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Abstract  

 Despite the importance of plant-plant interactions on plant community dynamics and 

crop yield, our understanding of the adaptive genetics underlying these interactions is still 

limited and deserves to be investigated in the context of complex and diffuse interactions 

occurring in plant assemblages. Here, based on 145 natural populations of Arabidopsis thaliana 

located in south-west of France and characterized for plant communities, we conducted a 

Genome-Environment Association analysis to finely map adaptive genomic regions of A. 

thaliana associated with plant community descriptors. To control for correlated abiotic 

environment effects, we also characterized the populations for a set of biologically meaningful 

climate and soil variables. A non-negligible fraction of top SNPs was associated with both plant 

community descriptors and abiotic variables, highlighting the importance of considering the 

actual abiotic drivers of plant communities to disentangle genetic variants for biotic adaptation 

from genetic variants for abiotic adaptation. The adaptive loci associated with species 

abundance were highly dependent on the identity of the neighboring species suggesting a high 

degree of biotic specialization of A. thaliana to members of its plant interaction network. 

Moreover, the identification of adaptive loci associated with α-diversity and composition of 

plant communities supports the ability of A. thaliana to interact simultaneously with multiple 

plant neighbors, which in turn can help to understand the role of community-wide selection. 

Altogether, our study highlights that dissecting the genetic basis underlying plant-plant 

interactions at a regional scale while controlling for abiotic confounding factors, can help 

understanding the adaptive mechanisms modulating natural plant assemblages. 
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Introduction 

Understanding the genetics underlying plant-plant interactions is a key element to 

understand the structure and functioning of natural communities (Whitham et al. 2006). In 

particular, identifying the genetic basis of plant-plant interactions can help to estimate the 

potential of plant species to face anthropogenic-related modifications of plant assemblages 

(Pierik et al. 2013), resulting in part from differences of geographic range shift among plant 

species under climate change (Gilman et al. 2010; Singer et al. 2013). In addition, the 

identification of genes associated with natural variation of response to the presence of other 

plants is of primary importance to improve plant breeding programs for the optimization of 

mixtures of crop species (i.e. ideomixes) (Litrico and Violle 2015).  

However, there is still very limited information about the adaptive genetic loci 

associated with natural variation of plant-plant interactions (Subrahmaniam et al. 2018). Firstly, 

the number of Quantitative Trait Loci (QTL) studies focusing on plant-plant interactions is 

relatively limited in comparison to other types of biotic interactions (virus, bacteria, fungi, 

oomycetes, herbivores…) (Bartoli and Roux 2017; Subrahmaniam et al. 2018). Similarly, 

despite the importance of interspecific competition in mediating plant community structure, 

diversity and dynamics (Baron et al. 2015), only two Genome Wide Association studies 

(GWAS) reported the fine mapping of genomic regions underlying the response of a focal 

species to the presence of a competitive species (Baron et al. 2015; Frachon et al. 2017). In 

addition, due to the intractability of empirically testing interactions between a focal species and 

many neighboring plant species, most QTL mapping studies have considered only a single pair 

of interacting species (Subrahmaniam et al. 2018). However, throughout their life cycle, plants 

can interact separately or simultaneously with a large number of plant species (Wilson et al. 

2012), suggesting that the genetics of plant-plant interactions needs to be investigated in the 

context of complex and diffuse interactions occurring in natural plant assemblages (Litrico and 

Violle 2015; Roux and Bergelson 2016). Secondly, to our knowledge, it is still unknown 

whether polymorphic genes involved in plant-plant interactions have been shaped by natural 

selection.  

By identifying significant associations between genetic polymorphisms and 

environmental variables, Genome-Environment Association (GEA) analyses is a powerful 

genome scan method to identify genes potentially involved in adaptive processes of a given 

species (De Mita et al. 2013; Scalfi et al. 2014). In the last few years, the availability of public 

databases collecting estimates of abiotic factors (in particular climatic variables) and the 
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development of next-generation sequencing (NGS) technologies, led to a burst of GEA studies 

attempting to establish genomic map of local adaptation to abiotic variation, from a worldwide 

scale (Hancock et al. 2011; Lasky et al. 2012; Lasky et al. 2015; Bay et al. 2017; Ferrero-

Serrano & Assmann 2019) to a regional scale (Pluess et al. 2016; Frachon et al. 2018). On the 

other hand, GEA studies performed on biotic factors are still scarce (not to say absent) in wild 

plant species. Two non-exclusive hypotheses can explain this paucity of GEA studies related to 

biotic interactions. Firstly, the power of GEA to identify true positives is positively correlated 

to the number of studied populations (Gautier 2015). However, given the substantial effort 

required to carefully characterize ecological communities, the number of studies reporting the 

biotic characterization of several dozens or hundreds natural populations of a given plant 

species is unsurprisingly limited (Züst et al. 2012; Brachi et al. 2013; Bartoli et al. 2018). 

Secondly, GEAs performed on biotic variables need to control for the abiotic environment that 

can be correlated with the variation of the biotic features under study. This step is fundamental 

to dissociate the genetic variants associated with the biotic variables from those associated with 

the only abiotic adaptation of the plant species. For example, it is well established that under 

various geographic scales, plant assemblages are shaped by a combination of abiotic factors 

(Hautekèete et al. 2014; Trivellone et al. 2017). Removing the effect of habitat filtering – by 

characterizing and controlling for several abiotic factors - would allow to identify the adaptive 

genetic basis that are specific to biotic interactions, i.e. that do not result from an indirect 

relationship with the abiotic environment (e.g. climate or soil factors). 

Here, by combining plant community ecology and population genomics, we adopted a 

GEA approach to establish a genomic map of potential adaptive genetic loci associated with 

plant community descriptors (i.e. α-diversity, composition and abundance of plant species) in 

the model plant Arabidopsis thaliana. To achieve this goal, using a metabarcoding approach, 

we first characterized the plant communities associated with 145 natural populations of A. 

thaliana located in south-west of France (Bartoli et al. 2018; Frachon et al. 2018). To control 

for correlated effects of the abiotic environment, those populations were also characterized for 

a set of 17 biologically meaningful climate and soil variables. By using a Bayesian hierarchical 

model controlling for the genome wide effects of confounding demographic evolutionary forces 

(Gautier 2015), we then conducted GEA analyses with more than 1.5 million Single Nucleotide 

Polymorphisms (SNPs) to finely map genomic regions of A. thaliana associated with plant 

community descriptors. GEA was also performed on abiotic variables, thereby allowing to 

disentangle GEA signals for plant-plant interactions from GEA signals for abiotic factors. By 



 

5 
 

definition, GEA allows identifying genetic loci under local adaptation. However, to support that 

the loci identified by our GEA analysis have been shaped by natural selection, we additionally 

tested whether the SNPs that were the most associated with descriptors of plant communities 

were enriched in a set of SNPs subjected to adaptive spatial differentiation. Finally, we 

examined whether specific biological processes were overrepresented among SNPs involved in 

adaptation to plant communities and discussed the function of candidate genes.  

