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Abstract Long-term reservoir management often uses bounds on the reser-
voir level, between which the operator can work. However, these bounds are not
always kept up-to-date with the latest knowledge about the reservoir drainage
area, and thus become obsolete. The main difficulty with bounds computation
is to correctly take into account the high uncertainty about the inflows to the
reservoir. In this article, we propose a methodology to derive minimum bounds
while providing formal guarantees about the quality of the obtained solutions.
The uncertainty is embedded using either stochastic or robust programming
in a model-predictive-control framework. We compare the two paradigms to
the existing solution for a case study and find that the obtained solutions vary
substantially. By combining the stochastic and the robust approaches, we also
assign a confidence level to the solutions obtained by stochastic programming.
The proposed methodology is found to be both efficient and easy to implement.
It relies on sound mathematical principles, ensuring that a global optimum is
reached in all cases.

Keywords Long-term reservoir management · Rule curve · Stochastic
optimisation · Robust optimisation

1 Introduction

Drinking-water production is a vital need, and tap water is a basic service
that may not be interrupted. This water may come from multiple sources,
such as groundwater or dams (surface water). Utility managers cannot afford
lacking water to inject in their distribution system, and this is one reason that
impelled them to build large dams and reservoirs. Those serve also multiple
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other purposes, such as hydropower Bieri and Schleiss (2013) or flood control
Camnasio and Becciu (2011).

These reservoirs must deliver the expected level of service with a very low
probability of failure. A common management technique is to use predefined
rules, i.e. rule curves. These indicate upper and lower bounds on the level of
the reservoir at any period of time throughout the year Chang et al (2005).
With them, the operator knows what actions are allowed on the reservoir to
ensure correct operation: the water level is constrained by the prescribed rule
curves. This means that no water can be released if the water level reaches
the minimum-rule-curve value. Conversely, water must be released if the water
level tends to approach the maximum-rule-curve value.

Modern operation of large and complex multi-reservoir systems tends to
use real-time control Schwanenberg et al (2015) based on multistage mod-
els Labadie (2004), instead of predefined rule curves. Multistage models in-
clude recourse actions Birge and Louveaux (2011), enabling the decisions
to be reconsidered over time. These models rely generally on stochastic dy-
namic programming and are more intricate to implement compared to reservoir
rule curves. Here, our objective is to focus on the derivation of rule curves,
which prove effective for strategic planning of the reservoir management, while
multistage models apply better for real-time control.

Rule-curve-based management is expected to take full advantage of the
potential of the reservoirs. However, the rule curves must be periodically up-
dated; otherwise, they become less reliable over time and may eventually fail
to provide the expected service. The quality degradation of these operational
rules is mostly due to external evolution—be they in the required amount of
water or in climate change.

In this context, formal mathematical optimality guarantees of the rule
curve are an asset for the operator: if there is any lack of water, the operator
is able to prove that every possible action was taken to prevent this situ-
ation Jordan et al (2012). To this end, mathematical optimisation can be used
to derive the rule curves. With a well-defined and reproducible computational
framework, the rule curves can also be regularly updated, and thus remain rel-
evant, even under external evolutions. Most current optimisation techniques
for reservoirs are based on evolutionary computations Ahmad et al (2014);
Maier et al (2014): mostly genetic algorithms Chang et al (2005); Akbari-
Alashti et al (2015), sometimes coupled with simulation Taghian et al (2014);
Ahmadi Najl et al (2016), but particle swarms Spiliotis et al (2016); Peng
et al (2017) and fuzzy logic Ahmadianfar et al (2017); Chen and Chang (2010)
are also very common; newcomers like harmony search are gaining traction
in the community Bashiri-Atrabi et al (2015). These ideas tend to be mixed
together, for example fuzzy logic and genetic algorithms Sabzi et al (2016);
Chaves and Kojiri (2007). The main idea behind those evolutionary techniques
is to randomly explore a very large space of possible policies. Unlike evolution-
ary algorithms, mathematical optimisation Labadie (2004); Zhang et al (2015);
Sulis (2016) can provide global-optimality guarantees while having acceptable
computational time requirements (under some assumptions, such as convex-
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ity Nicklow and Mays (2000)), even for multireservoir systems. Our article
demonstrates this effectiveness in the case of long-term rule curves for a single
reservoir.

