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An inexpensive Parametrized Background Data-Weak
approach for time-dependent problems∗

Amina Benaceur†‡§

Abstract

We propose a contribution that combines model reduction with data assimilation. A dedi-
cated Parametrized Background Data-Weak (PBDW) [1] approach has been introduced in the
literature so as to combine numerical models with experimental measurements. We extend the
approach to a time-dependent framework by means of a POD-greedy reduced basis construction.
Since the construction of the basis is performed offline, the algorithm addresses the time depen-
dence of the problem while the time stepping scheme remains unchanged. Moreover, we devise
a new algorithm that exploits offline state estimates in order to diminish both the dimension
of the online PBDW statement and the number of required sensors collecting data. The idea is
to exploit in situ observations in order to update the best-knowledge model, thereby improving
the approximation capacity of the background space.

1 Introduction

State estimation is a task in which the quantity of interest is the ‘true’ state utrue of a physical
system over a space or space-time domain of interest. However, numerical prediction based on
a given mathematical model may be deficient due to limitations imposed by available knowledge.
In other words, the mathematical model can only take anticipated or parametric uncertainty into
account. A more accurate prediction requires the incorporation of experimental observations in order
to accommodate unanticipated or non-parametric uncertainty.

The Parameterized-Background Data-Weak (PBDW) formulation for variational data assimila-
tion is a data-driven reduced order modeling approach that was initially devised in [1] so as to merge
prediction by model with prediction by data. The PBDW approach has been developed in order to
estimate the true state utrue for several configurations of a physical system. Supposing that the true
state utrue depends on some unknown parameter ω in an unknown parameter set Θ that represents
the unanticipated uncertainty, the goal is to account for the dependency of the true state utruepωq on
uncertain parameters by means of the sole knowledge of data. In this paper, whenever the context
is unambiguous, the parameter ω is dropped.

The formulation combines a so-called ‘best-knowledge’ (bk) model represented by a parametrized
partial differential equation (PDE) and experimentally observable measurements. The use of data
in the PBDW approach is fundamental not only to reconstruct the quantities of interest, but also to
correct the possible bias in the mathematical bk model. The PBDW approach provides the following
attractive features:
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• The PBDW variational formulation simplifies the construction of a priori error estimates which
can guide the optimal choice of the experimental observations.

• The PBDW formulation uses a bk model that accommodates anticipated uncertainty associated
with the parameters of the model in a computationally convenient way. This bk model is
typically built using model-order reduction techniques.

Note that the PBDW formulation does not explicitly include the equations of the bk model, but
only a finite collection of solutions to the bk model. Thus, another important feature of the PBDW
approach is its non-intrusiveness. In fact, once the subspace ZN has been generated, we no longer
need the bk model.

The PBDW approach has been subject to active research in recent years. It has been used
for several applications. For instance, [2] applies the PBDW for structural health monitoring; [3]
proposes a non-intrusive PBDW with application to urban dispersion modeling frameworks; and [4, 5]
exploit the generalized empirical interpolation method [6, 7, 8] for efficient sensor placement in
nuclear reactors. As a further step towards efficient industrial implementation, [9] develops a PBDW
approach based on noisy observations and [10] introduces an adaptive PBDW approach with a user-
defined update space. Moreover, [11] tackles the case of nonlinear problems, which is coupled with the
additional issue of noisy observations in [12]. Further work regarding the selection of experimental
observation functionals has been conducted in [13], whereas [14] proposes a localization procedure
that treats the uncertainty related to boundary conditions. Finally, [15] proposes optimal choices
for the reduced models and [16] addresses optimal measurements in state estimation using reduced
models.

The PBDW approach was devised in [1] for steady problems. To our knowledge, the related
research in the literature remains in the steady framework. In this paper, we propose, as initi-
ated in [17], an extension of the PBDW approach to time-dependent state estimation. Two main
contributions to the standard PBDW approach are presented:

• We build appropriate background spaces for the time-dependent setting using the POD-greedy

algorithm [18].

• We propose a modified offline stage so as to alleviate its computational cost which can be sizable
in a time-dependent setting. The new offline stage allows for a better computational efficiency
owing to a smaller online system. Moreover, it achieves substantial cost savings associated with
data collection since it diminishes the number of observation sensors needed online. Note that
this modified offline stage can also be applied to a steady framework.

This paper is organized as follows. In Section 2, we set the notation and recall the standard PBDW
approach for steady problems as introduced in [1]. The reader familiar with the material can skip this
section and jump directly to Section 3, where we extend the PBDW approach to the time-dependent
framework. In Section 4, we discuss the offline stage and present the suggested algorithm in detail.
Finally, in Section 5, we illustrate our method by numerical results.

2 Parametrized-Background Data-Weak (PBDW) approach

In this section, we first introduce the notation that will be used throughout the paper. Here, we
focus on a time-independent setting. We consider a spatial domain (open, bounded, connected
subset) Ω � Rd, d ¥ 1, with a Lipschitz boundary. We introduce a Hilbert space U composed of
functions defined over Ω. The space U is endowed with an inner product p�, �q and we denote by } � }
the induced norm; U consists of functions tw : Ω Ñ R | }w}   8u. To fix the ideas, we assume that
H1

0 pΩq � U � H1pΩq, and we denote the dual space of U by U 1. The Riesz operator RU : U 1 Ñ U
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satisfies, for each ` P U 1, and for all v P U , the equality pRUp`q, vq � `pvq. For any closed subspace
Q � U , the orthogonal complement of Q is defined as QK :� tw P U | pw, vq � 0, @v P Qu. Finally,
we introduce a parameter set P � Rp, p ¥ 1, whose elements are generically denoted by µ P P .

