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Abstract. We propose a contribution that combines model reduction with data assimilation. A dedicated
Parametrized Background Data-Weak (PBDW) approach has been introduced in the literature so as to combine
numerical models with experimental measurements. We extend the approach to a time-dependent framework by
means of a POD-greedy reduced basis construction. Since the construction of the basis is performed offline, the algo-
rithm addresses the time dependence of the problem while the time stepping scheme remains unchanged. Moreover,
we devise a new algorithm that exploits offline state estimates in order to diminish both the dimension of the online
PBDW statement and the number of required sensors collecting data. The idea is to exploit in situ observations in
order to update the best-knowledge model, thereby improving the approximation capacity of the background space.
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1. Introduction

State estimation is a task in which the quantity of interest is the “true” state utrue of a physical system
over a space or space-time domain of interest. However, numerical prediction based on a given math-
ematical model may be deficient due to limitations imposed by available knowledge. In other words,
the mathematical model can only take anticipated or parametric uncertainty into account. A more
accurate prediction requires the incorporation of experimental observations in order to accommodate
unanticipated or non-parametric uncertainty.

For this reason, data assimilation methods have been widely explored in the literature. The goal of
these methods is to use a priori information to deduce the best mathematical model, while using avail-
able experimental data to produce the most accurate approximation of a physical system. Many data
assimilation methods involve the minimization of a cost function, such as least-squares type methods,
designed to compute the mismatch between the model approximation and given observations. For
instance, we mention the Stable Least Squares approximation [7, 8] and the linearized Structured
Total Least Squares [9]. As opposed to statistical techniques [40, 22], variational data assimilation
relies more heavily on the mathematical model. Considering the adjoint method [34, 39], the goal is
to reconstruct a physical state through the minimization of a cost function in order to optimize the
parameters of the model with respect to experimental data. However, this method is only based on
the precision of the mathematical model and mainly uses experimental data to correct the input, but
not the final state. The Proper Orthogonal Decomposition (POD) [24] has also been exploited in a
data assimilation perspective, such as for the Gappy-POD [41, 12], which was introduced to handle
incomplete data-sets, or as in [33] where data assimilation is enhanced using the POD method. We
also mention other existing methods such as the 3D-VAR [26] and the 4D-VAR [23] for variational
data assimilation. One of the drawbacks of many variational data assimilation methods is their com-
putational intrusivity, which means that at any stage, computational procedures need to access the
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model in order to perform their calculations. Intrusivity is very inconvenient in many contexts, for in-
stance when using industrial high-fidelity black-box solvers. Hence, non-intrusive or partially-intrusive
options can be valuable. The methods used in [41, 33] are less intrusive. Nevertheless, they have not
been applied with reduced order models.

The Parameterized-Background Data-Weak (PBDW) formulation for variational data assimilation
is a data-driven reduced order modeling approach that was initially devised in [30] so as to merge
prediction by model with prediction by data, without being intrusive. It can represent the physics of
the state using a sophisticated model, and applies non-intrusive and non-iterative real-time variational
data assimilation employing Reduced Basis (RB) methods [21, 35], with correction of model error. The
PBDW relies on the knowledge of some particular solutions to the parameterized model, and some
measurements over the physical state to be approximated. Unlike classical design-of-experiment ap-
proaches [13], the PBDW emphasised state estimation rather than parameter estimation. The PBDW
approach has been developed in order to estimate the true state utrue for several configurations of a
physical system. Supposing that the true state utrue depends on some unknown parameter ω in an
unknown parameter set Θ that represents the unanticipated uncertainty, the goal is to account for
the dependency of the true state utrue(ω) on uncertain parameters by means of the sole knowledge of
data. In this paper, whenever the context is unambiguous, the parameter ω is dropped.

The formulation combines a so-called “best-knowledge” (bk) model represented by a parametrized
partial differential equation (PDE) and experimentally observable measurements. The use of data in
the PBDW approach is fundamental not only to reconstruct the quantities of interest, but also to
correct the possible bias in the mathematical bk model. The PBDW approach provides the following
attractive features:

• The PBDW variational formulation simplifies the construction of a priori error estimates which
can guide the optimal choice of the experimental observations.

• The PBDW formulation uses a bk model that accommodates anticipated uncertainty associated
with the parameters of the model in a computationally convenient way. This bk model is
typically built using model-order reduction techniques.

Note that the PBDW formulation does not explicitly include the equations of the bk model, but only a
finite collection of solutions to the bk model. Thus, another important feature of the PBDW approach
is its non-intrusivity. In fact, once a bk space has been generated, we no longer need the bk model.

The PBDW approach has been subject to active research in recent years. It has been used for several
applications. For instance, [38] applies the PBDW for structural health monitoring; [19] proposes a
non-intrusive PBDW with application to urban dispersion modeling frameworks; and [1, 2] exploit
the generalized empirical interpolation method [27, 28, 29] in a data interpolation perspective. As a
further step towards efficient industrial implementation, [31] develops a PBDW approach based on
noisy observations and [32] introduces an adaptive PBDW approach with a user-defined update space.
Moreover, [14] tackles the case of nonlinear problems with an unsteady application. Besides, the issue
of noisy observations is also addressed in [15]. Further work regarding the selection of experimental
observation functionals has been conducted in [37], whereas [36] proposes a localization procedure
that treats the uncertainty related to boundary conditions. Finally, [6] proposes optimal choices for
the reduced models and [5] addresses optimal measurements in state estimation using reduced models.

The PBDW approach was devised in [30] for steady problems. In this paper, we propose, as initiated
in [3], an extension of the PBDW approach to time-dependent state estimation. Two main contributions
to the standard PBDW approach are presented:

• We build appropriate background spaces for the time-dependent setting using the POD-greedy
algorithm [16]. Here, the bk-model is approximated in space using the Finite Element Method
(FEM). The POD-greedy procedure has been combined with FEM in previous work [25, 18, 4].
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• We propose a modified offline stage so as to alleviate its computational cost which can be
sizeable in a time-dependent setting. The new offline stage allows for better computational
efficiency owing to a smaller online system. Moreover, it achieves substantial cost savings
associated with data collection since it diminishes the number of observation sensors needed
online. Note that this modified offline stage can also be applied to a steady framework.

This paper is organized as follows. Section 2 sets the notation and introduces the PBDW setting in the
stationary framework as introduced in the literature. The reader familiar with this material can directly
skip to Section 3 which extends the PBDW approach to the time-dependent framework. In Section 4,
we discuss the offline stage and present the suggested algorithm in detail. Finally, in Section 5, we
illustrate our method by some numerical results. We focus on standard parabolic problems exemplified
by the linear and nonlinear heat problem. We expect similar behaviour if a moderate advection reaction
term is added to the model. The more delicate question of dominant low-order perturbations is left
for future work. The main idea and results presented in this work are inspired from the PhD thesis of
the author [3].

