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Abstract

Despite the importance of plaptant interactions on plant community dynamics and
crop yield,our understandin@f the adaptivegeneticsunderlying theseinteractions isstill
limited and deserve$o be investigated in the context of complex and diffugeractions
occurring in plant assemblageétere,based on 145 natural populationgdoabidopsis thaliana
located in soutlwest of France andharacterized for plant communities, we conducted a
GenomeEnvironment Associatioranalysis to finely mapadaptivegenomic regions oA.
thaliana associated with plant community descriptof® control for correlated abiotic
environment effects, we also characterized the populations for a set of biologically meaningful
climate and soil variableé nonnegligble fraction of togfsNPswasassociated withothplant
community descriptors anabiotic variables highlighting the importance of csilering the
actual abiotic driversf plant communitie$o disentangle genetic variants for biotic adaptation
from genetic variants for abiotic adaptatiolhe adaptive loci associated withspecies
abundancevere highly dependent on the identity of the neighboring spsuggesting a high
degree of biotic specializatioof A. thalianato membersof its plant interaction network
Moreovef tKH LGHQWLILFDWLRQ RI DG D@watdity Bhdaenpbsitio ¥fR FL D W |
plant communities supportie ability of A. thalianato interact simultaneously with multiple
plant neighborswhich in turn can helpo understand the role of communityde selection.
Altogether, ar study highlights that dissecting the geneticidasderlying planplant
interactions ata regional scale while controlling for abiotic confounding factaan help

understanding thadaptive mechanisms modulating nali plantassemblages



Introduction

Understandinghe genetis underlying planplant interactions is a key element to
understand the structure and functioning of natural commurfitibstham et al. 2008. In
particular, identifying the genetic bhasof plantplant interactions can help to estimate the
potential of plant species to face anthropogeelated modifications of plant assemblages
(Pierik et al. 2013, resulting in part from differences of geographic range shift arptarg
species under climate chang@ilman et al. 2010;Singer et al. 2013 In addition, the
identification of genes associated with natural variation of response to the presence of othe
plants is of primary importance to improve plant breeding programs for the optimization of

mixtures of crop species (i.e. ideomix@strico andViolle 2015.

However, there isstill very limited information about thedaptive genetic loci
associated ith natural variation gblantplant interaction§Subrahmaniaret al. 2018. Firstly,
the number of Quantitative Trait Loci (QTL) studies focusingptantplant interactionss
relatively limited in comparison to other types of biotic interactipnsis, bacteria, fungi,
oomycetes, herbivores (Bartoli and Roux 2017 Subrahmanianet al. 2018. Similarly,
despite the importance of interspecific competitiomrmediatingplant community structure,
diversity and dynamicg¢Baron et al. 20%), only two Genome Wide Association studies
(GWAYS) reported the fine mapping of genomic regiamglerlyingthe response of a focal
species to the presence of a competitive spéBiaonet al. 2015;Frachonet al. 2017. In
addition, due to the intractability of empirically testing interactions betwdenal species and
manyneighboringplant speciesnostQTL mappingstudieshaveconsidereanly asingle pair
of interacting specig&Subrahmanianet al. 2018. However, throughout their life cycle, plants
can interacseparatelor simultaneously with é&arge numberof plant speciegWilson et al.
2012, suggesting that the genetics of plalant interactionsieeds to be investigateal the
context of complexand diffuse interactions occurringmaturalplantassemblage(Litrico and
Violle 2015; Roux and Bergelson2016. Secondly,to our knowledgeijt is still unknown
whether polymorphic genes involved in plgtént interactions have been shaped by natural

selection.