2.1 Best-knowledge (bk) model

The first source of information we shall afford ourselves in the PBDW approach is a so-called ‘best-
knowledge’ (bk) mathematical model in the form of a parameterized PDE posed over the domain
Ω (or more generally, over a domain Ωbk such that Ω � Ωbk). Given a parameter value µ in the
parameter set P , we denote the solution to the bk parameterized PDE as ubkpµq P U . Then, we
introduce the manifold associated with the solutions of the bk model Mbk :� tubkpµq | µ P Pu � U .
In ideal situations, the true solution utrue is well approximated by the bk manifold, i.e., the model
error

εbk
modpu

trueq :� inf
zPMbk

}utrue � z}, (1)

is very small.
We introduce nested background subspaces Z1 � . . . � ZN � . . . � U that are generated to

approximate the bk manifoldMbk to a certain accuracy. These subspaces can be built using various
model-order reduction techniques, for instance, the Reduced Basis method. Note that the indices
of the subspaces conventionally indicate their dimensions. To measure how well the true solution is
approximated by the background space ZN , we define the quantity εbk

N pu
trueq :� infzPZN

}utrue � z}.
When N is large enough, we have εbk

N pu
trueq � εbk

modpu
trueq. Moreover, we introduce the reduction error

εbk
red,N :� sup

uPMbk

inf
zPZN

}u � z}, which encodes the loss of accuracy caused by solving the bk model in

the N -dimensional background space ZN . Figure 1 illustrates both the model and reduction errors,
where ΠZN

putrueq and ΠMbkputrueq are the closest points to utrue in ZN and Mbk, respectively. Note
that ΠZN

is the U -orthogonal projection onto ZN . The background space ZN can be interpreted as a

Figure 1: Model and reduction errors.

prior space that approximates the bk manifold which we hope approximates well the true state utrue.
As previously alluded to, utrue rarely lies in Mbk in realistic engineering study cases.

2.2 Unlimited-observations statement

Let us first describe an ideal situation. The unlimited-observations PBDW statement reads: find
pu�N , z

�
N , η

�
Nq P U � ZN � U such that

pu�N , z
�
N , η

�
Nq � arginf

uNP U
zNP ZN

ηNP U

}ηN}
2, (2)
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subject to

puN , vq � pηN , vq � pzN , vq, @v P U , (3a)

puN , φq � putrue, φq, @φ P U . (3b)

A direct consequence of (3a) is that
u�N � z�N � η�N , (4)

whereas (3b) implies that u�N � utrue. We will be using the following terminology:

• State estimate: The goal of the PBDW statement (2)-(3) being to estimate the true state
utrue, the first component of its solution, u�N , is called the ‘state estimate’. In the present ideal
situation of unlimited observations, the state estimate coincides with the true state.

• Deduced background estimate: The first contribution z�N in (4) lies in the background
space ZN and is deduced from the PBDW statement, which takes the observations into account.
Hence, z�N is called the ‘deduced background estimate’.

• Update estimate: The second contribution η�N in (4) is brought by the inclusion of the
observations in the PBDW statement. The observations supplement the bk model. Thus, η�N
is called the ‘update estimate’.

The deduced background estimate z�N can only represent anticipated uncertainty. Since the bk

mathematical model of a physical system is often deficient, one cannot realistically assume that
the state estimate u�N of utrue lies completely in the bk manifold (or in the background space ZN).
Therefore, the update estimate η�N is meant to cure the deficiency of the bk model by capturing
unanticipated uncertainty. In other words, the key idea of the PBDW statement (2) is to search for
the smallest correction to the bk manifold. The following result is proved in [1].

Proposition 1 (Unlimited observations). The solution of (2)-(3) is given by

u�N � utrue, z�N � ΠZN
putrueq, η�N � ΠZK

N
putrueq. (5)

Proof. We have already seen that u�N � utrue. Next, we deduce from (3a) that utrue � z�N � η�N .
Since (2) is a minimization of }η�N}, it follows that z�N � ΠZN

putrueq. Thus, η�N � ΠZK

N
putrueq.

The Euler–Lagrange saddle-point problem associated with the PBDW statement (2)-(3) reads:
find pz�N , η

�
Nq P ZN � U such that#

pη�N , qq � pz�N , qq � putrue, qq, @q P U ,
pη�N , pq � 0, @p P ZN ,

(6)

and set u�N � z�N � η�N .
As mentioned earlier, the saddle-point problem (6) is purely geometric and does not include any

explicit reference to the bk model. The unique link to the bk model is through the background space
ZN . Therefore, the PBDW approach is applicable to a wide class of engineering problems. Moreover,
the non-intrusiveness of (6) simplifies its implementation.

2.3 Observable space

The evaluation of the right-hand side putrue, qq in (6) requires the full knowledge of the true state utrue

which is unrealistic. In practice, one can only afford a limited number of experimental observations
of the true state utrue. In the present setting, the experimental observations are interpreted as the
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application of prescribed observation functionals `obs
m P U 1 for all m P t1, . . . ,Mu such that the m-

th experimental observation is given by `obs
m putrueq P R, @m P t1, . . . ,Mu. One can consider any

observation functional that renders the behavior of some physical sensor. In the case of sensors
measuring the state locally over user-defined subsets Rm � Ω, where m P t1, . . . ,Mu, one possibility
is to model each sensor through uniform local integration

`obs
m pvq �

1

|Rm|

»
Rm

vpxqdx, @v P U . (7)

Another plausible option is, as introduced in [1], to consider

`obs
m pvq �

1a
2πr2

m

»
Rm

vpxq exp

�
�px� xcmq

2

2r2
m



dx, (8)

where xcm is the center of the Gaussian that reflects the location of the sensor, and rm ! |Rm|
1
d is

the standard deviation of the Gaussian that reflects the filter width of the sensor.
Generally, we introduce an experimentally observable space UM :� Spantqmu1¤m¤M � U , where

qm :� RUp`
obs
m q is the Riesz representation of `obs

m P U 1, for all m P t1, . . . ,Mu. The experimental
observations of the true state satisfy putrue, qmq � `obs

m putrueq, for all m P t1, . . . ,Mu. Hence, for all
q P UM such that q �

°M
m�1 αmqm and pαmq1¤m¤M P RM , the inner product putrue, qq can be deduced

from the experimental observations as a linear combination of the M available observations:

�
utrue, q

�
�

M̧

m�1

αm
�
utrue, qm

�
�

M̧

m�1

αm`
obs
m putrueq. (9)

2.4 Limited-observations statement

Let us now describe the PBDW statement in the case of limited observations. Henceforth, we make
the crucial assumption that

ZN X UKM � t0u, (10)

which is meant to ensure the well-posedness of the PBDW statement with limited observations (cf.
Proposition 3 below). This assumption can be viewed as a requirement to have enough sensors (note
that ZN X UK � t0u). The limited-observations PBDW statement reads: find pu�N,M , z

�
N,M , η

�
N,Mq P

U � ZN � U such that
pu�N,M , z

�
N,M , η

�
N,Mq � arginf

uN,MP U
zN,MP ZN

ηN,MP U

}ηN,M}
2, (11)

subject to

puN,M , vq � pηN,M , vq � pzN,M , vq, @v P U , (12a)

puN,M , φq � putrue, φq, @φ P UM . (12b)

As above, (12a) implies that the limited-observations state estimate u�N,M satisfies

u�N,M � z�N,M � η�N,M . (13)

One can show (e.g., by introducing the Lagrangian) that the limited-observations problem (11)-(12)
is equivalent to the limited-observations saddle-point problem: find pz�N,M , η

�
N,Mq P ZN � UM such

that

pη�N,M , qq � pz�N,M , qq � putrue, qq, @q P UM , (14a)

pη�N,M , pq � 0, @p P ZN , (14b)

and define u�N,M according to (13). We will see in Proposition 3 below that the linear system (14) is
well posed under the assumption (10).
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Figure 2: PBDW state estimation (courtesy of A. T. Patera).

