
HAL Id: hal-02265534
https://hal.science/hal-02265534v1

Preprint submitted on 10 Aug 2019 (v1), last revised 21 Aug 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate and Efficient Sums and Dot Products in Julia
Chris Elrod, François Févotte

To cite this version:
Chris Elrod, François Févotte. Accurate and Efficient Sums and Dot Products in Julia. 2019. �hal-
02265534v1�

https://hal.science/hal-02265534v1
https://hal.archives-ouvertes.fr


Accurate and Efficient Sums and Dot Products in
Julia

Chris Elrod
Eli Lilly

Email: elrodc@gmail.com

François Févotte
TriScale innov

Palaiseau, France
Email: ff@triscale-innov.com

Abstract—This paper presents an efficient, vectorized im-
plementation of various summation and dot product algo-
rithms in the Julia programming language. These implemen-
tations are available under an open source license in the
AccurateArithmetic.jl Julia package.

Besides naive algorithms, compensated algorithms are im-
plemented: the Kahan-Babuška-Neumaier summation algorithm,
and the Ogita-Rump-Oishi simply compensated summation and
dot product algorithms. These algorithms effectively double the
working precision, producing much more accurate results while
incurring little to no overhead, especially for large input vectors.

This paper also tries and builds upon this example to make
a case for a more widespread use of Julia in the HPC com-
munity. Although the vectorization of compensated algorithms
is no particularly simple task, Julia makes it relatively easy
and straightforward. It also allows structuring the code in
small, composable building blocks, closely matching textbook
algorithms yet efficiently compiled.

Index Terms—Vectorization, Compensated Algorithms, Julia
programming language

I. INTRODUCTION

Computing the dot product of two vectors and, perhaps to a
lesser extent, summing the elements of a vector, are two very
common basic building blocks for more complex linear algebra
algorithms. As such, any change in their performance is likely
to affect the overall performance of scientific computing codes;
any change in their accuracy is likely to induce a loss of
reproducibility in overall computed results.

Such a lack of reproducibility is becoming more and more
common as the performance of supercomputers increase, due
to a combination of multiple factors. First, an increase in
computational power allows for ever more expensive models
(such as, for example, finer grids for the discretization of
partial differential equations), which in turn generates larger
vectors, whose summation is often more ill-conditioned. Sec-
ond, the order in which operations are performed in modern
systems is far from being deterministic and reproducible:
vectorization, parallelism, and compiler optimizations are only
a few examples of possible causes for unexpected changes
in the execution order of a given program. Since floating-
point (FP) arithmetic is not associative, such non-determinism
in execution order entails non-reproducibilities in computed
results. For these reasons, accurate summation and dot product
algorithms are sometimes useful.

However, increasing the algorithms accuracy at the price
of an increase in their computing cost is not acceptable in

all cases. For programs that already use double precision (64-
bit FP numbers), increasing the precision is not an option,
since quadruple precision (128-bit FP numbers) remains too
expensive for most purposes. On the other hand, hitting the
memory wall means that many algorithms (and in particular
BLAS1-like algorithms such as summation and dot product)
are limited by the memory bandwidth in a wide range of vector
lengths on modern systems. In turn, this means that CPUs
are idling for a fraction of the computing time, which could
instead be used to perform additional operations for free, as
long as these operations do not involve additional memory
accesses. Much work has therefore been devoted to computing
sums and dot products in a way that is both fast and accurate,
leading to efficient algorithms implemented in a variety of
programming languages.

The work presented here comes from the observation1 that,
as of November 2018, no such algorithm was currently imple-
mented in an efficient way in the Julia programming language.
This paper describes an attempt made to implement accurate
summation and dot product algorithms in Julia, in a way that is
as efficient as possible, and in particular makes use of SIMD
vector units. All the code described here is available under
an open source license in the AccurateArithmetic.jl
package. This paper will also try to make the argument
that writing such efficient implementations of compensated
algorithms is a relatively easy and straightforward task thanks
to the nice properties of the Julia language.

