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Abstract

Line bundles of degree Q and Z[1/d] are constructed and their cohomology com-

puted.
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1 Introduction

In algebraic topology the degree of the form Z[1/d] and Q can be constructed via a direct

limit as shown in online version of [Hatcher, 2002, pp 311, 3F.1], this degree is transferred

to algebraic geometry in this paper. The section 2 constructs polynomial rings with degree
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Z[1/d] and Q and the rings are denoted as R[X
1/d∞
0 , . . . , X

1/d∞
n ] and R respectively. The

monomials of these rings can be ordered by observing the countability of rationals. These

rings are Non Notherian, fortunately they are coherent and this is shown in Proposition

2.1.

The grading is put on these ring in the section 3 and the corresponding Proj and

localization of these rings constructed. Finally, in section 4 the line bundle O(n) for n ∈
Z[1/p] or Q is constructed. The corresponding cohomology for various n is computed in

Theorems 4.3, 4.4, 4.5, which is similar to standard cohomology except that it is in�nite

dimensional. The Kunneth formula is introduced in section 4.3.

Finally, the above results are transferred to the perfectoid case in the section 5.

2 Construction of Rational Degrees

The �rst task at hand is to construct polynomial rings with rational degrees.

2.1 Degree Z[1/d]

Consider the following inclusions with d ∈ Z>0 not necessarily prime,

(2.1) R[X0, . . . , Xn] ⊂ R[X1/d0 , . . . , X1/dn ] ⊂ . . . ⊂ R[X1/d
i

0 , . . . , X1/d
i

n ] ⊂ . . . ,

the direct limit would be

(2.2) R[X
1/d∞
0 , . . . , X1/d

∞
n ] := lim−→

i

R[X
1/di

0 , . . . , X1/d
i

n ] =
⋃
i

R[X
1/di

0 , . . . , X1/d
i

n ]

and the elements would be polynomials with degree in Z[1/d]. For example, for d = 5 an

element of the ring could be X2/5 + X2 + X3 + X36/5 + 1.

2.2 Degree Q

Start by constructing the following ring Ri which can be ordered by inclusion.

(2.3)

R1 =R[X0, . . . , Xn]

R2 =R[X0, . . . , Xn, X
1/2
1 , . . . , X1/2n ]

R3 =R[X0, . . . , Xn, X
1/2
1 , . . . , X1/2n , X

1/3
1 , . . . , X1/3n ]

... =
...

Ri =R[X0, . . . , Xn, X
1/2
1 , . . . , X1/2n , . . . , X

1/i
1 , . . . , X1/in ]

... =
...

Order via inclusions

R1 ⊂ R2 ⊂ . . . ⊂ Ri ⊂ . . . lim−→
i

Ri =
⋃
i

Ri
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The ring R := lim−→i Ri contains all polynomials of rational degree, since all denominators

of the form 1/n, n ∈ Z>0 can be constructed.

2.3 Open and Closed Sets

As in the standard algebraic geometry closed and open sets can be de�ned for the ring

A = R or R[X
1/d∞
0 , . . . , X

1/d∞
n ] as

(2.4)
V(I) := {p ∈ Spec A such that I ⊆ p}

D(f) := Spec A\V(fA).

The structure sheaf can be de�ned similary on an open set OX(D(f)) = Af.

2.4 Coherence

Proposition 2.1. Let R be a notherian ring then R and R[X
1/d∞
0 , . . . , X

1/d∞
n ] are co-

herent.

Proof. 1. Let I = (f1, . . . , fn) be a �nitely generated ideal in the ring R[X
1/d∞
0 , . . . , X

1/d∞
n ],

then I lies in Bi := R[X
1/di

0 , . . . , X
1/di

n ] for some large i, which is a notherian ring.

Hence there is a presentation

(2.5) Bmi → Bni → I→ 0

Since lim−→i Bi = R[X
1/d∞
0 , . . . , X

1/d∞
n ] applying the direct limit gives presentation for

I.