Proposition 2 (Update estimate). The update estimate is given by

η�N,M � ΠZK

NXUM
putrueq. (15)

Proof. By definition of the saddle-point problem (14), η�N,M P UM . From (14b), we infer that η�N,M P
ZKN . Hence, η�N,M P ZKN X UM . Thus, we have

u�N,M � z�N,M � η�N,M P ZN ` pZKN X UMq.

Then, (14a) yields
pη�N,M , qq � putrue, qq, @q P ZKN X UM .

We conclude that η�N,M � ΠZK

NX UM
putrueq.

The decomposition of the state estimate u�N,M is illustrated in Figure 2.

Remark 1 (Perfect background space). The choice of the background space ZN and of the observable
space UM may lead to several specific configurations. In particular, the background space ZN is said
to be perfect if the reduction error (cf. Figure 1) vanishes, i.e., utrue P ZN . In this case, the pair
putrue, 0q P ZN � UM is the unique solution to (14). Hence, the state estimate u�N,M also belongs to
ZN and the update estimate satisfies η�N,M � 0.

2.5 Algebraic formulation

We now present the algebraic formulation of the limited-observations PBDW statement. We first
introduce an N -dimensional approximation space UN of the infinite-dimensional space U as well as
discrete approximation spaces ZN � UN and UM � UN of the subspaces ZN and UM , respectively.
These spaces are built using the Finite Element Method (FEM) [19]. We assume that the size of
the mesh is small enough that the N -dimensional space discretization delivers High-Fidelity (HF)
approximations within the requested level of accuracy. To simplify the notation, we have dropped the
superscript N ; hence, the discrete FEM spaces are denoted ZN and UM instead of ZN

N and UN
M , but

we still keep the notation UN for the FEM-discretization space. Then, we introduce a basis for the
background space ZN :� Spantζnu1¤n¤N . The update space is spanned by the Riesz representations
of the observation functionals in UN , i.e., UM :� Spantqmu1¤m¤M , where qm P UN , for all m P
t1, . . . ,Mu. The HF discretization of the saddle-point problem (14) is: Find pz�N,M , η

�
N,Mq P ZN �UM

such that

pη�N,M , qq � pz�N,M , qq � putrue, qq, @q P UM , (16a)

pη�N,M , pq � 0, @p P ZN . (16b)
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The solution of (16) is then searched under the form

z�N,M �
Ņ

n�1

znζn, and η�N,M �
M̧

m�1

ηmqm, (17)

and we introduce the component vectors z�N,M :� pznq1¤n¤N P RN and η�N,M :� pηmq1¤m¤M P RM .
We also introduce the basis matrices ZN P RN�N and UM P RN�M whose column vectors are the
components of the functions tζnu1¤n¤N and tqmu1¤m¤M respectively in the basis of UN . In algebraic
form, the FEM-discretized saddle-point problem (16) reads: find pz�N,M ,η

�
N,Mq P RN �RM such that�

A B
BT 0


�
η�N,M
z�N,M



�

�
`obs
M

0



, (18)

with the matrices

A �
�
pqm1 , qmq

	
1¤m,m1¤M

P RM�M , B �
�
pζn, qmq

	
1¤m¤M,1¤n¤N

P RM�N , (19)

and the vector of observations `obs
M �

�
`obs
m putrueq

�
1¤m¤M

P RM .

Proposition 3 (Well-posedness). The PBDW statement (18) has a unique solution if and only if
ZN X UKM � t0u. Equivalently, under this assumption, the stability constant

βN,M :� inf
wPZN

sup
vPUM

pw, vq

}w} }v}
P p0, 1s. (20)

Proof. The system (18) is a saddle-point problem with a symmetric positive definite matrix A.
Therefore, it has a unique solution if and only if the matrix B is injective, i.e., if and only if
kerpBq � t0u. Using the definition of B in (19), we have

kerpBq � t0u ðñ Dz P ZNzt0u : @q P UM : pz, qq � 0,

ðñ ZN X UKM � t0u.
(21)

Thus, (18) is well-posed if and only if ZN X UKM � t0u and this statement is equivalent to βN,M ¡ 0.
Finally, we readily verify that βN,M ¤ 1 owing to the Cauchy–Schwarz inequality.

Remark 2 (Stability constant). In terms of geometry, the stability constant βN,M is equal to the
cosine of the angle between the linear subspaces ZN and UKM (cf. Figure 2). Furthermore, it is readily
verified that

βN,M � 0 ðñ ZN X UKM � t0u, (22a)

βN,M � 1 ðñ ZN � UM . (22b)

The case (22b) can hardly occur in practice with a reasonable (not too high) number of observation
sensors. Loosely speaking, a sensor is localized in space. Thus, it concerns only a limited number of
degrees of freedom.

Remark 3 (Insufficient observations). If M   N , then (18) is necessarily ill-posed. Indeed, we have

M   N ðñ dimpUMq   dimpZNq.

Moreover, we have

dimpZNq � codimpUKMq ¤ dimpZN X UKMq ðñ dimpZNq � dimpUMq ¤ dimpZN X UKMq
ùñ 1 ¤ dimpZN X UKMq
ðñ ZN X UKM � t0u

ðñ βN,M � 0,

where the last equivalence follows from Proposition 3.
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In practice, the matrices A and B are computed using the algebraic formulas A � UMMUM ,
and B � ZNMUM , where M is the Gram matrix of the inner product in U . Thus, solving (18)
allows for a straightforward reconstruction of the components of the state estimate in the basis of
UN as follows:

u�N,M � ZNz
�
N,M �UMη

�
N,M . (23)

Offline/online procedure: Since several realizations utruepωq of the true state are considered, an
offline/online procedure can be employed. During the offline stage, one precomputes the RB functions
pζnq1¤n¤N and the Riesz representers pqmq1¤m¤M leading to the matrices A P RM�M and B P RN�M

once and for all. Then, during the online stage, for each new set of observations corresponding to
a new realization of the true state utruepωq, all that remains to be performed is to form the vector
of observations `obs

M pωq and to retrieve the deduced background estimate z�N,Mpωq and the update
estimate η�N,Mpωq by solving the pN�Mq-dimensional linear problem (18). The PBDW state estimate
u�N,Mpωq is then computed using (23).