Part II of this paper takes the viewpoint of computational
sciences and discusses some aspects related to the use of
vector instructions in fast implementations of summation al-
gorithms. Part III then takes the point of view of floating-
point arithmetic, and reviews a subclass of accurate summation
and dot product algorithms: compensated algorithms. Nothing
particularly new is presented in these parts, except maybe
some specific details about interactions between vectorization
and compensation (paragraph III-C), that have to be dealt with
in order to gain the full benefit of both worlds: speed and
accuracy. Part IV gives some insight about the Julia imple-
mentation of such compensated algorithms, and discusses the
performance obtained on some test systems. These results are
summarized in part V, along with some closing notes and
outlooks.

1https://discourse.julialang.org/t/floating-point-summation/17785

https://discourse.julialang.org/t/floating-point-summation/17785


Algorithm 1 Scalar, naive summation
1: {Initialization:}
2: a← 0

3: {Loop on vector elements:}
4: for i ∈ 1 : N do
5: a← a⊕ xi
6: end for

7: return a

II. THE COMPUTATIONAL SCIENCE POINT OF VIEW

For the sake of simplicity, let us only discuss here the case
of the summation algorithm:

sum(x) =
N∑
i=1

xi,

where x ∈ RN . Since a dot product can also be expressed as
a summation, no loss of generality is entailed by this choice:

dot(x, y) =
N∑
i=1

xi yi,

where x ∈ RN and y ∈ RN .
Algorithm 1 presents the most naive possible algorithm

for a summation, in its scalar version. An accumulator a
stores partial sums. During each loop iteration, a new vector
element xi is added to this accumulator. Note that this accu-
mulation is performed using the computer arithmetic addition
operation ⊕, which operates on FP numbers, rounds its result,
and is therefore only an approximation of the mathematical +
operator which operates on real numbers. In the remainder of
this paper, similar notations will be used for other operators,
such as 	 denoting the FP subtraction.

In Algorithm 2, this algorithm is refined to make use
of vector instructions. In the following, the system will be
assumed to efficiently implement SIMD instructions on vectors
(hereafter referred to as “packs” so that the “vector” term
can unambiguously refer to mathematical vectors such as the
operand x) of width W . For x86_64 architectures (which are
the main target of the algorithms described here), the AVX
extension for example supports efficiently operating on 256-
bit registers holding W = 4 double-precision FP numbers.
All variables denoted in bold font represent such packs, and
are meant to be stored and manipulated as SIMD registers.
The main loop in Alg. 2 (lines 4–8) now operates on a SIMD
accumulator, in which W vector elements are added at once
at each iteration. The number of iterations is therefore divided
by W . In case the vector length is not a multiple of W , a
remainder has to be accounted for. There are multiple ways of
doing this; in this example, the remaining elements are added
in a scalar loop. Before doing this, the SIMD accumulator has
to be reduced to a scalar: this is the purpose of the vsum
function, which sums all W components of a SIMD register:

vsum(a) = a[1]⊕ a[2]⊕ . . .⊕ a[W ],

Algorithm 2 Vectorized, naive summation
1: {Initialization:}
2: a← 0

3: {Loop on full packs:}
4: for j ∈ 1 :

⌊
N
W

⌋
do

5: i←W (j − 1) + 1
6: p← (xi, xi+1, xi+2, xi+3)
7: a← a⊕ p
8: end for

9: {Reduction of SIMD accumulator:}
10: a← vsum(a)

11: {Loop on remaining elements:}
12: for j ∈W

⌊
N
W

⌋
+ 1 : N do

13: a← a⊕ xi
14: end for

15: return a

where a[i] represents the i-th element in a SIMD pack a.

Although such an implementation is already much more
complex than its scalar version, it is not enough to obtain op-
timal performance on modern hardware. Because of the loop-
carried dependency of the accumulator and instruction latency
in superscalar hardware architectures, full performance can
only be obtained if multiple instructions can be running at the
same time. This means breaking that sequential dependency
between one iteration and the next; a traditional way to do that
consists in partially unrolling the main loop. An illustration
of this technique is given in Algorithm 3, where the loop is
unrolled twice (U = 2). A consequence of this technique is
that there are now as many SIMD accumulators as the level of
partial unrolling U (2 in this case). These accumulators need
to be summed together and reduced before proceeding with
the accumulation of remaining scalar elements.