Whatever the optimisation method, it must take into account the inherent
uncertainty in the input data (namely, the inflow). In mathematical optim-
isation, there are two well-known paradigms to handle uncertainty: stochastic
and robust optimisation.

1. The first is the most common one, and is also known as explicit stochastic
optimisation Celeste and Billib (2009); Yeh (1985). It implies that the
model directly uses probabilistic information (usually, by sampling the
probability density function, i.e. using inflow scenarios for each river). The
objective function minimises some risk measure Shapiro and Dentcheva
(2014), often an expected value. However, in our case, the maximum func-
tion makes more sense than the expectation (see Section 3.2.2 for a full
discussion).

2. Recently, another approach has been explored: robust optimisation Pan
et al (2015), whose roots lie in mathematical optimisation communities
Ben-Tal et al (2009). It considers the uncertain values as pertaining to a
so-called uncertainty set and it optimises for the worst case within that
set; a common choice is to use the confidence intervals around the average
value. It can be considered as a kind of implicit stochastic optimisation
(ISO) Celeste and Billib (2009), as the actual model is deterministic, albeit
working with data that is adapted to the uncertainty. Our approach has no
need for hedging the solutions to different sets of possible inflow scenarios,
as it is usually necessary in ISO approaches, like in Zhao et al (2014),
neither does it use linear regression as in Sulis (2016).

To the best of our knowledge, no study has so far included both paradigms to
thoroughly compare them, nor used robust optimisation tools to associate a
confidence level to solutions. These objective results can be useful for reservoir
operators. Previous comparisons were mainly performed between one formal
optimisation method and evolutionary computations, such as in Zhu et al
(2017); Akbari-Alashti et al (2015).

In this paper, we compare these two paradigms based on a real-world case
study of a Belgian dam on the river Vesdre, near Eupen. Historically, a very
conservative process was used to compute the rule curves, with a single object-
ive: water supply. We discuss to which extent the two considered approaches,
robust and stochastic optimisation, may contribute to give more freedom to
the operator for other purposes, such as hydropower.

Our article is structured as follows. After a brief description of the case
study in Section 2, the optimisation models corresponding to each uncertainty
paradigm are detailed in Section 3. The results of the optimisation process
are discussed in Section 4. Finally, conclusions are drawn in Section 5, with
further directions to improve this work.
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2 Case study

In this study, we consider the Vesdre reservoir, which was created by dam-
ming river Vesdre in Eastern Belgium immediately downstream of its junction
with river Getzbach (Figure 1). River Vesdre is a tributary of river Ourthe,
which is one of the main tributaries of river Meuse. The Vesdre reservoir is
fed by the natural drainage area of the upper part of river Vesdre and of river
Getzbach (6920 ha), as well as by another river (river Helle), from which a
diversion tunnel was built. This diversion tunnel increases the effective drain-
age area up to 10,595 ha. In normal-operation mode, the tunnel is open and
only a minimum environmental flow remains in river Helle. If the reservoir
level reaches its maximum level, the tunnel can be closed, so that the whole
discharge of river Helle remains in its natural riverbed. The Vesdre dam is
50 m high and the maximum storage capacity of the reservoir is 25 hm³. The
main purpose of the Vesdre reservoir is to provide drinking water. It can also
be used to produce hydropower (2.6 MW) and to contribute to flood and low
flow control.

The present management of the Vesdre reservoir is based on empirical
rules, which are functions of the measured discharges and weather forecasts.
These rules define, for each month of the year, a minimum reservoir level,
above which the actual reservoir level must remain. The curve describing the
variation over the year of this minimum reservoir level is called rule curve.
The dam operator considers that managing the reservoir according to this
rule curve guarantees the availability of drinking water for at least two years;
nevertheless, no confidence level is associated to this claim.

