

Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management

Peng Han, Nicolas Desneux, Christine Becker, Romain Larbat, Jacques Le Bot, Stephane Adamowicz, Jiang Zhang, Anne Violette Lavoir

▶ To cite this version:

Peng Han, Nicolas Desneux, Christine Becker, Romain Larbat, Jacques Le Bot, et al.. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management. Journal of Pest Science, 2019, 92 (4), pp.1359-1370. 10.1007/s10340-018-1066-x. hal-02265519

HAL Id: hal-02265519

https://hal.science/hal-02265519

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bottom-up effects of irrigation, fertilization and plant resistant traits on *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae): implications for integrated pest management

Peng Han^{1*}, Nicolas Desneux², Christine Becker³, Romain Larbat⁴, Jacques Le Bot⁵, Stéphane Adamowicz⁵, Jiang Zhang⁶, Anne-Violette Lavoir²

³Hochschule Geisenheim University, Department of Crop Protection, 65366 Geisenheim, Germany

¹ Key Lab Biogeography and Bioresource of Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China

² INRA (French National Institute for Agricultural Research), University of Cote d'Azur, CNRS, UMR 1355-7254, 06903 Sophia Antipolis, France

⁴ UMR 1121 UL-INRA Agronomie et Environnement, 2 av. de la Forêt de Haye, 54518 Vandoeuvre-lès-Nancy, France

⁵ INRA, UMR1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France

⁶ Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China

^{*}Corresponding author: penghan@ms.xjb.ac.cn (PH)

- Abstract: Soil abiotic factors and plant traits are able to trigger bottom-up effects
- 2 along the tri-trophic interaction plant—herbivore—natural enemy. The consequences
- 3 could be useful for controlling the insect herbivores. The South American tomato
- 4 pinworm *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae), a devastating invasive
- 5 pest on tomato and other Solanaceae plants, is currently threatening the tomato
- 6 production worldwide. Recent knowledge on bottom-up effects on this pest has been
- 7 gained, with fertilization, irrigation, plant traits, as well as their interactions being the
- 8 major sources of these effects. Evidence is now emerging on how they impact on the
- 9 performances of the moth from the perspective of tri-trophic interactions. In this
- review, we summarize the essential experiments studying the bottom-up effects on *T*.
- absoluta and discuss the implications of those findings for the integrated pest
- management programs. Future promising research directions are then proposed.
- 14 **Key words**: plant chemical defense; plant adaptation/tolerance; tri-trophic
- interactions; breeding; plastid genome transformation; agro-ecosystems

13

17	Key message:
18	Σ The devastating invasive pest, <i>Tuta absoluta</i> (Meyrick) (Lepidoptera:
19	Gelechiidae), is likely to be controlled by diverse bottom-up effects via
20	manipulation of soil abiotic factors and plant traits.
21	Σ Resource input manipulations, such as fertilization and irrigation, have great
22	potential to be included in the Integrated Pest Management (IPM) package, but
23	more studies are needed to test such effects at larger scales.
24	Σ Enhanced plant resistance, being either intrinsic, induced or genetically-modified,
25	are useful components of IPM.
26	
27	
28	Author contribution:
29	PH, ND and AVL conceived the manuscript. All authors wrote the manuscript. All
30	authors read and approved the manuscript.

Introduction

Plants are the primary producers in most terrestrial ecosystems, where they embody
the basis of the food webs, insects being a dominant group among plant consumers.
Thus, plant-insect interactions have long been the central subject for understanding
insect and plant community structure and dynamics (Bruce 2015). Herbivorous insects
rely on the consumption of plant materials to obtain water and nutrients for their
survival and development, but in the meantime they have to cope with plant chemical
and physical defenses (Schoonhoven et al. 2005). Furthermore, changing abiotic
conditions alter the plant nutritional and defensive profiles, which may trigger cascade
effects on organisms from higher trophic levels, including herbivorous insects and
their natural enemies: the so-called "bottom-up" effects (Hunter and Price 1992;
Denno et al. 2002). Over the last decade, recent knowledge has been gained on this
subject, indicating a potentially high application value of such effects for managing
insect pests in agro-ecosystems (Chen et al. 2010; Han et al. 2014; Becker et al. 2015;
Han et al. 2015; Zhong et al. 2017). Invasive alien insect pests are often armed with
competitive biological traits such as a high growth rate and reproduction potential that
makes them especially difficult to manage (Hufbauer and Torchin 2007). We believe
that bottom-up effects are an essential and effective component of successful
Integrated Pest Management (IPM) programs against invasive pests.
The South American tomato pinworm, <i>Tuta absoluta</i> (Meyrick, 1917) (Lepidoptera:
Gelechiidae) originated from South America, is a devastating nest on tomato and

other Solanaceous plants (Desneux et al. 2010). Since its first detection outside its native areas, in Spain in 2006, T. absoluta has rapidly spread across Europe, Africa, middle-East and Central Asia in the following years, considerably threatening the tomato industry worldwide (Desneux et al. 2011; Campos et al. 2017; Xian et al. 2017). Many attempts have been made to combat this pest. Chemical control was the first option. It proved efficient, but high resistance to various insecticide classes in this moth was recently emerged (Campos et al. 2014, 2015; Silva et al. 2016; Roditakis et al. 2017; 2018). The methods preventing pest mating, including male annihilation and/or mating disruption by using synthetic pheromones, have been shown effective (Vacas et al. 2011; Cocco et al. 2013), but the emerging evidence of deuterotokous parthenogenesis in T. absoluta might compromise their efficacy (Caparros Megido et al. 2012). Biological control has been implemented widely using indigenous natural enemies (Zappala et al. 2013) and is currently the most promising component of the IPM package. However, the efficacy of natural enemies in suppressing *T. absoluta* populations may be altered by environmental abiotic factors through bottom-up effects triggered by agronomic practices such as irrigation and fertilization. Moreover, plant constitutive and/or induced resistance traits against *T. absoluta* are another source of bottom-up effects, which may interact with irrigation and fertilization and jointly affect the performance of *T. absoluta*, counterpart natural enemies and their interactions. In recent years, there has been a growing body of literatures reporting on how bottomup effects take place and how the association of diverse fields - plant ecophysiology -

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

chemical ecology and behavioral ecology- may help to understand the underlying mechanisms (Chen et al. 2010; Han et al. 2014, 2015, 2016; Becker et al. 2015; Larbat et al. 2016; Coqueret et al. 2017; Dong et al. 2017). The knowledge gained from those studies is a good starting point and should encourage future research efforts. Therefore, we provide a timely review on the empirical studies addressing bottom-up effects of fertilization, irrigation and plant resistant traits on *T. absoluta*. The implications of bottom-up effects for the integrated pest management and future research directions are discussed.