If the number of packs
⌊
N
W

⌋
is not a multiple of U , an

additional type of remainder needs to be handled: the full
packs that were not handled in the partially unrolled loop. In
the algorithm presented here, SIMD accumulator a1 is used
to accumulate these.

Figure 1 illustrates the gains to be expected from such
a technique: for various vector sizes, the total summation
time (normalized by the vector size) is plotted against the
unrolling level. The parameter given in the x-axis is the base-2
logarithm of the unrolling level U . The figure shows that a
value log2(U) = 3 seems to be optimal (on this particular
system): this corresponds to unrolling the loop U = 23 = 8
times. Depending on the vector size, the gains achieved can
be as large as a 3× speed-up w.r.t. the version without any
unrolling (log2(U) = 0).



Algorithm 3 Vectorized, naive summation with partial un-
rolling (U = 2 in this example)

1: {Initialization:}
2: a1 ← 0
3: a2 ← 0

4: {Loop on full packs, unrolled twice:}
5: for j ∈ 1 :

⌊
N
2W

⌋
do

6: i1 ← 2W (j − 1) + 1
7: p1 ← (xi1 , xi1+1, xi1+2, xi1+3)
8: a1 ← a1 ⊕ p1

9: i2 ← 2W (j − 1) +W + 1
10: p2 ← (xi2 , xi2+1, xi2+2, xi2+3)
11: a2 ← a2 ⊕ p2

12: end for

13: {Loop on remaining full packs:}
14: for j ∈ 2

⌊
N
2W

⌋
+ 1 :

⌊
N
W

⌋
do

15: i←W (j − 1) + 1
16: p← (xi, xi+1, xi+2, xi+3)
17: a1 ← a1 ⊕ p
18: end for

19: {Reduction of SIMD accumulators:}
20: a1 ← a1 ⊕ a2
21: a← vsum(a1)

22: {Loop on remaining elements:}
23: for j ∈W

⌊
N
W

⌋
+ 1 : N do

24: a← a⊕ xi
25: end for

26: return a

0 1 2 3 4

0.1

0.2

0.3

0.4

Performance of naive summation

log2(U)

T
im

e 
[n

s/
el

em
]

10^2 elems
10^3 elems
10^4 elems
10^5 elems
10^6 elems

Fig. 1: Performance of a vectorized, naive summation as a
function of the unrolling level. Computing times are normal-
ized by the vector size.

III. THE ARITHMETIC POINT OF VIEW

A. Accuracy and condition number

The naive summation algorithm presented above produces
results of relatively poor quality when used on ill-conditioned
vectors. Throughout this paper, the computer arithmetic will
be assumed to follow the IEEE-754 standard [6]. Under this
hypothesis, the accuracy of the naive summation algorithm is
given by ∣∣∣∣∣s̃naive(x)−

N∑
i=1

xi

∣∣∣∣∣ = KN ε

N∑
i=1

|xi|,

where s̃(x) denotes the result of naive summation on vector
x ∈ RN , KN is a constant depending only on the vector
size N , and ε is the machine epsilon for the FP format used
in the computation. All examples in this paper use double
precision (known as binary64 in IEEE-754), for which
ε = 2−53 ' 1.11× 10−16. In other words, the relative error
on the naive summation results verifies

εnaive(x) =

∣∣∣∣∣ s̃naive(x)−
∑N

i=1 xi∑N
i=1 xi

∣∣∣∣∣ = KN C(x) ε, (1)

where the condition number of the summation was introduced:

C(x) =

∑N
i=1 |xi|∑N
i=1 xi

.

Similar results can be obtained for the dot product. Fol-
lowing the line of reasoning introduced in [12], Figure 2
plots the relative error as a function of the condition num-
ber, in a log-log scale. Randomly generated input vectors
of sizes ranging from 100 to 110 are produced by the
algorithm described in [12] to feature condition numbers
ranging from 1 to 1045. In the figure, errors lower than ε
are arbitrarily set to ε; conversely, when the relative error is
more than 100% (i.e no digit is correctly computed anymore),
the error is capped there in order to avoid affecting the
scale of the graph too much. In Figure 2a, the “pairwise”
line describes the accuracy of Julia’s standard summation
function (Base.sum), which uses a pairwise summation
algorithm; the “naive” line corresponds to a naive summation
implementation similar to the one described in Alg. 3 and
available as AccurateArithmetic.sum_naive. Both
algorithms behave as described by Equation (1): they start
losing accuracy as soon as the condition number increases,
computing only noise when the condition number exceeds
1/ε ' 1016. A very similar behavior is observed in Fig-
ure 2b for the two naive dot product implementations:
“blas” denotes Julia’s default LinearAlgebra.dot func-
tion, which internally uses OpenBLAS’s ddot implementa-
tion [13]; “naive” denotes a naive dot product implementation
developed along the lines of Algorithm 3 and available as
AccurateArithmetic.dot_naive.