The rule curve was derived in the 1980s, using a very conservative ap-
proach. A “worst-case” scenario was defined based on historical data: for each
month of the year, the reservoir inflow was assumed equal to the lowest value
for the corresponding month over the period of observations. Based on this
particular scenario of the reservoir inflow, a minimum reservoir level was de-
termined for each month of the year, so that water supply can be ensured for
a period of two years. In the following sections, we analyse how stochastic and
robust optimisation may contribute to update this rule curve, by making use
of today’s enhanced computational power and more recent data.

We use as main input data the characteristics of the catchment, reservoir,
and dam (Tables A1 and A2 in Online Resource 1), as well as time series
of observed inflow discharges to the reservoir, coming from both the natural
drainage area of the reservoir (upper part of river Vesdre and river Getzbach)
and from river Helle through the diversion tunnel. The corresponding time
series are shown in Figure 2, as the median value over the 20 years of observa-
tions (1995–2014) of daily discharge and its inter-annual variability (25%–75%
and 10%–90% percentiles).

The relative number of dry and wet years in the data may influence the
results of the optimisation problem. As shown in Online Resource 2, the an-
nual mean inflows over the considered period are distributed relatively evenly
between wet and dry years, except for river Helle: it shows some higher values
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Figure 1: Location of the Vesdre reservoir.

for the wet years compared to the dry ones. In river Getzbach, the year 2013
was particularly wet.

3 Methodology

We developed optimisation models to compute reservoir rule curves, which
define the minimum reservoir level ensuring that drinking water availability
may be guaranteed even in case of a prolonged drought period. The rule curve
consists in water levels at specific points during the year, called time steps.
More specifically, starting from the beginning of a drought, the available drink-
ing water storage must be sufficient to enable water supply during a predefined
period of time. In the considered case study, the risk level is set such that wa-
ter production must be safeguarded over a time horizon of two years, but the
developed methodology may be easily adapted to other time horizons. In the
following, we first define key notations (Section 3.1), then we describe the con-
sidered uncertain reservoir models (Section 3.2), and finally we introduce the
model-predictive-control framework used for the case study (Section 3.3).

3.1 Notations

The optimisation variables are indicated by a bold font. The value for these
symbols is the result of the optimisation process, and are not fixed beforehand.
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Figure 2: Median value of the daily discharge in River Vesdre, Getzbach and
Helle over the 20 years of observations, and inter-annual variability expressed
through the 25%–75% and 10%–90% percentiles.

Sets and indices. The tributary rivers are split into two groups: those that
can be diverted (the set diverted) and those that cannot (the set tributaries).
The index t is used to denote discrete time, i.e. the times at which a value of
the rule curve is computed.

Decision variables. The real-world decision variable is the reservoir level, but
we use the volume of water instead, which is in one-to-one mapping to the
reservoir level. This variable is denoted by storaget (m3) at time t.

Exogenous variables. The main source of uncertainty in the case study is the
inflow from each river r, written flow t,r.

Parameters. Several model parameters are fixed by the reservoir operator
to fulfil the dam purposes: drinkingWater t is the drinking water demand,
environmentalFlow t is the environmental flow that must remain in the river
downstream of the reservoir.

A hydropower plant can be fed through a penstock, with penstockHydropower
being the maximum discharge. The bottom outlets can also be used, with a
maximum discharge of bottomOutlet . No other output from the dam is pos-
sible: due to the relative position between the spillway crest and the maximum
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allowable reservoir level, the spillway is not taken into account in the present
model. This is consistent with the fact that we focus on the effect of droughts.

Similarly, environmentalFlowr,t is the environmental flow for tributary
river r. maxDivertedr constitutes the maximum discharge capacity through
the diversion tunnel.

Bounds on the water level are also given as inputs to the model: minStorage
and maxStorage are respectively the minimum and the maximum allowed
volumes of water. The operator defines the minimum so that it corresponds
to a reservoir level slightly above the water intakes. Similarly, the maximum
level is fixed beforehand to keep a safety margin in case of floods.

3.2 Uncertain reservoir models

3.2.1 Deterministic model

The optimisation problem is mainly based on one equation, the mass balance
over a time step Yeh (1985); Arunkumar and Jothiprakash (2012); Pan et al
(2015):

storaget+1 = storaget − outputt + inputt, ∀t,
where the inputs correspond to the inflowing rivers, and the outputs to the
various dam purposes. The inputs are composed of the tributaries and the
diverted rivers:

inputt =
∑

r∈tributaries

flow t,r +
∑

r∈diverted

divertedt,r, ∀t.