By identifying significant associations between genetic polymorphisms and
environmental variablesgGenomeEnvironment Association (GEA) analyses is a powerful
genome scan method tdentify genegpotentiallyinvolved in adaptive processes of a given
speciegDe Mita et al. 203; Scalfi et al. 2014). In the last few years, the availahilftgublic

database<ollecting estimates of abiotic factors (in particular climatic variables) and the

3



development of nexgeneration sequencing (NGS) technologiedto a bursbf GEA studies
attempting tceestablish genomic map of local adaptatioal@ticvariation from a worldwide
scale Hancock et al. 2011 asky et al. 2012].asky et al. 2015; Bay et al. 2017; Fecrer
Serrano& Assmann2019) to a regional scal®l{ess et al. 201&rachon et al. 20380n the
other handGEA studiesperformedon biotic factors are still scar¢rot to say absenih wild
plantspeciesTwo nonexclusive hypotheses can explain fasicityof GEA studieselated to
biotic interactionsFirstly, the power of GEA to identify true positives is positively correlated
to the number obtudiedpopulations(Gautier 2015) However, given thesubstantialeffort
required to carefully charactee ecological communitiethe number of studies reporting the
biotic characterization of several dozens or hurglrestural populationsof a given plant
speciesis unsurprisinglylimited (Zust et al. 2012Brachi et al.2013; Bartoli et al. 2018).
SecondlyGEAs performed on biotic variables need to control for the abiotic environment that
can be correlated with the variation of the biotic features under study. This step is fundamental
to dissociate the genetic variants associated with the biotables from those associated with
the only abiotic adaptation of the plant speckes. example, it isvell establishedhatunder
various geographic scaleglant assemblages are shapedaltpmbination of abiotic factors
(Hautekeete et al. 2014rivellone et al. 201}/ Removing the effect of habitat filteringby
characterizing and controlling for several abiotic factow®uld allow toidentify the adaptive
genetic bas that are specific to biotic interactions, i.e. that do not result frormdairect

relationship withthe abiotic environmeng(g.climate or soil factors).

Here,by combiningplant community ecology and population genomwgs adopted a
GEA approach teestablisha genomic map gbotentialadaptive genetic loci associated with
plant communig descriptord L Hdiversity, composition and abundance of plant spgaes
the model planArabidopsis thalianaTo achieve this goausing a metabarcoding appu,
we first characterizethe plant communities associated with 145 natural population&. of
thalianalocated in soutlwest of FrancéBartoli et al. 2018Frachonet al. 2018)To control
for correlated effects of the abiotic environment, those populations were also charatberized
a set of 17 biologically meaningfalimateand soil variableBy usinga Bayesian hierarchical
model controlling for the genome widéectsof corfounding demographic evolutionary forces
(Gautier2015) we then conducte@EA analy®s with more than 1.5 million Single Nucleotide
Polymorphisms (SNPs) to finely map genomic regioh#\. thalianaassociated with plant
community descriptorsGEA was alsoperformed on abiotic variableshereby allowing to

disentangle GEA signals for plaptant interactions from GEA signals for abiotic factd@sy.



definition, GEA allowsidentifyinggenetic loci undeiocaladaptationHowever, b supportthat
theloci identifiedby our GEA analysibave been shaped by natural selectwmadditionally
testedwhetherthe SNPs that were the most associated with descriptors of plant communities
were enriched in a set of SNPs subjected to adaptive spatial diffecentiginally, we
examinedvhetherspecific biological processes were overrepresented among SNPs involved in

adaptation to plant communities and discussed the function of candidate genes.

Results
Working at aregional scaleto investigate the adaptive genetics to plant communities

To establish a genomic map of local adaptation to plant comimsynte focused on
145 A. thalianapopulationdocatedin the Midi-Pyrénées region (southest of FrancejFig.
1A), with a mediardistance among the populations df®km (max = 2@.7 km) (Frachon et
al. 2018) The choice of working at regional scale was supported by previous obsereations
A. thalianain France Firstly, as alreadyadvised,the geographical scalesed to identify
genomic regiom associated witlenvironmental vamblesshould be chosen according to the
grain of ecological variatio(Bergelson & Roux 20104 previous study focusing on 49 natural
populations ofA. thalianalocated in four climatically contrasted Fadnregions (Brittany,
Burgundy, Languedoc and north of Francehowed thatthe variance ofinterspecific
competition indices was mostly partitioned among populations within regions, with only 5.2%
of the competition variance observed among the four regiBrachi et al. 20135econdly,
the main drawbacks of GEA analyses.(allele frequency autocorrelatipgenetic andhllelic
heterogeneityrare allelek are often observed at large geographical scakes previously
advised for GWAS working at asmall geographical scale should reduce these limitations
(Bergelson & Roux 2010). Accordingly, in a GWAS performed on flowering time scored in
greenhouse conditions, confounding by population structure was greatly reduced at a regional
scalein Francg(Brachi et al. 2013)which is consistent with a linkage disequilibrium estimate
(r2=0.5) of 18bp in a highly polymorphic local populationfofthalianalocated inBurgundy
(Frachon et a. 2017Thirdly, the genome sequencing of the 145 natural populatieed in
this study revealed that (i) all populations were polymorphic (in agreementpvattious
observations obtained on populations located in other French regions; Le Corre 200%tBrachi
al. 2013), and (ii) less than 11% of genomic variation wasaeetl by geographic variation
(Frachoret al.2018) as expected from the pattern of isolation by distance observed across the