1010 1020 1030 1040 

10-15 

10-10 

10-5 

100 

Error of summation algorithms

Condition number

R
el

at
iv

e 
er

ro
r

pairwise
naive
oro
kbn

(a) Summation

1010 1020 1030 1040 

10-15 

10-10 

10-5 

100 

Error of dot product algorithms

Condition number

R
el

at
iv

e 
er

ro
r

blas
naive
oro

(b) Dot product

Fig. 2: Comparison of the accuracy of various summation and dot product algorithms, as a function of the condition number

B. Accurate sum and dot product

As said above, much work has been devoted to developing
more accurate and/or reproducible summation and dot product
algorithms, of which an extensive survey would not fit the
format of this document. For the sake of simplicity, let us
consider here that a large fraction of accurate summation
algorithms leverage a common and very simple idea: use a
larger accumulator to store partial sums. In its crudest variant,
this might consist in using mixed precision, where a 64-bit FP
number accumulates partial results in the summation of 32-bit
floats. More elaborate algorithms consider longer fixed-point
accumulators (superaccumulators), capable of representing the
result of every possible sum of FP numbers of a given format;
this is for example the case in ExBLAS [5]. The xsum
algorithm [10] is a variation on this concept. Algorithms such
as those of ReproBLAS [4] use smaller accumulators, which
focus on making the result of the summation independent of
the order of the summands, but also feature increased accuracy
w.r.t. naive summation.

In this work, we focus on a family of so-called “compen-
sated algorithms”, where the error introduced by each accumu-
lation is computed using “error-free transforms” (EFTs), and
re-introduced later in the computation. As an example, Alg. 4
describes the fast_two_sum algorithm [3], which takes two
FP numbers (a, b) as inputs and returns two FP numbers (x, e)
such that {

x = a⊕ b,
x+ e = a+ b.

As such, e can be considered as the round-off error introduced
in the FP addition a + b. Note that in the particular case
of fast_two_sum, operands a and b have to be sorted by
decreasing magnitude in order for the EFT to be correct.

The compensated summation algorithm due to Kahan,
Babuška and Neumaier (KBN) [1], [7], [11] is probably
the most famous in this category. A scalar implementa-

Algorithm 4 fast_two_sum error-free transform
Require: (a, b) ∈ F2, such that |a| ≥ |b|
Ensure: x = a⊕ b and x+ e = a+ b
x← a⊕ b
e← (a	 x)⊕ b

Algorithm 5 two_sum error-free transform
Require: (a, b) ∈ F2

Ensure: x = a⊕ b and x+ e = a+ b
x← a⊕ b
y ← x	 a
e← (a	 (x	 y))⊕ (b	 y)

tion of the KBN algorithm in Julia is available in the
KahanSummation.jl package. Ogita, Rump and Oishi
showed in [12] that the KBN algorithm could be re-
interpreted as a “cascaded summation” (Alg. 6) based on the
fast_two_sum EFT. Since fast_two_sum inputs need
to be sorted by magnitude in order for the transform to be
error-free, Ogita, Rump and Oishi propose to build a similar
cascaded summation based on the two_sum EFT [8] (Alg. 5),
whose practical implementation does not require any test or
branch to sort the inputs and should therefore be more suitable
for efficient vectorization. This two_sum-based cascaded
summation will be referred to as the ORO algorithm in the
following. Compensated summation algorithms built with this
technique (as well as compensated dot product algorithms built
in a similar way) can be shown to produce results that are as
accurate as if they had been computed using a naive algorithm
with twice the working precision, then rounded:

εcomp(x) = KN C(x) ε2. (2)

For the sake of completeness, let us mention that EFTs
can also be used to build Floating-Point Expansions (FPEs),
in which a higher-precision number is represented as the



Algorithm 6 Cascaded summation.
EFT_sum can be either fast_two_sum (which gives the
KBN algorithm) or two_sum (which gives the ORO summa-
tion algorithm)

1: {Initialization:}
2: (σ, τ)← (0, 0)

3: {Loop on vector elements:}
4: for i ∈ 1 : N do
5: (σ, e)← EFT_sum(σ, xi)
6: τ ← τ ⊕ e
7: end for

8: return σ ⊕ τ

(unevaluated) sum of multiple FP numbers. FPEs of size 2,
also known as double-double [2], are at the core of the
implementation of the XBLAS library [9] whose algorithms
are very similar in spirit to Ogita, Rump and Oishi’s cascaded
summation, except in the way lower-order terms are handled.

C. Vectorized implementation of compensated algorithms

The remainder of this paper concentrates on the efficient,
vectorized implementation of compensated algorithms such
as those introduced by Ogita, Rump and Oishi. Looking at
the cascaded summation algorithm 6, one can observe the
similarity to a naive summation (Alg. 1):

• the single accumulator a (Alg. 1, line 2) is replaced by
an EFT-based accumulator (σ, τ) (Alg. 6, line 2)

• the accumulation operation itself (Alg. 1, line 5) is
replaced by the use of an EFT to accumulate high-order
terms in σ and compute an error (Alg. 6, line 5) followed
by a simple accumulation of low-order terms in τ (line 6).

Nevertheless, a few questions arise when trying to vectorize
such an algorithm. Looking at the efficiently vectorized version
of the naive summation (Alg. 3), it appears that there are quite
a few additional places where intermediate results are summed:
(acc+pack) lines 8, 11 and 17: addition of a pack of vector

elements into a SIMD accumulator;
(acc+acc) line 20: addition of a SIMD accumulators into

another SIMD accumulator;
(vsum(acc)) line 21: sum of all elements of a SIMD accumu-

lator, yielding the initial value of a scalar accumulator;
(acc+elem) line 24: addition of a (scalar) vector element to a

scalar accumulator.
While summing an ill-conditioned vector, a catastrophic

cancellation might occur in any of these sums, so that special
care must be taken to compensate for errors at all these
locations so that the overall accuracy of the compensated
algorithm is not lost. The (acc+elem) accumulation type is
exactly the same as what appears in a standard (scalar)
cascaded summation, and should therefore be handled in the
way described by Alg. 6. The (acc+pack) accumulation is the
straightforward SIMD generalization of this operation, and can

Algorithm 7 Addition of two EFT-based SIMD accumulators
In: two EFT-based SIMD accumulators

a1 = (σ1, τ 1) and a2 = (σ2, τ 2)
Out: EFT-based SIMD accumulator representing a1 ⊕ a2
(σ, e)← EFT_sum(σ1,σ2)
τ ← (τ 1 ⊕ τ 2)⊕ e
return (σ, τ )

Algorithm 8 Summation of an EFT-based accumulator
In: EFT-based SIMD accumulator a = (σ, τ ) of width W
Out: EFT-based scalar accumulator a = vsum(a)
(σ, τ)← (0, 0)
for i ∈ 1 :W do
(σ, e)← EFT_sum(σ,σ[i])
τ ← (τ ⊕ τ [i])⊕ e

end for
return (σ, τ)

be handled in the same way, provided that vectorized EFT
implementations are available.

In order to keep the “spirit” of the cascaded summation
algorithm, we propose to handle the two remaining accumu-
lation types (acc+acc) and (vsum(acc)) using algorithms 7
and 8 respectively, in such a way that high-order terms are
always summed using an EFT, whose error term is simply
accumulated with the low-order terms.