84

85

76

77

78

79

80

81

82

83

Bottom-up effects of fertilization and irrigation

86

Irrigation

88

89

87

Water, in terms of quantity as well as quality, is an important abiotic factor able to influence the interactions between plants and herbivorous insects. In the global 90 91 change context, water consumption by agricultural systems has to be optimized. Especially dry regions like the Mediterranean Basin face the challenge of reducing the 92 quantity of water used for food production while, at the same time, maintaining 93 economically sustainable yields. Salinity is another major environmental issue and a 94 substantial constraint to plant growth (Debouba et al 2006). Sodium chloride (NaCl) is 95 one of the most common components in soil or irrigation water, causing salinity stress 96 97 in plants (Mahajan & Tuteja 2005). Unlike in natural ecosystems such as salt marshes where many species have evolved to tolerate high salinity (Parida & Das 2005), crops 98

and particularly tomatoes—are not very tolerant to salinity (Greenway & Munns 1980). They embody the important greenhouse crops in many semi-arid regions where salinity in soil and groundwater constitutes a major issue in crop production (Cuartero & Fernandez-Munoz, 1999). It has been shown that the quantity and the quality of water inputs are able to impact the second trophic level, including the herbivorous *T. absoluta*, through plant-mediated effects as well as the third trophic level, including *T. absoluta* natural enemies (Han *et al* 2014, 2015b, 2016a).

Leaf miners develop very intimate relationships with their host plants since the larvae penetrate and feed within the tissues and are therefore considered highly relevant to test plant-mediated bottom-up effect of water inputs (Inbar 2001). Recent studies have demonstrated that water input variations can significantly affect *T. absoluta* biological traits (Han *et al* 2014, 2016a): water limitation reduced the survival as well as the pupal weight and slowed down the larval development (Han *et al* 2014, 2016a) (See Figure 1). This supports the "plant vigor hypothesis" (Price 1991), since *T. absoluta* survived better and developed faster on tomato plants with a better growth status (Han *et al* 2014). Yet, the net effect of water-limitation on the host plant and thus the herbivore strongly depends on the frequency and severity of water limitation (Huberty & Denno, 2004).

Which physiological changes in the host plants could explain the effects on
 T. absoluta biological traits? Varying water availability may change plant nutritional
 quality and chemical defenses both of which can affect the performance of insect

herbivores (Gutbrodt et al 2011, Tariq et al 2012) (Fig 1). (i) Plant water content is generally a useful index of its nutritional value for many lepidopterous larvae (Schoonhoven 2005). Han et al (2014) suggested that T. absoluta larvae's difficulties to obtain enough water explain their decelerated development. Water not only acts as an indispensable prerequisite for herbivore metabolism, facilitating efficient nutrient utilization (Scriber, 1977), its limitation furthermore decreases the nitrogen availability for herbivores by decreasing plant nitrogen and protein contents (Ximénez-Embún et al., 2016). Accordingly, there are reports showing that waterlimited and/or wilted foliage is more difficult to digest (Slansky & Scriber 1985, Gutbrodt 2011) than turgid foliage. (ii) Water limitation can alter the regular level of plant chemical defense, leading to either enhanced or reduced resistance to herbivores (Inbar 2001, Gutbrodt 2011). Han et al (2016a) observed that the concentration of leaf glycoalkaloids increased in tomato plants subjected to water limitation, accompanied by negative indirect effects on *T. absoluta* survival and development. So far, however, the toxicity of these compounds is not known for *T. absoluta*.

136

137

138

139

140

141

142

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Salinity can also trigger bottom-up effects on *T. absoluta* (Han *et al* 2016b): adding salt to the plant's nutrient solution shortened the pest development time but did not reduce the pupal mass although insects have the faculty to pupate with a lower body mass under adverse conditions like reduced host plant quality. At least three different mechanisms could explain that salinity has deleterious effects on herbivorous insects:

(i) Increasing salt concentration in the irrigation water raises the osmotic potential

and, thus, decreases plant water availability (Soria & Cuartero 1997, Romero-Aranda & Cuartero 2001). Similar to drought, salinity stress can thus affect T. absoluta development by reducing larva water availability; (ii) salinity stress can also lead to excessive accumulation of Na⁺ and Cl⁻ ions in leaves (Manaa et al 2011), which lowers leaf dietary quality for T. absoluta larvae; (iii) furthermore, elevated soil salinity may induce changes in plant secondary metabolism, i.e. plant chemical defense (Ballhorn & Elias, 2014). Although Han et al (2016b) did not observe any correlations between the concentration of leaf glycoalkaloids and the development of T. absoluta, other defense compounds in tomato leaves may increase in response to high salinity: phenolic compounds, for instance, have been observed to accumulate in tomato fruits (Flores et al 2015) and might respond similarly in leaves. The possible negative effects of these three mechanisms on insect development may, to some degree, be counterbalanced by higher concentrations of amino acids due to higher proteolytic activities in salt-stressed tomato leaves (Debouba et al 2016). This may explain why T. absoluta managed to reach a normal pupal mass after a reduced larval development time on NaCl stressed plants (Han et al 2016b). It is assumed that larvae have the potential to adapt their feeding strategy, spending less time for larval development to cope with salinity stress.

161

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Fertilization

163

164

162

Fertilization is required to preserve soil fertility of cultivated fields and to maintain

crop productivity. Nitrogen is one of the key macro-elements that impacts plant quality, both in terms of nutritional value and defensive profile and thus triggers bottom-up effects on herbivore insect performances. Many studies have shown that T. absoluta larvae feeding on tomato plants grown with low nitrogen inputs, had reduced survival rates and delayed development (Han et al. 2014; Han et al. 2016; Larbat et al. 2016; Coqueret et al. 2017; Dong et al. 2017; Blazhevski et al. 2018). This has been ascribed to the low protein content (higher foliar C/N ratio as well) and enhanced accumulation of constitutive phenolics and glyco-alkaloids in the leaves (Han et al. 2016; Larbat et al. 2016). Such alterations in plant chemical profile are consistent with previous studies (Inbar et al. 2001; Le Bot et al. 2009; Royer et al. 2013). All these findings support the *nitrogen limitation* hypothesis (White 1993) (See figure 1) especially in the case of Lepidopteran insects. Potassium is another macro nutrient able to mediate bottom-up effects on *T. absoluta*. Sung et al (2015) found that the metabolite profile of K-deficient tomato leaves was characterized by an increased concentration of soluble sugars and a general decrease in most amino acids, except for arginine, glutamine, proline and citrulline. Whether or not K-limitation affects tomato defense compounds is not well studied: to our knowledge, there is only one publication so far, investigating the effecton fruit composition (Flores et al 2015). The authors found that a low K-level caused variable but strong cultivar-dependent effects, increasing chlorogenic acid concentration while decreasing or unaffecting that of rutin and other phenolic compounds in one of two studied cultivars. In the model plant Arabidopsis thaliana potassium-limitation led to

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

the accumulation of plant defense compounds like glucosinolates and an overall increased defense against leaf chewers by interfering with the jasmonic acid-mediated signaling pathway (Amtmann *et al* 2008). The consequently possible bottom-up effects on *T. absoluta* have received very little attention so far. Leite *et al* (2004) found no effect of tomato leaf K content on *T. absoluta* preference or performance, measured as oviposition events and number of mines. Similarly, Blazhevski *et al* (2018) detected almost no effect of reduced tomato leaf K on *T. absoluta* life history traits. The only significant effects were that reduced K retarded larval development and slightly decreased the intrinsic rate of population development. Yet, the mechanisms are unclear.