species range &. thaliana(Platt et al. 2010)Taken together, these observations suggest that



working at a regional scale wiolallowto work oncontrasted plant assemblagesile limiting
the effects of confounding by population structure on gbever of GEA to identifytrue
positives.

The plant neighborhood of A. thaliana is highly diverse and partially related to a
combination of abiotic factors

Plant communities associated witte 145 natural populations @k. thalianawere
characterized during sprirRP15(mid-May to midJune) corresponding to the period of seed
production ofA. thalianain southwest of FranceBased on morphological characteristics, we
characterizé plant communitie®y first establising a herbarium by collecting a representative
individual of each putative species per population, resulting in 2,233 specimens. Because many
specimens were samplat theseedling stage or without the presence of reproductive organs
commonly used for a morphologicalbased taxonomical identification, we adopted a
metabarcoding approach based on the chloroplast nradé&ito determine the identity of the
species $upplementary Fig.1; BarthetandHilu 2007). A matK sequence was obtained for
97% of the specimens that were further assigned to one of the 244 plant Operational Taxonomic
Units (OTUs) identified at a 98% identity cutofddtases 1 and 2,Supplementary Fig.1).
In agreement with the deep taxonomic resolution of the mank#( (BarthetandHilu 2007),
a large portion of specimens were identified at the species level (84%#85séts 1 and 2,
Supplementary Fig. 1). Hereafter, we refer to the plant OTUs as specific plantnmunity
descriptors.

Alphadiversity largely differed among the 145 populaticBsgplementary Tablel),
with species richness ranging from 1 to 28 (mean = 12.1, median=12) and Shannon index
ranging from 0.320 2.42 (mean = 1.40, median=1.3B)g. 1B and Supplementary Fig.2).
The plant community composition was studied by running a Principal Coordinate Analysis
(PCoA) on the abundance matrix of the 44 most prevalent plant OTUs (i.e. OTUs present in
more tha 10 populations)ataset 3). The first three PCoA axes explained ~34% of the
variation in plant compositionSupplementary Fig. 3). Plant composition largely differed
among the 145 populationsig. 1C, D, E and F, Supplementary Fig. 3, with up to 75.9%ef
YDULDQFH H[SODLQHG E\ S\ppldmeBdrySTaleD)\WI hdrfigsf]PCDA-aMKR U
(explaining 14.2% of the total varianc®upplementary Fig. 3 was mainly associated with
annual species occurring in bare tilled, fallow or recently abandoned arable lands (EUNIS
habitatl1.5, e.g.Bromus hordeaceygLerastiumglomeratum,Sonchus oleraceus, Veronica
arvensi$ and with perennial species occurringmesic grasslands (EUNIS habitaEe.qg,
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Crepis biennis, Festuca rubra, Plantago lanceo)diaataset4, Supplementary Fig. 4. The
second PCoA axis (11.1%upplementary Fig. 3 was significantly associatedth (i) species
occurring in the samieabitats(l 1.5 e.gB. hordeaceus, Trifolium campestie2 e.g.Achillea
millefolium) on the one side of the axis, and (ii) small annual and pioneer species occurring in
grasslandsr arable land$E2 and | 1.5e.g.Poa annuaAnagallis arvensison theother side
(Dataset4, Supplementary Fig. 4. The third PCoA axis (8.6%&upplementary Fig. 3 was
significantly associated wittmainly shortlived speciesoccurring in bare tilledands (EUNIS |
1.51) or fallow uninundated fields or recently abandonadble lands with annual weed
communities (EUNIS | 1.52)ut with an opposition considering their soil preferenoessic