 

Results 

Working at a regional scale to investigate the adaptive genetics to plant communities 

To establish a genomic map of local adaptation to plant communities, we focused on 

145 A. thaliana populations located in the Midi-Pyrénées region (south-west of France) (Fig. 

1A), with a median distance among the populations of 94.5 km (max = 264.7 km) (Frachon et 

al. 2018). The choice of working at regional scale was supported by previous observations on 

A. thaliana in France. Firstly, as already advised, the geographical scale used to identify 

genomic regions associated with environmental variables should be chosen according to the 

grain of ecological variation (Bergelson & Roux 2010). A previous study focusing on 49 natural 

populations of A. thaliana located in four climatically contrasted French regions (Brittany, 

Burgundy, Languedoc and north of France), showed that the variance of interspecific 

competition indices was mostly partitioned among populations within regions, with only 5.2% 

of the competition variance observed among the four regions (Brachi et al. 2013). Secondly, 

the main drawbacks of GEA analyses (i.e. allele frequency autocorrelation, genetic and allelic 

heterogeneity, rare alleles) are often observed at large geographical scales. As previously 

advised for GWAS, working at a small geographical scale should reduce these limitations 

(Bergelson & Roux 2010). Accordingly, in a GWAS performed on flowering time scored in 

greenhouse conditions, confounding by population structure was greatly reduced at a regional 

scale in France (Brachi et al. 2013), which is consistent with a linkage disequilibrium estimate 

(r²=0.5) of 18bp in a highly polymorphic local population of A. thaliana located in Burgundy 

(Frachon et a. 2017). Thirdly, the genome sequencing of the 145 natural populations used in 

this study revealed that (i) all populations were polymorphic (in agreement with previous 

observations obtained on populations located in other French regions; Le Corre 2005, Brachi et 

al. 2013), and (ii) less than 11% of genomic variation was explained by geographic variation 

(Frachon et al. 2018), as expected from the pattern of isolation by distance observed across the 

species range of A. thaliana (Platt et al. 2010). Taken together, these observations suggest that 
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working at a regional scale would allow to work on contrasted plant assemblages, while limiting 

the effects of confounding by population structure on the power of GEA to identify true 

positives. 

 

The plant neighborhood of A. thaliana is highly diverse and partially related to a 

combination of abiotic factors 

Plant communities associated with the 145 natural populations of A. thaliana were 

characterized during spring 2015 (mid-May to mid-June) corresponding to the period of seed 

production of A. thaliana in south-west of France. Based on morphological characteristics, we 

characterized plant communities by first establishing a herbarium by collecting a representative 

individual of each putative species per population, resulting in 2,233 specimens. Because many 

specimens were sampled at the seedling stage or without the presence of reproductive organs 

commonly used for a morphologically-based taxonomical identification, we adopted a 

metabarcoding approach based on the chloroplast marker matK to determine the identity of the 

species (Supplementary Fig. 1; Barthet and Hilu 2007). A matK sequence was obtained for 

97% of the specimens that were further assigned to one of the 244 plant Operational Taxonomic 

Units (OTUs) identified at a 98% identity cutoff (Datasets 1 and 2, Supplementary Fig. 1). 

In agreement with the deep taxonomic resolution of the marker matK (Barthet and Hilu 2007), 

a large portion of specimens were identified at the species level (84.6%) (Datasets 1 and 2, 

Supplementary Fig. 1). Hereafter, we refer to the plant OTUs as specific plant community 

descriptors. 

Alpha-diversity largely differed among the 145 populations (Supplementary Table 1), 

with species richness ranging from 1 to 28 (mean = 12.1, median=12) and Shannon index 

ranging from 0.32 to 2.42 (mean = 1.40, median=1.35) (Fig. 1B and Supplementary Fig. 2). 

The plant community composition was studied by running a Principal Coordinate Analysis 

(PCoA) on the abundance matrix of the 44 most prevalent plant OTUs (i.e. OTUs present in 

more than 10 populations) (Dataset 3). The first three PCoA axes explained ~34% of the 

variation in plant composition (Supplementary Fig. 3). Plant composition largely differed 

among the 145 populations (Fig. 1C, D, E and F, Supplementary Fig. 3), with up to 75.9% of 

variance explained by the ‘population’ factor (Supplementary Table 1). The first PCoA axis 

(explaining 14.2% of the total variance, Supplementary Fig. 3) was mainly associated with 

annual species occurring in bare tilled, fallow or recently abandoned arable lands (EUNIS 

habitat I1.5, e.g. Bromus hordeaceus, Cerastium glomeratum, Sonchus oleraceus, Veronica 

arvensis) and with perennial species occurring in mesic grasslands (EUNIS habitat E 2, e.g., 
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Crepis biennis, Festuca rubra, Plantago lanceolata) (Dataset 4, Supplementary Fig. 4). The 

second PCoA axis (11.1%, Supplementary Fig. 3) was significantly associated with (i) species 

occurring in the same habitats (I 1.5 e.g. B. hordeaceus, Trifolium campestre, E 2 e.g. Achillea 

millefolium) on the one side of the axis, and (ii) small annual and pioneer species occurring in 

grasslands or arable lands (E2 and I 1.5, e.g. Poa annua, Anagallis arvensis) on the other side 

(Dataset 4, Supplementary Fig. 4). The third PCoA axis (8.6%, Supplementary Fig. 3) was 

significantly associated with mainly short-lived species occurring in bare tilled lands (EUNIS I 

1.51) or fallow un-inundated fields or recently abandoned arable lands with annual weed 

communities (EUNIS I 1.52), but with an opposition considering their soil preferences: mesic 

to nitrophilous species very typical of A. thaliana habitat preferences on the one side of the axis 

(e.g. Valerianella locusta) vs species with a preference for sandy soils on the other side (i.e. F. 

rubra, Arenaria serpillyfolia, Lactuca serriola) (Dataset 4, Supplementary Fig. 4). Hereafter, 

we refer to species richness, Shannon index and the first three PCoA axes as global plant 

community descriptors. 

To estimate the level of dependency of the plant community descriptors towards the 

abiotic environment, we first characterized the 145 natural populations for 6 non-correlated 

climate variables and 11 non-correlated soil variables (Fig. 2, Dataset 5). We then run a sparse 

Partial Least Square Regression (sPLSR) (Lê Cao et al. 2008) on each global descriptor and the 

44 most prevalent plant OTUs (Fig. 2). We found that up to 27% of variance of plant community 

descriptors can be explained by a linear combination of abiotic variables (min = 8.4%, mean = 

19%, median = 19.8%) (Fig. 2). On average, each plant community descriptor was explained 

by a linear combination of 4.5 abiotic variables (min = 1, median = 5, max = 6) (Fig. 2). The 

four abiotic variables that were the most often associated with plant community descriptors (n 

> 20) were mean annual temperature, summer precipitations, autumn precipitations and soil pH 

(Fig. 2). Among these four variables, pH was the one mostly associated with plant community 

descriptors, suggesting that pH is one of the main abiotic variables driving variation in plant 

assemblages associated with A. thaliana in the studied ~31,000 km² spatial scale (Fig. 2).  

 

Identification of adaptive genetic loci associated with plant community descriptors 

 To identify associations between genetic polymorphisms of A. thaliana and plant 

community descriptors, we adopted a GEA approach based on within-population allele 

frequency previously estimated in the 145 A. thaliana populations for 1,519,748 SNPs (i.e. one 

SNP every 78 bp) (Frachon et al. 2018). Variation of plant community descriptors was weakly 
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correlated to genomic variation among the 145 populations (Supplementary Table 2). 

According to a sensitivity analysis testing for the performance of GEA analyses based on these 

populations (Frachon et al. 2018), these weak correlation estimates suggest that a large fraction 

of the SNPs that were the most associated with variation of plant community descriptors 

corresponds to true positives.  

To disentangle GEA signals for a given plant community descriptor from GEA signals 

for abiotic variables associated with this plant community descriptor (Fig. 2), GEA analysis 

was performed on both plant community descriptors and abiotic variables. Our results showed 

that the proportion of shared top SNPs varied among global (alpha-diversity and composition) 

and specific (abundance of the 44 most prevalent plant OTUs) plant community descriptors. 