Bottom-up effects of plant resistant traits

Tuta absoluta has reached the economic pest status and is now considered as a key pest on tomato crops (Desneux et al 2011; Campos et al 2017). This status explains why the main research on plant resistant traits against *T. absoluta* has focused on tomato. However, we must keep in mind that the plant host range of *T. absoluta* is broader as it is able to develop on many Solanaceous species, tomato, potato and European black nightshade (*Solanum nigrum*) being the most suitable (Abbes et al 2016, Desneux et al 2010, Biondi et al 2018). It can also oviposit and develop on several plants belonging to the Amaranthaceae, Convolvulaceae, Fabaceae and Malvaceae families (Bawin et al 2016). Studying this broader plant host range might

bring innovations in the search of resistant plants against *T. absoluta*.

Cultivated tomatoes (*S. lycopersicum*) are generally highly susceptible to *T. absolut*a, and recent tomato population screenings identified only moderately resistant cultivars (Gharekhani and Salek-Ebrahimi, 2014; Rostami et al., 2017; Sohrabi et al., 2016, 2017). Most plant resistant traits to *T. absoluta* have been identified in wild tomato relatives. Resistant traits may be multiple, integrating resistance by antixenosis and antibiosis (Gharekhani and Salek-Ebrahimi, 2014). They are categorized as either constitutive resistance (naturally present in the plant before infestation), induced resistance by the presence of *T. absoluta* on the plant or introduced resistance via genetic modification.

Constitutive resistance traits - In wild tomato species, plant resistant traits to T. absoluta are mainly related to the type and density of leaf trichomes (Fernandes et al. 2012; Sohrabi et al. 2016, 2017) and the compounds produced and stored inside. Both provide a constitutive protection against the leafminer since contact with the leaf is a key component for inducing T. absoluta oviposition (Proffit et al 2011). Three main chemical classes have been identified, methyl-ketones (notably 2-tridecanone; Maluf et al., 1997), sesquiterpenes (notably zingiberene; Azevedo et al., 2003, Bleeker et al 2012) and acyl sugars (Resende et al., 2006). The former two are abundant in S. habrochaites (previously referred as L. hirsutum) whereas the latter is present in S. pennellii. The resistance assessment of descendants from interspecific crossing between S. lycopersicum and S. habrochaites on the one hand and S. lycopersicum and

S. pennellii on the other hand, led to the conclusion that each chemical class mediates T. absoluta resistance through both antixenosis and antibiosis: the compounds mentioned above impair egg laying and larval feeding, leading to antixenosis or larval toxicity, leading to antibiosis (Bleeker et al 2012; de Azevedo et al 2003; Resende et al 2006). In addition, genotypes exhibiting high contents in both zingiberene and acyl sugars, showed greater resistance than genotypes accumulating only one of these chemical, indicating a synergistic effect between zingiberene and acyl sugars (Maluf et al., 2010). Despite the demonstration of higher resistance of these interspecific hybrids, no commercial line has been released, yet. This is probablydue to both the distance separating S. lycopersicum from those two wild tomato species and the fact that resistance transfer from these species is accompanied by other gene introgression mediating poor horticultural value (Rakha Mohamed et al., 2017). Studies on wild tomato close to S. lycopersicum, i.e. S. galapagense, S. cheesmaniae and S. pimpinellifolium highlighted also resistant traits to T. absoluta (Rakha Mohamed et al., 2017). These species as well have a high density of glandular trichomes secreting acyl sugars and sesquiterpenes and it may be expected that their resistance to *T. absoluta* is linked to these traits. Due to ashorter distance between these species and the domesticated tomato, the objective of breeders to obtain S. lycopersicum lines resistant to T. absoluta may be easier to achieve. Indeed, a first patent for commercial tomato lines resistant to arthropods including the leaf miner has alreadybeen published (Snoeren et al. 2014, US Patent US 20140283191 A1 US2017/0240910 A1). These lines have been obtained through introgressed DNA sequences from S. galapagense. The patent encompasses 12 single nucleotide

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

polymorphisms (SNP) displayed on several chromosomes of the *S. lycopersicum* genome that confer resistance and or tolerance to *T. absoluta*, white fly (*Bemisia tabaci*) and spider mite (*Tetranychus urticae*). This indicates that the commercial development of *T. absoluta* resistant tomato cultivars is underway.

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

253

254

255

256

Induced resistant traits - Upon infestation by *T. absoluta*, tomato plants are able to develop inducible resistance mechanisms that are mainly produced through the jasmonic acid pathway. These resistance mechanisms involve indirect defense via modified volatile organic compound (VOC) blends emitted by infested plants (Strapasson et al., 2014; Backer et al., 2015; Silva et al., 2017). Some of these VOCs are known to attract T. absoluta natural enemies belonging to the Miridae family, like Macrolophus pygmaeus (De Backer et al 2015), M. basicornis, Engytatus varians and Campyloneuropsis infumatus (Naselli et al 2017; Backer et al., 2017; Silva et al., 2018). Modification of the VOC blend might also alter host-plant attractiveness as plant volatiles are involved in *T. absoluta* orientation toward its host plants (Proffit et al 2011). In addition, plant resistance induction could promote the direct expression of defensive allelochemicals. Indeed, Coqueret et al. (2017, supplementary data) highlighted recently that a few hours after the onset of larval feeding, tomato plants induce the accumulation of defensive enzymes (polyphenol oxidase, PPO; Peroxidase, POD) at the feeding site and in distant organs. Such inducible defense provides good opportunities for new breeding strategies to obtain tomato lines (i) emitting higher amounts of selected VOCs able to increase plant attractiveness to pest natural enemies

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

275

Introduced plant resistance - Another aspect of resistance can be gained by genetic modifications. For instance, expression of insecticidal proteins like Bt (Bacillus thuringiensis) can be incorporated into the tomato genome (Bergougnoux 2014; Selale et al. 2017). In the latter study, introduction of the *cry*1Ac gene to the tomato genome was achieved and a single copy of the gene in the hemizygous condition was sufficient to confer tolerance to *T. absoluta*. Development of transgenic *Bt* tomato lines may have great potential for area-wide adoption in both greenhouses and open fields. Such technology may promote pest management in agro-ecosystems, as documented in the case of Bt cotton (Lu et al. 2012). RNA interference (RNAi) technology may also play an important role in tomato genetic transformation aimed at resistance to *T. absoluta*. RNAi is a mechanism for post-transcriptional gene silencing conserved in most eukaryotes and has proven to be a powerful tool for gene function studies. RNAi can also be applied for pest control: if the sequences of double-stranded RNA (dsRNA), the trigger of RNAi, target essential genes of insects, it provokes the endogenous RNAi machinery of pest, thus result in the silencing of these genes which leads to impaired growth and even death of pest. Over the past decade, RNAi-mediated pest control has emerged as an important alternative alongside Bt-based strategies (Zhang et al. 2017). Although transgenic plants expressing dsRNA targeted against insect genes can impair pest growth and development, efficient control of insects and complete protection of plants were only