to nitrophilous speciegery typical ofA. thalianahabitat preferencemntheone side of the axis
(e.g.Valerianella locustavs species with a preference for sandy soils on the other side (i.e.
rubra, Arenaria serpillyfolig Lactuca serriolg (Dataset4, Supplementary Fig. 4. Hereafter,
we refer to species richness, Shannon index and the first three &@sAas global plant
community descriptors.

To estimate the level of dependency of filant community descriptot®wardsthe
abiotic environment, wéirst characterizedhe 145 natural populations for 6 roarrelated
climatevariablesard 11 noncorrelated soil variable$ig. 2, Dataset §. We then run gparse
Partial Least Square Regression (SPLSR) (Lée&Zab2008 on each global descriptor and the
44 most prevalent plant OTBig. 2). We found that up to 27% of variance of plaommunity
descriptos can be explained by a linear combination of abiotic variables (min = 8.4%, mean =
19%, median = 19.8%){g. 2). On average, each plant community descriptor was explained
by a linear combinationf 4.5 abiotic variables (min = 1, megh = 5, max = 6)Kig. 2). The
four abiotic variableshat werethe most often associated with plant community descetor
> 20) were mean annual temperature, summer precipitations, autumn precipitatisoisd
(Fig. 2). Among these four variablepH wasthe onemostlyassociated with plant community
descriptors suggesting that pl$ one of the mairabiotic variables driving varieon in plant
assemblages associated withthalianain the studied-31,000 km? spatial sca(€ig. 2).

Identification of adaptive genetic loci associated ith plant community descriptors

To identify associations between genetic polymorphisthA. thaliana and plant
community descriptors, we adopted a GEA approbaked on withirpopulation allele
frequency previously estimat@uthe 145A. thalianapopulationdor 1,519,748 SNPs (i.e. one

SNP every 78 bpjFrachonret al. 2018)Variationof plant community descriptors was weakly



correlated to genomic variatioamong the 145 populationsSypplementary Table 2).
According to a sensitivity analysisstingfor the performance of GEA analydessed on these
populationgFrachon et al. 2018)hese weak correlatie@stimatesuggest thaa large fraction

of the SNPsthat werethe most associated with variation of plant community descriptors

correspondto true positives.

To disentangle GEA signals fargivenplant community descriptor from GEA signals
for abiotic variablesassociated with this plant community deptor (Fig. 2), GEA analysis
was performed on both plant community descriptorseadmatic variables Our results showed
thatthe proportionof sharedop SNPs varied among glob@lphadiversity and compositign
and specifiqabundance ofthe 44 mosprevalent plant OTUsplant community descriptors.
When considering the 0.1% top SNB&bal descriptors were sharing a high fraction of SNPs
with abiotic variables (min=6.5%, max=19.5%, mean=14.4%, median=19Tale 1),
mainlywith soil variablesDataset §. Onthe other hand, althoughlowerfraction oftop SNPs
was shared between specifiglant communitydescriptors and abiotic variablémin=0,
max=4.5%, mean=0.8%, median=0.6Pable 1), someof the shared SNPs weaenongst the
most associatedith theseplant community descripto$ig. 3). For examplethe abundance
of Sonchus oleraceU®©TU27, Asteraceaayas associated with soil piif. 2, Fig. 3A). The
SNPthat wasthe most associated with the abundancg.oferaceuswas also one of the top
SNPs associated with pfig. 3B, C). Similarly, the abundance &fapaver rhoeagOTU114,
Papaveraceaayas associated with summer precipitatioRgy( 2, Fig. 3D. An association
peak for the abundance Bf rhoeaslocated at the beginning of chromosomec2responded
alsoto an associatiopeakdetectedor summer precipitation(Fig. 3E, F).