2. Basic notation and stationary PBDW

We consider a spatial domain (open, bounded, connected subset) Ω ⊂ Rd, d ≥ 1, with a Lipschitz
boundary. We introduce a Hilbert space U composed of functions defined over Ω. The space U is
endowed with an inner product (·, ·) and we denote by ‖ · ‖ the induced norm; U consists of functions
{w : Ω → R | ‖w‖ < ∞}. To fix the ideas, we assume that H1

0 (Ω) ⊂ U ⊂ H1(Ω), and we denote the
dual space of U by U ′. The Riesz operator RU : U ′ → U satisfies, for each ` ∈ U ′, and for all v ∈ U ,
the equality (RU (`), v) = `(v). For any closed subspace Q ⊂ U , the orthogonal complement of Q is
defined as Q⊥ := {w ∈ U | (w, v) = 0, ∀v ∈ Q}. Finally, we introduce a parameter set P ⊂ Rp, p ≥ 1,
whose elements are generically denoted by µ ∈ P.

The first source of information we shall afford ourselves in the PBDW approach is a so-called “best-
knowledge” (bk) mathematical model in the form of a parametrized PDE posed over the domain Ω (or
more generally, over a domain Ωbk such that Ω ⊂ Ωbk). Given a parameter value µ in the parameter
set P, we denote the solution to the bk parametrized PDE as ubk(µ) ∈ U . Then, we introduce the
manifold associated with the solutions of the bk model Mbk := {ubk(µ) | µ ∈ P} ⊂ U . In ideal
situations, the true solution utrue is well approximated by the bk manifold, i.e., the model error

εbk
mod(utrue) := inf

z∈Mbk
‖utrue − z‖, (2.1)

is very small.
We introduce nested background subspaces Z1 ⊂ . . . ⊂ ZN ⊂ . . . ⊂ U that are generated to

approximate the bk manifoldMbk to a certain accuracy. These subspaces can be built using various
model-order reduction techniques, for instance, the Reduced Basis method. Note that the indices
of the subspaces conventionally indicate their dimensions. To measure how well the true solution is
approximated by the background space ZN , we define the quantity εbk

N (utrue) := infz∈ZN
‖utrue −

z‖. The background space is built so that εbk
N (utrue) −→

N→+∞
εbk
mod(utrue). Moreover, we introduce the

reduction error εbk
red,N := supu∈Mbk infz∈ZN

inf‖u − z‖, which encodes the loss of accuracy caused by
solving the bk model in the N -dimensional background space ZN . For later purposes, we introduce
ΠZN

(utrue) as the closest point to utrue in ZN . Note that ΠZN
is the U-orthogonal projection onto

ZN . The background space ZN can be interpreted as a prior space that approximates the bk manifold
which we hope approximates well the true state utrue. As previously alluded to, utrue rarely lies in
Mbk in realistic engineering study cases.

The remainder of this Section is a brief review of the PBDW method in the stationary case.
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2.1. Unlimited-observations statement

Let us first describe an ideal situation. The unlimited-observations PBDW statement reads: find
(u∗N , z∗N , η∗N ) ∈ U × ZN × U such that

(u∗N , z∗N , η∗N ) = arginf
uN∈ U
zN∈ ZN

ηN∈ U

‖ηN‖2, (2.2a)

subject to (uN , v) = (ηN , v) + (zN , v), ∀v ∈ U , (2.2b)
(uN , φ) = (utrue, φ), ∀φ ∈ U . (2.2c)

A direct consequence of (2.2b) is that
u∗N = z∗N + η∗N , (2.3)

whereas (2.2c) implies that u∗N = utrue.
The so-called “deduced background estimate” z∗N can only represent anticipated uncertainty. Since

the bk mathematical model of a physical system is often deficient, one cannot realistically assume
that the state estimate u∗N of utrue lies completely in the bk manifold (or in the background space
ZN ). Therefore, the so-called “update estimate” η∗N is meant to cure the deficiency of the bk model
by capturing unanticipated uncertainty. In other words, the key idea of the PBDW statement (2.2) is
to search for the smallest correction to the bk manifold. The following result is proved in [30].

The Euler–Lagrange saddle-point problem associated with the PBDW statement (2.2) reads: find
(z∗N , η∗N ) ∈ ZN × U such that {

(η∗N , q) + (z∗N , q) = (utrue, q), ∀q ∈ U ,
(η∗N , p) = 0, ∀p ∈ ZN ,

(2.4)

and set u∗N = z∗N + η∗N .

2.2. Observable space

The evaluation of the right-hand side (utrue, q) in (2.4) requires the full knowledge of the true state utrue

which is unrealistic. In practice, one can only afford a limited number of experimental observations
of the true state utrue. In the present setting, the experimental observations are interpreted as the
application of prescribed observation functionals `obs

m ∈ U ′ for all m ∈ {1, . . . ,M} such that the m-
th experimental observation is given by `obs

m (utrue) ∈ R, ∀m ∈ {1, . . . ,M}. One can consider any
observation functional that renders the behavior of some physical sensor.

Generally, we introduce an experimentally observable space UM := Span{qm}1≤m≤M ⊂ U , where
qm := RU (`obs

m ) is the Riesz representation of `obs
m ∈ U ′, for all m ∈ {1, . . . ,M}. The experimental

observations of the true state satisfy
(
utrue, qm

)
= `obs

m (utrue), for all m ∈ {1, . . . ,M}. Hence, for all
q ∈ UM such that q =

∑M
m=1 αmqm and (αm)1≤m≤M ∈ RM , the inner product

(
utrue, q

)
can be deduced

from the experimental observations as a linear combination of the M available observations:(
utrue, q

)
=

M∑
m=1

αm
(
utrue, qm

)
=

M∑
m=1

αm`
obs
m (utrue). (2.5)

2.3. Limited-observations statement

Let us now describe the PBDW statement in the case of limited observations. Henceforth, we make
the crucial assumption that

ZN ∩ U⊥M = {0}, (2.6)

4



Reducing sensors by means of variational data assimilation

which is meant to ensure the well-posedness of the PBDW statement with limited observations [3].
The limited-observations PBDW statement reads: find (u∗N,M , z∗N,M , η∗N,M ) ∈ U ×ZN × U such that

(u∗N,M , z∗N,M , η∗N,M ) = arginf
uN,M∈ U
zN,M∈ ZN

ηN,M∈ U

‖ηN,M‖2, (2.7a)

subject to (uN,M , v) = (ηN,M , v) + (zN,M , v), ∀v ∈ U , (2.7b)
(uN,M , φ) = (utrue, φ), ∀φ ∈ UM . (2.7c)

As above, (2.7b) implies that the limited-observations state estimate u∗N,M satisfies

u∗N,M = z∗N,M + η∗N,M . (2.8)

One can show (e.g., by introducing the Lagrangian) that the limited-observations problem (2.7) is
equivalent to the limited-observations saddle-point problem: find (z∗N,M , η∗N,M ) ∈ ZN ×UM such that

(η∗N,M , q) + (z∗N,M , q) = (utrue, q), ∀q ∈ UM , (2.9a)
(η∗N,M , p) = 0, ∀p ∈ ZN , (2.9b)

and define u∗N,M according to (2.8). The linear system (2.9) is well posed under assumption (2.6).