recently achieved by plastid-mediated RNAi technology (Zhang et al. 2015). Because plastids of plant cells do not have an RNAi pathway and because the number of copies of plastid genome is extremely high, 1,000 - 2,000 copies of the plastid genome in a typical leaf mesophyll cell (Bock 2014), long dsRNAs in transplastomic (plastid genome transformed) potato plants can be stably accumulated, reaching up to 0.4% of total cellular RNA, being at least two orders of magnitude higher than that of nucleartransformed plants. Whether or not *T. absoluta* can be controlled by this approach remains to be investigated. Recently, the transcriptome data showed that most of the core genes of RNAi pathway such as Dicer-like and Argonaute and putative orthologous Sid-1 genes are present in *T. absoluta*, suggesting the feasibility of RNAi for controlling this pest (Camargo et al. 2015). The application of RNAi has recently been shown as a promising approach for controlling *T.absoluta*: by targeting against *Vacuolar ATPase*-A and Arginine Kinase genes of T.absoluta, feeding tomato leaflet uptaking in vitro synthetic dsRNA or transgenic plants expressing dsRNA to 1st instar larvae led to significant knock-down of targeted genes and reduced growth of *T. absoluta*. However, full plant protection and high larval mortality of *T. absoluta* have not been achieved probably due to a low expression of dsRNA in transgenic plants (Camargo et al. 2016). As a plastid transformation protocol for tomato plants has been well established (Ruf et al. 2001), it would be workable to express long dsRNA in plastids targeting *T. absoluta* to enhance the resistant levels of tomato plants.

317

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Implications for IPM

Manipulating irrigation and fertilization inputs seems to offer promising agronomic leverage for IPM packages against *T. absoluta* that are based on bottom-up effects (Han et al. 2014; 2016). In these studies, however, the impacts on fruit yield and quality have not been considered, which refrains us from drawing the definite conclusion that low nitrogen and water input are valuable to improve the management of *T. absoluta*. We propose, therefore, that future research efforts should attempt to trade off a part of crop yield for a gain in pest management. There are great potentials for reducing fertilizers and water inputs in greenhouse productions (Le Bot et al. 1998; Le Bot and Adamowicz, 2005) suggesting that we may be on the way to develop a win-win situation, strengthening pest management while gaining important ecological and economic benefits.

Modern crop cultivars often display a diversity of tolerance to sub-optimal abiotic environments (Ballhorn et al. 2011). For instance, some crop cultivars have been deliberately selected to withstand various environmental stresses, such as nitrogen deficiency (Feng et al. 2010) or drought (Cattivelli et al. 2008). One of our recent studies show, surprisingly, that the negative bottom-up effects of limited nitrogen and water inputs can cascade up to *T. absoluta* even though the tomato cultivars exhibited various adaptive or tolerance traits to those resource limitations (Han et al. 2016). In other words, the use of resistant cultivars may "kill two birds with one stone", *i.e.* by

preserving the negative bottom-up effects of limited resources on the herbivorous insects while allowing the cultivars to cope with sub-optimal conditions. This finding would not only apply to low-input farming systems, but also benefit pest control on cultivars grown in arid areas or semi-barren lands around the world, *e.g.*, drought-prone environments (Farooq et al. 2009).

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

341

342

343

344

345

Bottom-up effects of irrigation, fertilization and/or plant resistance traits may cascade up onto the organisms from higher trophic levels (e.g. arthropod natural enemies), thus favoring or compromising the pest control efficacy (e.g. "nitrogen" reviewed by Chen et al. 2010). In general, abiotic factors and plant resistance traits can trigger bottom-up effects on natural enemies either (a) directly via impacts on natural enemies foraging behavior or (b) indirectly via trophic cascade through their prey/host. A small number of studies investigated bottom-up effects reaching the third trophic level (Han et al 2015a, b; Dong et al 2017, Becker et al in prep). So far, however, the fourth trophic level has not been investigated (e.g. intraguild predation among natural enemies or hyperparasitism). Omnivorous predators, mainly Heteroptera species, e.g. M. pygmaeus and Nesidicoris tenuis are the most commonly used predators in biological control programs against *T. absoluta* (Zappala et al 2013; Biondi et al 2018). Similarly, the larval-parasitoid *Necremnus tutae* (Hymenoptera: Eulophidae) can be used in biocontrol strategies against *T. absoluta* (Calvo *et al* 2016, Naselli et al 2017). Both are often applied in greenhouses where resources availability can be easily manipulated.

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Bottom-up effects on predators – Omnivorous predators acquire nutrients and energy from both host plants and insect prey (Janssen et al 2003). Their efficacy as biocontrol agents may vary with biotic and abiotic variables (Symondson et al 2002). Yet, little is known about possible plant-mediated bottom-up effects that can be triggered by manipulated resource availability and their impact on predators. Han et al (2015a) demonstrated the importance of water supply: highly irrigated plants attracted more M. pygmaeus adults than those receiving low water input. In another study, the same authors showed that water limitation decreased the feeding activity of M. pygmaeus, on prey as well as on host plants, reducing the predator's longevity by nearly 30% (Han et al 2015b). The positive correlation between the two feeding activities indicates a physiological link (Facilitation hypothesis, Gillepsie & McGregor 2000) (See Figure 1): omnivorous predators must feed on plant tissue to obtain the water required for key biological processes, for instance producing saliva needed for extraoral digestion of prey (Cohen 1998, Sinia et al 2004). Han et al (2015b) assumed that water deficit in the plant tissue restricted M. pygmaeus ability to digest preyed eggs, which in turn decreased predator longevity. However, it is also possible that the simultaneous decrease in plant and prey feeding arose from elevated concentrations of defense compounds in plant tissues (Inbar et al 2001, Kaplan and Thaler 2011). According to the "mother knows best" hypothesis (Kohandani et al. 2017), mated females should avoid oviposition on water-stressed plants. However, another omnivorous predator species preferred to lay eggs on water-stressed plants but on

which nymphs failed to perform better (Seagraves et al. 2011). Regarding plant resistance, tomato cultivars with higher trichome densities were shown to reduce the predation rate of Hemipteran predatory bugs on *T. absoluta*, at odds with biological control (Salehi et al. 2016; Bottega et al. 2017).