The soundness of this approach can be assessed by looking
at the relative error of the results produced by vectorized
implementations of the compensated algorithms. Looking at
Figure 2a, it is clear that both compensated algorithms behave
as predicted, with relative errors following (2): KBN and ORO
give the exact same results, and only start losing accuracy
for condition numbers in the order of 1/ε ' 1016, comput-
ing meaningless results when the condition number reaches
1/ε2 ' 1032. The compensated dot product algorithm labeled
“dot oro” on figure 2b re-uses the same vectorized cascaded
summation algorithm, using an additional two_prod EFT
to compute error terms for the elementwise product of the
two vectors, as proposed in [12]. Again, this compensated
dot product implementation behaves accordingly to the theory,
with relative errors following (2).

IV. JULIA IMPLEMENTATION & BENCHMARKING

A. Implementation in Julia

The full Julia implementation of all algorithms described
here (naive and compensated versions of the summation and
dot product) is available under an open source license in the
AccurateArithmetic.jl package2. Any reader interest-
ing in the details can therefore look at the code, and only some
interesting features will be highlighted here. While doing so,
we will also try and make the case that the Julia programming

2https://github.com/JuliaMath/AccurateArithmetic.jl

https://github.com/JuliaMath/AccurateArithmetic.jl


Listing 1 two_sum implementation in Julia
1 function two_sum(a::T, b::T) where {T}
2 Pirate.@explicit
3

4 x = a + b
5 y = x - a
6 e = (a - (x - y)) + (b - y)
7 return x, e
8 end

language is well suited to easily develop efficient implemen-
tation of such algorithms. In particular, it should be noted
that the actual implementation closely follows the algorithmic
description made here, and that all individual algorithms can
be implemented in their own separate functions, that the Julia
compiler will then assemble in an efficient way. This makes
it easy to maximize code re-use, as well as to structure the
code as building blocks, which will later allow for an easy
exploration of new or unusual combinations of elementary
components.

As a first example, Listing 1 gives the Julia implementation
of the two_sum EFT (Alg. 5). This implementation, which
is a nearly direct translation from the textbook algorithm,
works for any type of inputs, including SIMD packs. The
Pirate.@explicit macro at the beginning arranges for
elementary operators such as + or - to be vectorized when
they operate on SIMD packs, using the SIMDPirates.jl
package3. Special care is taken to ensure that no further
optimization is performed (such as fusing multiplications and
additions) which would potentially break the EFT: this is the
meaning of @explicit.

As a second, more complicated example, Listing 2 shows
the partially unrolled loop corresponding to lines 4–12 in
Alg. 3. Again, although the problem at hand is much more
complicated, the Julia implementation closely follows the
algorithmic description. The addition of a SIMD pack to an
accumulator has been abstracted away in an add! function,
which can have specific implementations (methods, in the Julia
terminology) for each accumulator type. This way, the same
function implementing Alg. 3 can be used as a building block
for all kinds of summation algorithms (naive or compensated).
Following the same kind of logic, the mechanism loading
SIMD packs is designed in such a way that it can handle
a 1-tuple containing the input vector in the case of the sum-
mation, but also load packs from two input vectors contained
in a 2-tuple in the case of the dot product.

B. Performance evaluation

Although the implementation makes use of small, com-
posable functional units, the Julia compiler specializes and
optimizes the program for the specific combination of building
blocks being used, so as to emit very efficient code.

Figure 3 plots, for various implementations, the run time
(renormalized per element) against the vector size. These

3https://github.com/chriselrod/SIMDPirates.jl

Listing 2 Partial unrolling of the vectorized loop
1 # ...
2 px = pointer.(x)
3 offset = 0
4

5 # Main loop
6 for j in 1 : N÷($W*$U)
7

8 # Unroll U times
9 Base.Cartesian.@nexprs $U i -> begin

10

11 # Load a pack of width W and type T
12 # starting at position (px+offset)
13 p_i = vload.(Vec{$W,$T}, px.+offset)
14

15 # Add pack p_i into accumulator acc_i
16 add!(acc_i, p_i...)
17

18 # Update offset for the next pack
19 offset += $W * $sizeT
20 end
21 end
22

23 # ...

results have been obtained on a system featuring an Intel Core
i5 6200U, which is a typical mobile AVX2-enabled Skylake-
generation CPU. It can be observed that the naive and pairwise
summation implementations perform identically. Once vectors
start having significant sizes (more than a few hundreds
of elements), these implementations are memory bound, as
expected of a typical BLAS1 operation. This explains why
significant decreases in the performance can be observed when
the vector can’t fit into the L2 cache (around 30k elements,
or 256kB on the test system) or the L3 cache (around 400k
elements, or 3MB on the test system).