(2.6) (lim−→
i

Bi)
m → (lim−→

i

Bi)
n → I→ 0

2. Let J = (f1, . . . , fn) be a �nitely generated ideal in the ring R, then J lies in Ri (as in

section 2.2) for some large i, which is a notherian ring. Hence there is a presentation

(2.7) Rmi → Rni → J→ 0

Since lim−→i Ri = R applying the direct limit gives presentation for J.

(2.8) (lim−→
i

Ri)
m → (lim−→

i

Ri)
n → J→ 0

3 Graded Modules

Recall that a ring or a module can be graded over a commutative monoid ∆ as in [Bourbaki, 1998,

pp 363, Chapter II, §1]. A ring A can be endowed with decomposition A = ⊕d>0Ad of
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abelian groups such that AdAe ⊆ Ad+e for all d, e > 0 where d, e ∈ ∆. Similarly graded

A modules can be de�ned with AdMe ⊆Md+e for all d, e > 0 and d, e ∈ ∆. In this tract

∆ could be Q or Z[1/d]. A homogeneous ideal is of the form I = ⊕d>0(I ∩ Ad) and the

quotient A/I has a natural grading (A/I)d = Ad/(I ∩ Ad). Let Proj A denote the set of

prime ideals of A that do not contain A+ := ⊕d>0Ad, then Proj A can be endowed with

the structure of a scheme. The closed and open sets for homogeneous ideals I are of the

form

(3.1)
V+(I) := {p ∈ Proj A such that I ⊆ p}

D+(f) := Proj A\V(fA).

3.1 Localization

The localization Mf has a ∆ grading where homogeneous elements of degree d ∈ ∆ are

of the form m/fn where m ∈ M, f ∈ A are homogeneous and d = degm − ndeg f. The

degree zero elements are denoted as M(f) ⊂ Mf and A(f) ⊂ Af, furthermore, M(f) is an

A(f) module.

Example 3.1. The polynomial ring A := R[X
1/d∞
0 , . . . , X

1/d∞
n ] is a graded R algebra and

Ad consists of polynomials of degree d ∈ Z[1/d]. The localization at the a�ne plane is

given as

(3.2) R[X
1/d∞
0 , . . . , X1/d

∞
n ](Xi) = R

[(
X0

Xi

)1/d∞
, . . . ,

(
Xn

Xi

)1/d∞]
.

Similarly, the ring R can be localized at a�ne plane Xi = 0 to get degree zero elements.

4 Twisting Sheaves O(n)

Let n ∈ ∆ (where ∆ is Z[1/d] orQ) and a ∆ gradedAmodule, de�ne a new gradedAmodule

A(n)d := An+d for all d ∈ ∆, de�ne OX(n) := A(n)˜. The ˜ denotes the localization on the
a�ne open. Thus, on D+(f) an a�ne open subset OX(n)|D+(f) = f

nOX|D+(f), furthermore,

the usual equality holds OX(n)⊗OX
OX(m) = OX(n+m).

For the case at hand the set fn, n ∈ ∆ should make sense. For example, Xni , n ∈ ∆ will

always hold in Proj R. For R a perfect ring of char p and ∆ = Z[1/p] it is always possible to

take pth power roots and thus fn, n ∈ Z[1/p] always makes sense for R[X
1/p∞
0 , . . . , X

1/p∞
n ].

4.1 O(1)

Let k be a �eld and consider Proj k[X
1/d∞
0 , X

1/d∞
1 ], the a�ne open sets are U0 = D(X0) =

Spec k[(X1/X0)
1/d∞

] and U1 = D(X1) = Spec k[(X0/X1)
1/d∞

].

For example, for d = 5, consider the function

(4.1)

Global Section X0 + X
1/5
0 X

4/5
1 + X1

U1 (X0/X1) + (X0/X1)
1/5 + 1

U0 1+ (X1/X0)
4/5 + (X1/X0)
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The transition function from U1 to U0 is given as X1/X0. The above can be adapted

for rational numbers r ∈ Q ∩ (0, 1)

(4.2)

Global Section X0 + X
r
0X
1−r
1 + X1

U1 (X0/X1) + (X0/X1)
r + 1

U0 1+ (X1/X0)
1−r + (X1/X0)

One immediately sees that the global sections of O(1) are in�nitely generated by mono-

mials of the form X0, X1, X
r
0X

(1−r)
1 where r ∈ Z[1/d] ∩ (0, 1) or r ∈ Q ∩ (0, 1).