When considering the 0.1% top SNPs, global descriptors were sharing a high fraction of SNPs 

with abiotic variables (min=6.5%, max=19.5%, mean=14.4%, median=19.5%, Table 1), 

mainly with soil variables (Dataset 6). On the other hand, although a lower fraction of top SNPs 

was shared between specific plant community descriptors and abiotic variables (min=0, 

max=4.5%, mean=0.8%, median=0.6%, Table 1), some of the shared SNPs were amongst the 

most associated with these plant community descriptors (Fig. 3). For example, the abundance 

of Sonchus oleraceus (OTU27, Asteraceae) was associated with soil pH (Fig. 2, Fig. 3A). The 

SNP that was the most associated with the abundance of S. oleraceus was also one of the top 

SNPs associated with pH (Fig. 3B, C). Similarly, the abundance of Papaver rhoeas (OTU114, 

Papaveraceae) was associated with summer precipitations (Fig. 2, Fig. 3D). An association 

peak for the abundance of P. rhoeas located at the beginning of chromosome 2 corresponded 

also to an association peak detected for summer precipitations (Fig. 3E, F).  

In order to establish a genomic map of local adaptation to plant communities, the top 

SNPs shared with abiotic variables were therefore not taken into consideration for the rest of 

the results presented in this study. For species abundance, the genetic architecture was highly 

dependent on the plant OTU identity (Fig. 4 and Dataset 6). For example, an association peak 

was detected at the beginning of chromosome 3 for the abundance of Convolvulus arvensis 

(OTU83, Convolvulaceae), present in 16.5% of the A. thaliana populations, whereas two 

association peaks were detected at the end of chromosomes 3 and 5 for the abundance of Poa 

nemoralis (OTU149, Poaceae), present in 19.3% of the populations. We also observed that the 

genetic architecture largely differed between two species belonging to the same botanical 

family, and at a deeper taxonomy level to the same genus (Dataset 6). For example, an 

association peak was detected at the beginning of chromosome 3 for the abundance of S. 
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oleraceus (OTU27, Asteraceae), present in 34% of the A. thaliana populations, whereas an 

association peak was detected at the beginning of chromosome 1 for the abundance of 

Helminthotheca echioides (OTU16, Astereaceae), present in 12% of the A. thaliana 

populations. Interestingly, we also detected association peaks for α-diversity and composition 

related descriptors, suggesting the presence of generalist QTLs underlying simultaneous 

interactions with several neighboring species (Fig. 4 and Dataset 6). Moreover, when 

considering the 152 top SNPs, less than 21% of the top SNPs associated with a given global 

descriptor were also associated with specific descriptors (min = 12.5% for the third PCoA axis, 

max = 28.3% for the first PCoA axis), suggesting a flexible genetic architecture between 

specific and global descriptors.  

To support that the loci identified by GEA have been shaped by natural selection, we 

performed a genome-wide selection scan by estimating the XtX measure of genetic 

differentiation among the 145 populations. For a given SNP, the XtX measures the variance of 

the standardized population allele frequencies, which result from a rescaling based on the 

covariance matrix of population allele frequencies. This step allows correcting for the genome-

wide effects of confounding demographic evolutionary forces (Gautier 2015). The 0.1% upper 

tail of the spatial differentiation distribution displayed a significant enrichment (up to 10.05) 

for SNPs associated with almost two-thirds of the plant community descriptors, including 

species richness, Shannon index, the first and third PCoA axes and the abundance of 23 OTUs 

belonging to 11 botanical families (Table 1). Interestingly, similar enrichment values were 

observed with or without considering the top SNPs shared between plant community descriptors 

and abiotic variables (Table 1). Altogether, these signatures of selection across the genome 

support our GEA results suggesting that A. thaliana is locally adapted to its associated plant 

communities. 

 

Identity of candidate genes underlying local adaptation to plant communities 

To identify candidate genes associated with plant community descriptors, we adopted 

three non-exclusive approaches. Firstly, we focused on genes associated with more than three 

plant community descriptors, resulting in a final list of 30 candidate genes (Datasets 7 and 8). 

Secondly, we examined which biological processes (BPs) were overrepresented among the 152 

SNPs the most associated with plant community descriptors. We found a significant enrichment 

in BPs (up to 81.1 fold for the BP ‘Wnt signaling pathway’) for the third PCoA axis and the 

abundance of 17 plant OTUs (Supplementary Table 3), leading to the identification of 73 
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unique candidate genes across 29 BPs (Dataset 9). Thirdly, we examined which functional 

classes (FCs) were overrepresented among the genes identified by the two previous approaches. 

Using the MapMan classification (Provart & Zhu 2003), we identified three significantly over-

represented FCs, i.e. hormone metabolism (P = 0.00004), cell (P = 0.00075) and signaling (P 

= 0.00198). By combining the results of the three approaches, we found that several candidate 

genes were involved in responses to shade (Dataset 8 and 9), either through signaling pathways 

of light perception such as (i) TUBULIN BETA-1 CHAIN (TUB1) (Leu et al. 1995), and (ii) 

CASEIN KINASE I-LIKE 3 (CK1.3) and CASEIN KINASE I-LIKE 4 (CK1.4) (Tan et al. 2013), 

or through hormone signaling pathways including (i) auxin with the auxin-responsive genes 

SMALL AUXIN UPREGULATED67 (SAUR67) and SAUR68 (Roig-Villanova et al. 2007; 

Swain et al. 2017), (ii) ethylene with XAP5 CIRCADIAN TIMEKEEPER (XCT) involved in 

blue light-dependent ethylene responses (Ellison et al. 2011), and (iii) brassinosteroid with the 

bHLH transcription factor HOMOLOG OF BEE2 INTERACTING WITH IBH 1 (HBI1) (Fan et 

al. 2014). Another major category of candidate genes was related to plant immunity (Datasets 

8 and 9). In particular, we identified key components of the pathogen-associated molecular 

patterns PAMP-triggered immunity (PTI) pathway including (i) several receptor-like kinases 

(RLKs) such as FLAGELLIN-SENSING 2 (FLS2) (Gόmez-Gόmez & Boller 2000), BRI1-

ASSOCIATED RECEPTOR KINASE (BAK1) (Li et al. 2002), BAK1-INTERACTING 

RECEPTOR-LIKE KINASE 1 (BIR1) (Gao et al. 2009) and POLLEN-SPECIFIC RECEPTOR-

LIKE KINASE 5 (PRK5) (Wrzaczek et al. 2015),  (ii) two WRKY transcriptions factors, namely 

WRKY8 (Chen et al. 2010) and WRKY48 (Xing et al. 2008), and (iii) the heterotrimeric G-

protein beta subunit AGB1 (Lorek et al. 2013) and the calmodulin-domain protein kinase CKP5 

(Dubiella et al. 2013). Finally, other candidate genes were related to root development such as 

the bHLH transcription factor LRL1 and the arabinogalactan protein AGP14, which are both 

involved in root hair development (Xu et al. 2005; Lin et al. 2011).  
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Discussion 

The identification of the genetic basis underlying adaptation to current environmental 

conditions is essential to estimate the potential of wild plant and crop species to persist in 

presence of novel and fluctuating environmental conditions. In the context of climate change, 

most GEA analyses have focused on the identification of adaptive genetic loci associated with 

climate variation (Bay et al. 2017), which has certainly been facilitated by public databases 

availability of climate estimates. However, the adaptive potential response of a plant species to 

global changes is not only dependent on the direct interaction between the plant species and its 

abiotic environment, but also on the interactions between the plant species and its biotic partners 

(Roux and Bergelson 2016). In this study, we therefore aimed at identifying adaptive genetic 

loci associated with plant community descriptors in 145 natural A. thaliana populations. We 

found that A. thaliana can inhabit diverse and contrasted plant assemblages in south-west of 

France. This observation is in line with previous studies reporting (i) the potential interactions 

of A. thaliana with a large number of plant species in natural communities in other French 

geographical regions (Brachi et al. 2013), and (ii) the extensive genetic diversity of A. thaliana 

for the response to interspecific competition observed in common garden experiments (Baron 

et al. 2015; Bartelheimer et al. 2015; Frachon et al. 2017). 