In order to establish a genomic map of local adaptation to plant commuthigesp
SNPs shared with abiotic variables were therefordai@n into consideration fahe rest of
the results presented in this stublpr species abundancigtgenetic architectusgashighly
dependent on the plant OTU identifjid. 4 and Dataset6). For example, massociatiopeak
was detected at the beginning of chromosome 3 for the abunda@mwdlvulus arvensis
(OTU83, Convolvulaceagpresent in 16.5% of thé. thaliana populations whereastwo
associatiorpeaks were detected at the end of chromosomes 3 and 5 for the abund@oece of
nemoralis(OTU149, Poaceagdresent in 19.3% of the populations. We also observed that the
geretic architecture largely differed between two species belonging to the samécalotan
family, and at a deeper taxonomy levi the same genudPétaset 6). For examplean

associationpeak was detected at the beginning of chromosome 3 for the abundanSe of



oleraceus(OTU27, Asteraceaepresent in 34% of th@. thalianapopulations, whereasna
associationpeak was detected at the beginning of chromosome 1 for the abundance of
Helminthotheca echioidegOTU16, Astereaceag)present in 12% of theA. thaliana
populations. Interestingly, we also detecésgociatiorpeaks for.-diversity and composition
related descriptors suggesting the presence of generalist QTLs underlying simultaneous
interactions with several neighboring speci€sg.( 4 and Dataset 6). Moreover when
consideringthe 152 top SNPdess than 21%f thetop SNPs associated wighgiven global
descriptor weralsoassociated with specific descriptors (min = 12.5% for the third PCoA axis,
max = 28.3% for the first PCoAxis), suggesting a flexible genetic architecture between
specific and global descriptors.

To supportthatthe loci identified by GEA have been shaped by natural seleatien,
performed a genomeide selection scan by estimating the XtX measure of germeti
differentiation among the 145 populatiof®r a given SNP, the XtX measures Hagiance of
the standardized population allele frequenciesich resultfrom a rescalingoased on the
covariance matrix of population allele frequenciBsis step allowsorrectingfor the genome
wide effects of confounding demographic evolutionary fo(Gaautier 2015)The 0.1%upper
tail of the spatial differentiation distribution displayed a significant enrichment (4p.69H
for SNPs associated withimost twethirds of the plant community descriptors, including
species richness, Shanniadex, the first and third oA axes and the abundance 8fQTUs
belonging tol1 botanical families Table 1). Interestingly similar enrichment values were
observed with or without consideritige topSNPs shared between plant communitycdptors
and abiotic variablesT@ble 1). Altogether, besesignaturs of selection across the genome
supportour GEA resultssuggesng that A. thalianais locally adapted to its associated plant

communities.

Identity of candidate genesinderlying local adaptation to plant communities
To identify candidate genessociated witlplant communig descriptorswe adopted
threenonexclusive approaches. Fisstwe focused on genes associated with more than three
plant community descriptors, resulting in a final list 8fcandidate gend®atasets 7 and 8
Secondly, we examined which biological processes (BPs) were overrepeesamong th&52
SNPs the most associated with plant community descriptors. We found a significant enrichment
in BPs (up t81.1 IRO G | R UWhtisigna#ng pathwa§f IRU WKH WKLUG 3&R$ D]
abundance of Aplant OTUs Supplementary Table 3), leading to the identification of3
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unique candidate genes acr@@BPs Qataset 9. Thirdly, we examined which functional
classeg¢FCs) were overrepresented amdmeg genes identified by the two previous approaches.
Using the MapMarelassification Provart & Zhu 2003)we identified three significantly over
represented FCs, i.e. hormone metaboliBns 0.00004), cellR = 0.00075) and signalind?(