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

385

386

387

388

Bottom-up effects on parasitoids - Plant water and nitrogen availability could trigger bottom-up effects on parasitic wasps and thereby alter the top-down control forces provided by parasitoids. The only two studies conducted on this topic, however, did not find strong effects of plant water or nitrogen supply on N. tutae (Becker et al in prep, Dong et al 2017), suggesting that this biocontrol agent would not suffer negative ecological consequences. Yet, in both studies, the number of parasitoid offspring showed a tendency to be sensitive to plant water limitation depending on plant nitrogen status, which should be taken into account when designing IPM packages comprising this biocontrol agent. Additionally, the slower development of *T. absoluta* on water-limited leaves (Han et al 2014) might result in higher parasitism rates because larvae remain for a longer time in the developmental stages preferred by the parasitoids, i.e. the second instar regarding N. tutae (Dong et al 2017). Large-scale long-term experiments should be interesting to investigate if the slow-growth-highmortality hypothesis (Benrey & Denno 1997) applies in this scenario. In another experiment, humic fertilizer and vermicompost applied to the soil enhanced population growth parameters of a *Trichogramma* parasitoid species on eggs of *T*. absoluta (Mohamadi et al. 2017). This is puzzling as it is unlikely that the quality of

T. absoluta eggs be affected by tomato fertilization, and we may suggest that such experiment should be repeated while checking fertilization effects on tomato VOC emission and their effects on parasitoids.

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

407

408

409

Both parasitoids and predators use herbivory-induced plant volatiles (HIPV) to locate their host/prey – this interaction has become famous as the plants' "cry for help" (Dicke et al 1989, Turlings et al 1990, Dicke and Baldwin 2010). Abiotic factors have the potential to change the quality and quantity of these HIPV blends (See Becker et al 2015 for a review). As a result, the "chemical communication" between plants and natural enemies might be disturbed if such changes render the "chemical messages" incomprehensible to the natural enemies. Alternatively, these changes might be of no consequence or even improve the communication, e.g. by adding information on the plant's status. Yet, the consequences for biological control services remain heavily understudied. HIPV blends associated to feeding *T. absoluta* larvae contain higher proportions of δ -selinene when emitted from water-limited compared to wellwatered tomato leaves and higher proportions of the monoterpene β -myrcene when emitted from tomato leaves containing elevated compared to low leaf N (Becker et al in prep). These are very small changes and it is rather unlikely that it would affect communication with parasitoids or predators. Still, a negative impact on attraction and arrest cannot be excluded without behavioral assays on commercially important biocontrol agents. The manipulation of HIPV blends in order to optimize host/prey detection by natural enemies harbors a great potential to be exploited in future IPM

packages.

430

431

429

Conclusions and future directions

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

The evidence of bottom-up effects of fertilization, irrigation and plant resistant traits on T. absoluta has been shown. In practice, bottom-up effects might become an effective component of the IPM program against this pest. In order to verify this prognosis, knowledge about the ecological consequences of bottom-up effects on T. absoluta has to be expanded. Further studies considering tritrophic interactions are needed to draw convincing conclusions. Future investigations on the bottom-up effects would benefit from the following strategies. a) Assessing the bottom-up effects on T. absoluta at larger-scale Most findings about plant-mediated bottom-up effects on *T. absoluta* have been obtained at an individual level using microcosms. Only a few studies focused on T. absoluta populations in greenhouses or in the open field (e.g. plant cultivar resistance: Sohrabi et al. 2016) whereas monitoring of population dynamics has been done on other insect pests such as whiteflies and beet armyworm (Bentz et al. 1995; Bi et al. 2003; Chen et al. 2008). Experiments conducted on other insects clearly show that bottom-up effects studied on individuals do not consistently translate into population effects, suggesting that it is crucial to separate the effects acting on individuals those acting on populations (Zaugg et al. 2013). Therefore, more research efforts are required on T. absoluta under greenhouse and/or field conditions in order to get

convincing conclusions (Han et al. in prep.). One should note that assessing the bottom-up effects of fertilization, irrigation and plant resistance in large-scale conditions is straightforward, but costly and labor consuming.

Two aspects of plant phenotypic plasticity, *i.e.*, plant resistance to *T. absoluta* and plant tolerance and/or adaptation to abiotic stress, should be taken into account when designing experiments. Tomato cultivars adapted to resource limitation maintain their ability to mediate the effects of resource limitation on the pest (Han et al. 2016 a or b???) and this gives good grounds for studying further this interaction. Future experiments should thus be designed to include a wide range of tomato cultivars showing either adaption or resistance traits to allow for a concrete assessment on the role of those factors in bottom-up effects. This calls, therefore, for renewed

collaborative interdisciplinary research bridging entomology, plant physiology and

b) Disentangling the role of plant phenotypic variations from the observed bottom-up

crop breeding.

c) *Identifying how the bottom-up effects influence the interspecific interactions*Surprisingly little is known about how the invasive species *T. absoluta* interacts with endemic pest species that share the same micro-habitat and/or arthropod natural enemies. It remains unknown for instance, how *T. absoluta* initial presence affects the oviposition preference of the subsequent attacker *Helicoverpa armigera* on tomato

and its subsequent larval performance. Do the effects vary across contrasting levels of water/nitrogen inputs (*i.e.* bottom-up effects)? Answering these questions is required to predict the spatio-temporal pattern of field damages, where multiple pests coexist. Various chemical mechanisms are involved in species interactions, including herbivory-induced VOCs (Becker et al. 2015; De Backer et al. 2015; Silva et al. 2017) and/or plant defensive secondary compounds (Tan et al. 2012). Moreover, it is important to consider their common enemies among the arthropod community in order to clarify how bottom-up effects influence the indirect interactions among insect herbivores (Poelman and Dicke 2014; Stam et al. 2014).

d) Breeding novel cultivars

With the emergence of chemical insecticide and *Bt* resistances—among insects, it becomes very urgent to develop new and alternative approaches for efficient pest control. Over the past decade, RNAi-mediated pest control has emerged as an important alternative alongside the *Bt*-based strategy (Zhang et al. 2017). Expression of long double-stranded RNAs against pest essential genes in plastids can reach a very high level and thus offer full crop protection that is both highly specific to target pests and environmentally-safe (Zhang et al. 2015). It would be an interesting challenge to investigate whether or not *T. absoluta* can be controlled by this promising approach.

493	Acknowledgements
494	
495	We thank the Editor-in-Chief of Journal of Pest Science for the invitation to submit
496	this review article fitting the special issue on <i>Tuta absoluta</i> in 2019.
497	
498	
499	Ethical approval: This article does not contain any studies with human participants
500	or animals performed by any of the authors.
501	
502	
	Conflict of Interest: Authors declare no conflict of interests.
503	Connet of interest. Authors declare no connet of interests.
503 504	Connect of Interest. Authors declare no connect of interests.