The following lemma is adapted from [Liu, 2002, pp 166,Lemma 1.22 ].

Lemma 4.1. Let A = R[X
1/d∞
0 , . . . , X

1/d∞
n ] or A = R, then O(n) = An if n > 0 and

O(n) = 0 if n < 0. In other words ⊕n∈∆O(n) = A where ∆ = Z[1/d] or Q.

Proof. Suppose that q > 1 and f a non zero global section, then it consists of data of

local sections of O(n)(D+(Xi)) which glue (coincide) on the intersections O(n)(D+(Xi) ∩
D+(Xj)), and thus f can be considered an element of R[X

1/d∞
0 , . . . , X

1/d∞
q ](X0,...,Xq). Let 1 6

i 6 q, the fact that f ∈ Xni O(D+(Xi)) implies that f does not have X0 in its denominator.

Since, f ∈ Xn0O(D+(X0)), this implies f is homogeneous of degree n > 0 and f = 0 if n < 0.

Remark 4.2. A graded module ⊕n∈∆O(n) where ∆ = R>0 can be constructed as above,

for example, consider the homogeneous polynomial in two variable of degree
√
2,

(4.3) X
√
2 + Y

√
2 + X1/

√
2 · Y1/

√
2 + X.Y

√
2−1,

the a�ne pieces can be constructed by dehomogenisation. The degree with real numbers

is useful in homological mirror symmetry. Furthermore, localization can be done at mul-

tiplicatively closed sets such as {Xr}, r ∈ R>0. But the coherence of the associated ring

k[Xr], r ∈ R 0 cannot be shown using direct limits as done in Proposition 2.1.

4.2 Computing Cohomology

The global sections of degree 2 of Proj R[X, Y] are generated by X2, XY, Y2, where as the

global sections of degree 2 of Proj R[X1/d
∞
, Y1/d

∞
] or R are given as X2, Y2, XY, XriY

1−ri

for ri ∈ Z[1/d] ∩ (0, 1) or ri ∈ Q ∩ (0, 1), and are thus in�nitely many.

Theorem 4.3. Let S = R[X
1/d∞
0 , . . . , X

1/d∞
n ] and X = Proj S, then for any n ∈ Z[1/d]

1. There is an isomorphism S ' ⊕n∈∆H0(X,OX(n)).

2. Hn(X,OX(−n− 1)) is a free module of in�nite rank.

Proof. 1. Take the standard cover by a�ne sets U = {Ui}i where each Ui = D(Xi), i =

0, . . . , n. The global sections are given as the kernel of the following map

(4.4)
∏

SXi0
−→

∏
SXi0

Xi1
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The element mapping to the Kernel has to lie in all the intersections S = ∩iSXi
, as

given on [Hartshorne, 1977, pp 118] and is thus the ring S itself.

2. Hn(X,OX(−m)) is the cokernel of the map

(4.5) dn−1 :
∏
k

SX0···X̂k···Xn
−→ SX0···Xn

SX0···Xn
is a free R module with basis Xl00 · · ·Xlnn with each li ∈ Z[1/d]. The image of

dn−1 is the free submodule generated by those basis elements with atleast one li > 0.
Thus Hn is the free module with basis as negative monomials

(4.6) {Xl00 · · ·X
ln
n } such that li < 0

The grading is given by
∑
li and there are in�nitely many monomials with de-

gree −n − ε where ε is something very small and ε ∈ Z[1/d]. Recall, that in the

standard coherent cohomology there is only one such monomial X−1
0 · · ·X−1

n . For

example, in case of P2 we have X−1
0 X

−1
1 X

−1
2 but here in addition to above we also

have X
−1/2
0 X

−1/2
1 X−2

2 .

Recall that in coherent cohomology of Pn the dual basis of Xm0

0 · · ·Xmn
n is given by

X−m0−1
0 · · ·X−mn−1

n and the operation of multiplication gives pairing. We do not

have this pairing here, but we can pair Xm0

0 with X−m0

0 .