Remark 4 (Choice of spaces). The subspaces ZN and UM must be chosen carefully. In fact, we want
a small angle between the spaces ZN and UM in order to increase the stability constant, but we need
some overlap between the spaces ZKN and UM to improve the approximation capacity of ZKN X UM .
We refer the reader to [1] for a detailed a priori error analysis and to [17] for an overview on the
influence of the spaces ZN and UM on the accuracy of the results.

3 Time-dependent PBDW

Consider a finite time interval I � r0, T s, with T ¡ 0. To discretize in time, we consider an integer
K ¥ 1, we define 0 � t0   � � �   tK � T as pK � 1q distinct time nodes over I, and we set

Ktr � t1, . . . , Ku, Ktr
� t0u YKtr and Itr � ttku

kPKtr . This section aims at deriving a state estimate
for a time-dependent solution in the framework illustrated in 3.

Figure 3: Characterization of the bk model in a time-dependent context.

Remark 5 (Initial condition). In the present setting, we choose not to solve the PBDW statement
for the initial time node k � 0. It is straightforward to consider a setting where the initial time node
is also included.

3.1 Unlimited-observations statement

In this ideal setting, we assume that utrue P C0pI;Uq. The time-dependent unlimited-observations
PBDW statement reads: for each k P Ktr, find puk,�N , zk,�N , ηk,�N q P U � ZN � U such that

puk,�N , zk,�N , ηk,�N q � arginf
uNPU
zNPZN

ηNPU

}ηN}
2, (24)
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subject to

puN , vq � pηN , vq � pzN , vq, @v P U , (25a)

puN , φq � puk,true, φq, @φ P U . (25b)

where uk,true :� utrueptk, �q. For each k P Ktr, the solution of (24)-(25) is given by

uk,�N � uk,true, zk,�N � ΠZN
puk,trueq, ηk,�N � ΠZK

N
puk,trueq. (26)

The Euler–Lagrange saddle-point problem associated with the time-dependent PBDW statement
(24)-(25) reads: for each k P Ktr, find pzk,�N , ηk,�N q P ZN � U such that

pηk,�N , qq � pzk,�N , qq � puk,true, qq, @q P U , (27a)

pηk,�N , pq � 0, @p P ZN . (27b)

The unlimited-observations state estimate is then

uk,�N � zk,�N � ηk,�N , @k P Ktr. (28)

3.2 Limited-observations statement

We now weaken the regularity assumption on the true state and only assume that utrue P L1pI;Uq.
We introduce the time-integration intervals

Ik � rtk � δtk, t
k � δtks, @k P Ktr, (29)

where δtk ¡ 0 is a parameter related to the precision of the sensor (ideally, δtk   minptk�1 �
tk, tk � tk�1q with obvious adaptation if k=K). Then, for any function v P L1pI;Uq, we define the
time-averaged snapshots

vkpxq :�
1

|Ik|

»
Ik

vpt, xq dt P U , @k P Ktr. (30)

As in the steady case, we consider observation functionals that render the behavior of given sensors.
We use the same observation functionals as in the time-independent setting, but we let them act on
the time-averaged snapshots of the true solution, i.e., we consider

`k,obs
m putrueq :� `obs

m puk,trueq, @m P t1, . . . ,Mu, @k P Ktr. (31)

For instance, if the sensors act through local uniform time integration (see (7)), we have

`k,obs
m putrueq �

1

|Rm|

»
Rm

uk,truepxq dx �
1

|Rm|

1

|Ik|

»
Rm

»
Ik
utruept, xq dxdt, (32)

whereas if the sensors act through integration against a Gaussian (see (8)), we have

`k,obs
m putrueq �

1a
2πr2

m

»
Rm

uk,truepxq exp

�
�px� xcmq

2

2r2
m



dxdt,

�
1

|Ik|
1a

2πr2
m

»
Ik

»
Rm

utruepxq exp

�
�px� xcmq

2

2r2
m



dxdt.

(33)

Generally, we introduce the time-independent observable space UM � U such that

UM � Spantq1, . . . , qMu. (34)

9



The observation functionals in U 1 are then defined as

`k,obs
m putrueq � puk,true, qmq, @m P t1, . . . ,Mu, @k P Ktr. (35)

Note that, for fixed sensor locations, the computational effort to compute the Riesz representations
of the observation functionals is time-independent and is incurred only once so that the experimental
observations of the true state satisfy

`k,obs
m putrueq �

�
uk,true, qm

�
�

1

|Ik|

»
Ik

`obs
m putruept, �qqdt, @m P t1, . . . ,Mu, @k P Ktr. (36)

Hence, for all q P UM such that,

q �
M̧

m�1

αmqm, (37)

the inner product
�
uk,true, q

�
is deduced from the experimental observations as follows:

�
uk,true, q

�
�

1

|Ik|

»
Ik

M̧

m�1

αm
�
utruept, �q, qm

�
dt �

1

|Ik|

M̧

m�1

αm

»
Ik

`obs
m putruept, �qqdt. (38)

We are now ready to write the limited-observations PBDW statement: for each k P Ktr, find
puk,�N,M , z

k,�
N,M , η

k,�
N,Mq P U � ZN � U such that

puk,�N,M , z
k,�
N,M , η

k,�
N,Mq � arginf

uN,MPU
zN,MPZN

ηN,MPU

}ηN,M}
2, (39)

subject to

puN,M , vq � pηN,M , vq � pzN,M , vq, @v P U , (40a)

puN,M , φq � puk,true, φq, @φ P UM . (40b)

The limited-observations saddle-point problem associated with (39) reads: for each k P Ktr, find
pzk,�N,M , η

k,�
N,Mq P ZN � UM such that

pηk,�N,M , qq � pzk,�N,M , qq � puk,true, qq, @q P UM , (41a)

pηk,�N,M , pq � 0, @p P ZN , (41b)

and the limited-observations state estimate is

uk,�N,M � zk,�N,M � ηk,�N,M , @k P Ktr. (42)

Remark 6 (Pointwise measurements). For simplicity of implementation, assuming that utrue P
C0pI;Uq, one may consider pointwise measurements in time, i.e.,�

uk,true, qm
�
� `obs

m putrueptk, �qq, @m P t1, . . . ,Mu, @k P Ktr. (43)

The assumption (43) is typically reasonable for a sensor of small precision δtk.