For the considered case study, the output from the reservoir is the sum of the
drinking water demand drinkingWater t, the minimum environmental flow in
the river environmentalFlow t, and the releases through the hydropower plant
and through the bottom outlets releaset:

outputt = drinkingWater t + environmentalFlow t︸ ︷︷ ︸
constant (i.e. not decided by the optimisation process)

+ releaset, ∀t.

Remark 1 Other losses could be taken into account, such as evaporation, but
they are negligible in the considered area Finch and Calver (2008). Similarly,
other purposes might be taken into account Castelletti et al (2008).

The constraints on minimum and maximum water levels may be expressed as:

minStorage ≤ storaget ≤ maxStorage, ∀t.

The contributions of the diverted rivers can be optimised as long as two con-
straints are respected: a minimum environmental flow must remain in each
river (and thus may not be diverted into the reservoir) and the diversion tun-
nels have a maximum discharge capacity:

divertedt,r ≤ maxDivertedr, ∀t, ∀r ∈ diverted .
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divertedt,r ≤ flow t,r − environmentalFlowr, ∀t, ∀r ∈ diverted .

The release from the dam releaset is limited by available means of evacuating
water:

releaset ≤ penstockHydropower + bottomOutlet , ∀t.

Since the overall goal is to determine an enhanced rule curve, i.e. a new
lower bound for the reservoir level, the objective function minimises the total
stored volume throughout the year, all periods having the same weight:

min
∑
t

storaget.

Thanks to this objective function, the solution is the most critical situation
while still being feasible from the beginning to the end of the optimisation
horizon: having a slightly lower level might endanger the required guarantees.

Remark 2 This objective is supported by the fact that, if the solver lowers the
value for one time step at the expense of another, the variations for these two
time steps have the same effect on the objective value. In other words, at the
optimality, changing the value for any time step could force to reconsider the
solution at other time steps.

All constraints detailed above and the objective function are linear. This
optimisation problem is thus very tractable (large instances can be solved
quickly) Vanderbei (2014). However, this model ignores the uncertainty in
the inflow (i.e. flow t,r): as is, it can only consider one inflow scenario, and
optimises over that scenario, which is not representative of the actual range of
possible inflows. The following sections present two approaches to incorporate
the inflow uncertainty into the model while keeping it linear.

3.2.2 Stochastic model

In a first approach, we considerthe inflow as stochastic. The uncertainty is
reproduced by means of a series of scenarios Shapiro and Dentcheva (2014).
The rule curve is determined so that the demand for drinking water is met
in all considered scenarios. Below, we first detail how the scenarios are gener-
ated. Next, we present the formulation of the stochastic model enabling the
computation of the rule curve.

Scenario generation. The objective of the optimisation consists in determ-
ining the minimum reservoir level which guarantees drinking water availability
even in the case of a M -year long drought period (in our case study, M = 2).
Therefore, each scenario consists of reservoir inflows for a period of M years.
Two different strategies have been tested for generating the scenarios.
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– In the first one, referred to as merging, all periods of M successive years are
picked in the observed time series of reservoir inflow and the corresponding
values of inflow are used to define one scenario. The number of scenarios is
N −M , where N is the number of years in the observation dataset (with
M < N).

– In the second strategy, called mixing, a random selection of a period of
one year is performed M times and the M selected periods of one year
are combined to form a M -year long period. Since all possible M -tuples of
one-year periods are considered, the number of scenarios is equal to NM .

As opposed to the first strategy, the second one would not preserve inter-annual
correlations in the data, while both strategies keep intra-annual correlations,
which are assumed stronger.

Model formulation. The computation of the rule curve is implicitly per-
formed in two steps: first, each scenario is simulated independently, enabling
the determination of a scenario-specific minimum reservoir level for each time
step of the year; second, the rule curve is determined as the maximum, i.e.
the upper envelope, of the solutions obtained for all the individual scenarios
(a convex risk measure, in Shapiro and Dentcheva (2014)). The number of
considered scenarios is either N −M or NM , depending on the strategy used
for generating the scenarios (respectively, merging or mixing).