Remark 2.1 (Perfect background space). The choice of the background space ZN and of the ob-
servable space UM may lead to several specific configurations. In particular, the background space
ZN is said to be perfect if the reduction error vanishes, i.e., utrue ∈ ZN . In this case, the pair
(utrue, 0) ∈ ZN × UM is the unique solution to (2.9). Hence, the state estimate u∗N,M also belongs
to ZN and the update estimate satisfies η∗N,M = 0.

2.4. Algebraic formulation

We now present the algebraic formulation of the limited-observations PBDW statement. We first
introduce an N -dimensional approximation space UN of the infinite-dimensional space U as well as
discrete approximation spaces ZN ⊂ UN and UM ⊂ UN of the subspaces ZN and UM , respectively.
These spaces are built using finite elements [10]. We assume that the size of the mesh is small enough
so that the N -dimensional space discretization delivers High-Fidelity (HF) approximations within the
requested level of accuracy. To alleviate the notation, we have dropped the superscript N ; hence,
the discrete FEM spaces are denoted ZN and UM instead of ZNN and UNM , but we still keep the
notation UN for the FEM-discretization space. Then, we introduce a basis for the background space
ZN := Span{ζn}1≤n≤N . The update space is spanned by the Riesz representations of the observation
functionals in UN , i.e., UM := Span{qm}1≤m≤M , where qm ∈ UN , for all m ∈ {1, . . . ,M}. The high-
fidelity (HF) discretization of the saddle-point problem (2.9) is: Find (z∗N,M , η∗N,M ) ∈ ZN × UM such
that

(η∗N,M , q) + (z∗N,M , q) = (utrue, q), ∀q ∈ UM , (2.10a)
(η∗N,M , p) = 0, ∀p ∈ ZN . (2.10b)

The solution of (2.10) is then searched under the form

z∗N,M =
N∑
n=1

znζn, and η∗N,M =
M∑
m=1

ηmqm, (2.11)

and we introduce the component vectors z∗N,M := (zn)1≤n≤N ∈ RN and η∗N,M := (ηm)1≤m≤M ∈ RM .
We also introduce the basis matrices ZN ∈ RN×N and UM ∈ RN×M whose column vectors are the
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components of the functions {ζn}1≤n≤N and {qm}1≤m≤M respectively in the basis of UN . In algebraic
form, the FEM-discretized saddle-point problem (2.10) reads: find (z∗N,M ,η∗N,M ) ∈ RN×RM such that(

A B
BT 0

)(
η∗N,M
z∗N,M

)
=
(
`obs
M
0

)
, (2.12)

with the matrices

A =
(
(qm′ , qm)

)
1≤m,m′≤M

∈ RM×M , B =
(
(ζn, qm)

)
1≤m≤M,1≤n≤N

∈ RM×N , (2.13)

and the vector of observations `obs
M =

(
`obs
m (utrue)

)
1≤m≤M ∈ RM .

In practice, the matrices A and B are computed using the algebraic formulas A = UMMUM , and
B = ZNMUM , where M is the Gram matrix of the inner product in U . Thus, solving (2.12) allows
for a straightforward reconstruction of the components of the state estimate in the basis of UN as
follows:

u∗N,M = ZNz∗N,M + UMη
∗
N,M . (2.14)

3. Time-dependent PBDW

Consider a finite time interval I = [0, T ], with T > 0. To discretize in time, we consider an integer
K ≥ 1, we define 0 = t0 < · · · < tK = T as (K + 1) distinct time nodes over I, and we set
Ktr = {1, . . . ,K}, Ktr = {0} ∪Ktr and Itr = {tk}

k∈Ktr . This section aims at deriving a state estimate
for a time-dependent solution.

Remark 3.1 (Initial condition). In the present setting, we choose not to solve the PBDW statement
for the initial time node k = 0. It is straightforward to consider a setting where the initial time node
is also included.

3.1. Unlimited-observations statement

In this ideal setting, we assume that utrue ∈ C0(I;U). Here, the observations are considered unlimited
in both space and time. The time-dependent unlimited-observations PBDW statement reads: for each
k ∈ Ktr, find (uk,∗N , zk,∗N , ηk,∗N ) ∈ U × ZN × U such that

(uk,∗N , zk,∗N ,ηk,∗N ) = arginf
uN∈U
zN∈ZN

ηN∈U

‖ηN‖2, (3.1a)

subject to (uN , v) = (ηN , v) + (zN , v), ∀v ∈ U , (3.1b)
(uN , φ) = (uk,true, φ), ∀φ ∈ U . (3.1c)

where uk,true := utrue(tk, ·).

Lemma 3.2 (Solution). For each k ∈ Ktr, the solution to (3.1) is given by

uk,∗N = uk,true, zk,∗N = ΠZN
(uk,true), ηk,∗N = ΠZ⊥N (uk,true). (3.2)

Proof. From (3.1c), we infer that uk,∗N = uk,true. Next, we deduce from (3.1b) that uk,true =
zk,∗N + ηk,∗N . Since (3.1a) is a minimization of ‖ηk,∗N ‖, it follows that zk,∗N = ΠZN

(uk,true). Thus, ηk,∗N =
ΠZ⊥N (uk,true).
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The Euler–Lagrange saddle-point problem associated with the time-dependent PBDW statement
(3.1) reads: for each k ∈ Ktr, find (zk,∗N , ηk,∗N ) ∈ ZN × U such that

(ηk,∗N , q) + (zk,∗N , q) = (uk,true, q), ∀q ∈ U , (3.3a)

(ηk,∗N , p) = 0, ∀p ∈ ZN . (3.3b)

The unlimited-observations state estimate is then

uk,∗N = zk,∗N + ηk,∗N , ∀k ∈ Ktr. (3.4)

The saddle-point problem (3.3) is purely geometric and does not include any explicit reference to the
bk model. The unique link to the bk model is through the background space ZN . Therefore, the PBDW
approach is applicable to a wide class of engineering problems. Moreover, the non-intrusivity of (3.3)
simplifies its implementation. In practice, non-intrusivity means that computational procedures do
not need to access the bk-model in order to perform their calculations.

