics (b), its 690 

associated Petri net (c) and marking graph (d). The system is made of two ecosystem components, 691 

the prey (N) and predator (P) populations, and two interactions connecting them (rules R1 and R2), 692 

as seen on the automaton (a). Starting with the presence of both populations, it is possible to list all 693 

system states encountered (b), and to connect them with the rules (absent components and 694 

inactivated rules are displayed in grey). The corresponding Petri net is made of four places (P+, P-, 695 

N+, N-) and two transitions R1 and R2, where unlabeled arcs have weight 1. The net is depicted in the 696 

initial state (c), and the successive states may be deduced from the token circulation seen in the 697 

dynamics (b). The marking graph of the Petri net (d) is depicted with each state number (S0, S1, S2) 698 

referring to the dynamics described above (b). Notice that the (sole) specific state of the system (S3) 699 

may not be reached from this initial condition and with these rules (d). 700 

 701 

Figure 3. Focus on the rule 12 (Table 2) of the termite ecosystem modeled, based on the extended 702 

graph (a) and translation of the rule (b). Starting from the complete ecosystem (a, left), the rule 703 

12: 𝐴𝑐+,  𝑆𝑑− → 𝑊𝑘−, 𝑅𝑝− is drawn by the use of involved nodes only (a, right), where conditional 704 

nodes are shown in green and final nodes in gray. However, this diagram is not rigorous enough in 705 
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that it does not make explicit how to proceed to apply the rule (see main text). The rule is therefore 706 

normalized into four distinct transitions (b). Each transition 𝑡𝑖 corresponds to a distinct normalized 707 

rule. In bold, the rule indeed fired.  708 

 709 

Figure 4. The full (a) and reduced (b) marking graph of the Petri net provides the semantics of the 710 

termite model. The state-space is made of 109 states labeled with a pair 𝑛/𝑠 where 𝑛 is an 711 

identifying number of the marking and 𝑠 is the number of the strongly connected states (SCC) and of 712 

the basin it belongs to. The initial state is displayed as a hexagon (A), deadlocks (states with no 713 

successors) are displayed as squares (five in total, among which two are in zones D and D’, and one is 714 

close to the initial state A), a tipping point is displayed as a red segment (C) and other states are 715 

displayed as circles. Each SCC or basin uses a distinct color (e.g. SCCs B and B’ are drawn in orange 716 

and green). The edges are directed from the thin to the thick end and labeled with the number of the 717 

rule that was applied to perform the transition. The rule numbers are those of the ecological model 718 

(Table 2) and do not refer to the normalized rules (that are necessary technical steps, but do not 719 

make sense to the modeler). In the simplified and more abstract versions of the marking graph of a 720 

termite model (b), each SCC and basin has been reduced to a single node and redundant paths have 721 

been removed. Nodes representing aggregate SCCs or basins are noted (𝑠) (circles), more easily 722 

highlighting the sharp transitions between them. From this reduction of the marking graph, specific 723 

paths leading to the main ecosystem collapses can be more easily identified (squares).  724 

 725 
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Appendix 1: The functioning of termite colony  12 

 13 

Macrotermitinae, also called fungus-growing termites, are an African and SE Asian sub-14 

family of Termitidae (Engel & Krishna 2004). The only known lineage of termites living in 15 

symbiosis with fungi, they are well known for the huge mounds they build. In the early 16 

stages of a (monogamous) colony, the (single) queen and king pair up during the nuptial 17 

flight (Shellman-Reeve 1990; Rosengaus & Traniello 1991; Shellman-Reeve 1997), and then 18 

build a room in the soil. They lay eggs that develop into larvae. Larva development follows 19 

various pathways, the individuals becoming either workers or soldiers (the sterile line), or 20 

nymphaea that later develop into alates (the reproductive line) (Noirot 1955). Alates fly 21 

away during the next nuptial flight or, if needed, they can replace the royal pair or even 22 

transform into pseudo-workers (Noirot 1956). Termites experience hemimetabolous 23 

development, as immature stages have miniature adult morphology, and are therefore fit 24 

for labor.  25 

Macrotermitinae live in a nest separated from their source of food (wood), so that workers 26 

have to forage outside the nest. During the first forage, the workers harvest the 27 

basidiospores of the Termitomyces species fungus (e.g. (Noirot 1955)) and grow them in 28 

gardens. Termites can digest the wood with the help of the preliminary fungus-performed 29 

lignin degradation process (Hyodo et al. 2000). The workers are also in charge of nest 30 

building, fungus care, and egg care. Soldiers protect the colonies and alates that are inactive. 31 