 

Importance of controlling for abiotic factors 

In the light of the impact of habitat type on plant community assemblages (Trivellone 

et al. 2017), controlling for abiotic factors appears indispensable for establishing a genomic 

map of local adaptation to natural plant communities. Indeed, by characterizing the 145 A. 

thaliana populations for a set of 17 biologically meaningful climate and soil variables, we found 

that a non-negligible fraction (~19-20%) of variation in plant community descriptors was 

explained by a combination of climatic and soil factors. In particular, in agreement with 

previous studies (Dubuis et al. 2013; Gould et al. 1999; Kelly and Goulden 2008), we identified 

temperature, precipitations and soil pH as the main drivers of diversity and composition of plant 

communities inhabited by A. thaliana. In accordance, as illustrated for S. oleraceus and P. 

rhoeas, GEA results showed that soil pH and summer precipitations were sharing some of the 

top SNPs with plant species abundance.  
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Altogether, the non-negligible portion of SNPs shared among plant community 

descriptors and abiotic variables highlights the importance of disentangling GEA signals for 

biotic adaptation from GEA signals for abiotic adaptation. However, we need to stress out that 

the abiotic environment cannot be reduced to the only factors described in this study and that 

co-association with other abiotic variables might be also considered as an indirect effect of the 

genetic basis identified in this study. While characterizing the whole abiotic environment is a 

lofty challenge, we advocate that GEA studies performed on biotic interactions need to control 

for as many abiotic variables as possible. In a complementary way, GWA studies based on the 

growth of hundreds of whole-genome sequenced accessions within natural plant assemblages 

transplanted in a common garden, might be a powerful approach to help understanding and 

validating whether genetic loci associated with either specific plant species neighbors or 

community diversity/composition are not indirectly linked to the associated abiotic 

environment. A deeply characterization of the in situ abiotic environment in conjunction with 

a validation of the associated candidate genes by adopting a controlled common garden 

approach should be advocated for future studies aiming at characterizing the adaptive genetics 

of plant-plant interactions.  

 

The genomic architecture of adaptation to plant communities 

In agreement with a GWAS performed in field conditions with A. thaliana (Baron et al. 

2015), we found that genomic regions associated with species abundances largely differed 

among species belonging to different botanical families. We further found that the genetic 

architecture of A. thaliana related to species abundances largely differed among species 

belonging to the same botanical family, suggesting a high degree of biotic specialization at a 

regional scale. In addition, we finely mapped adaptive QTLs associated with α-diversity and 

composition of plant communities, which is in line with the fine mapping of genomic regions 

in A. thaliana associated with α-diversity and composition of leaf microbial communities in a 

GWAS performed in field conditions (Horton et al. 2014). Interestingly, the QTLs identified 

for these global descriptors largely differed from the QTLs identified for species abundance. 

Such a flexible genetic architecture between monospecific and plurispecific interactions has 

been also recently observed in a GWAS performed in greenhouse conditions on a set of 91 local 

whole-genome sequenced accessions of A. thaliana (Libourel et al. 2019). Those accessions 

were subjected to monospecific and plurispecific competition treatments based on all one-way, 
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two-way and three-way combinations of three species frequently associated with A. thaliana in 

natural plant communities in France, i.e. Poa annua, Stellaria media and Veronica arvensis 

(Baron et al. 2015). The authors found that almost 80% of top SNPs associated with the 

response of A. thaliana to the simultaneous presence of P. annua, S. media and V. arvensis were 

not detected in the three monospecific interaction treatments. The identification of QTLs that 

are specific to descriptors of plant assemblages highlights the ability of A. thaliana to interact 

simultaneously with multiple plant neighbors, which in turn can help to understand the role of 

community-wide selection.  

 

Candidate genes underlying plant-plant interactions at a regional scale 

The identity of the candidate genes identified in this study is in line with known 

molecular mechanisms of plant-plant interactions (Pierik et al. 2013; Subrahmaniam et al. 

2018). For example, as sessile organisms, plants compete for both above- and below-ground 

resources and have several detection mechanisms to identify the presence of neighboring plants. 

Accordingly, we identified several candidate genes (i) involved in response to altered light 

environment, generally referred to the shade avoidance syndrome (SAS) or (ii) related to 

nutrient foraging, thereby linked to below-ground competitive ability. Interestingly, we also 

identified biological processes associated with plant immunity (Datasets 9), which is in line 

with several transcriptomic studies reporting expression changes of numerous genes associated 

with defense pathways against microbial pathogens and insects in different types of plant-plant 

interactions (Subrahmaniam et al. 2018). In addition, the identification of several RLKs 

involved in PTI is also in agreement with a GWAS on competitive response of A. thaliana 

grown in monospecific and plurispecific neighborhoods, in which 12 out of the 18 candidate 

genes supporting a significant enrichment for the functional class ‘signaling’ encode RLKs 

(Libourel et al. 2019). This enrichment in immunity-related molecular mechanisms may be 

explained by three non-exclusive hypotheses. Firstly, the growth-defense theory predicts that 

light perception by photoreceptors actives SAS and reduces defenses against bio-aggressors 

(Ballaré and Pierik 2017). However, this theory has been recently challenged by several studies 

reporting an independent regulation of the SAS-related pathways and defense pathways 

(Subrahmaniam et al. 2018). Secondly, the presence of neighboring species modifies the 

rhizosphere microbiota surrounding a focal plant (Sanon et al. 2009; Hawkins & Crawford 

2018), which may in turn trigger pathways involved in perception of microbes. Thirdly, RLKs 
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may directly perceive damage-associated molecular patterns (DAMPs) that potentially result 

from cell wall modification and degradation in A. thaliana in presence of neighboring species 

(Subrahmaniam et al. 2018). For example, a 20-aa fragment of the extracellular Arabidopsis 

protein GRIM REAPER (GRI) is known to directly interact with PRK5 (Wrzaczek et al. 2015), 

an atypical RLK associated with species richness and composition of plant communities in our 

study (Dataset 8).  

 

 

Conclusion 

While GEA analysis has been proved to be highly powerful for identifying genetic basis 

associated with climate adaptation in A. thaliana (Hancock et al. 2011, Lasky et al. 2012, 

Frachon et al. 2018, Ferrero-Serrano & Assmann 2019), our study reveals the potential of GEA 

analysis to unravel the adaptive genetics underlying plant-plant interactions in the context of 

realistic community complexity. However, we have to stress out that the main conclusions 

drawn from our study might be specific to the geographical region studied. Whether similar 

conclusions patterns are observed either in other geographical regions of similar size or at a 

larger geographical scale remains an open question and will deserve a careful characterization 

of a new set of hundreds of populations both at the genomic level and for plant community 

descriptors.  