3.2. Limited-observations statement

We now weaken the regularity assumption on the true state and only assume that utrue ∈ L1(I;U).
We introduce the time-integration intervals

Ik = [tk − δtk, tk + δtk], ∀k ∈ Ktr, (3.5)

where δtk > 0 is a parameter related to the precision of the sensor (ideally, δtk < min(tk+1−tk, tk−tk−1)
with obvious adaptation if k=K). Then, for any function v ∈ L1(I;U), we define the time-averaged
snapshots

vk(x) := 1
|Ik|

∫
Ik
v(t, x) dt ∈ U , ∀k ∈ Ktr. (3.6)

The evaluation of the right-hand side (uk,true, q) in (3.3) requires the full knowledge of the true state
uk,true, which is unrealistic. In practice, one can only afford a limited number of experimental observa-
tions of the true state uk,true. Therefore, we consider observation functionals that render the behavior
of given sensors. We use the same observation functionals as in the time-independent setting [30], but
we let them act on the time-averaged snapshots of the true solution, i.e., we consider

`k,obs
m (utrue) := `obs

m (uk,true), ∀m ∈ {1, . . . ,M}, ∀k ∈ Ktr. (3.7)

For instance, if the sensors act through local uniform time integration, we have

`k,obs
m (utrue) = 1

|Rm|

∫
Rm

uk,true(x) dx = 1
|Rm|

1
|Ik|

∫
Rm

∫
Ik

utrue(t, x) dxdt, (3.8)

whereas if the sensors act through integration against a Gaussian, we have

`k,obs
m (utrue) = 1√

2πr2
m

∫
Rm

uk,true(x) exp
(
−(x− xcm)2

2r2
m

)
dxdt,

= 1
|Ik|

1√
2πr2

m

∫
Ik

∫
Rm

utrue(x) exp
(
−(x− xcm)2

2r2
m

)
dxdt.

(3.9)

Generally, we introduce the time-independent observable space UM ⊂ U such that

UM = Span{q1, . . . , qM}. (3.10)

Remark 3.3 (Sensors). The most convenient configuration to collect observations in industrial con-
texts is to measure the quantities at user-defined space-time locations. In actual practice, sensors do
not take pointwise measures but localized ones. A sensor collects the data that is enclosed in a small
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area centered at the sensor location. Hence, equation (3.8) means that the sensor returns a mea-
surement that is equal to the space-time averaged quantity we are collecting. The setup defined by
equation (3.9) means that the sensor returns a Gaussian-like measurement over a centered space-time
domain. Moreover, the observation functionals are Riesz representors of any type of physical data
available for the user, and not necessarily pointwise or pointwise-like (integrations over small patches)
observations.

Remark 3.4 (Functionals). The functionals `obsm in (3.7) are fixed over time. If they change over time,
the space UM in (3.10) will change at every time step. Another possibility is to have a larger space UM
with optional information in specific directions (corresponding to physical locations of the sensors) at
each time step as soon as stability is granted. Yet, such an approach can suffer from continuity issues
due to the change of directions with available measurements between time steps.

The observation functionals in U ′ are then defined as

`k,obs
m (utrue) = (uk,true, qm), ∀m ∈ {1, . . . ,M}, ∀k ∈ Ktr. (3.11)

Note that, for fixed sensor locations, the computational effort to compute the Riesz representations
of the observation functionals is time-independent and is incurred only once so that the experimental
observations of the true state satisfy

`k,obs
m (utrue) =

(
uk,true, qm

)
= 1
|Ik|

∫
Ik
`obs
m (utrue(t, ·))dt, ∀m ∈ {1, . . . ,M}, ∀k ∈ Ktr. (3.12)

Hence, for all q ∈ UM such that,

q =
M∑
m=1

αmqm, (3.13)

the inner product
(
uk,true, q

)
is deduced from the experimental observations as follows:

(
uk,true, q

)
= 1
|Ik|

∫
Ik

M∑
m=1

αm
(
utrue(t, ·), qm

)
dt = 1

|Ik|

M∑
m=1

αm

∫
Ik
`obs
m (utrue(t, ·))dt. (3.14)

Henceforth, we make the crucial assumption that

ZN ∩ U⊥M = {0}, (3.15)

which is also equivalent to

βN,M := inf
w∈ZN

sup
v∈UM

(w, v)
‖w‖ ‖v‖

∈ (0, 1], (3.16)

where βN,M is the so-called stability constant (the reader can refer to [3] for a proof). Assump-
tion (3.15) can be viewed as a requirement to have enough sensors (note that ZN ∩ U⊥ = {0}).
Under this assumption, the limited-observations PBDW statement reads: for each k ∈ Ktr, find
(uk,∗N,M , z

k,∗
N,M , η

k,∗
N,M ) ∈ U × ZN × U such that

(uk,∗N,M , z
k,∗
N,M , η

k,∗
N,M ) = arginf

uN,M∈U
zN,M∈ZN

ηN,M∈U

‖ηN,M‖2, (3.17a)

subject to (uN,M , v) = (ηN,M , v) + (zN,M , v), ∀v ∈ U , (3.17b)
(uN,M , φ) = (uk,true, φ), ∀φ ∈ UM . (3.17c)
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The limited-observations saddle-point problem associated with (3.17) reads: for each k ∈ Ktr, find
(zk,∗N,M , η

k,∗
N,M ) ∈ ZN × UM such that

(ηk,∗N,M , q) + (zk,∗N,M , q) = (uk,true, q), ∀q ∈ UM , (3.18a)

(ηk,∗N,M , p) = 0, ∀p ∈ ZN , (3.18b)

and the limited-observations state estimate is

uk,∗N,M = zk,∗N,M + ηk,∗N,M , ∀k ∈ Ktr. (3.19)

Remark 3.5 (Pointwise measurements). For simplicity of implementation, assuming that utrue ∈
C0(I;U), one may consider pointwise measurements in time, i.e.,(

uk,true, qm
)

= `obs
m (utrue(tk, ·)), ∀m ∈ {1, . . . ,M},∀k ∈ Ktr. (3.20)

The assumption (3.20) is typically reasonable for a sensor of small precision δtk.

In algebraic form, the limited-observations PBDW statement reads: for each k ∈ Ktr, find
(zk,∗N,M ,η

k,∗
N,M ) ∈ RN × RM such that(

A B
BT 0

)(
ηk,∗N,M
zk,∗N,M

)
=
(
`k,obs
M
0

)
, (3.21)

with the matrices

A =
(
(qm′ , qm)

)
1≤m,m′≤M

∈ RM×M , B =
(
(ζn, qm)

)
1≤m≤M,1≤n≤N

∈ RM×N , (3.22)

and the vector of observations

`k,obs
M =

(
`obs
m (uk,true)

)
1≤m≤M ∈ RM . (3.23)

Offline/online procedure: Since several realizations uk,true(ω) of the true state are considered, an
offline/online procedure can be employed to solve (3.21). During the offline stage, one precomputes the
RB functions (ζn)1≤n≤N and the Riesz representers (qm)1≤m≤M leading to the matrices A ∈ RM×M
and B ∈ RN×M once and for all. Then, during the online stage, for each new set of observations
corresponding to a new realization of the true state uk,true(ω), all that remains to be performed is to
form the vector of observations `k,obs

M (ω) and to retrieve the deduced background estimate zk,∗N,M (ω)
and the update estimate ηk,∗N,M (ω) by solving the (N + M)-dimensional linear problem (3.21). The
PBDW state estimate uk,∗N,M (ω) is then computed using (3.19).

Remark 3.6 (PBDW matrices). Notice that the PBDW matrices A and B are time-independent;
only the right-hand side in (3.21) depends on k.