= 0.00198) By combining the results of the threpproachesye found that severalndidate
genesvereinvolved in responses to sha@@ataset8 and 9, either througtsignaling pathways
of light perceptionsuch agi) TUBULIN BETAL1 CHAIN (TUBJ) (Leu et al. 1995, and (ii)
CASEIN KINASE-LIKE 3 (CK1.3) andCASEIN KINASE-LIKE 4 (CK14) (Tanet al. 2013,

or throughhormone signaling pathwayscluding (i) auxin with the auxinresponsive gerse
SMALL AUXIN UPREGULATED6TSAURG67T and SAURG68(Roig-Villanova et al. 2007;
Swainet al. 2017, (ii) ethylene withXAP5 CIRCADIAN TIMEKEEPERXCT) involved in
blue lightdependent ethylene responses (Ellison et al. 2011), and (iii) brassinosteroid with the
bHLH transcription factoHOMOLOG OF BEE2 INTERACTING WITH IBHHBI1) (Fan et

al. 2014) Another major category of candidate genes was relatgldnvimmunity (Datases

8 and 9. In particular, we identified key componentstbé pathogemassociated molecular
patterns PAMRriggered immunity (PTIpathwayincluding (i) several receptelike kinases
(RLKs) such asFLAGELLIN-SENSNG 2 (FLS2 (G,mezG,mez & Boller 2000) BRI1-
ASSOCIATED RECEPTOR KINASEBAKLD (Li et al. 2002) BAKIINTERACTING
RECEPTORLIKE KINASE 1(BIR1) (Gao et al. 2009AndPOLLEN-SPECIFIC RECEPTOR
LIKE KINASE 5PRK5 (Wrzaczek et al. 2015)ji) two WRKY transcriptions factors, namely
WRKY8(Chen et al. 2010) an@/RKY48(Xing et al. 2008) and (iii) the heterotrimeric G
protein beta subunAGB1(Lorek et al. 2013) and the calmodutiomain protein kinas€KP5
(Dubiella et al. 2013)inally, aher candidate genegere related to root development such as
the bHLH transcription factdcRL1 and thearabinogalactan proteidGP14 which are both
involved in root hair developme(Xu et al. 2005Lin et al. 2011)
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Discussion

The identification ofthe genetic bas underlying adaptation twurrentenvironmental
conditions is essentidb estimate the potential efild plantand cropspecies to persish
presence ohoveland fluctuatingenvironmental conditiondn the context of climate change,
most GEA analyses ha¥ecused on the identification of adaptive genetic loci associated with
climate variation(Bay et al. 2017)which has certainly been facilitated by puldiatabases
availability of climateestimatesHowever, the adaptive potential response of a plant species to
global changess not only depeneht onthedirect interactiorbetween the plant species atyd
abiotic environment, but also time interactions between the plant species and its biotiogpar
(RouxandBergelson2016) In this study, wehereforeaimed at identifying adaptive genetic
loci associated witlplant communig descriptoran 145 naturalA. thalianapopulations We
found thatA. thalianacan inhabit diverse and contrasted plasgsemblages in southest of
France.This observation is in line with previous studies reporting (i) the potential interactions
of A. thalianawith a large number of plant species in natural communities in other French
geographical region®rachiet al. 2013)and (ii) theextensive genetic diversity & thaliana
for the response to interspecific competitmrservedn common gardeexperimentgBaron
et al. 2015Bartelheimeret al. 2015frachoret al. 2017.

Importance of controlling for abiotic factors

In the light of the impact of habitat type on plant community assemblages (Trivellone

et al. 2017), controlling for abiotic factoeppearsndispensabldor establising a genomic

map of local adaptation to natural plant communitiedeed, by characterimg the 145A.
thalianapopulations fore set of 17 biologically meaningfalimate andsoil variables we found

that a nomegligible fraction (~120%) of variation in plant community descriptora/as
explained bya combination of climati andsoil factors In particular in agreement with
previous studies (Dubuis et al. 2013; Gould et al. 1888y and Goulden 20Q8we identified
temperature, precipitations asdlil pH as the main drivetof diversity and composition of plant
communities inhabited b. thaliana In accordance as illustrated folS. oleraces and P.
rhoeas GEA resultsshowed thasoil pH and summer precipitatiemvere sharinggome of the