Because no study reported the cloning of a gene involved in response to interspecific 

competition in plants so far (to our knowledge), the candidate genes identified in this study 

undoubtedly represent key candidate genes for functional analysis, which in turn can help to 

dissect the genetic and molecular mechanisms underlying co-evolutionary processes between 

A. thaliana and its plant interacting network. 
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Materials and Methods 

Characterization of plant communities 

We focused on 168 natural populations of A. thaliana located in the Midi-Pyrénées 

region (Bartoli et al. 2018, Frachon et al. 2018). Plant communities associated with A. thaliana 

were characterized during spring 2015 (mid-May to mid-June), that is the period of seed 

production of A. thaliana in south-west of France. Due to anthropogenic perturbations such as 

herbicide spraying and mowing, we were not able to characterize plant communities associated 

with 23 A. thaliana natural populations.  

To characterize plant communities, two 50 x 50 cm quadrats divided into 25 smaller 

squares (10 cm x 10 cm) were established in two representative areas of each A. thaliana 

population, with the exception of (i) the large population CLAR-A in which three quadrats were 

established and (ii) three very small populations (BAGNB-B, DAMI-A and MERV-B) in which 

only a single quadrat was established. Based on morphological aspects, we first determined the 

number of putative plant species present in each quadrat. We then estimated the abundance of 

each putative plant species per quadrat by summing the number of individuals (N) estimated in 

each of the 25 squares according to the following scale: “1”. real count if N ≤ 5, “2”. N = 10 if 

5 < N ≤ 10, “3”. N = 20 if 10 < N ≤ 20, “4”. N = 50 if 20 < N ≤ 50 and “5”. N = 70 if N > 50. 

It should be noted that A. thaliana was not present in seven populations at the time of plant 

community characterization, despite its presence in early-spring 2015 (Bartoli et al. 2018). A 

herbarium was established by collecting a representative individual of each putative plant 

species per population, resulting in 2,233 specimens. 

Many specimens were sampled at the seedling stage or without the presence of flowers 

or fruits (i.e. reproductive organs commonly used for a morphological-based identification of 

plant species). We therefore adopted a metabarcoding approach based on the chloroplast marker 

matK to determine the identity of the specimens at the species (even sub-species) level. A 

detailed procedure of the metabarcoding approach is given in Supplementary Information 

(Supplementary Fig. 1). We obtained a matK sequence (> 500bp) for 97% of the specimens 

(n = 2,166). The matK sequences were clustered into OTUs using the software USEARCH with 

a 98% identity cutoff (i.e. 98% similarity between two OTUs) (Edgar 2010; Edgar 2013), 

resulting in a total of 244 plant OTUs. To identify the species name of OTUs, a reference 

sequence was retrieved for each plant OTU with the command –uparse of the software 

USEARCH and blasted on NCBI against Nucleotide Collection (nr/nt) database (percentage of 

identity: mean = 99.1, median = 99.7; alignment length in bp: mean = 739, median = 771; 
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alignment length in percent: mean = 99.4, median = 100) (Datasets 1 and 2). In addition, the 

presence of the plant species in the Midi-Pyrénées region was checked by using the databases 

of The French Botany Network (www.tela-botanica.org) and The Global Biodiversity 

Information Service (www.gbif.org).  

We established an abundance matrix of the 244 plant OTUs across the 145 populations 

(Dataset 3). For each quadrat, we estimated the species richness and Shannon index by using 

the functions ‘specnumber’ and ‘diversity’ in the package ‘vegan’ (Oksanen et al. 2016) in the 

R environment (Version 1.0.136 – © 2009-2016 Rstudio, Inc.). To estimate plant community 

composition in each quadrat, we performed a Principal Coordinate Analysis (PCoA) (function 

‘pcoa’ in the R package ‘ape’) (Paradis et al. 2004) on a Bray-Curtis dissimilarity matrix 

(function ‘vegdist’ in the R package ‘vegan’) based on the abundance matrix of the 44 most 

prevalent OTUs (i.e. presence in more than 10 populations). 

 

Characterization of the climate and soil variables 

 To control for the putative relationships between plant communities and abiotic factors, 

our initial set of 168 A. thaliana populations were characterized for both climate and soil 

variables. Climatic characterization was previously performed in Frachon et al. (2018). Briefly, 

an average value across the 2003-2013 annual data of 21 climatic variables was obtained from 

the ClimateEU databases (hhtp://tinyurl,com/ClimateEU). As described in Frachon et al. 

(2018), only six climate variables (mean annual temperature, mean coldest month temperature 

and precipitations in winter, spring, summer, and autumn) were considered here because (i) 

they did not display inter-correlation (i.e. Spearman’s rho lower than 0.8) and (ii) they presented 

the most obvious link to the ecology of A. thaliana. For the characterization of soil properties, 

we followed the procedure described in Brachi et al. (2013) by characterizing for each 

population two samples of the upper soil layer for 13 chemical properties (content of total N 

and organic C, C/N ratio, content of organic matter, concentrations of P2O5, K, Ca, Mg, Mn, 

Al, Na and Fe) and one physical property (maximal water holding capacity, WHC) (Dataset 

5). The two soil samples were collected in autumn 2014 and winter 2015 and were dried in a 

laboratory dry oven at 50°C for 10 hours and 90% of ventilation.  As for climate data, inter-

correlation between two soil variables was avoided by considering only variables that did not 

display a Spearman’s rho greater than 0.8 (Dataset 10), thereby leading to the removal of 

content of organic C, content of organic matter and concentration of Mn. The characterization 

http://www.tela-botanica.org/
http://www.gbif.org/
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of some of the 11 remaining soil variables failed for seven A. thaliana populations, due to the 

low quantity of soil available in their native habitats (i.e. stone wall, parking lot….). For these 

populations, we assigned the mean value of each soil variable obtained from the other 

populations (Dataset 5).  

 

Statistical analyses 

To test whether the five plant community descriptors (species richness, Shannon 

diversity and the first three PCoA components) differed among the 145 populations, we ran the 

following mixed model under the SAS environment with inference performed using ReML 

estimation (PROC MIXED procedure in SAS9.3, SAS Institute Inc., Cary, North Carolina, 

USA):  

Yi = µtrait + populationi + εi      (1) 

where ‘Y’ is one of the five descriptors of plant communities, ‘µ’ is the overall mean; 

‘population’ accounts for differences among populations; ‘ε’ is the residual term. A Wald test 

was used to estimate the random effect ‘population’. For each plant community descriptor, Best 

Linear Unbiased Predictions (BLUPs) were obtained for each population.  

 

To test whether the five plant community descriptors displayed a geographic pattern, we 

ran the following model (PROC GLM procedure in SAS9.3, SAS Institute Inc., Cary, North 

Carolina, USA): 

Yijk = latitudei + longitudej + altitudek + latitudei*longitudej + latitudei*altitudek+ 

longitudej*altitudek + latitudei*longitudej*altitudek + εijk      (2) 

where ‘Y’ is one of the five plant community descriptors; ‘longitude’, latitude’ and ‘altitude’ 

have been retrieved from the GPS coordinates of the 145 populations (Dataset 3; Frachon et al. 

2018); ‘ε’ is the residual term.  

 

 In order to investigate the relationships between plant communities and abiotic factors, 

a sparse Partial Least Square Regression (sPLSR) (Lê Cao et al. 2008; Carrascal et al. 2009) 

was adopted to maximize the covariance between each of the 49 following plant community 

descriptors (species richness, Shannon index, coordinates on three first PCoA axes and 

abundance of the 44 most prevalent OTUs) and linear combinations of the six climate factors 



 

18 
 

and 11 soil factors. sPLSR was run using the mixOmics package implemented in the R 

environment (Lê Cao et al. 2008; Lê Cao et al. 2010). sPLSR results were validated by plotting 

the Root Mean Square Error of Prediction (Maestre 2004; Lê Cao et al. 2008). For the abiotic 

environment, we calculated the final loadings for the ten abiotic variables with the highest initial 

loadings on the first component. Following the procedure described in Bartoli et al. (2018), we 

tested the significance of the abiotic variables included in the linear combinations by adopting 

a Jackknife resampling approach by leaving out 10% of the samples 1,000 times. We only 

considered as significant abiotic variables with a loading value above 0.2 in more than 75% of 

the resampled matrices. 