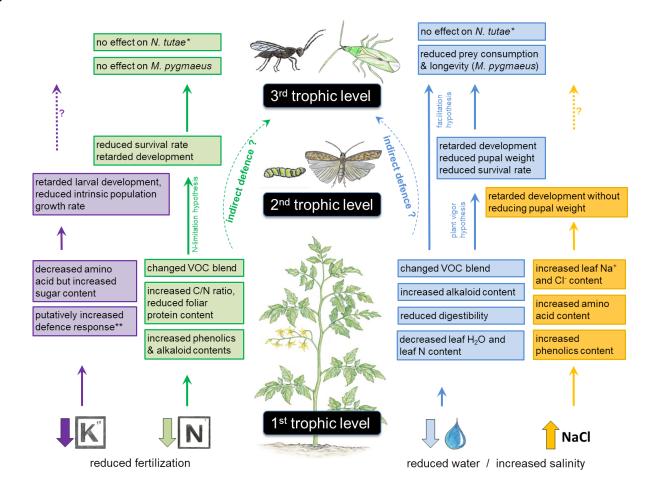
505	References
506	Azevedo, S.M. de, Faria, M.V., Maluf, W.R., Oliveira, A.C.B. de, and Freitas, J.A. de
507	(2003). Zingiberene-mediated resistance to the South American tomato
508	pinworm derived from Lycopersicon hirsutum var. hirsutum. Euphytica 134,
509	347–351.
510	Ballhorn DJ, Kautz S, Jensen M, Schmitt I, HeilM, Hegeman AD (2011) Genetic and
511	environmental interactions determine plant defences against herbivores. J Ecol
512	99:313–326
513	Becker C, Desneux N, Monticelli L, Fernandez X, Michel T & Lavoir AV (2015)
514	Effects of abiotic factors on HIPV-mediated interactions between plants and
515	parasitoids. BioMed ResearchInternational 2015: 342982.
516	Benrey, B. and F. Denno Robert (1997). "The slow-growth-high-mortality hypothesis:
517	a test using the cabbage butterfly." Ecology 78 (4): 987-999.1
518	Bentz J, Reeves J III, Barbosa P, Francis B (1995) Nitrogen fertilizer effect on
519	selection, acceptance, and suitability of Euphorbia pulcherrima
520	(Euphorbiaceae) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae).
521	Environ Entomol 24:40–45
522	Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming.
523	Biotechnology Advances, 32, 170–189
524	Bi JL, Toscano NC, Madore MA (2003) Effect of urea fertilizer application on soluble
525	protein and free amino acid content of cotton petioles in relation to silverleaf
526	whitefly (Bemisia argentifolii) populations. J Chem Ecol 29:747-761
527	Blazhevski S, Kalaitzaki AP, Tsagkarakis AE (2018) Impact of nitrogen and
528	potassium fertilization regimes on the biology of the tomato leaf miner Tuta
529	absoluta. Entomologia Generalis DOI: 10.1127/entomologia/2018/0321
530	Bock (2015) Engineering plastid genomes: methods, tools, and applications in basic
531	research and biotechnology. Annu. Rev. Plant Biol. 66:211-241
532	Bottega DB, de Souza BHS, Rodrigues NEL, Eduardo WI, Barbosa JC, Boica AL
533	(2017) Resistant and susceptible tomato genotypes have direct and indirect

534	effects on Podisus nigrispinus preying on Tuta absoluta larvae. Biological
535	control 106:27-34
536	Bruce TJA (2015) Interplay between insects and plants: dynamics and complex
537	interactions that have coevolved over millions of years but act in milliseconds.
538	J Exp Bot 66:455–465
539	Calvo, F. J., J. D. Soriano, P. A. Stansly and J. E. Belda (2016). "Can the parasitoid
540	Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological
541	control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)?"
542	Bulletin of Entomological Research 106(4): 502-511.
543	Camargo RA, Herai RH, Santos LN et al (2015) De novo transcriptome assembly and
544	analysis to identify potential gene targets for RNAi-mediated control of the
545	tomato leafminer (Tuta absoluta). BMC Genomics 16:635
546	Camargo RA, Barbosa GO, Possignolo IP et al (2016) RNA interference as a gene
547	silencing tool to control Tuta abosuta in tomato (Solanum lycopersicum). PeeJ
548	4:e2673
549	Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC,
550	Siqueira HAA (2014) Spinosad and the tomato borer Tuta absoluta: a
551	bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS
552	ONE 9:e103235
553	Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HAA (2015) Spinosyn
554	resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera:
555	Gelechiidae). J Pest Sci 88:405–412
556	Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western
557	Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J
558	Pest Sci 90:787–796
559	Caparros Megido R, Haubruge E, Verheggen FJ (2012) First evidence of
560	deuterotokous parthenogenesis in the tomato leafminer, Tuta absoluta
561	(Meyrick) (Lepidoptera: Gelechiidae). J Pest Sci 85:409-412
562	Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè
563	C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop

564	plants: an integrated view from breeding to genomics. Field Crop Res 105:1-
565	14
566	Cocco A, Deliperi S, Delrio G (2013) Control of Tuta absoluta (Meyrick)
567	(Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating
568	disruption technique. J. Appl. Entomol. 137: 16-28
569	Chen Y, Ruberson JR, Olson DM (2008) Nitrogen fertilization rate affects larval
570	performance and feeding, and oviposition preference of the beet armyworm,
571	Spodoptera exigua, on cotton. Entomol Exp Appl 126:244-255
572	Chen Y, Olson DM, Ruberson JR (2010) Effects of nitrogen fertilization on tritrophic
573	interactions. Arthropod-Plant Interactions 4:81–94
574	Coqueret V, Le Bot J, Larbat R, Desneux N, Robin C, Adamowicz S (2017) Nitrogen
575	nutrition of tomato plant alters leafminer dietary intake dynamics. J Insect
576	Physiol 99:130-138.
577	De Backer, L., Megido, R.C., Fauconnier, M.L., Brostaux, Y., Francis, F. &
578	Verheggen, F. (2015). Tutaabsoluta-induced plant volatiles: attractiveness
579	towards the generalist predator Macrolophus pygmaeus. Arthropod-Plant
580	Inte.,9, 465–476.
581	De Backer, L., Bawin, T., Schott, M., Gillard, L., Marko, I.E., Francis, F. &
582	Verheggen, F. (2016). Betraying its presence: identification of the chemical
583	signal released by Tuta absoluta-infested tomato plants that guide generalist
584	predators toward their prey. Arthropod-Plant Inte.,11, 111-120.
585	Denno RF, Gratton C, PetersonMA, Langellotto GA, Finke DL, Huberty AF (2002)
586	Bottom-up forces mediate natural-enemy impact in a phytophagous insect
587	community. Ecology 83:1443–1458
588	Dicke, M. and I. T. Baldwin (2010). "The evolutionary context for herbivore-induced
589	plant volatiles: beyond the 'cry for help'." Trends in Plant Science 15(3): 167-
590	175.
591	Dicke, M., M. W. Sabelis and J. Takabayashi (1989). Do plants cry for help? evidence
592	related to a tritrophic system of predatory mites, spider mites and their host
593	plants. 7th international symposium on insect-plant relationships, Budapest,