Let storagest denote the solution at time t for scenario s, and ruleStoraget
the actual value for the rule curve at time t. The rule curve must be above the
minimum level for any scenario (as it is the maximum of all the solutions),
which is translated by the constraint storagest ≤ ruleStoraget. The complete
model is thus:

min
∑

t ruleStoraget
such that storagest ≤ ruleStoraget ∀t,∀s,

storagest+1 = storagest − outputst + inputst ∀t,∀s,
inputst =

∑
r∈tributaries flows

t,r +
∑

r∈diverted diverted
s
t,r ∀t,∀s,

outputst = drinkingWater t + environmentalFlow t + releasest ∀t,∀s,
minStorage ≤ storagest ≤ maxStorage ∀t,∀s,
diverteds

t,r ≤ maxDischarger ∀t, ∀s,∀r ∈ diverted ,
diverteds

t,r ≤ flows
t,r − environmentalFlowr ∀t, ∀s,∀r ∈ diverted ,

releasest ≤ penstockHydropower + bottomOutlet ∀t,∀s,
ruleStoraget ≥ 0 ∀t,
storagest ≥ 0, outputst ≥ 0,
inputst ≥ 0, releasest ≥ 0 ∀t,∀s,
diverteds

t,r ≥ 0 ∀t, ∀s,∀r ∈ diverted .

3.2.3 Robust model

The second uncertain model considers the inflow as belonging to an uncer-
tainty set, which we chose to be the confidence interval of the inflow at the
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corresponding time period based on the historical data. This choice is some-
times called interval uncertainty or Soyster’s model Ben-Tal and Nemirovski
(2002).

The “design” inflow to the reservoir can be computed explicitly: it corres-
ponds to the minimum inflow within the confidence interval (i.e. the lower
bound). As such, the robust model is very similar to the basic deterministic
one which is detailed in Section 3.2.1, except in the way the inflow is chosen:
it does not correspond to raw historical data, but rather the design inflow is
derived from the historical data.

Various options exist for computing the confidence intervals (and thus
their lower bounds). The simplest approach consists inhandling separately
predefined time slices (e.g., each day of the year). In such a case,a stand-
ard statistical technique may be applied to the set of values observed for each
time slice (for example, January 1, January 2. . . ) over the considered time
period (here, 20 years). For our case study, we used a t-Student distribution
for each time step of the year. Alternate methods include fitting a dedicated
statistical model (such as the one in Adam et al (2014)) or using standard
time series analysis procedures (like ARMA Abrahart and See (1998)), and
then modelling the residuals Spierdijk (2016).

3.3 Model predictive control (MPC)

As such, the uncertain models presented above have one important defect: they
guarantee the M -year supply only for the first time step of the solution. For
the following ones, the guarantee is limited by the time horizon of the model
(i.e. the second time step has a guarantee for M years minus one time step).
Using longer scenarios would not fix this issue properly as it would make the
solution overconservative, hence suboptimal: for instance, with a M + 1-year
scenario, the solution for the first time step would guarantee drinking water
availability for M + 1 years (instead of two), which is more constraining than
needed.

To work around this deficiency, we useM+1-year long scenarios but we per-
form the optimisation on moving M -year long time horizons. In other words,
the algorithm uses M +1-year scenarios as input, but the actual optimisation
(using one of the uncertain models described in Section 3.2) is performed for
each time step t on a moving period of M years (i.e. from time step t to time
step t + M years). This way, the result of the optimisation does match the
objective of guaranteeing drinking water availability for exactly M years.

To construct the complete solution (i.e. the rule curve over the whole year),
an iterative algorithm is implemented At each iteration t, it performs the
following tasks:

– the optimisation problem is solved for the time period from the current
time step t to time step t+M years;

– only the minimum reservoir level determined for the first time step of the
current iteration (i.e. time step t) is kept to build the final solution;



Title Suppressed Due to Excessive Length 11

Year 1 Year 2 Year 3

t1

t2

t3

t4

t5

t6

Figure 3: Behaviour of the MPC algorithm. The solution for the first time
step t1 has an optimisation horizon limited to the first M years (i.e. ensures
the drinking-water guarantee for M years); the one for t2 is computed for a
M -year period starting at the second time step, i.e. the optimisation horizon
of t1 shifted by one time step.