Theorem 4.4. Let S = R and X = Proj S, then for any n ∈ Q

1. There is an isomorphism S ' ⊕n∈∆H0(X,OX(n)).

2. Hn(X,OX(−n− 1)) is a free module of in�nite rank.

Proof. Same proof as above by replacing Z[1/d] with Q.

Theorem 4.5. Let S = R or R[X
1/d∞
0 , . . . , X

1/d∞
n ] and X = Proj R, then Hi(X,OX(m)) = 0

if 0 < i < n.

Proof. The proof from [Vakil, 2017, pp 474-475] is adapted to the case at hand, using the

convention that Γ denotes global sections. We will work with n = 2 for the sake of clarity,

the case for general n is identical. The �Cech complex is given in �gure 1.
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U0 U0 ∩U1

⊕ ⊕

0 P2 U1 U0 ∩U2 U0 ∩U1 ∩U2 0

⊕ ⊕

U2 U1 ∩U2

ΓX0
ΓX0,X1

⊕ ⊕

0 Γ ΓX1
ΓX0,X2

ΓX0,X1,X2
0

⊕ ⊕

ΓX2
ΓX1,X2

Figure 1: �Cech Complex for Pn,ad,perfK , n = 2

3 negative exponents The monomial Xa0

0 · X
a1

1 · X
a2

2 where ai < 0. We cannot lift it

to any of the coboundaries (that is lift only to 0 coe�cients). If K012 denotes the

coe�cient of the monomial in the complex (Figure 2), we get zero cohomology except

for the spot corresponding to U0 ∩U1 ∩U2.

0 0

⊕ ⊕

0 0 0 0 K012 0

⊕ ⊕

0 0

Figure 2: 3 negative exponents
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2 negative exponents The monomial Xa0

0 · X
a1

1 · X
a2

2 where two exponents are negative,

say a0, a1 < 0. Then we can perfectly lift to coboundary coming from U0∩U1, which
gives exactness.

0 K01

⊕ ⊕

0 0 0 0 K012 0

⊕ ⊕

0 0

Figure 3: 2 negative exponents

1 negative exponent The monomial Xa0

0 ·X
a1

1 ·X
a2

2 where one exponents is negative, say

a0 < 0, we get the complex (Figure 4). Notice that K0 maps injectively giving zero

cohomology group.

K0 K01

⊕ ⊕

0 0 0 K02 K012 0

⊕ ⊕

0 0

Figure 4: 1 negative exponent

Furthermore, the mapping in the Figure 5 gives Kernel when f = g which is possible

for zero only. Again giving us zero cohomology groups.

K0 f

⊕ ⊕

0 0 0 g f− g 0

⊕ ⊕

0 0

Figure 5: Mapping for 1 negative exponent

8



0 negative exponent The monomial Xa0

0 ·X
a1

1 ·X
a2

2 where none of the exponents is neg-

ative ai > 0, gives the complex Figure 6.

K0 K01

⊕ ⊕

0 KH0 K1 K02 K012 0

⊕ ⊕

K2 K12

Figure 6: 0 negative exponent

Consider the SES of complex as in Figure 7 . The top and bottom row come from the

1 negative exponent case, thus giving zero cohomology. The SES of complex gives

LES of cohomology groups, since top and bottom row have zero cohomology, so does

the middle.

0 0 K2 K02 ⊕ K12 K012 0

0 KH0 K0 ⊕ K1 ⊕ K2 K01 ⊕ K02 ⊕ K12 K012 0

0 KH0 K0 ⊕ K1 K01 0 0

Figure 7: SES of Complex

4.3 Kunneth Formula

We can produce a complex for Pn × Pm by taking tensor product of the corresponding
�Cech complex associated with each space, and by the Theorem of Eilenberg-Zilber we get

(4.7) Hi(Pn ×Pm,O(a, b)) =
i∑
j=0

Hj(Pn,O(a))⊗Hi−j(Pm,O(b)) a, b ∈ Z[1/d] or Q

Furthermore, we can de�ne a cup product following [Liu, 2002, pp 194] to get a homomor-
phism