Remark 3.7 (Choice of spaces). The subspaces ZN and UM must be chosen carefully. In fact, we
want a small angle between the spaces ZN and UM in order to increase the stability constant βN,M ,
but we need some overlap between the spaces Z⊥N and UM to improve the approximation capacity of
Z⊥N ∩UM . We refer the reader to [30] for a detailed a priori error analysis and to [3] for an overview on
the influence of the spaces ZN and UM on the accuracy of the results. We highlight that using multiple
time-dependent bases did not appear to be beneficial in our numerical experiments. In particular, this
choice leads to higer storage requirements and the need for higher time sampling.
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4. Offline stage

In this section, we discuss the offline stage. Our main goal is to address the construction of the
background space ZN .

4.1. Background space construction via POD-greedy

Suppose that we have computed a set of high-fidelity (HF) trajectories
S = (Sk)k∈Ktr =

(
(uk(µ))µ∈Ptr

)
k∈Ktr , (4.1)

where uk(µ) := u(µ)(tk, ·), for all k ∈ Ktr. If we were to consider the PBDW statement (3.17) for each
k ∈ Ktr as an independent steady PBDW statement, we would be working with the time-dependent
background spaces

ZkNk = POD(Sk, εpod), ∀k ∈ Ktr, (4.2)
where the procedure POD is introduced in [24]. However, this strategy is not convenient since the sizes
Nk of the background spaces Zk

Nk would depend on k. Since the observable space UM is fixed, the
same non-homogeneity between time nodes would also arise in the stability constant βNk,M . Thus, we
propose to apply a POD-greedy algorithm [16, 17] in order to build a time-independent background
space ZN that will be used for all k ∈ Ktr. The advantage is that the PBDW matrices A and B and
the stability constant βN,M remain unchanged regardless of the discrete time node. The offline stage
using the POD-greedy algorithm is summarized in Algorithm 1.

Algorithm 1 Offline stage via POD-greedy

Input : S and εpod.
Qinit: an initial set of Riesz representations for the observations.

1: Compute ZN := POD-greedy(S, εpod).
2: Set UM := Span{Qinit}.
3: Compute the matrices A and B using ZN and UM .

Output : ZN , UM , A and B.

4.2. Background space construction via state estimation

We now devise a new algorithm in the context of time-dependent PBDW to perform the offline stage.

4.2.1. Main idea

Here, the construction of the background space ZN , the choice of the observation space UM and the
PBDW matrices are modified. The key idea of the new procedure is to precompute the PBDW state
estimates of the parameters in the training set Ptr during the offline stage. The background space is
then deduced from these PBDW state estimates. The benefit is that the newly created background
space incorporates data-based knowledge. The modified offline stage of the PBDW for time-dependent
problems is described in Algorithm 2. Within the modified offline stage, we use the so-called “Greedy
stability maximization” (S-Greedy) algorithm (considered in [30]) in line 6 in order to identify the
least stable mode and then take the best measurement. The algorithm uses an input space ZN that
results from a POD-greedy procedure so that Z1 contains the dominant mode, and so forth. The
S-greedy algorithm selects the observations progressively. Thus, the enrichment of the observable
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space UM stops once the minimum stability βmin is reached. The procedure S-greedy is described in
Algorithm 3 below. Altogether, the modified offline stage in the proposed algorithm offers four major

Algorithm 2 Modified offline stage of the time-dependent PBDW

Input : Ptr, Ktr, S, εpod, εinit
pod and βmin.

Qinit: an initial set of Riesz representations of observations.
1: Compute Z init

N init := POD-greedy(S, εinit
pod).

2: Set U init
M init := Span{Qinit}.

3: Compute the matrices Ainit and Binit using Z init
N init and U init

M init .
4: Estimate the state uk,∗(µ) for all (µ, k) ∈ Ptr ×Ktr.
5: Compute ZN := POD-greedy({uk,∗(µ)}µ∈Ptr,k∈Ktr , εpod).
6: Compute UM := S-Greedy(Ptr, Ktr, N , {Zn}Nn=1, βmin, Qinit).
7: Compute the matrices A and B using ZN and UM .

Output : ZN , UM , A and B.

advantages:

(1) Improved background space: Since the background space ZN is built using both the bk
model and the observations, it is expected to have better approximation capacities of the true
state.

(2) Reduced number of online observations: In line 6 of Algorithm 2, we select each new
data point so as to maximize the stability constant βN,M . Thus, the observations that will be
used during the online stage are mainly needed only for stability and not for accuracy.

(3) Reduced dimension of the online PBDW statement: Since the number of observations
is significantly reduced, the modified PBDW matrices are of smaller size compared to the
matrices of the standard PBDW. Thus, using the modified offline algorithm, the online PBDW
formulation is solved faster.

(4) Reduced storage cost:Owing to the reduced number of online measurements, the dimensions
of the observable space UM and of the matrices A and B are smaller, whence the storage gain.

Regarding computational efficiency, the modified procedure consists of more steps than in the standard
PBDW. However, all the additional steps of the algorithm are performed offline. As for all reduced-
order modeling techniques, the goal of the algorithm is to further improve the online efficiency. Hence,
the computational savings brought by the new PBDW formulation come, in our opinion, at a reasonable
offline price. Indeed, the resolution of the (online) standard PBDW statement for each parameter
µ ∈ Ptr has a reduced computational cost. The only relevant additional computational cost incurred
offline is related to the second POD-greedy algorithm (cf. line 5 of Algorithm 2). We believe this
computational effort remains acceptable.

Remark 4.1 (Least stable mode). Line 6 of Algorithm 3 may return several infima. Among these
infima, we select a function whose norm in U is maximal.

Remark 4.2 (Steady setting). In a time-dependent framework, the computational savings induced
by the modified offline stage are substantial, in particular because of the influence of the time steps.
However, Algorithm 3 can be applied in the steady setting as well.
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Algorithm 3 S-Greedy: Stability-maximization algorithm

Input : N , ZN and βmin ∈ (0, 1].
Qinit: an initial set of Riesz representations of the observations.

1: Choose a random q1 ∈ Qinit.
2: Set U1 := Span{q1}.
3: Compute the stability constant β1,1 using Z1 and U1.
4: Set m := 2.
5: while βN,m−1 < βmin or m < M do
6: Compute the least stable mode and the associated supremizer

winf ∈ arginf
w∈ZN

sup
v∈Um−1

(w, v)
‖w‖ ‖v‖

, and vsup = ΠUm−1(winf).

7: Identify the least well-approximated vector qm = argsup
q∈Qinit

|(q, winf − vsup)|.

8: Set Um := Span{Um−1, qm}.
9: Compute the stability constant βN,m.

10: m = m+ 1.
11: end while
12: M := m.

Output : UM .

4.2.2. Practical aspects

As the locations of the sensors are fixed in many industrial applications, the offline optimized strategy
does not always assume the freedom to place the sensors. In fact, the sensor placement is an option
in the procedure to maximize accuracy, but the overall strategy proves efficient even for fixed sensor
locations as illustrated in the applications of Section 5. To be more precise, the initial choice of
the Riesz representations of observations Qinit considered as an input in Algorithm 2 can be left to
the user depending on their industrial constraints, and must not necessarily be performed using the
S-Greedy algorithm. The same reasoning can be applied when updating the observable space in line 6
of Algorithm 2. However, we emphasize that the final set of observations must be a subset of the initial
set Qinit.