A mature termite nest contains a royal chamber, egg rooms, and fungus gardens below the 32 

surface and a mound above the surface, in order to regulate the composition and 33 

temperature of the air (Turner 2009). Many other species live inside their nest: fungus 34 

species of the Xylaria genus, the main parasites in the fungus garden, and other commensal 35 

species (Jaffe, Ramos & Issa 1995), while ants, the primary predator of termites, can invade 36 

their colony (Leal & Oliveira 1995). 37 

 38 

To simulate the foundation of a termite colony (i.e. initial state), only the Soil, Atmosphere, 39 

Reproductives and Air nodes of the nest were set to On, the other nodes being absent (Off). 40 

Although Off nodes are present in the graph for modeling ease, they allow to mimic, by their 41 

very absence, a graph growth (i.e. development) coherent with other approaches in discrete 42 

modeling (Godin 2000; Giavitto & Michel 2003; Sayama & Laramee 2009). So, the Petri net 43 

developed here could later be improved into more complicated models. In order to capture 44 

the colony's dynamics, we then defined a finite set of rules establishing how node states 45 

changed over time. A transition (rule) is an oriented relationship between the states of 46 

nodes at time step t and the states of the same or other nodes at time step t+1, according to 47 

certain conditions. In the case of the termite ecosystem and qualitative Petri net, transitions 48 

are simple, a state of “if then” (i.e. Boolean) rules (Thomas & Kaufman 2001; Giavitto & 49 

Michel 2003). All the (potentially applicable) rules were applied at each time step, checking 50 

their associated conditions and whether they changed the state of the system or not (Tables 51 

2), independently of the updated state of each node (i.e. each state was memorized and 52 

then taken as the initial state for all rule applications of the next step).  53 

 54 
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Even when absent, the nodes pre-exist (i.e. the graph is fixed), thus highlighting the main 55 

difference with more complex graph-grammar models. For example, in the termite colony, 56 

the Wood node was Off at the beginning of the simulation, because this resource had not 57 

yet been introduced to the colony. This ecological process also meant that workers and 58 

wood nodes were connected by an oriented edge in the ecosystem's graph (Fig. 1a). For 59 

termite and ant ecosystems, extended graphs made up of 13 nodes were defined (Tables 1 60 

and S1). Other graphs could have been chosen (and were tested in a sensitivity analysis), but 61 

led to comparable qualitative results. Ours were a compromise between over-detailed and 62 

over-simplified descriptions. Simplified five-node ecosystem graphs were built only to 63 

explain the influences of the rules (Fig. 1b).  64 

 65 

Appendix 2: Proof of theorem 1 66 

 67 

In this section, we intend to prove theorem 1, which posits that the state space of (𝔼, 𝑠0, 𝑅) 68 

is isomorphic to the marking (or reachability) graph of (𝑆, 𝑇,𝑊,𝑀) (Fig. S1). This procedure 69 

is a common way of proceeding, although never done in the specific case of our two 70 

semantics (Best, Devillers & Koutny 2001). First, we prove that the initial state and initial 71 

markings are equivalent. A state 𝑠 ⊆ 𝔼 corresponds exactly to the marking {𝑒+ ∣ 𝑒 ∈  𝑠} +72 

{ 𝑒̅ ∣∣ 𝑒 ∈ 𝔼 ∖ 𝑠 } , and conversely, the marking 𝑀  corresponds to the state 73 
{ 𝑒 ∈ 𝔼 ∣∣ 𝑀(𝑒+) = 1 }. We note by 𝑀(𝑠) the marking that corresponds to state 𝑠. From item 74 

1 in the definition of the Petri net semantics (see main text and Fig. S1), it follows that the 75 

initial marking is 𝑀(𝑠0).  76 

 77 

 78 
Figure S1. Diagram explaining the rigorous relationships between the various semantics 79 

involved in the study, and highlighting the equivalence between the marking graph and the 80 

computed state space. 81 

 82 

We now prove that the state space and marking graph are constructed by two equivalent 83 

inductions. To do so, we must prove that 𝑠
𝑟
→ 𝑠′ in the reaction rules correspond to the Petri 84 

net firing of 𝑀(𝑠)[ 𝑡𝑟′  ⟩𝑀(𝑠
′) for some transition 𝑡𝑟′  such that 𝑟′  is a normalized rule 85 

obtained from 𝑟 . There is an exact correspondence between normalized rules and 86 

transitions, so that we may equivalently use one or the other. 87 

Let us first consider that we have 𝑠
(𝛼+,𝛼−,𝜔+,𝜔−)
→           𝑠′, and adopt the same notations 𝛼, 𝜔, and 88 