The ORO algorithm, when implemented with a suitable
unrolling level (22 = 4 unrolled iterations in this case), is
CPU-bound when vectors fit inside the cache. However, when
vectors are too large to fit into the L3 cache, the imple-
mentation becomes memory-bound again, which means that
it achieves the same performance as the standard summation.
In other words, the improved accuracy is free for sufficiently
large vectors. For smaller vectors, the accuracy comes with a
slow-down no larger than 3× for vectors which fit in the L2
cache.

The KBN algorithm performs less well on this system:
although the fast_two_sum EFT uses fewer operations than
two_sum, the need for a test sorting the arguments by mag-
nitude makes it less suitable for a vectorized implementation
on this system.

The same kind of conclusion can be reached for the dot
product. In order to make an apples-to-apples comparison,
the use of threads has been disabled in OpenBLAS. Naive
implementations are always memory bound (even the L1 cache

https://github.com/chriselrod/SIMDPirates.jl


102 103 104 105 106 107 108 

0.5

1.0

1.5

2.0

Performance of summation implementations

Vector size

T
im

e 
[n

s/
el

em
]

pairwise
naive
oro
kbn

(a) Summation

102 103 104 105 106 107 

0.5

1.0

1.5

2.0

2.5

Performance of dot product implementations

Vector size

T
im

e 
[n

s/
el

em
]

blas
naive
oro

(b) Dot product

Fig. 3: Comparison of the performance of various summation and dot product implementations (Intel Core i5 6200U)

boundary can be seen in this case). The ORO compensated
implementation incurs a slow-down no larger than 7.3× in
the L1 cache, which decreases to around 2.2× in the L2 and
L3 cache, and only 7% outside the cache.

The same tests can be performed on other type of ar-
chitectures, and lead to different conclusions. For example,
Figure 4 presents the results obtained on a system powered
by an Intel Xeon Silver 4110 CPU, of the same Skylake
generation, but supporting the AVX512 extension. On this
system, compensated summation algorithms achieve the same
performance as naive algorithms even in the L3 cache. It is also
interesting to note that the KBN algorithm performs better than
ORO here, which can probably be attributed to this generation
of CPUs better handling of the branches in fast_two_sum.

V. CLOSING NOTES

In summary, the work presented here tries to bring into the
Julia ecosystem efficient, vectorized implementations of state-
of-the-art compensated summation algorithms. All the code
described here is available as an open source Julia package on
github:

https://github.com/JuliaMath/AccurateArithmetic.jl
The family of algorithms implemented here is described

in [12]: the Kahan-Babuška-Neumaier summation algorithm,
and the simply compensated Ogita-Rump-Oishi summation
and dot product algorithms. In accordance to the theory, these
algorithms are observed to effectively double the floating-point
precision (yielding, for double-precision inputs, a result as
accurate as if it had been naively computed using FP numbers
with a 106-bit mantissa).

From a performance viewpoint, these implementations are
shown to incur no penalty with respect to naive algorithms, as
soon as input vectors are larger than the L3 cache. For smaller
vectors fitting in the L2 cache, the slow-down is no larger
than 3× for the summation, and 2.2× for the dot product. As
observed by Ogita, Rump and Oishi, the branches of the KBN

algorithm make it a bit less efficient than the ORO algorithm
on AVX2 architectures. However, benchmarks on AVX512
systems suggest that this might not always be the case, so
that compensated algorithms based on the fast_two_sum
EFT might have to be reconsidered.

The Julia implementation provided here is very compact and
modular, which makes it a very suitable platform for further
experiments. Future work might include implementations of
other types of accurate summation and dot product algorithms,
such as those based on fixed-point-like accumulators and
used in other software packages such as ExBLAS, XBLAS,
ReproBLAS or xsum.

An other potential direction for future work would be to
focus on improving the accuracy of single- or half-precision
algorithms (for example via the use of mixed precision) or to
develop similar implementations specifically targeting GPUs.

REFERENCES

[1] Ivo Babuška. Numerical stability in mathematical analysis. In Proceed-
ings of the IFIP Conference, Amsterdam, 1968.