Most practical applications in the literature are cases for which measurement values must come from
experiments that were performed offline during a one-shot data collection step, meaning implicitly
that the user is allowed to work with the same number of sensors throughout the entire experiment.
On the contrary, the optimized offline procedure also handles practical cases for which the sensor
placement may be reduced within the offline stage. This context is related to real case scenarii in
which a first data collection campaign has been performed at a first occasion with insufficient results.
When the experimental data collection needs to be redeployed for further investigation of a physical
system, the optimized offline stage diminishes substantially its cost by taking into account the previous
data, complemented by a less expensive renewed sensor placement. This can typically be the case in
industrial research and development engineering units, such as that which hosted the author of the
paper during the elaboration of this work. Yet, the optimized offline procedure can still be used for
the usual one-shot data collection framework. In this case, the benefit of the strategy is to further
diminish the size of the online system, thereby improving the storage and resolution performances of
the online stage.
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5. Numerical results

In this section, we illustrate the above developments on test cases related to the heat equation. The goal

Figure 5.1. Computational domain and mesh with N = 6561. The little black
squares are observation subsets {Rm}121

m=1. Left: Mono-material plate. Right: Bi-
material plate.

is to illustrate the computational performance of our algorithms. In all our test cases, we consider a two-
dimensional setting based on the plate illustrated in the left panel of Figure 5.1 with Ω = (−2, 2)2 ⊂ R2.
We use a finite element (FE) [11] subspace UN ⊂ U = H1(Ω) consisting of continuous, piecewise
affine functions in order to generate HF trajectories. The FE subspace UN is based on a mesh that
contains N = 6561 nodes. The experimental data is generated synthetically and the observation
subsets {Rm}1≤m≤M are uniformly selected over the plate as illustrated in the left panel of Figure 5.1.
Regarding the implementation, the HF computations use the software FreeFem++ [20], whereas the
reduced-order modeling and the PBDW-related algorithms have been developed in Python.

5.1. Physical model problem

We apply the above methodology to the following parabolic PDE: For many values of the parameter
µ ∈ P, find u(µ) : I × Ω→ R such that

∂u(µ)
∂t

−∇ · (D(µ)∇u(µ)) = 0, in I × Ω,

u(µ)(t = 0, ·) = u0, in Ω,
Boundary conditions, on I × ∂Ω,

(5.1)

where u0 = 293.15K (20oC). We will supplement (5.1) with two types of boundary conditions:

(1) Linear heat equation: We apply a homogeneous Neumann boundary condition on ∂Ω0 and
a non-homogeneous Neumann boundary condition on ∂Ωn, i.e.,

−D(µ)∂u(µ)
∂n

= 0, on I × ∂Ω0,

−D(µ)∂u(µ)
∂n

= φe, on I × ∂Ωn,

(5.2)

with φe = 3K·m·s−1, ∂Ω0 = (−2, 2)×{2}∪ {2}× (−2, 2), and ∂Ωn = (−2, 2)×{−2}∪ {−2}×
(−2, 2). Thus, the resulting problem (5.1)–(5.2) is linear. Note that ∂Ω0 consists of the upper
and right sides of the plate and ∂Ωn consists of its lower and left sides, so that ∂Ω = ∂Ω0∪∂Ωn.
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(2) Nonlinear heat equation: We apply Stefan–Boltzmann boundary conditions on ∂Ω, i.e.,

−D(µ)∂u
∂n

= σε(u4 − u4
r), on I × ∂Ω, (5.3)

where ur = 303.15K (30oC) is an enclosure temperature, σ = 5.67 × 10−8W.m−2.K−4 is the
Stefan–Boltzmann constant and ε = 3.10−3 is the emissivity. The Stefan–Boltzmann boundary
condition is nonlinear and so is the resulting problem (5.1)–(5.3).

In what follows, the background spaces ZN will be generated by solving either the linear PDE (5.1)–
(5.2) or the nonlinear PDE (5.1)-(5.3) with a uniform diffusivity function D(µ) such that for all x ∈ Ω,
D(µ)(x) = Duni(µ)(x) := µ1Ω(x).

5.2. Synthetic data generation

We synthesize the data by first synthesizing a true solution and then applying to it the linear functionals
by means of their Riesz representations in the observable space UM . In order to synthesize the true
solution, we consider a “true model” based on the bi-material plate (cf. right panel of Figure 5.1) where
we choose a fixed internal diffusivity Dint = 1 and define, for each µ ∈ P, the diffusivity function D(µ)
as D(µ)(x) = Dsyn(µ)(x) := µDint1Ωext(x) + Dint1Ωint(x), for all x ∈ Ω, where Ωint = (−1, 1)2 and
Ωext = (−2, 2)2 \ (−1, 1)2, so that Ω = Ωint∪Ωext and Ωint∩Ωext = ∅. The synthetic true solutions are
then defined as the solutions of (5.1) for all µ ∈ P, with either the linear boundary condition (5.2) or
the nonlinear boundary condition (5.3).

5.2.1. Test configurations

In order to investigate the PBDW formulation, we perform test cases on two distinct configurations:

(1) Perfect model: The bk model is said to be perfect when εbk
mod(utrue(ω)) = 0, for every

ω ∈ Θ (see (2.1)) (we recall that ω represents the unanticipated uncertainty). In this situation,
utrue(ω) ∈ Mbk for all ω ∈ Θ. Although the model is perfect, some discrepancies between the
HF solutions and the measurements might arise from model-order reduction sinceMbk 6= ZN
(cf. Figure ??). Note that this scenario seldom occurs in engineering situations. This test
configuration is meant to assess the accuracy of the PBDW formulation when the observable
space UM scarcely has additional information compared to ZN .

(2) Imperfect model: The bk model is said to be imperfect when the modeling error does not
vanish. In this situation, there exists at least one (and in general many) ω ∈ Θ such that
εbk
mod(utrue(ω)) 6= 0, i.e., utrue(ω) /∈ Mbk. Consider for instance the plates in Figure 5.1. If the
true solution is generated synthetically using the bi-material plate, an example of an imperfect
bk model can be the one for which we solve the same PDE that has generated the true states
without accounting for the difference in diffusivity between the subdomains of the plate.

5.3. Background space construction via POD-greedy

In this section, four test cases are considered to study the PBDW approach.

• Test case (a): Linear perfect.

• Test case (b): Linear imperfect.

• Test case (c): Nonlinear perfect.