In algebraic form, the limited-observations PBDW statement reads: for each k P Ktr, find
pzk,�,ηk,�q P RN � RM such that �

A B
BT 0


�
ηk,�

zk,�



�

�
`k,obs

0



, (44)
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with the matrices

A �
�
pqm1 , qmq

	
1¤m,m1¤M

P RM�M , B �
�
pζn, qmq

	
1¤m¤M,1¤n¤N

P RM�N , (45)

and the vector of observations

`k,obs �
�
`obs
m puk,trueq

�
1¤m¤M

P RM . (46)

Similarly to the steady PBDW linear system (18), we solve (44) through an offline/online decomposed
computational procedure whenever several realizations utruepωq of the true state are to be considered.

Remark 7 (PBDW matrices). Notice that the PBDW matrices A and B are time-independent; only
the right-hand side in (44) depends on k.

4 Offline stage

In this section, we discuss the offline stage. Our main goal is to address the construction of the
background space ZN .

4.1 Background space construction via POD-greedy

Suppose that we have computed a set of HF trajectories

S � pSkqkPKtr �
�
pukpµqqµPPtr

�
kPKtr , (47)

where ukpµq :� upµqptk, �q, for all k P Ktr. If we were to consider the PBDW statement (39)-(40)
for each k P Ktr as an independent steady PBDW statement, we would be working with the time-
dependent background spaces

ZkNk � PODpSk, εpodq, @k P Ktr, (48)

where the procedure POD is defined in Chapter 1. However, this strategy is not convenient since
the sizes Nk of the background spaces Zk

Nk would depend on k. Since the observable space UM
is fixed, the same non-homogeneity between time nodes would also arise in the stability constant
βNk,M . Thus, we propose to apply a POD-greedy algorithm [18] in order to build a time-independent
background space ZN that will be used for all k P Ktr. The advantage is that the PBDW matrices A
and B and the stability constant βN,M remain unchanged regardless of the discrete time node. The
offline stage using the POD-greedy algorithm is summarized in Algorithm 1.

Algorithm 1 Offline stage via POD-greedy

Input : S and εpod.
Qinit: an initial set of Riesz representations for the observations.

1: Compute ZN :� POD-greedypS, εpodq.
2: Set UM :� SpantQinitu.
3: Compute the matrices A and B using ZN and UM .

Output : ZN , UM , A and B.

11



4.2 Background space construction via state estimation

We now devise a new algorithm in the context of time-dependent PBDW to perform the offline stage.
Here, the construction of the background space ZN , the choice of the observation space UM and the
PBDW matrices are modified. The key idea of the new procedure is to precompute the PBDW
state estimates of the parameters in the training set Ptr during the offline stage. The background
space is then deduced from these PBDW state estimates. The benefit is that the newly created
background space incorporates data-based knowledge. The modified offline stage of the PBDW for
time-dependent problems is described in Algorithm 2. Within the modified offline stage, we use the
so-called ‘Greedy stability maximization’ (S-Greedy) algorithm (considered in [1]) in line 6 in order
to identify the least stable mode and then take the best measurement. The algorithm uses an input
space ZN that results from a POD-greedy procedure so that Z1 contains the dominant mode, and
so forth. The S-greedy algorithm selects the observations progressively. Thus, the enrichment of
the observable space UM stops once the minimum stability βmin is reached. The procedure S-greedy

is described in Algorithm 3 below. Altogether, the modified offline stage in the proposed algorithm

Algorithm 2 Modified offline stage of the time-dependent PBDW

Input : Ptr, Ktr, S, εpod, εinit
pod and βmin.

Qinit: an initial set of Riesz representations of observations.

1: Compute Z init
N init :� POD-greedypS, εinit

podq.
2: Set U init

M init :� SpantQinitu.
3: Compute the matrices Ainit and Binit using Z init

N init and U init
M init .

4: Estimate the state uk,�pµq for all pµ, kq P Ptr �Ktr.
5: Compute ZN :� POD-greedyptuk,�pµquµPPtr,kPKtr , εpodq.
6: Compute UM :� S-GreedypPtr, Ktr, N , tZnuNn�1, βmin, Qinit).
7: Compute the matrices A and B using ZN and UM .

Output : ZN , UM , A and B.

offers four major advantages:

1. Improved background space: Since the background space ZN is built using both the bk

model and the observations, it is expected to have better approximation capacities of the true
state.

2. Reduced number of online observations: In line 6 of Algorithm 2, we select each new
data point so as to maximize the stability constant βN,M . Thus, the observations that will be
used during the online stage are mainly needed only for stability and not for accuracy.

3. Reduced dimension of the online PBDW statement: Since the number of observations
is significantly reduced, the modified PBDW matrices are of smaller size compared to the
matrices of the standard PBDW. Thus, using the modified offline algorithm, the online PBDW
formulation is solved faster.

4. Reduced storage cost: Owing to the reduced number of online measurements, the dimensions
of the observable space UM and of the matrices A and B are smaller, whence the storage gain.

Regarding computational efficiency, the modified procedure consists of more steps than in the stan-
dard PBDW. However, all the additional steps of the algorithm are performed offline. As for all
reduced-order modeling techniques, the goal of the algorithm is to further improve the online ef-
ficiency. Hence, the computational savings brought by the new PBDW formulation come, in our

12



Algorithm 3 S-Greedy: Stability-maximization algorithm

Input : N , ZN and βmin P p0, 1s.
Qinit: an initial set of Riesz representations of the observations.

1: Choose a random q1 P Qinit.
2: Set U1 :� Spantq1u.
3: Compute the stability constant β1,1 using Z1 and U1.
4: Set m :� 2.
5: while βN,m�1   βmin or m  M do
6: Compute the least stable mode and the associated supremizer

winf P arginf
wPZN

sup
vPUm�1

pw, vq

}w} }v}
, and vsup � ΠUm�1pwinfq.

7: Identify the least well-approximated vector qm � argsup
qPQinit

|pq, winf � vsupq|.

8: Set Um :� SpantUm�1, qmu.
9: Compute the stability constant βN,m.

10: m � m� 1.
11: end while
12: M :� m.

Output : UM .

opinion, at a reasonable offline price. Indeed, the resolution of the (online) standard PBDW state-
ment for each parameter µ P Ptr has a reduced computational cost. The only relevant additional
computational cost incurred offline is related to the second POD-greedy algorithm (cf. line 5 of
Algorithm 2). We believe this computational effort remains acceptable.