𝜒, as in the definition of normalized rules, and set 𝑦 ≝ 𝜒 ∖ 𝑥. From the definition of firing 89 
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rules, we have 𝛼+ ⊆ 𝑠  and 𝛼− ∩ 𝑠 = ∅  and 𝑠′ ≝ 𝑠 ∖ 𝜔− ∪ 𝜔+ . From the definition of 90 

reaction rules, we also have 𝛼+ ∩ 𝛼− = 𝜔+ ∩ 𝜔− = ∅. All together, these constraints yield 91 

the Venn diagram (Fig. S2, diagram 1), while diagram 2 (Fig. S2) shows 𝑠′. Applying the two 92 

steps of rule normalization, we see that 𝑟 is transformed into 𝑟′ ≝ (𝛼+ ∪ 𝑥, 𝛼− ∪ 𝑦,𝜔+ ∪93 

((𝛼+ ∪ 𝑥) ∖ 𝜔),𝜔− ∪ ((𝛼− ∪ 𝑦) ∖ 𝜔). We, show 𝜒 in diagram 3 and take the partition 𝑥 ⊎94 

𝑦 such that 𝑥 corresponds to diagram 4 and 𝑦 corresponds to diagram 5 (Fig. S2). We can 95 

now verify that: 96 

 𝑟′ is enabled because: 97 

o 𝛼+ ∪ 𝑥, depicted as diagram 6, is a subset of 𝑠, 98 

o 𝛼− ∪ 𝑦, depicted as diagram 7, does not intersect 𝑠; 99 

 𝑠
𝑟′

→ 𝑠′ because: 100 

o let 𝑝 ≝ 𝜔+ ∪ ((𝛼+ ∪ 𝑥) ∖ 𝜔) as depicted in diagram 8, 101 

o let 𝑞 ≝ 𝜔− ∪ ((𝛼− ∪ 𝑦) ∖ 𝜔) as depicted in diagram 9, 102 

o we have 𝑠′ = (𝑠 ∖ 𝑞) ∪ 𝑝. 103 

Conversely, we can prove with exactly the same diagrams and a mirrored reasoning that if 𝑠104 
𝑟′

→ 𝑠′, then we also have 𝑠
𝑟
→ 𝑠′.  □ 105 

 106 

 107 
 108 

Figure S2. The distinct sets involved in the firing of a reaction rule 𝑠
(𝛼+,𝛼−,𝜔+,𝜔−)
→           𝑠′. 109 

 110 

In addition, firing a rule independently to some others often leads to unrealistic paths (e.g. 111 

removing water without removing fishes in it). Therefore, we defined a new kind of rules 112 

called constraints, preventing the model from simulating such unrealistic paths. Constraints 113 

have a condition and a realization part, just as rules stricto sensu do, and model inevitable 114 
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(mandatory) events given the system state. The sole difference between rules and 115 

constraints is that constraints have priority on rules stricto sensu. In the prey-predator 116 

system, the system state S1 is unrealistic; so, the rule R2 has to be transformed into a 117 

constraint (C1: N-, P+ → P-). From a given state, the model first computes all trajectories 118 

opened up by the defined constraints and then only, when all the system states obtained are 119 

realistic (i.e. there is no longer any enabled constraint), the enabled rules are fired. In brief, 120 

the discrete models proposed here is qualitative, mechanistic (processes are explicit), 121 

deterministic (no stochasticity) and asynchronous (all rules are applied as soon as possible, 122 

no rule conflict as they systematically branch in the state space).  123 

 124 

Appendix 3: State-space refined analyses 125 

 126 

The termite ecosystem model combines one initial state, two strongly connected 127 
components (SCC) and four main deadlocks (Fig. 4). We may zoom into the SCC B’ graph (Fig. 128 
S3a), as well as simplify it by merging each distance to exit (DTX) class into one new node to 129 
observe which rule allows moving from one class to another (Fig. S3b). The DTX class 0, only, 130 
is a SCC, while the other DTX classes are not strongly connected. For this reason, to merge 131 
the other classes may create paths that are not realizable in the modeled system. On this 132 
merged graph, hexagonal-shape nodes are those that contain at least one entrance of the 133 
SCC, while nodes are labeled with the DTX in parentheses to denote that this is a merged 134 
node.  135 

Leaving DTX class 0 is always done through rule 8, while returning to class 0 is always done 136 
by decrementing DTX by one unit. Moreover, decreasing the DTX is always done using the 137 

same rules as shown by path (3)
6
→ (2)

3
→ (1)