• Test case (d): Nonlinear imperfect.
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5.3.1. Linear case

Regarding time discretization, we consider the time interval I = [0, 10]s, the set of discrete time nodes
Ktr = {1, . . . , 200}, and a constant time step ∆tk = 0.05s for all k ∈ Ktr. Finally, we introduce
the parameter interval P = [0.05, 1] and the training set Ptr = 0.05 × {1, . . . , 20}. In Figure 5.2,

Figure 5.2. Test cases (a) and (b) : HF solutions for the bk model with Neumann
boundary conditions. Left: µ = 1 in Duni (values from 17.3oC to 118.3oC). Right:
µ = 20 in Duni (values from 30.7oC to 43.3oC).

we show the HF temperature profiles for the model problem (5.1)–(5.2) over the homogeneous plate
at the end of the simulation, i.e., for tK = 10s and for two parameter values. We recall that these
solutions will be used as true solutions for the perfect linear case. As the simulation time evolves, the
energy related to the flux φe propagates through the plate which is progressively heated. Moreover, the
overall temperature is higher for smaller values of the parameter µ than for larger values. As physically
expected, the thermal diffusion over the plate is stronger for larger values of µ than for smaller values.

Test case (a): Linear perfect model. We consider the case of a perfect bk model for which
the diffusivity is uniform over the entire domain Ω. Thus, the true solutions correspond to the HF
computations of the bk model. The resulting trajectories are reduced using the POD-greedy algorithm.
For instance, for a tolerance value εpod = 10−2, the background space ZN is composed of N = 5 modes.
Regarding observations, the initial set Qinit is obtained using M = Card(Qinit) = 121 sensors that
are uniformly placed over the plate (see Figure 5.1). Using both the background space ZN and the
observable space UM (Qinit), we build the offline matrices A and B. During the online stage, we estimate
the state u∗N,M for every parameter µ in the training set Ptr. Using the weighted H1-norm, the state
estimation relative H1-error ek(µ) defined as

ek(µ) :=
‖uk,true(µ)− uk,∗N,M (µ)‖H1(Ω)

‖uk,true(µ)‖H1(Ω)
, ∀µ ∈ P, (5.4)

is displayed in Figure 5.3 as a function of the value of the parameter µ for several values of εpod.
In this first configuration, one can notice that the error decreases for smaller tolerances εpod, i.e.,
with the dimension N of the background space ZN . However, the right panel of Figure 5.3 shows a
starting increase in the relative H1-error ek(µ) for εpod = 10−6 and an oscillatory behavior of the
relative H1-error ek(µ). Although counter-intuitive in the reduced-basis context, this phenomenon is
due to the deterioration of the stability constant βN,M . This observation confirms the claims made in
Remark 3.7.
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Figure 5.3. Test case (a): Relative H1-error ek(µ) for some time nodes k ∈ Ktr.
Left: εpod = 10−2 (N = 5). Middle : εpod = 10−4 (N = 10). Right: εpod = 10−6

(N = 15).

Test case (b): Linear imperfect model. This second test investigates the case of a linear im-
perfect bk model. In Figure 5.4, we show the HF temperature profiles for the true solutions over the

Figure 5.4. Test case (b) : Synthetic true solutions with Neumann boundary
conditions. Left: µ = 1 in Dsyn(µ) (values from 17.4oC to 117.9oC). Right: µ = 20
in Dsyn(µ) (values from 29.8oC to 44.3oC).

bi-material plate at the end of the simulation, i.e., at tK = 10s and for two different parameter values.
The temperature fields exhibit the same overall behavior as in Figure 5.2. Additionally, we notice that
the difference in diffusivity between Ωint and Ωext leads as expected to a kink in the temperature iso-
lines. When µ < 1, the thermal diffusion is stronger in the inner plate corresponding to Ωint, whereas
for µ > 1, the thermal diffusion is weaker in the inner plate. Using the HF trajectories produced by
the bk model, we generate a background space ZN by means of a POD-greedy algorithm. We use
M = 121 observations to build the observable space UM . The relative H1-errors ek(µ) defined in (5.4)
are shown in Figure 5.5 as a function of the value of the parameter µ. For instance, for a tolerance
value εpod = 10−3, ZN is spanned by N = 7 vectors. One can notice that the error for the first time
step k = 1 is lower than for the other time steps. This behavior is due to the time-marching which
induces that the solution at the very first time step is close to the initial condition. Hence, the constant
mode is the most prominent in the representation of the solution at k = 1. Besides, the error vanishes
for µ = 0.5 since this configuration is equivalent to a perfect bk model. However, the bottom panels
of Figure 5.5 show a gradual error increase with the dimension N of the bk space. This tendency
was already observed for the linear perfect test case, although in smaller proportions. As before, the
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Figure 5.5. Test case (b) : Relative H1-error ek(µ) for some time nodes k ∈ Ktr

and M = 121. Top left: εpod = 10−2 (N = 5). Top right: εpod = 10−3 (N = 7).
Bottom left: εpod = 10−4 (N = 10). Bottom right: εpod = 10−6 (N = 15).

stability constant βN,M is degraded when increasing the dimension N of the background space ZN .
Moreover, the enrichment of ZN does not add relevant modes anymore (in terms of associated sin-
gular values). For the sake of comparison, we enrich the observable space UM such that M = 676
and plot the relative H1-errors ek(µ) for the same values of εpod in Figure 5.6. Our interpretation is
confirmed since the stability issues do not arise anymore for εpod = 10−4. Owing to the increase of M ,
the stability decrease with respect to N is somewhat compensated. Finally, the bottom-right panel of
Figure 5.6 shows the beginning of an error increase. Using the same reasoning as above, we conclude
that more observations are needed for εpod = 10−6.

Finally, we visualize the stability constant βN,M as a function of the number of observations M
in Figure 5.7. The left panel of the figure shows a single curve for clarity, whereas the right panel
includes curves for several values of the tolerance εpod (note that the two panels do not use the same
rule). As expected, for a constant value of N , the more the observations, the better the stability. For
a number of observations M = 3000, the PBDW formulation is perfectly stable (or close to) for all
the considered values of εpod.

5.3.2. Nonlinear case

Here, we consider the PDE (5.1)–(5.3) with ur = 303.15K, σ = 5.67×10−8W.m−2.K−4 and ε = 3.10−3.
Except for the parameter interval P = [0.1, 2], the set Ptr = {0.1i, 1 ≤ i ≤ 20} and the time step
∆tk = 0.1, all the other numerical data remain the same as for the linear test case from the previous
section.
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Figure 5.6. Test case (b) : Relative H1-error ek(µ) for some time nodes k ∈ Ktr

and M = 676. Top left: εpod = 10−2 (N = 5). Top right: εpod = 10−3 (N = 7).
Bottom left: εpod = 10−4 (N = 10). Bottom right: εpod = 10−6 (N = 15).

Figure 5.7. Test case (b) : Stability constant βN,M as a function of M . On the
right panel, the values of N are respectively 3, 5, 7, 10, 13, 15 for the values of
εpod in decreasing order.