594	Hungary, Symposia Biologica Hungarica.
595	Dong YC, Han P, Niu CY, Zappala L, Amiens-Desneux E, Bearez P, Lavoir AV,
596	Biondi A, Desneux N (2017) Nitrogen and water inputs to tomato plant do not
597	trigger bottom-up effects on a leafminer parasitoid through host and non-host
598	exposures. Pest Management Science 74: 516-522
599	Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress:
600	effects, mechanisms and management. Agron Sustain Dev 29:185-212
601	Feng Y, Cao LY, Wu WM, Shen XH, Zhan XD, Zhai RR, Wang RC, Chen DB, Cheng
602	SH (2010)Mapping QTLs for nitrogen-deficiency tolerance at seedling stage
603	in rice (Oryza sativa L.). Plant Breed 129: 652-656
604	Fernandes MES, Fernandes FL et al. (2012) Trichomes and hydrocarbons associated
605	with the tomato plant antixenosis to the leafminer. An Acad Bras Cienc
606	84:201-209
607	Flores, P., V. Hernández, P. Hellín, J. Fenoll, J. Cava, T. Mestre, and V. Martínez,
608	2015. Metabolite profile of the tomato dwarf cultivar Micro-Tom and
609	comparative response to saline and nutritional stresses with regard to a
610	commercial cultivar. Journal of the Science of Food and Agriculture 96: 1562-
611	1570.
612	Gharekhani, G.H., and Salek-Ebrahimi, H. (2014). Life Table Parameters of Tuta
613	absoluta (Lepidoptera: Gelechiidae) on Different Varieties of Tomato. J. Econ.
614	Entomol. 107, 1765–1770.
615	Greenway, H., and R. Munns, 1980. Mechanisms of Salt Tolerance in Nonhalophytes.
616	Annual Review of Plant Physiology 31: 149-190.
617	Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N (2014) Nitrogen and
618	water availability to tomato plants triggers bottom-up effects on the leafminer
619	Tuta absoluta. Scientific Reports 4: 4455
620	Han P, Bearez P, Adamowicz S, Lavoir AV, Desneux N (2015a) Nitrogen and water
621	limitations in tomato plants trigger negative bottom-up effects on the
622	omnivorous predator Macrolophus pygmaeus. Journal of Pest Science.
623	88(4):685-691

624	Han P, Dong YC, Lavoir AV, Adamowicz S, Bearez P, Wajnberg E, Desneux N
625	(2015b) Effect of plant nitrogen and water status on the foraging behavior and
626	fitness of an omnivorous arthropod. Ecology and Evolution 5: 5468-5477
627	Han P, Desneux N, Amiens-Desneux E, Le Bot J, Bearez P, Lavoir AV (2016) Does
628	plant cultivar difference modify the bottom-up effects of resource limitation on
629	plant-herbivorous insect interactions? Journal of Chemical Ecology 42: 1293-
630	1303
631	Han et al 2016 a or b on salinity!?
632	Hufbauer RA, Torchin ME (2007) Integrating ecological and evolutionary theory of
633	biological invasions. In: Biological Invasions (ed. Nentwig W), pp. 79-96.
634	Springer Berlin, Heidelberg, Berlin.
635	Hunter, M. D. & Price, P. W (1992) Playing chutes and ladders: heterogeneity and the
636	relative roles of bottom-up and top-down forces in natural communities.
637	Ecology 73, 724–732
638	Inbar M, Doostdar H, Mayer R (2001) Suitability of stressed and vigorous plants to
639	various insect herbivores. Oikos 94: 228-235
640	Kohandani F, Le Goff GJ, Hance T (2017) Does insect mother know under what
641	conditions it will make their offspring live? Insect science 24:141-149
642	Larbat R, Adamowicz S, Robin C, Han P, Desneux N, Le Bot J (2016) Interrelated
643	responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.
644	Plant biology. 18: 495-504
645	Le Bot, J., Adamowicz, S., and Robin, P. (1998). Modelling plant nutrition of
646	horticultural crops: a review. Scientia Horticulturæ 74, 47-82
647	Le Bot, J., and Adamowicz, S. (2005). Nitrogen nutrition and use in horticultural
648	crops. Journal of Crop Improvement 15, 323-367.
649	Le Bot J, Bénard C, Robin C, Bourgaud F, Adamowicz S (2009) The "trade-off"
650	between synthesis of primary and secondary compounds in young tomato
651	leaves is altered by nitrate nutrition: experimental evidence and model
652	consistency. J Exp Bot 60:4301–4314
653	Leite, G. L. D., M. Picanço, G. N. Jham, and F. Marquini, (2004). Intensity of Tuta


654	absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) and Liriomyza spp.
655	(Diptera: Agromyzidae) attacks on Lycopersicum esculentum Mill. Leaves.
656	Ciência e Agrotecnologia 28: 42-48.
657	Lu, Y.H., Wu, K.M., Jiang, Y.Y., Guo, Y.Y. & Desneux, N. (2012): Widespread
658	adoption of Bt cotton and insecticide decrease promotes biocontrol services
659	Nature 487: 362-365.
660	Mahajan, S., and N. Tuteja, 2005. Cold, salinity and drought stresses: An overview.
661	Archives of Biochemistry and Biophysics 444: 139-158.
662	Maluf, W.R., Barbosa, L.V., and Santa-Cecília, L.V.C. (1997). 2-Tridecanone-
663	mediated mechanisms of resistance to the South American tomato pinworm
664	Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in
665	Lycopersicon spp. Euphytica 93, 189–194.
666	Maluf, W.R., Silva, V. de F., Cardoso, M. das G., Gomes, L.A.A., Neto, Á.C.G.,
667	Maciel, G.M., and Nízio, D.A.C. (2010). Resistance to the South American
668	tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene
669	tomato genotypes. Euphytica 176, 113–123.
670	Rakha Mohamed, Zekeya Never, Sevgan Subramanian, Musembi Muia, Ramasamy
671	Srinivasan, Hanson Peter, and Havey M. (2017). Screening recently identified
672	whitefly/spider mite - resistant wild tomato accessions for resistance to Tuta
673	absoluta. Plant Breed. 136, 562–568.
674	Mohamadi P, Razmjou J, Naseri B, Hassanpour M (2017) Humic Fertilizer and
675	Vermicompost Applied to the Soil Can Positively Affect Population Growth
676	Parameters of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) on
677	Eggs of Tuta absoluta (Lepidoptera: Gelechiidae). Neotropical Entomology
678	46: 678-684
679	Naselli, M., Biondi, A., Tropea Garzia, G., Desneux, N., Russo, A., Siscaro, G., &
680	Zappalà, L. (2017). Insights into food webs associated with the South
681	American tomato pinworm. Pest Management Science, 73(7), 1352–1357.
682	Poelman EH, Dicke M (2014) Plant-mediated interactions among insects within a
683	community ecological perspective. In: Voelckel C, Jander G (eds) Annual