Remark 8 (Least stable mode). Line 6 of Algorithm 3 may return several infima. Among these
infima, we select a function whose norm in U is maximal.

Remark 9 (Steady setting). In a time-dependent framework, the computational savings induced by
the modified offline stage are substantial, in particular because of the influence of the time steps.
However, Algorithm 3 can be applied in the steady setting as well.

5 Numerical results

In this section, we illustrate the above developments on test cases related to the heat equation.
The goal is to illustrate the computational performance of our algorithms. In all our test cases, we
consider a two-dimensional setting based on the plate illustrated in the left panel of Figure 4 with Ω �
p�2, 2q2 � R2. We use a finite element subspace UN � U � H1pΩq consisting of continuous, piecewise
affine functions in order to generate HF trajectories. The FEM subspace UN is based on a mesh that
contains N � 6561 nodes. The experimental data is generated synthetically and the observation
subsets tRmu1¤m¤M are uniformly selected over the plate as illustrated in the left panel of Figure 4.
Regarding the implementation, the HF computations use the software FreeFem++ [20], whereas the
reduced-order modeling and the PBDW-related algorithms have been developed in Python.
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Figure 4: Computational domain and mesh with N � 6561. The little black
squares are observation subsets tRmu

121
m�1. Left: Mono-material plate. Right:

Bi-material plate.

5.1 Physical model problem

We apply the above methodology to the following parabolic PDE: For many values of the parameter
µ P P , find upµq : I � Ω Ñ R such that$''&

''%
Bupµq

Bt
�∇ � pDpµq∇upµqq � 0, in I � Ω,

upµqpt � 0, �q � u0, in Ω,

Boundary conditions, on I � BΩ,

(49)

where u0 � 293.15K (20oC). We will supplement (49) with two types of boundary conditions:

1. Linear heat equation: We apply a homogeneous Neumann boundary condition on BΩ0 and
a non-homogeneous Neumann boundary condition on BΩn, i.e.,$'&

'%
�Dpµq

Bupµq

Bn
� 0, on I � BΩ0,

�Dpµq
Bupµq

Bn
� φe, on I � BΩn,

(50)

with φe � 3K�m�s�1, BΩ0 � p�2, 2q � t2u Y t2u � p�2, 2q, and BΩn � p�2, 2q � t�2u Y t�2u �
p�2, 2q. Thus, the resulting problem (49)�(50) is linear. Note that BΩ0 consists of the upper
and right sides of the plate and BΩn consists of its lower and left sides, so that BΩ � BΩ0YBΩn.

2. Nonlinear heat equation: We apply Stefan–Boltzmann boundary conditions on BΩ, i.e.,

�Dpµq
Bu

Bn
� σεpu4 � u4

rq, on I � BΩ, (51)

where ur � 303.15K (30oC) is an enclosure temperature, σ � 5.67 � 10�8W.m�2.K�4 is the
Stefan–Boltzmann constant and ε � 3.10�3 is the emissivity. The Stefan–Boltzmann boundary
condition is nonlinear and so is the resulting problem (49)�(51).

In what follows, the background spacesZN will be generated by solving either the linear PDE (49)�(50)
or the nonlinear PDE (49)�(51) with a uniform diffusivity function Dpµq such that for all x P Ω,
Dpµqpxq � Dunipµqpxq :� µ1Ωpxq.
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5.2 Synthetic data generation

We synthesize the data by first synthesizing a true solution and then applying to it the linear
functionals by means of their Riesz representations in the observable space UM . In order to synthesize
the true solution, we consider a ‘true model’ based on the bi-material plate (cf. right panel of Figure 4)
where we choose a fixed internal diffusivity Dint � 1 and define, for each µ P P , the diffusivity function
Dpµq as Dpµqpxq � Dsynpµqpxq :� µDint1Ωextpxq �Dint1Ωint

pxq, for all x P Ω, where Ωint � p�1, 1q2

and Ωext � p�2, 2q2zp�1, 1q2, so that Ω � Ωint Y Ωext and Ωint X Ωext � H. The synthetic true
solutions are then defined as the solutions of (49) for all µ P P , with either the linear boundary
condition (50) or the nonlinear boundary condition (51).

5.2.1 Test configurations

In order to investigate the PBDW formulation, we perform test cases on two distinct configurations:

1. Perfect model: The bk model is said to be perfect when εbk
modpu

truepωqq � 0, for every ω P
Θ (see (1)) (we recall that ω represents the unanticipated uncertainty). In this situation,
utruepωq PMbk for all ω P Θ. Although the model is perfect, some discrepancies between the
HF solutions and the measurements might arise from model-order reduction since Mbk � ZN
(cf. Figure 1). Note that this scenario seldom occurs in engineering situations. This test
configuration is meant to assess the accuracy of the PBDW formulation when the observable
space UM scarcely has additional information compared to ZN .

2. Imperfect model: The bk model is said to be imperfect when the modeling error does not
vanish. In this situation, there exists at least one (and in general many) ω P Θ such that
εbk

modpu
truepωqq � 0, i.e., utruepωq R Mbk. Consider for instance the plates in Figure 4. If the

true solution is generated synthetically using the bi-material plate, an example of an imperfect
bk model can be the one for which we solve the same PDE that has generated the true states
without accounting for the difference in diffusivity between the subdomains of the plate.

5.3 Background space construction via POD-greedy

In this section, four test cases are considered to study the PBDW approach.

• Test case (a): Linear perfect.

• Test case (b): Linear imperfect.

• Test case (c): Nonlinear perfect.

• Test case (d): Nonlinear imperfect.

5.3.1 Linear case

Regarding time discretization, we consider the time interval I � r0, 10ss, the set of discrete times
nodes Ktr � t1, . . . , 200u, and a constant time step ∆tk � 0.05s for all k P Ktr. Finally, we introduce
the parameter interval P � r0.05, 1s and the training set Ptr � 0.05 � t1, . . . , 20u. In Figure 5, we
show the HF temperature profiles for the model problem (49)�(50) over the homogeneous plate at the
end of the simulation, i.e., for tK � 10s and for two parameter values. We recall that these solutions
will be used as true solutions for the perfect linear case. As the time evolves, the energy related
to the flux φe propagates through the plate which is progressively heated. Moreover, the overall
temperature is higher for smaller values of the parameter µ than for larger values. As physically
expected, the thermal diffusion over the plate is stronger for larger values of µ than for smaller
values.
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Figure 5: Test cases (a) and (b) : HF solutions for the bk model with Neumann
boundary conditions. Left: µ � 1 in Duni (values from 17.3oC to 118.3oC). Right:
µ � 20 in Duni (values from 30.7oC to 43.3oC).