 

Genomic characterization and data filtering 

Based on a Pool-Seq approach, a representative picture of within-population genetic 

variation across the genome was previously obtained for the 145 populations (Frachon et al. 

2018). Briefly, to perform A. thaliana DNA extraction, a portion of a rosette leaf was sampled 

from 2,574 plants collected in late February – early March 2015 (approximately 16 plants per 

populations, min = 5 plants, max = 16 plants, mean = 15.32 plants, median = 16 plants). 

Individual samples were placed in 96-well S-block plates containing beads, immersed in liquid 

nitrogen and crushed under cold conditions by using Mixer Mill MM 300 Retsch®. DNA was 

extracted on each individual by following the protocol described in Brachi et al. (2013) and 

further quantified with Quant-iTTM PicoGreen® dsDNA Assay Kit with a qPCR ABI7900 

machine. DNA quantification values were used to establish 145 equimolar pools of the 

individuals of each population, which were then used to build Illumina libraries as described in 

Frachon et al. (2018). Libraries were sequenced by using Illumina HiSeq 3000 sequencer with 

a paired-end read length of 2 ×150 bp at the Get-PlaGe core facility (INRA, Toulouse, France). 

Raw genomic data for each A. thaliana population are available at the NCBI Sequence Read 

Archive (SRA) under the study accession number SRP103198. Raw reads were mapped against 

the reference genome Col-0 with glint tool (version 1.0.rc8.779) and mapped reads further 

filtered with SAMtool (Li et al. 2009). SNPCalling was performed with SAMtool and VarScan 

mpileup2snp (Koboldt et al. 2012) as described in Frachon et al. (2018).  

Following Frachon et al. (2018), the matrix of population allele frequencies was trimmed 

according to five successive criteria, resulting in a final number of 1,519,748 SNPs: (i) 

removing SNPs with missing values in more than seven populations, (ii) after calculating for 

each population the relative coverage of each SNP as the ratio of its coverage to the median 

coverage (computed over all the SNPs), removing SNPs with a mean relative coverage depth 
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across the 145 populations above 1.5 to take into account multiple gene copies in the 145 

populations that map to a unique gene copy in the reference genome Col-0, (iii) removing SNPs 

with a standard deviation of allele frequency across the populations below 0.004, (iv) removing 

SNPs with a mean relative coverage depth across the 145 populations below 0.5 to take into 

account indels that correspond either genomic regions present in Col-0 but absent in the 145 

populations or genomic regions present in the 145 populations but absent in Col-0, and (v) 

removing SNPs with the alternative allele present in less than 11 populations to take into 

account bias in GWA/GEA analysis due to rare alleles (Bergelson & Roux 2010). 

 

Genome-Environment Association analysis on plant community descriptors  

We performed a GEA analysis between the set of 1,519,748 SNPs and 49 plant 

community descriptors (species richness, Shannon index, coordinates on three first PCoA axes 

and abundance of the 44 most prevalent OTUs) based on a Bayesian hierarchical model, which 

deals with Pool-Seq data and is implemented in the program BayPass (Gautier 2015). This 

model explicitly accounts for the scaled covariance matrix of population allele frequencies (Ω), 

which makes the analyses robust to complex demographic histories, thereby allowing 

decreasing drastically the rate of false positives (Gautier 2015). In this study, we run the core 

model to evaluate the association between allele frequencies along the genome and the 49 plant 

community descriptors. For each SNP, we estimated a Bayesian Factor (BFis measured in 

deciban units) and the associated regression coefficient (Beta_is, βi) using an Importance 

Sampling algorithm (Gautier 2005). The full posterior distribution of the parameters was 

obtained based on a Metropolis–Hastings within Gibbs Markov chain Monte Carlo (MCMC) 

algorithm. A MCMC chain consisted of 15 pilot runs of 500 iterations each. Then, MCMC 

chains were run for 25,000 iterations after a 2500-iterations burn-in period. The 49 plant 

community descriptors were scaled (scalecov option) so that μ = 0 and 𝜎2 = 1. Because of the 

use of an Importance Sampling algorithm, we repeated the analyses three times for each plant 

community descriptor. The results presented in this study correspond to the average BFis and βi 

values across these three repeats.  

 As previously performed in Frachon et al. (2018), we parallelized the genome-

environment analysis by dividing the full data set into 32 sub-data sets, each containing 3.125% 

of the 1,519,748 SNPs (ca, 51,000 SNPs taken every 32 SNPS along the genome). Pairwise 

comparisons of the 32 resulting covariance matrices confirmed that all estimates were 

consistent with highly correlated elements. In agreement, the pairwise FMD distances among 

the 32 covariance matrices (Förstner and Moonen 2003) had a narrow range of variation (from 
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2.02 to 2.27). BFis and the associated regression coefficients 𝛽𝑖̂  between SNP allele frequencies 

and variation of plant community descriptors were therefore estimated for each SNP by 

analyzing in parallel the 32 sub-data sets described above, but with the same matrix 𝛺1̂ 

(obtained on the first sub-data set) as an estimate of the scaled covariance matrix of population 

allele frequencies. 

To identify plant community descriptors for which the core model poorly converged, 

we calculated for each plant community descriptor a non-parametric correlation coefficient 

(Spearman’s rho) between the Bayes Factor (BFis) and the posterior mean of the absolute 

regression coefficient βi (Beta_is). We discarded four plant community descriptors (OTU4, 

OTU7, OTU67 and OTU203) with a correlation coefficient below 0.75. 

 

Comparing abiotic and biotic GEA signals 

To evaluate the putative cross-effect of the abiotic environment on the genetic basis 

associated with plant descriptors, we run the core model to evaluate the association between 

allele frequencies of the 1,519,748 SNPs and the 6 climate and 11 soil variables. A GEA 

analysis for the 6 climatic variables was previously performed in Frachon et al. (2018) but was 

based on the whole set of 168 natural populations of A. thaliana located in the Midi-Pyrénées 

region. To be consistent with the GEA analysis performed on the plant community descriptors, 

we decided to rerun a climate related GEA analysis based on the subset of 145 natural 

populations used in this study. The core model poorly converged for the concentration in 

aluminum and water holding capacity (i.e. Spearman correlation’s rho between BFis and βi value 

< 0.75), that were therefore removed from further analyses based on GEA results. 

To compare abiotic and biotic GEA signals, we estimated for each plant community 

descriptor the proportion of top SNPs (i.e.  0.1% of the SNPs with the highest BFis, n = 1,520) 

that were common to the 0.1% top SNPs identified by GEA analysis performed on climate and 

soil variables.  

 

Enrichment analyses and identification of candidate genes associated with plant 

community descriptors 

For supporting local adaptation signals identified by GEA analyses and identifying 

candidate genes associated with plant community descriptors, we only considered top SNPs 

that were detected for plant community descriptors but not for abiotic variables (i.e. SNPs that 

were specific to plant community descriptors).  
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For supporting local adaptation signals identified by GEA analyses, we first performed 

a genome-wide selection scan by estimating the XtX measure of spatial genetic differentiation 

among the 145 populations. For a given SNP, the XtX measures the variance of the standardized 

population allele frequencies, that is, rescaled using Ω and across population allele frequencies 

(Günther & Coop 2013, Gautier 2015). Correcting for the genome-wide effects of confounding 

demographic evolutionary forces such as genetic drift and gene flow, therefore allows for a 

robust identification of SNPs that are highly differentiated among populations (Gautier 2015). 