– the considered two-year time horizon is shifted by one time step (hence,
starting at time step t+ 1), as depicted in Figure 3.

As a consequence, the number of iterations is equal to the number of time steps
in the rule curve (and as many optimisation problems are solved). Because
each iteration uses exactly M years of data, the result is consistent with the
objective of a M -year safety for water supply.

This technique is called receding horizon control Kwon and Han (2005). It
is often used in industrial process control, including beforehand operational-
rules computation (which is precisely the case here). It is part of a more generic
framework, model predictive control (MPC), that has already been used with
great success in water resources management, but mostly for real-time control
Talsma et al (2013); Becker et al (2014).

Thanks to this algorithm, all obtained solutions are year-to-year continu-
ous: there is no gap in the computed rule curve between the end of a year and
the beginning of the next one. The solutions of the basic uncertain models
of Section 3.2 do not have this continuity property, which is important for
operators to implement the rule curve in practice.

4 Results

4.1 Outcome of the optimisation

The two described models (stochastic and robust models, both with model
predictive control) have been implemented in a Julia package Bezanson et al
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Figure 4: Comparing the two uncertainty models to the current rule curve:
on the one hand, stochastic, with two scenario generation techniques; on the
other one, robust.

(2017), ReservoirManagement.jl, which is freely available on GitHub1. It is
based on the JuMP mathematical modelling layer Dunning et al (2017). Both
models are compared to the existing minimum rule curve in Figure 4, with
weekly time steps (as the curve). Multiple rule curves have been computed for
each uncertainty model:

– for the stochastic model: the two scenario generation techniques were con-
sidered (merging and mixing);

– for the robust model: confidence intervals between 95% and 98.5% were
tested (as detailed in Online Resource 3), whereas higher confidence levels
(99% and beyond) do not allow for any solution: too little water is available
in the corresponding scenarios.

Overall, the computed rule curves strongly depend on how the uncertainty
is handled, i.e. stochastic or robust approach; nonetheless, the curves remain
relatively close to the current rule curve; yet, at some time steps, all the
proposed models are below the current rule curve. In other words, depending
on the way to model the uncertainty, the current rule curve is either too
conservative (none of our solutions needs a reservoir level as high as prescribed
by the existing rule curve) or marginally unsafe (one model proposes to keep
a slightly higher level for about one third of the year).

4.2 Associating confidence levels

By combining the stochastic and the robust approaches, we can estimate a
confidence level of feasibility for the stochastic solutions. For a given solution
obtained from stochastic programming, we identify a robust solution which is

1 https://github.com/dourouc05/ReservoirManagement.jl

https://github.com/dourouc05/ReservoirManagement.jl
https://github.com/dourouc05/ReservoirManagement.jl
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Figure 5: Closest confidence intervals corresponding to the stochastic solutions.

fairly comparable to the considered stochastic solution, and we assume that
the known confidence level of the robust solution also applies to the similar
stochastic solution. As shown in Figure 5, the merging scenario-generation
technique leads to a confidence level of approximately 96.5%, the existing rule
curve 97.5%, and the mixing scenario generation 98%.

4.3 Most important scenarios for stochastic optimisation

For the stochastic model (Section 3.2.2), there is not a single scenario that
fully defines a given solution, as shown in Figure 6a: instead, a limited num-
ber of scenarios have an impact on the rule curve (these scenarios may be
called support vectors Cortes and Vapnik (1995)); the other scenarios have no
influence on the solution.