Test case (a): Linear perfect model We consider the case of a perfect bk model for which
the diffusivity is uniform over the entire domain Ω. Thus, the true solutions correspond to the
HF computations of the bk model. The resulting trajectories are reduced using the POD-greedy

algorithm. For instance, for a tolerance value εpod � 10�2, the background space ZN is composed of
N � 5 modes. Regarding observations, the initial set Qinit is obtained using M � CardpQinitq � 121
sensors that are uniformly placed over the plate (see Figure 4). Using both the background space
ZN and the observable space UMpQinitq, we build the offline matrices A and B. During the online
stage, we estimate the state u�N,M for every parameter µ in the training set Ptr. Using the weighted
H1-norm, the state estimation relative H1-error ekpµq defined as

ekpµq :�
}uk,truepµq � uk,�N,Mpµq}H1pΩq

}uk,truepµq}H1pΩq

, @µ P P , (52)

is displayed in Figure 6 as a function of the value of the parameter µ for several values of εpod. In

Figure 6: Test case (a): Relative H1-error ekpµq for some time nodes k P Ktr.
Left: εpod � 10�2 (N � 5). Middle : εpod � 10�4 (N � 10). Right: εpod � 10�6

(N � 15).

this first configuration, one can notice that the error decreases for smaller tolerances εpod, i.e., with
the dimension N of the background space ZN . However, the bottom-right panel of Figure 6 shows
a starting increase in the relative H1-error ekpµq for εpod � 10�6 and an oscillatory behavior of the
relative H1-error ekpµq. Although counter-intuitive in the reduced-basis context, this phenomenon is
due to the deterioration of the stability constant βN,M . This observation confirms the claims made
in Remark 4.
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Test case (b): Linear imperfect model This second test investigates the case of a linear
imperfect bk model. In Figure 7, we show the HF temperature profiles for the true solutions over

Figure 7: Test case (b) : Synthetic true solutions with Neumann boundary
conditions. Left: µ � 1 in Dsynpµq (values from 17.4oC to 117.9oC). Right:
µ � 20 in Dsynpµq (values from 29.8oC to 44.3oC).

the bi-material plate at the end of the simulation, i.e., at tK � 10s and for two different parameter
values. The temperature fields exhibit the same overall behavior as in Figure 5. Additionally, we
notice that the difference in diffusivity between Ωint and Ωext leads as expected to a kink in the
temperature isolines. When µ   1, the thermal diffusion is stronger in the inner plate corresponding
to Ωint, whereas for µ ¡ 1, the thermal diffusion is weaker in the inner plate. Using the HF trajectories
produced by the bk model, we generate a background space ZN by means of a POD-greedy algorithm.
We use M � 121 observations to build the observable space UM . The relative H1-errors ekpµq defined
in (52) are shown in Figure 8 as a function of the value of the parameter µ. For instance, for a
tolerance value εpod � 10�3, ZN is spanned by N � 7 vectors. Notice that the error vanishes for
µ � 0.5 since this configuration is equivalent to a perfect bk model. However, the bottom panels
of Figure 8 show a gradual error increase with the dimension N of the bk space. This tendency
was already observed for the linear perfect test case, although in smaller proportions. As before,
the stability constant βN,M is degraded when increasing the dimension N of the background space
ZN . Moreover, the enrichment of ZN does not add relevant modes anymore (in terms of associated
singular values). For the sake of comparison, we enrich the observable space UM such that M � 676
and plot the relative H1-errors ekpµq for the same values of εpod in Figure 9. Our interpretation is
confirmed since the stability issues do not arise anymore for εpod � 10�4. Owing to the increase of
M , the stability decrease with respect to N is somewhat compensated. Finally, the bottom-right
panel of Figure 9 shows the beginning of an error increase. Using the same reasoning as above, we
conclude that more observations are needed for εpod � 10�6.

Finally, we visualize the stability constant βN,M as a function of the number of observations M
in Figure 10. The left panel of the figure shows a single curve for clarity, whereas the right panel
includes curves for several values of the tolerance εpod (note that the two panels do not use the same
rule). As expected, for a constant value of N , the more the observations, the better the stability.
For a number of observations M � 3000, the PBDW formulation is perfectly stable (or close to) for
all the considered values of εpod.

5.3.2 Nonlinear case

Here, we consider the PDE (49)�(51) with ur � 303.15K, σ � 5.67�10�8W.m�2.K�4 and ε � 3.10�3.
Except for the parameter interval P � r0.1, 2s, the set Ptr � t0.1i, 1 ¤ i ¤ 20u and the time step

17



Figure 8: Test case (b) : Relative H1-error ekpµq for some time nodes k P Ktr

and M � 121. Top left: εpod � 10�2 (N � 5). Top right: εpod � 10�3 (N � 7).
Bottom left: εpod � 10�4 (N � 10). Bottom right: εpod � 10�6 (N � 15).

∆tk � 0.1, all the other numerical data remain the same as for the linear test case from the previous
section.

5.3.3 Test case (c): Nonlinear perfect model

We consider the case with a perfect bk model. Thus, the true solutions correspond to the HF
computations of the bk model (cf. left panel of Figure 11). The resulting trajectories are reduced
using the POD-greedy algorithm. For instance, for a tolerance value εpod � 10�2, the background
space ZN consists of N � 3 modes. Regarding observations, the initial set Qinit is obtained using
M � CardpQinitq � 121 sensors that are uniformly placed over the plate (see Figure 4). During the
online stage, we estimate the state u�N,M for every parameter µ in the training set Ptr. In Figure 12,
we display the state estimation relative H1-error ekpµq defined in (52) as a function of the value of
the parameter µ for several values of εpod. In contrast to the linear case, the error always decreases
for smaller tolerances εpod, i.e., with the dimension N of the background space ZN . However, we
expect that, for some very small tolerance value (e.g. εpod such that N ¡ M), the stability issues
mentioned above would arise again.