(4.8) ^: Hp(Pn,O(a))×Hq(Pm,O(b))→ Hp+q(Pn ×Pm,O(a, b)) a, b ∈ Z[1/d] or Q
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5 Perfectoid Tate Algebra

Let K be a perfectoid �eld with ring of integers as oK which contains a pseudo uniformizer

$. Set d = p and R = oK in section 2.1 to obtain the ring oK[X
1/p∞
0 , . . . , X

1/p∞
n ]. This ring

completed with respect to uniformizer $ gives

(5.1) lim←−
i

oK[X
1/p∞
0 , . . . , X1/p

∞
n ] = oK

〈
X
1/p∞
0 , . . . , X1/p

∞
n

〉
The perfectoid tate algebra is obtained as

(5.2) Rn := K⊗oK oK
〈
X
1/p∞
0 , . . . , X1/p

∞
n

〉
= K

〈
X
1/p∞
0 , . . . , X1/p

∞
n

〉
In [Scholze, 2012] the ring Rn is obtained from perfection of Tate algebra K 〈X0, . . . , Xn〉,
the above approach is followed in [Bedi, 2019]. More concretly, Rn is a power series given

as

(5.3)

K
〈
X1/p

∞〉
=

∑
i∈Z[1/p]>0

aiX
i, ai ∈ K, lim

i→∞ |ai| = 0

K
〈
X
1/p∞
0 , . . . , X

1/p∞
1

〉
=

∑
j∈Z[1/p]n>0

ai1...inX
i1
0 · · ·X

in
n , aj ∈ K, lim

j→∞ |aj| = 0,

where j is a multi index representing the tuple (i1, . . . , in). The power series is simply a

rational degree avatar of Tate Algebras.

5.1 Perfectoid Disc

The projective perfectoid space is obtained by gluing together a�ne perfectoid spaces

and are constructed in [Scholze, 2012]. The case of P1,ad,perfK is done in great detail in

[Das, 2016], which closely follows the Tate algebra described in [Fresnel and van der Put, 2012,

Chapter 2]. The projective space for Tate analytic case is given on [Bosch et al., 2012, pp.

364] or [Fresnel and van der Put, 2012, pp. 85]. The corresponding perfectoid rings are

obtained by perfection of the underlying a�noid rings as shown in [Scholze, 2012]. The

underlying space is the standard polydisc given as

(5.4) Dn := {(x0, . . . , xn) ∈ Kn such that |xi| 6 1}.

Recall that in algebraic geometry two copies of a�ne line are glued together to get

the projective line. The rings corresponding to the a�ne lines are K[X] and K[1/X], these

embed into K[X, 1/X] as a natural injection. In the perfectoid case the rings correspond-

ing to A1,ad,perfK are K
〈
X1/p

∞〉
and K

〈
X−1/p∞〉

and these embed into K
〈
X1/p

∞
, X−1/p∞〉

corresponding to P1,ad,perfK .

The localisation on a�ne open subset is given as

(5.5) O
P

n,ad,perf
K

(Ui) = K

〈(
X0

Xi

)1/p∞
, . . . ,

(
Xi
∧

Xi

)1/p∞
, . . . ,

(
Xn

Xi

)1/p∞〉
,
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it is obtained as the perfection of the corresponding tate algebra. In the projective perfec-

toid, we are working with power series which have in�nitely many terms instead of �nitely

many as in the polynomial case.

The sheaf O(m) is de�ned similarly but instead of polynomials there is power series

with homogeneous elements of degm.

Theorem 5.1. 1. H0(Pn,ad,perfK ,O
P

n,ad,perf
K

(m)) is a free module of in�nite rank.

2. Hn(Pn,ad,perfK ,O
P

n,ad,perf
K

(−m)) for m > n is a free module of in�nite rank.

3. Hi(Pn,ad,perfK ,O
P

n,ad,perf
K

) = 0 if 0 < i < n.

Proof. Same as in the case of R[X
1/p∞
0 , . . . , X

1/p∞
1 ], but work with power series instead.

The proof from previous cases carry word for word since �niteness of polynomials is never

used in the proofs.
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