Following the methodology described in Brachi et al. (2015), we then tested for each plant 

community descriptor whether the top SNPs (0.1% upper tail of the BFis distribution trimmed 

for SNPs associated with abiotic variables) were significantly enriched in the 0.1% upper tail 

of the XtX distribution. Based on Hancock et al. (2011), statistical significance of enrichment 

was assessed by running 10,000 null circular permutations of the top plant community related 

SNPs along the genome.  

To identify the candidate genes associated with variation in plant community 

descriptors, we adopted three non-exclusive approaches. Firstly, using the TAIR 10 database 

(https://www.arabidopsis.org/), we retrieved for each plant community descriptor all the 

annotated genes located within a 2kb region around each of the 152 top SNPs. Secondly, we 

tested for each plant community descriptor whether the152 top SNPs were over-represented in 

each of the 736 Gene Ontology Biological Processes from the GOslim set (Consortium 2008), 

using a window size of 5kb on each side of each top SNP. Following Hancock et al. (2011) and 

Wang et al. (2018), statistical significance of the enrichment was assessed by running 10,000 

null circular permutations of the 152 top SNPs along the genome. For each plant community 

descriptor, we only considered BPs that had at least 5 hits. For each significantly enriched BP 

at a P < 0.001, we retrieved the identity of all the genes containing top SNPs. Thirdly, a gene 

list combining the genes underlying significantly enriched biological processes and genes 

associated with more than three plant community descriptors was used after removal of 

duplicates, to identify significantly over-represented functional classes (P < 0.05 after 

Bonferroni correction) with the classification superviewer tool on the university of Toronto 

website (http://bar.utoronto.ca/ntools/cgibin/ntools_classification_superviewer.cgi) using the 

MAPMAN classification (Provart & Zhu, 2003). 

 

 

 

http://bar.utoronto.ca/ntools/cgibin/
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Figure legends. 

Figure 1. Species richness and composition of plant communities associated with A. 

thaliana. (A) The Midi-Pyrénées region (south-west of France) is represented in red on a 

European map.  (B) Geographic variation of species richness. (C) Geographic variation of plant 

community composition represented by the first PCoA axis. (D), (E) and (F) Photographs 

illustrating the degree of differentiation in plant community assemblages among the 145 natural 

populations of A. thaliana. Images in panels (D), (E) and (F): courtesy of L. Frachon. 

 

Figure 2. Relationships between plant community descriptors and climate and soil factors 

based on a sparse partial lest-square regression (sPLSR). PVE (%): percentage of variance 

in plant community descriptors explained by abiotic factors. Only abiotic variables with a 

loading value above 0.2 in more than 75% of the 1000 Jackknife resampled matrices were 

considered as significant. The color gradient indicates the strength of the loading values of the 

abiotic variables (yellow: 0.20 < loadings < 0.50, orange: 0.50 < loadings < 0.65, red: 0.65 < 

loadings <1). MAT = mean annual temperature (C°), MCMT = mean coldest month temperature 

(C°), PPT_wt = winter precipitations (mm), PPT_sp = spring precipitations (mm), PPT_sm = 

summer precipitations (mm), PPT_at = autumn precipitations (mm), N = nitrogen, ratio_CN = 

carbon-nitrogen ratio, WHC = water holding capacity.  

 

Figure 3. Illustration of GEA signals shared between plant community descriptors and 

abiotic factors. The upper and lower panels illustrate GEA signals obtained from the 

abundance of Sonchus oleraceaus (OTU 27) and Papaver rhoeas (OTU149), respectively. (A) 

and (D) Relationships between the abundance of S. oleracus and soil pH (A) and between the 

abundance of Papaver rhoeas and summer precipitations (D). Manhattan plots of the GEA 

results for the abundance of S. oleraceus (B) and P. rhoeas (E). The x-axis indicates the position 

of the 1,519,748 SNPs along the five chromosomes, represented by different shades of blue. 

The y-axis indicates the Bayes factor (BFis expressed in deciban units) estimated by the core 

model implemented in the program BayPass. Red dots indicate top SNPs shared between OTU 

abundance and climate variables, whereas green dots indicate top SNPs shared between OTU 

abundance and soil variables. Arrows indicate two association peaks for which a close-up was 

performed in (C) and (F). (C) and (F) Zoom spanning association peaks containing top SNPs 

shared between OTU abundance and abiotic factors. In (C), the green point is associated with 
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both the abundance of S. oleraceus and pH, whereas in (F) all red points are associated with 

both the abundance of P. rhoeas and summer precipitations. 

 

Figure 4. Manhattan plots of the genome-environment association results for the 

abundance of four plant OTUs and plant composition (third PCoA axis) after removing 

top SNPs shared with abiotic variables. The x-axis indicates the SNP position along the five 

chromosomes, represented by different shades of blue. The y-axis indicates the Bayes factor 

(BFis expressed in deciban units) estimated by the core model implemented in the program 

BayPass. Images of Sonchus oleraceus, Convolvulus arvensis and Poa nemoralis: courtesy of 

F. Roux. Images of Helminthotheca echioides and for PCoA3: courtesy of L. Frachon. 
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Table 1. Enrichment of each plant community descriptor related top SNPs (0.1% upper 

tail of the BFis distribution) in the 0.1% tail of the genome-wide spatial differentiation 

(XtX) distribution. (A) Number of top SNPs (out of 1,520) shared between plant community 

descriptors and abiotic factors. (B) Enrichment when considering all the 0.1% top SNPs (n = 

1,520). (C) Enrichment when considering the 0.1% top SNPs trimmed for the top SNPs shared 

with abiotic variables. ‘Fe’ stands for fold value of enrichment. Bold values indicate significant 

enrichment after a false discovery rate (FDR) correction at the nominal level of 5%. P: ns non-

significant, * 0.05 > P > 0.01, ** 0.01 > P > 0.001, *** P < 0.001 

 