1
→ (0). Finally, this merged graph is not 138 

complete: moving from a DTX class 𝑥 to a class 𝑦 >  𝑥 is easier (i.e., there are more paths to 139 
do so) than moving in reverse (𝑥 <  𝑦). So, as a second observation on the paths in our 140 
termite model, the system will eventually reach a deadlock if it executes a sequence 141 
finishing with 6, 3, 1, and then 12 or 13 (in this order, but possibly interleaved with other 142 
rules). From SCC B, we can make the same observation, except that the system may execute 143 
rule 11 to reach SCC B’. As a third observation, a random path within SCC B or B’ is more 144 
likely to go through classes with higher DTX.  145 

More details of the termite system behavior are available by removing all the edges 146 
between nodes of DTX class 0, because class 0 is a SCC (we thus know that every node can 147 
be reached from another within this DTX class) (Fig. S3a). It appears that DTX class 2 is not 148 
connected and contains only transient states from which the system reaches DTX 1 or 3. 149 
Moreover, the longest path within DTX class 1 is 97 → 94 → 25, and within DTX class 3 it is 150 
102 → 84 or 70 → 84. Therefore the system cannot stay for a long period without changing 151 
its DTX value. As a fourth observation, the system can stay within the same DTX class for 152 
short runs only: three successive states for DTX 1, one state for DTX 2, two states for DTX 3.  153 

Although the system can reach any other class from DTX 0, leaving DTX 0 is always done 154 
through rule 8 (Fig. S3b). As a fifth observation, the only way to increase DTX in SCC B’, and 155 
thus to postpone the collapse, is to fire rule 8. In addition, we observe that: i) a random path 156 
within any SCC (B’ or B) is more likely to move through classes with higher DTX; ii) the 157 
system can stay within the same DTX class for short runs only; and iii) the only way to 158 
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increase DTX in SCC B’, and thus to postpone the system collapse, is to fire rule 8. Finally, the 159 
model allows for accurate identification of the (simple, i.e. non-looping) trajectories of the 160 
system within each SCC. 161 

Moreover, the largest SCC within this graph consists in all the states with non-zero DTX plus 162 
states 26 and 95. Removing any of these two latter states also destroys the SCC B’. Hence, 163 
these states play central roles within SCC B’ when we focus on paths trying to avoid DTX 0. 164 
Finally, small SCCs composed of two states only may also be found: {70, 85}, {84 − 91}, and 165 
{102, 107}. This means that avoiding DTX 0 is not possible on arbitrarily long trajectories 166 
without ultimately repeating these paths, yet with infinite runs alternating the two states of 167 
each couple. However, we may find an infinite number of paths without such oscillating 168 
paths that stay with DTX 0 for only one state (either 26 or 95).  169 

(a) (b)  170 

 171 

Figure S3. Zoom of the SCC B’ (a) of the state-space (Fig. 4a), and a simplified version (b) in 172 

which each distance to exit (DTX) class has been merged into a single node. Here, nodes and 173 

interactions outside SCC B’ have been hidden. Hexagonal-shaped nodes are those from which 174 

the system enters the SCC (8 possible states here). Nodes are labelled with pairs n/d where d 175 

and the color represent the distance to an exit node (DTX) of the focus state, that is, a state 176 

from which a rule may push the system outside the SCC (towards a deadlock, Fig. 4). In the 177 

simplified SCC (b), nodes are labeled with DTX and highlighted on both figures with a specific 178 

color (DTX=0 in red, 1-green, 2-cyan and 3-purple).  179 

 180 
The simplified and trajectory-based version of the state space is informative too (Fig. 4b). 181 
From the SCC B, the system can reach SCC B’ with rule 11 only (i.e. killing ant competitors), 182 
or the system can reach deadlock by first executing rule 12 (ants kill termites) or rule 13 (lack 183 
of air kills termites). From SCC B’, rule 13 only remains possible because ant competitors are 184 
absent in the system. After one of these rules has pushed the system from any of its SCCs, 185 
several paths are available and correspond to the progressive depletion of resources in the 186 
system, which we may observe by plotting the paths (not depicted here). As a sixth and last 187 
observation for the termite system, the system dies if and only if it fires rule 12 or 13 (lack of 188 
reproductives or of fresh air, Table 2). Then, depending on the state from which this decisive 189 
rule is fired, the system executes four time steps (four rules) at most before collapsing. 190 
These results are contingent on the termite system modeled, but any (eco)system would 191 
benefit from this model ability to identify the decisive rules or sequences of rules and to 192 
quantify the dynamics associated with specific collapse or “alive” states (SCC).  193 
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