5.3.4 Test case (d): Nonlinear imperfect model

This test case investigates a nonlinear imperfect bk model for which the HF bk solutions and the true
solutions are respectively displayed in the left and right panels of Figure 11. The temperature profile
for the true solution over the bi-material plate at the end of the simulation, i.e., at tK � 10s clearly
shows a different behavior at the boundaries of the inner material. Regarding the PBDW state
estimation, Figure 13 shows the relative H1-error ekpµq defined in (52) using M � 121 observations
to build the observable space UM . For εpod � 10�4, ZN is spanned by N � 7 vectors. Notice that
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Figure 9: Test case (b) : Relative H1-error ekpµq for some time nodes k P Ktr

and M � 676. Top left: εpod � 10�2 (N � 5). Top right: εpod � 10�3 (N � 7).
Bottom left: εpod � 10�4 (N � 10). Bottom right: εpod � 10�6 (N � 15).

the error vanishes for µ � 0.25 since this configuration is equivalent to a perfect bk model. We
notice that the relative H1-error ekpµq increases because the stability constant decreases. Figure 14
visualizes the relative H1-error ekpµq for a higher number of observations M � 676. We observe that
augmenting the dimension of the observable space UM cures the stability issues. Also, the errors are
lower owing to the higher number of observations. Finally, Figure 15 shows the stability constant
βN,M as a function of the number of observations M . The behavior is quite similar to the linear case.
Hence, the nonlinear character of the problem does not influence the overall features of the PBDW
statement. This observation corroborates the independence with regard to the bk model.

5.4 Background space construction via state estimation

We now illustrate the performances of Algorithm 2 for the following linear imperfect case:

• Test case (e): We consider a simulation duration T � 4s and a time step ∆t � 0.1s. Test truths
are synthesized with an internal diffusivity Dint � 0.2.

As opposed to the previous section, we choose a non-parametric bk model based on an HF compu-
tation for µ � 0.5. The resulting unique trajectory is then reduced using a POD algorithm, which
is equivalent to a POD-greedy for a single trajectory (cf. line 1 of Algorithm 2). For a tolerance
value εinit

pod � 10�2, we obtain a background space Z init
N init composed of N init � 34 modes. As regards

observations, the initial set Qinit consists of M init � CardpQinitq � 1521 sensors that are uniformly
placed over the plate (cf. line 2 of Algorithm 2). Using both the background space Z init

N init and the
observable space U init

M initpQinitq, we estimate the state u�N init,M init for every parameter µ in the training

set Ptr � t0, 4, 8, 12, 16u (cf. line 4 of Algorithm 2). The state estimation leads to the relative
H1-error ekpµq shown in Figure 16. We also plot in Figure 17 the absolute H1-norms of the deduced
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Figure 10: Test case (b) : Stability constant βN,M as a function of M . On the
right panel, the values of N are respectively 3, 5, 7, 10, 13, 15 for the values of
εpod in decreasing order.

Figure 11: Test cases (c) and (d) : Left: HF solution for the bk model (values
from 17.80oC to 18.25oC). Right: Synthetic true solution using a bi-material
plate (values from 17.90oC to 18.23oC).

background estimate z�N init,M init and the update estimate η�N init,M init . One can notice that the latter
is non-negligible compared to the former. Once the first part of the modified offline stage has been
performed, we use the resulting state estimates in order to build the modified background space (cf.
line 5 of Algorithm 2). For a tolerance εpod � 5.10�2, the POD-greedy algorithm selects four modes.
Then, we build the observable space UM using M � 121 uniformly distributed sensors (the optimal
choice can be made using the S-Greedy algorithm, see Algorithm 3). Figure 18 displays the errors
for the verification set Pverif � t0, . . . , 19u. The state estimation relative H1-error ekpµq remains
comparable to that of the five parameters used for the offline construction. Regarding the online
observations, we highlight that the online results are achieved using only M � 8%M init. Finally,
Figure 19 shows the absolute H1-norms of the deduced background estimate z�N,M and the update
estimate η�N,M . We observe that the update estimate η�N,M has a lower norm compared to Figure 17,
whereas the deduced background estimate z�N,M has a larger norm. This is due to the offline inclu-
sion of observations in the new background space ZN through offline state estimation. Therefore, we
deduce that the modified offline algorithm achieves the expected objective.

20



Figure 12: Test case (c) : Relative H1-error ekpµq for some time nodes k P Ktr

and M � 121. Left: εpod � 10�2 (N � 3). Middle: εpod � 10�4 (N � 7). Right:
εpod � 5.10�6 (N � 11).

Figure 13: Test case (d) : Relative H1-error ekpµq for some time nodes k P Ktr

and M � 121. Left: εpod � 10�2 (N � 3). Middle: εpod � 10�4 (N � 7). Right:
εpod � 10�6 (N � 11).

6 Conclusion and perspectives

We have presented a time-dependent extension of the PBDW approach with a modified offline stage
that suits both the stationary and time-dependent cases. As regards the time-dependent setting,
numerical tests on both linear and nonlinear cases assess the efficiency of the method for well chosen
dimensions of the bk space ZN and of the observable space UM . The test cases show that augmenting
the dimension N of ZN is counter-productive starting from a certain rank due of the deterioration of
the stability constant βN,M . In such cases, increasing the dimension of the observable space UM is an
alternative that restores a good stability of the problem. However, the measurements are expensive
to obtain in engineering scenarios. In this context, a modified offline stage is introduced so as to
reduce the number of final observations that are required within the online stage. The numerical
performances obtained produce accuracy levels that are comparable to the standard method. A
promising application is the assessment of the proposed methodology in three-dimensional indus-
trial cases. Another interesting research direction is the inclusion of noise in the time-dependent
framework.
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Figure 14: Test case (d) : Relative H1-error ekpµq for some time nodes k P Ktr

and M � 676. Left: εpod � 10�2 (N � 3). Middle: εpod � 10�4 (N � 7). Right:
εpod � 5.10�6 (N � 11).

Figure 15: Test case (d) : Stability constant βN,M . On the right panel, the values
of N are respectively 2, 3, 5, 7, 11 for the values of εpod in decreasing order.

Figure 16: Test case (e) : Relative H1-error ekpµq for the state estimate as a
function of the time nodes. The curves correspond to different values of µ.
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Figure 17: Test case (e) : Absolute H1-norms of the contributions z�N init,M init and
η�N init,M init as a function of the time nodes. The various curves correspond to the
different values of µ.

Figure 18: Test case (e) : Relative H1-error ekpµq for the state estimate as a
function of the time nodes during the online stage. The various curves correspond
to the different values of µ. Left: for all µ P Ptr. Right: for all µ P Pverif .

Figure 19: Test case (e) : Absolute H1-norms of the contributions z�N,M and η�N,M
as a function of the time nodes. The various curves correspond to the different
values of µ.
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