Species Family A. Number of top 

SNPs shared with 

abiotic factors

Fe P Fe P

OTU1 Conyza canadensis Asteraceae 3 1.32 ns 1.32 ns

OTU3 Crepis biennis Asteraceae 14 1.97 ns 2.01 ns

OTU8 Lactuca serriola Asteraceae 1 3.29 ** 3.29 **

OTU10 Achillea millefolium Asteraceae 3 3.95 ** 3.96 **

OTU15 Hypochaeris radicata Asteraceae 26 5.26 *** 4.77 ***

OTU16 Helminthotheca echioidesAsteraceae 4 4.60 *** 4.63 ***

OTU18 Lapsana communis Asteraceae 8 2.63 * 2.66 *

OTU20 Senecio vulgaris Asteraceae 12 1.97  ns 1.34 ns

OTU27 Sonchus oleraceus Asteraceae 9 1.32 ns 1.33 ns

OTU46 Valerianella locusta Caprifoliaceae 5 4.60 *** 4.63 ***

OTU49 Fraxinus excelsior Oleaceae 31 0.00 ns 0.00 ns

OTU65 Plantago lanceolata Plantaginaceae 4 3.29 ** 3.30 **

OTU71 Veronica arvensis Plantaginaceae 13 5.26 *** 5.35 ***

OTU72 Galium mollugo Rubiaceae 13 0.66 ns 0.67 ns

OTU78 Myosotis arvensis Boraginaceae 14 1.97 ns 2.01 ns

OTU83 Convolvulus arvensis Convolvulaceae 14 9.87 *** 10.05 ***

OTU87 Anagallis arvensis Primulaceae 2 3.29 ** 3.30 **

OTU88 Polygonum aviculare Polygonaceae 11 0.66 ns 0.67 ns

OTU100 Sagina apetala Caryophyllaceae 1 3.29 ** 3.29 **

OTU109 Arenaria serpyllifolia Caryophyllaceae 5 0.00 ns 0.00 ns

OTU113 Cerastium glomeratum Caryophyllaceae 67 5.26 *** 5.04 ***

OTU114 Papaver rhoeas Papaveraceae 28 1.97 ns 1.36 ns

OTU132 Bromus hordeaceus Poaceae 8 5.26 *** 5.31 ***

OTU136 Avena sp. Poaceae 2 7.89 *** 7.91 ***

OTU143 Festuca rubra Poaceae 10 6.58 *** 6.66 ***

OTU145 Holcus lanatus Poaceae 22 1.97 ns 2.03 ns

OTU146 Dactylis glomerata Poaceae 9 2.63 * 2.00 ns

OTU147 Catapodium rigidum Poaceae 9 1.97 ns 2.00 ns

OTU149 Poa nemoralis Poaceae 4 3.95 ** 3.97 **

OTU154 Poa annua Poaceae 14 5.92 *** 6.03 ***

OTU159 Aphanes arvensis Rosaceae 1 0.00 ns 0.00 ns

OTU179 Epilobium sp. Onagraceae 16 6.58 *** 6.72 ***

OTU192 Erophila verna Brassicaceae 0 3.29 ** 3.29 **

OTU196 Capsella bursa-pastoris Brassicaceae 69 1.32 ns 1.44 ns

OTU198 Arabidopsis thaliana Brassicaceae 2 9.87 *** 9.89 ***

OTU202 Cardamine hirsuta Brassicaceae 0 2.63 * 2.63 *

OTU204 Geranium sp. Geraniaceae 4 2.63 * 2.65 *

OTU216 Medicago lupulina Fabaceae 47 1.32 ns 1.40 ns

OTU223 Vicia sativa Fabaceae 1 1.32 ns 1.32 ns

OTU234 Trifolium campestre Fabaceae 7 2.63 * 2.66 *

Species richness - - 242 3.95 ** 3.72 **

Shannon diversity - - 286 4.60 *** 4.99 ***

PCoA 1 - - 167 5.26 *** 4.98 ***

PCoA 2 - - 297 1.32 ns 1.02 ns

PCOA 3 - - 99 7.89 ** 7.53 ***
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Figure 2. 
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OTU1 Conyza canadensis Asteraceae 26.3 0.46 0.42 0.43 0.35 0.32 0.27

OTU3 Crepis biennis Asteraceae 11.8 0.38 0.49 0.60 0.34

OTU4 Crepis capillaris Asteraceae 14.6 0.32 0.79 0.25 0.23

OTU7 Taraxacum officinale Asteraceae 20.5 0.76 0.38 8

OTU8 Lactuca serriola Asteraceae 17.0 0.30 0.50 0.37 1

OTU10 Achillea millefolium Asteraceae 16.3 0.50 0.30 0.58 0.40 7

OTU15 Hypochaeris radicata Asteraceae 17.6 0.45 0.34 0.57 0.45

OTU16 Helminthotheca echioides Asteraceae 26.5 0.44 0.25 0.51 0.34 0.46

OTU18 Lapsana communis Asteraceae 16.5 0.36 0.57 0.54

OTU20 Senecio vulgaris Asteraceae 11.0 0.34 0.44 0.33 0.26 0.64

OTU27 Sonchus oleraceus Asteraceae 25.7 0.49 0.29 0.29 0.41 0.57

OTU46 Valerianella locusta Caprifoliaceae 11.7 0.29 0.33 0.71 0.31

OTU49 Fraxinus excelsior Oleaceae 25.3 0.56 0.30 0.50 0.51 0.23

OTU65 Plantago lanceolata Plantaginaceae 21.0 0.27 0.27 0.34 0.26 0.44 0.65

OTU67 Veronica persica Plantaginaceae 21.3 0.36 0.31 0.68 0.27 0.37

OTU71 Veronica arvensis Plantaginaceae 12.3 0.52 0.35 0.70

OTU72 Galium mollugo Rubiaceae 15.6 0.27 0.66 0.41 0.24 0.35

OTU78 Myosotis arvensis Boraginaceae 22.9 0.39 0.45 0.27 0.54 0.48

OTU83 Convolvulus arvensis Convolvulaceae 16.8 0.28 0.44 0.37 0.69

OTU87 Anagallis arvensis Primulaceae 17.1 0.29 0.40 0.74 4

OTU88 Polygonum aviculare Polygonaceae 20.0 0.31 0.29 0.61 0.33 0.48

OTU100 Sagina apetala Caryophyllaceae 27.0 0.32 0.34 0.38 0.44 0.59

OTU109 Arenaria serpyllifolia Caryophyllaceae 11.4 0.41 0.32 0.25 0.62 0.26 6

OTU113 Cerastium fontanum Caryophyllaceae 12.1 0.91

OTU114 Papaver rhoeas Papaveraceae 20.9 0.27 0.27 0.37 0.42 0.25 0.61

OTU132 Bromus hordeaceus Poaceae 9.9 0.32 0.30 0.29 0.52 0.57

OTU136 Avena sp. Poaceae 25.1 0.38 0.36 0.41 0.42 0.50

OTU143 Festuca rubra Poaceae 8.4 0.38 0.37 0.49 0.63

OTU145 Holcus lanatus Poaceae 23.1 0.22 0.31 0.28 0.29 0.72 0.25

OTU146 Dactylis glomerata Poaceae 18.8 0.73 0.33 0.23 0.36 0.27 0.27

OTU147 Catapodium rigidum Poaceae 24.1 0.27 0.37 0.46 0.48 0.44 0.29 0.25

OTU149 Poa nemoralis Poaceae 24.3 0.51 0.39 0.50 0.43 0.28

OTU154 Poa annua Poaceae 26.8 0.28 0.64 0.36 0.32 7

OTU159 Aphanes arvensis Rosaceae 22.9 0.52 0.43 0.40 0.37 0.30

OTU179 Epilobium sp Onagraceae 17.9 0.29 0.32 0.29 0.73 6

OTU192 Erophila verna DC. Brassicaceae 19.8 0.38 0.52

OTU196 Capsella bursa-pastoris Brassicaceae 25.2 0.44 0.47 0.42 0.24 0.33 0.38

OTU198 Arabidopsis thaliana Brassicaceae 26.4 0.40 0.50 0.45 0.28 0.44

OTU202 Cardamine hirsuta Brassicaceae 19.0 0.29 0.56 8

OTU203 Cardamine hirsuta Brassicaceae 20.6 0.59 0.52 0.28 0.35 1

OTU204 Geranium sp. Geraniaceae 24.3 0.33 0.33 0.30 8

OTU216 Medicago lupulina Fabaceae 14.9 0.77 0.46

OTU223 Vicia sativa Fabaceae 20.5 0.41 0.41 0.46 0.51

OTU234 Trifolium campestre Fabaceae 8.6 0.31 0.62 0.48 0.29 0.33

Species richness - - 13.9 0.38 0.77 0.30

Shannon diversity - - 12.6 0.31 0.79 0.28

PCoA1 - - 21.0 0.30 0.42 0.29 0.51 0.54

PCoA2 - - 25.7 0.62 0.31 0.27 0.36 0.32 0.28

PCoA3 - - 17.0 0.40 0.32 0.67 0.33

climate factors edaphic factors

Plant community 

descriptors
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Figure 3.  
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Figure 4. 

 