top SNPswith plant species abundance.
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Altogether the nonnegligible portion of SNPs shared among plant community
descriptorsand abiotic variablekighlightsthe importancef disentangling GEA signals for
biotic adaptation from GEA signals for abiotidaptation. ldwever,we need to stress out that
the abioticenvironmentcannot be reduced to the only factors describddis studyandthat
co-association with otheabioticvariablesmight be also considered an indirect effect of the
genetic bas identifiedin this study While characterizing the whole abiotic environment is a
lofty challengewe advocate thaEA studiegperformed orbiotic interactions need to control
for as manyabiotic variables as possible.a complementary waysWA studies based dhe
growth ofhundreds of wholggenome sequenced accessioithin naturalplant assemblages
transplanted in a common gardemight be a powerful approach to helpderstandingand
validating whether genetic loci associated wigither specific plant species neighboos
community diversity/compositionare not indirectly linked to theassociatedabiotic
environmentA deeply characterization of the situ abiotic environment in conjunction with
a validation of the associatezhndida¢ genes by adopting a controlled common garden
approach should be advoadfer future studies aiming at characterizing #duaptivegenetics
of plantplant interactions.

The genomic architecture of adaptation to plant communities

In agreement witla GWAS performed ifield conditionswith A. thaliana(Baronet al.
2015) we found thatgenomic regions associated wipecies abundancdargely differed
among species belonging to different botanical families. We fufthard that the geatic
architectureof A. thalianarelated to specgabundancedargely differed among species
belonging to the same botanical family, suggesting a high degree of biotic speciaktation
regional scaleln addition we finely mappedadaptive QTLs associated withdiversity and
composition of plant communities/hich is in line with the fine mapping of genomic regions
in A. thaliana D V V R F L D WihieBsity Bl Bomposition of leaf microbial communities in a
GWAS performed in fielcconditions(Horton et al. 2014. Interestingly the QTLs identified
for these global descriptors largely differed from @iELs identified for species abundance
Sucha flexible genetic architecture between monospecific and plurispecific interatiasns
beenalsorecentlyobservedn aGWAS performedn greenhouse conditioms a set of 91 local
whole-genome sequenced accessiohA. thaliana (Libourel et al. 2019)Thoseaccessions

weresubjectedo monospecific and plurispecific competition treatments based on aaye
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two-way and threavay combinations ahree species frequently associated withhalianain
natural plant communities in Frandes. Poa annua Stellaria mediaand Veronicaarvensis
(Baron et al. 2016 The authors found that almost%0of top SNPs associated with the
response oA. thalianato the simultaneous presencd?ofannuaS. mediandV. arvensisvere
not detectedn the three monospecific interaction treatmeitse identification of QTLghat
are specific to descriptors of plant assembldmgislights theability of A. thalianato interact
simultaneouslyvith multiple plantneighborswhich in turn can help to understand the role of

communitywide selection.

Candidate genes underlying plariplant interactions at a regional scale

The identity of the candidate genes identified in this study is in line with known
molecular mechanisms of plapkant interactiongPierik et al. 2013;Subrahmanianet al.
2018. For example, a sessile organisms, plants competebimth above and belowground
resources and have several detection mechanisms to identify the presence of neighboring plants.
Accordingly, we identified several candidate gengsnfrolved in response to altered light
environment, generally referred to the shade avoidance syndrome (SAS) or (ii) related to
nutrient foraging, thereby linked to beleground competitive abilitylnterestingly, we also
identified biological processessaociated with plant immunit§Datasets 9, which is in line
with several transcriptomic studies reporting expression changes of numerous genes associated
with defense pathways against microbial pathogens and insects in different types-pligoiant
interactions (Subrahmaniam et al. 2018). addition, he identificationof several RLKs
involved in PTI is also in agreement with a GWAS on competitive respon8e tbhliana
grown in monospecific and plurispecific neighborhoods, in which 12 out of the 18 candidate
genessupporing a significant enrichment for the functional clags/ L J Q Br@dd® RIKs
(Libourel et al. 2019)This enrichment inmmunity-relatedmolecular mecanisms may be
explained by three neexclusive hypotheses. Firsthhe growthdefense theory predicts that
light perception byphotoreceptors actives SAfd reduces defenses agaibistaggressors
(Ballaré and Pierik 2017However, this theory has beetentlychallenged by several studies
reporting an independent regulation of the SAfated pathways and defense pathways
(Subrahmaniam et al. 2018pecondly, the presence of neighboring species medtie
rhizosphere microbiotaurroundinga focal plant (Sanon et al. 2009; Hawkins & Crawford