Test case (c): Nonlinear perfect model. We consider the case with a perfect bk model. Thus,
the true solutions correspond to the HF computations of the bk model (cf. left panel of Figure 5.8).
The resulting trajectories are reduced using the POD-greedy algorithm. For instance, for a tolerance
value εpod = 10−2, the background space ZN consists of N = 3 modes. Regarding observations, the
initial set Qinit is obtained using M = Card(Qinit) = 121 sensors that are uniformly placed over the
plate (see Figure 5.1). During the online stage, we estimate the state u∗N,M for every parameter µ in
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Figure 5.8. Test cases (c) and (d) : Left: HF solution for the bk model (values
from 17.80oC to 18.25oC). Right: Synthetic true solution using a bi-material plate
(values from 17.90oC to 18.23oC).

the training set Ptr. In Figure 5.9, we display the state estimation relative H1-error ek(µ) defined
in (5.4) as a function of the value of the parameter µ for several values of εpod. In contrast to the

Figure 5.9. Test case (c) : Relative H1-error ek(µ) for some time nodes k ∈ Ktr

and M = 121. Left: εpod = 10−2 (N = 3). Middle: εpod = 10−4 (N = 7). Right:
εpod = 5.10−6 (N = 11).

linear case, the error always decreases for smaller tolerances εpod, i.e., with the dimension N of the
background space ZN . However, we expect that, for some very small tolerance value (e.g. εpod such
that N > M), the stability issues mentioned above would arise again.

Test case (d): Nonlinear imperfect model. This test case investigates a nonlinear imperfect bk
model for which the HF bk solutions and the true solutions are respectively displayed in the left and
right panels of Figure 5.8. The temperature profile for the true solution over the bi-material plate at
the end of the simulation, i.e., at tK = 10s clearly shows a different behavior at the boundaries of the
inner material. Regarding the PBDW state estimation, Figure 5.10 shows the relative H1-error ek(µ)
defined in (5.4) using M = 121 observations to build the observable space UM . For εpod = 10−4, ZN
is spanned by N = 7 vectors. Notice that the error vanishes for µ = 0.25 since this configuration is
equivalent to a perfect bk model. We notice that the relative H1-error ek(µ) increases because the
stability constant decreases. Figure 5.11 visualizes the relative H1-error ek(µ) for a higher number of
observations M = 676. We observe that augmenting the dimension of the observable space UM cures
the stability issues. Also, the errors are lower owing to the higher number of observations. Finally,
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Figure 5.10. Test case (d) : Relative H1-error ek(µ) for some time nodes k ∈ Ktr

and M = 121. Left: εpod = 10−2 (N = 3). Middle: εpod = 10−4 (N = 7). Right:
εpod = 10−6 (N = 11).

Figure 5.11. Test case (d) : Relative H1-error ek(µ) for some time nodes k ∈ Ktr

and M = 676. Left: εpod = 10−2 (N = 3). Middle: εpod = 10−4 (N = 7). Right:
εpod = 5.10−6 (N = 11).

Figure 5.12 shows the stability constant βN,M as a function of the number of observations M . The
behavior is quite similar to the linear case. Hence, the nonlinear character of the problem does not
influence the overall features of the PBDW statement. This observation corroborates the independence
with regard to the bk model.

Figure 5.12. Test case (d) : Stability constant βN,M . On the right panel, the
values of N are respectively 2, 3, 5, 7, 11 for the values of εpod in decreasing
order.
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5.4. Background space construction via state estimation

We now illustrate the performances of Algorithm 2 for the following linear imperfect case:

• Test case (e): We consider a simulation duration T = 4s and a time step ∆t = 0.1s. Test truths
are synthesized with an internal diffusivity Dint = 0.2.

As opposed to the previous section, we choose a non-parametric bk model based on an HF computation
for µ = 0.5. The resulting unique trajectory is then reduced using a POD algorithm, which is equivalent
to a POD-greedy for a single trajectory (cf. line 1 of Algorithm 2). For a tolerance value εinit

pod = 10−2, we
obtain a background space Z init

N init composed of N init = 34 modes. As regards observations, the initial
set Qinit consists of M init = Card(Qinit) = 1521 sensors that are uniformly placed over the plate (cf.
line 2 of Algorithm 2). Using both the background space Z init

N init and the observable space U init
M init(Qinit),

we estimate the state u∗N init,M init for every parameter µ in the training set Ptr = {0, 4, 8, 12, 16} (cf.
line 4 of Algorithm 2). The state estimation leads to the relative H1-error ek(µ) shown in Figure 5.13.
We also plot in Figure 5.14 the absolute H1-norms of the deduced background estimate z∗N init,M init

Figure 5.13. Test case (e) : Relative H1-error ek(µ) for the state estimate as a
function of the time nodes. The curves correspond to different values of µ.

and the update estimate η∗N init,M init . One can notice that the latter is non-negligible compared to the
former. Once the first part of the modified offline stage has been performed, we use the resulting state

Figure 5.14. Test case (e) : Absolute H1-norms of the contributions z∗N init,M init

and η∗N init,M init as a function of the time nodes. The various curves correspond to
the different values of µ.
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estimates in order to build the modified background space (cf. line 5 of Algorithm 2). For a tolerance
εpod = 5.10−2, the POD-greedy algorithm selects four modes. Then, we build the observable space UM
using M = 121 uniformly distributed sensors (the optimal choice can be made using the S-Greedy
algorithm, see Algorithm 3). Figure 5.15 displays the errors for the verification set Pverif = {0, . . . , 19}.
The state estimation relative H1-error ek(µ) remains comparable to that of the five parameters used
for the offline construction. Regarding the online observations, we highlight that the online results are
achieved using only M ≈ 8%M init. Finally, Figure 5.16 shows the absolute H1-norms of the deduced

Figure 5.15. Test case (e) : Relative H1-error ek(µ) for the state estimate as a
function of the time nodes during the online stage. The various curves correspond
to the different values of µ. Left: for all µ ∈ Ptr. Right: for all µ ∈ Pverif .

background estimate z∗N,M and the update estimate η∗N,M . We observe that the update estimate η∗N,M
has a lower norm compared to Figure 5.14, whereas the deduced background estimate z∗N,M has a
larger norm. This is due to the offline inclusion of observations in the new background space ZN
through offline state estimation. Therefore, we deduce that the modified offline algorithm achieves the
expected objective.

Figure 5.16. Test case (e) : Absolute H1-norms of the contributions z∗N,M and
η∗N,M as a function of the time nodes. The various curves correspond to the dif-
ferent values of µ.
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6. Conclusion and perspectives

We have presented a time-dependent extension of the PBDW approach with a modified offline stage
that suits both the steady and time-dependent cases. As regards the time-dependent setting, numerical
tests on both linear and nonlinear cases assess the efficiency of the method for well chosen dimensions
of the bk space ZN and of the observable space UM . The test cases show that augmenting the dimension
N of ZN is counter-productive starting from a certain rank due of the deterioration of the stability
constant βN,M . In such cases, increasing the dimension of the observable space UM is an alternative
that restores a good stability of the problem. However, the measurements are expensive to obtain in
engineering scenarios. In this context, a modified offline stage is introduced so as to reduce the number
of final observations that are required within the online stage. The numerical performances obtained
produce accuracy levels that are comparable to the standard method. A promising application is the
assessment of the proposed methodology for other types of time-dependent problems as well as for
three-dimensional industrial cases. Another interesting research direction is the inclusion of noise in
the time-dependent framework.
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