684	plant reviews insect plant interactions, vol 47. Wiley, New York, pp 309-338
685	Price, P. W. (1991). The Plant Vigor Hypothesis and Herbivore Attack. Oikos, 62(2),
686	244.
687	Proft M, Birgersson G, Bengtsson M et al (2011) Attraction and oviposition of Tuta
688	absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565-574
689	Resende, J.T.V. de, Maluf, W.R., Faria, M.V., Pfann, A.Z., and Nascimento, I.R. do
690	(2006). Acylsugars in tomato leaflets confer resistance to the South American
691	tomato pinworm, Tuta absoluta Meyr. Sci. Agric. 63, 20–25.
692	Roditakis E, Steinbach D, Moritz G et al (2017) Ryanodine receptor point mutations
693	confer diamide insecticide resistance in tomato leafminer, Tuta absoluta
694	(Lepidoptera: Gelechiidae). Insect Biochem Mol Biol 80:11-20
695	Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H., and Cuthbertson, A.G.S.
696	(2017). Life table parameters of the tomato leaf miner Tuta absoluta
697	(Lepidoptera: Gelechiidae) on different tomato cultivars. J. Appl. Entomol.
698	141, 88–96.
699	Royer M, Larbat R, Le Bot J, Adamowicz S, Robin C (2013) Is the C:N ratio a
700	reliable indicator of C allocation to primary and defence-related metabolisms
701	in tomato? Phytochemistry 88: 25-33
702	Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation
703	of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol.
704	19(9):870-875
705	Salehi Z, Yarahmadi F, Rasekh A et al (2016) Functional responses of Orius
706	albidipennis Reuter (Hemiptera, Anthocoridae) to Tuta absoluta Meyrick
707	(Lepidoptera, Gelechiidae) on two tomato cultivars with different leaf
708	morphological characteristics. Entomol Gen 36:127-136
709	Schoonhoven, L. M., van Loon, J. J. A. & Dicke, M. Insect-plant biology. (Oxford
710	University Press, Oxford, 2005).
711	Seagraves MP, Riedell WE, Lundgren JG (2011) Oviposition preference for water-
712	stressed plants in Orius insidiosus (Hemiptera: Anthocoridae). J. Insect Behav.
713	24:132–143

/14	Selale H, Dagli F, Mutlu N et al (2017) Cry1Ac-mediated resistance to tomato leaf
715	miner (Tuta absoluta) in tomato. Plant Cell Tiss Org 131:65-73
716	Silva JE, Assis CPO, Ribeiro LMS, Siqueira HAA (2016) Fieldevolved resistance and
717	cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae)
718	populations to diamide insecticides. J Econ Entomol 109:2190-2195
719	Silva DB, Weldegergis BT, Van Loon JJA, Bueno VHP (2017) Qualitative and
720	Quantitative Differences in Herbivore-Induced Plant Volatile Blends from
721	Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci. J Chem Ecol
722	43: 53-65
723	Silva, D.B., Bueno, V.H.P., Loon, J.J.A.V., Peñaflor, M.F.G.V., Bento, J.M.S., and
724	Lenteren, J.C.V. (2018). Attraction of Three Mirid Predators to Tomato
725	Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the
726	Whitefly Bemisia tabaci. J. Chem. Ecol. 44, 29–39.
727	Sohrabi F, Nooryazdan H, Gharati B, Saeidi Z (2016) Evaluation of ten tomato
728	cultivars for resistance against tomato leaf miner, Tuta absoluta (Meyrick)
729	(Lepidoptera: Gelechiidae) under field infestation conditions. Entomol. Gen.
730	163–175.
731	Sohrabi, F., Nooryazdan, H.R., Gharati, B., and Saeidi, Z. (2017). Plant Resistance to
732	the Moth Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) in Tomato
733	Cultivars. Neotrop. Entomol. 46, 203–209.
734	Strapasson, P., Pinto-Zevallos, D.M., Paudel, S., Rajotte, E.G., Felton, G.W., and
735	Zarbin, P.H.G. (2014). Enhancing Plant Resistance at the Seed Stage: Low
736	Concentrations of Methyl Jasmonate Reduce the Performance of the Leaf
737	Miner Tuta absoluta but do not Alter the Behavior of its Predator Chrysoperla
738	externa. J. Chem. Ecol. 40, 1090–1098.
739	Tan CW, Chiang SY, Ravuiwasa KT, Yadav J, Hwang SY (2012) Jasmonate-induced
740	defenses in tomato against Helicoverpa armigera depend in part on nutrient
741	availability, but artificial induction via methyl jasmonate does not. Arthropod-
742	Plant Interactions
743	Turlings, T. C. J., J. H. Tumlinson and W. J. Lewis (1990). "Exploitation of

744	Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps." Science
745	250(4985): 1251.
746	White TCR (1993) The inadequate environment: nitrogen and the abundance of
747	animals. Springer, Berlin.
748	Xian XQ, Han P, Wang S, Zhang GF, Liu WX, Desneux N, Wan FH (2017) The
749	potential invasion risk and preventive measures against the tomato leafminer
750	Tuta absoluta in China. Entomologia Generalis 36(4): 319-333
751	Ximénez-Embún, M. G., Ortego, F., & Castañera, P. (2016). Drought-Stressed Tomato
752	Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi. PLOS
753	ONE, 11(1), e0145275.
754	Zappala L, Biondi A, Alma A et al (2013) Natural enemies of the South American
755	moth, Tuta absoluta, in Europe, North Africa and Middle East, and their
756	potential use in pest control strategies. J Pest Sci 86:635-647
757	Zaugg I, Benrey B, Bacher S (2013) Bottom-Up and Top-Down Effects Influence
758	Bruchid Beetle Individual Performance but Not Population Densities in the
759	Field. PLoS ONE
760	Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Full crop protection
761	from an insect pest by expression of long double-stranded RNAs in plastids.
762	Science 347(6225):911-914
763	Zhang J, Khan SA, Heckel DG, Bock R (2017) Next generation insect-resistant
764	plants: RNAi-mediated crop protection. Trends in Biotechnology 8:871-882
765	Zhong ZW, Li XF, Pearson D, Wang DL, Sanders D, Zhu Y, Wang L (2017)
766	Ecosystem engineering strengthens bottom-up and weakens top-down effects
767	via trait-mediated indirect interactions. Proc. R. Soc. B 284: 20170475.

Figure 1: Bottom-up effects of the plant nutrient solution on *Tuta absoluta* and its 768 natural enemies, the larval parasitoid *Necremnus tutae* and the omnivorous predator 769 770 Macrolophus pygmaeus. Reduced supply of nitrogen (N), potassium (K), or water as well as increased salinity (NaCl) in the nutrient solution can affect plant nutritional 771 quality and plant defense. These changes can in turn have an impact on higher trophic 772 levels and affect the performance of *T. absoluta* as well as *M. pygmaeus* and *N. tutae*. 773 Solid line arrows indicate direct interactions. Broken line arrows indicate indirect 774 ones. Dotted line arrows indicate open questions. C: carbon, VOC: volatile organic 775 776 compounds. *While only nitrogen- and only water-limitation did not affect *N. tutae*, they exhibit 777 the strong tendency to do in interaction and should be considered carefully. 778 **The increasing defense response and defense compound content has not yet been 779 demonstrated for tomato leaves. 780 This figure is based on the following publications: Amtmann et al 2008, Becker et al 781 in prep, Blazhevski et al 2018, Debouba et al 2016, Dong et al 2017, Flores et al 2015, 782 Han et al 2014, 2015a, 2015b, 2016a, 2016b, Larbat et al 2016, Manaa et al 2011, 783 Slansky & Scriber 1985, Sung et al 2015. 784