Among them, some are closer to the wettest year, others to the driest one
(Figure 6a): a low average discharge throughout the scenario does not imply
that it yields the most conservative solution; the distribution of the inflow over
the year has a substantial influence on the result. This means that limiting the
study to the driest years would not be enough to derive a sufficiently reliable
minimum rule curve. In contrast, a more important factor is the driest month
(as depicted in Figure 6b), as the support scenarios correspond instead to
those containing some of the driest months, and these define the solution for a
large period of time. Online Resource 4 presents similar results for averaging
periods of three or six months, as well as for averages over the wet or the
dry season. The highest correlation is observed for the driest month, but the
three driest months and the dry season are similarly correlated, as indicated
in Table 1. The support scenarios are not only made up of dry years, but they
include also a few very wet ones. Also, these results suggest that the month is
a very relevant time scale for defining the rule curve.
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(a) The colour of the scenario curve corresponds to the average discharge: the bluer curves indicate
a wetter year.

(b) The colours correspond to the average discharge during the driest month: the reddest curve
indicates the driest month among all the scenarios.

Figure 6: Impact of the scenarios on the solution for a stochastic solver (here,
merging is depicted, without MPC). The optimisation curves (i.e. the result
of the optimisation and the scenarios) correspond to a 2-year scenario; each
of them is plotted against the original rule curve for the first year. The colour
scales are relative: dark blue indicates the wettest scenario, dark-red the driest
scenario. A dashed line indicates a support scenario.

The main conclusion for the optimisation of this analysis is that the time
step for the optimisation of this model should never be longer than one month,
otherwise the resulting rule curve may miss some important events. It also
gives an easy (but approximate) criterion to discriminate support scenarios
from redundant ones, based on the driest month contained in the time series.
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Table 1: Analysis of the time periods that define the optimisation results.
There are 22 scenarios, of which 9 are support scenarios.

Considered
period of time
for the average

Average rank
of support
scenarios

Average rank
of nonsupport
scenarios

Average
discharge of
support
scenarios
(106 m³/day)

Average
discharge of
nonsupport
scenarios
(106 m³/day)

Year 12.111 11.077 0.981 0.857
Wet season 12.889 10.538 1.338 1.097
Dry season 14.222 9.615 0.473 0.517
Driest six
months

11.444 11.539 0.842 0.938

Driest three
months

13.778 9.923 0.618 0.651

Driest month 14.333 9.538 0.418 0.488

5 Conclusion

This article compares two paradigms to take uncertainty into account within
mathematical optimisation techniques applied to rule-curve derivation: one is
similar to many existing tools (stochastic programming), with scenario gen-
eration to help deal with limited data; the other one is more synthetic and
directly uses confidence levels (robust programming). Our results show that
the current operating guidelines can be improved at some points. We also as-
signed a confidence level to the current rule curve, and showed that moving
to the mixing scenario-generation technique or to robust programming might
improve water-supply safety. Moreover, the dam operator can implement any
of our techniques in such a way that rule curves are regularly updated.

Besides those practical issues, the proposed methodology is easy to imple-
ment with a high efficiency, while being based on sound mathematical prin-
ciples. Also, the mathematical models used in this article are exploited to their
utmost potential: there is no point in pursuing the research to get better solu-
tions to these models, as the global optimality has been reached. Nevertheless,
the models could still be improved to get more detailed results. For example,
the discharge through the hydropower penstock and the bottom outlets both
depend on the hydraulic head, while they are currently considered as con-
stants. Another weak point is the computation of inflow confidence intervals,
which is crude, and could be greatly enhanced.

Furthermore, this approach is directly applicable to any kind of water de-
mand, such as controlling low flows, as long as there is no uncertainty in this
demand. Otherwise, another stage of uncertainty modelling is needed, applying
the same techniques as developed in this article.

The rule curves have been evaluated with feasibility-related criteria, which
are the most relevant in this case for the operator. Nevertheless, other eval-
uation processes could bring more information about the behaviour of each
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potential policy with respect to the other dam purposes, such as hydropower
like in Arunkumar and Jothiprakash (2012).

The approach can also be extended to handle flooding, by defining a max-
imum rule curve for normal operations: this lets some free space to store the
excess water due to flood events. This could be computed, season per season,
by analysing the maximum level so that the usual constraints are not violated
(as done in Section 3), with the flood event as input. This extension would
require some flood detection algorithm, as presented in Klopstra and van Eck
(1999).
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