[2] David H. Bailey. A fortran 90-based multiprecision system. ACM Trans.
Math. Softw., 21(4):379–387, December 1995.

[3] T.J. Dekker. A floating-point technique for extending the available
precision. Numerische Mathematik, 18:224–242, 1971.

[4] J. Demmel and H. D. Nguyen. Parallel reproducible summation. IEEE
Transactions on Computers, 64(7):2060–2070, July 2015.

[5] Roman Iakymchuk, Sylvain Collange, David Defour, and Stef Graillat.
ExBLAS: Reproducible and accurate BLAS library. In Proceedings of
the Numerical Reproducibility at Exascale (NRE2015) workshop held
as part of the Supercomputing Conference (SC15), Austin, TX, USA,
November 2015.

[6] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages
1–70, 2008.

[7] William Kahan. Further remarks on reducing truncation errors. Com-
munications of the ACM, 8(1), January 1965.

[8] Donald Knuth. The Art of Computer Programming: Seminumerical
Algorithms, volume 2. Addison-Wesley, 1969.

[9] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo
Hida, Jimmy Iskandar, William Kahan, Suh Y. Kang, Anil Kapur,
Michael C. Martin, Brandon J. Thompson, Teresa Tung, and Daniel J.
Yoo. Design, implementation and testing of extended and mixed
precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, June 2002.

https://github.com/JuliaMath/AccurateArithmetic.jl


102 103 104 105 106 107 108 
0

1

2

3

4

Performance of summation implementations

Vector size

T
im

e 
[n

s/
el

em
]

pairwise
naive
oro
kbn

(a) Summation

102 103 104 105 106 107 
0

1

2

3

4

Performance of dot product implementations

Vector size

T
im

e 
[n

s/
el

em
]

blas
naive
oro

(b) Dot product

Fig. 4: Comparison of the performance of various summation and dot product implementations (Intel Xeon Silver 4110)

[10] Radford M. Neal. Fast exact summation using small and large superac-
cumulators. Technical report, University of Toronto, May 2015.

[11] Arnold Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summa-
tion endlicher Summen. ZAMM (Zeitschrift für Angewandte Mathematik
und Mechanik), 54:39–51, 1974.

[12] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum
and dot product. SIAM J. Sci. Comput., 26:1955–1988, 2005.

[13] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem:
automatically generate high performance dense linear algebra kernels
on x86 cpus. In SC’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2013.

APPENDIX
REPRODUCIBILITY RESOURCES

The AccurateArithmetic.jl Julia package imple-
ments all algorithms described in this paper. It also contains
everything needed to reproduce the results shown in this paper.
Below is a full list of the actions to be taken by anyone
wanting to try and reproduce the results on their own Linux
system. Commands prefixed with a “sh>” prompt are to be
entered in a shell; commands prefixed with a “julia>”
prompt are to be entered in a Julia interactive session. The
Julia programming language should have been downloaded
and installed beforehand from:

https://julialang.org/downloads/
Any version above v1.0.0 should work; the results presented

in this paper have been obtained using Julia v1.1.0.

Be aware that the last step in this procedure might
take a few hours to complete. Afterwards, all mea-
surements should be available as JSON files in the
AccurateArithmetic.jl/test directory. All figures
showed in this paper should be available as PDF files in the
same directory.

Should anyone actually run this procedure, the authors
would really like to get a copy of their results, so as to gain
more insight about the behavior of compensated algorithms on
a variety of systems.

# Get the repository
sh> cd /tmp
sh> git clone --branch paper-correctness-2019 \
https://github.com/JuliaMath/AccurateArithmetic.jl.git

sh> cd AccurateArithmetic.jl/test

# Install required dependencies
# and run the test suite
sh> julia --project
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.test()
julia> exit()

# Run the performance tests
sh> julia --project -O3 perftests.jl

https://julialang.org/downloads/

	Introduction
	The computational science point of view
	The arithmetic point of view
	Accuracy and condition number
	Accurate sum and dot product
	Vectorized implementation of compensated algorithms

	Julia implementation & benchmarking
	Implementation in Julia
	Performance evaluation

	Closing notes
	References
	Appendix: Reproducibility resources