2018) which may in turn trigger pathways involved in perception of microbesdly, RLKs
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may directly perceive damagessociated molecular patterns (DAMRB$t potentially result
from cell wall modificationand degradatiom A. thalianain presence of neighboring species
(Subrahmaniam et al. 2018). For example, @a@0ragment of the extracellularabidopsis
protein GRIM REAPER (GRIis known todirectly interact witiPRK5(Wrzaczek et al. 2015),
an atypial RLK associated with species richness and composifiptant communitieg our

study Dataset §.

Conclusion

While GEAanalysishas been proved to be highly powefffud identifyinggenetic bas
associatedvith climate adaptationin A. thaliana(Hancocket al. 201, Lasky et al. 2012,
Frachon et al. 201&errereSerrano & Assmann 20)L%ur study reveals the potentdlGEA
analysisto unravel the adaptive genetics underlyplgntplantinteractionsin the context of
realistic communitycomplexity. However, we have to stress out that the main conclusions
drawn from our study might be specific to the geographical region stutfileether similar
conclusiongpatterns are observed either in other geographical regfosimilar sizeor at a
larger geographical scale remains an open question and will deserve a careful characterization
of a new set of hundreds of populations both at the genomic levdbapthnt community

descriptors.

Becauseno study reported the cloning of a gene involvedesponse to interspecific
competitionin plantsso far (to our knowledge), the candidate genes identified in this study
undoubtedly represent key candidate geoegunctional analysis, whicin turn canhelp to
dissect the genetic and molecular mechanisms underlyhegalationary processes between

A. thalianaand its plant interacting network.
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Materials and Methods
Characterization of plant communities

We focused on 168 natural populationsAofthaliana located in the MidiPyrénées
region(Bartoli et al. 2018, Frachon et al. 201B)ant communities associated wihthaliana
were characterized during sprir@915 (mid-May to midJune), that ighe period of seed
production ofA. thalianain souh-west of France. Due to anthropogenic perturbations such as
herbicide spraying and mowing, we were not able to characterize plant comnmasstemted

with 23 A. thaliananatural populations.

To characterize plant communities, two 50 x 50 cm quadrats divided into 25 smaller
squares (10 cm x 10 cm) were established in two representative areas &f. ¢aalana
population, with the exception of (i) the large population CEAR which three qudrats were
established and (ii) three very small populations (BAGBIBDAMI-A and MER\£B) in which
only a single quadrat was established. Based on morphological aspects, we first determined the
number of putativeplantspecies present in each quadrat. Wantestimated the abundance of
each putativelantspecies per quadrat by summing the number of individuals (N) estimated in
each of the 25 squares according to the following séale: UHD O FR X @WN EI1QLif ”

1" V. N=20if10<N" 91 LI 1 "5, PO Iif N>50.
It should be noted tha. thalianawas not present in seven populations at the time of plant
community characterization, despite its presence in-spripng 2015Bartoli et al. 2018) A
herbaium was established by collecting a representative individual of each pubédive

species per population, resulting in 2,233 specimens.

Many specimens were sampled at the seedling stage or without the presence sf flower
or fruits (i.e. reproductive organs commonly used for a morphologeaked identification of
plant species). We therefore adopted a metabarcoding approach based on the chloroplast marker
matK to determine the identity of the specimens at the species (evespscies) leel. A
detailed procedure of the metabarcoding approach is giv&upplementary Information
(Supplementary Fig.1). We obtained anatK sequence (> 500bp) for 97% of the specimens
(n =2166). ThematKsequences were clusteretbi®TUs using the softwatdSEARCH with
a 98% identity cutoff (i.e. 98% similarity between two OTWBHgar2010; Edgar2013)
resulting in a total of 244 plant OTUs. To identify the species name of OTUs, a reference
sequence was retrieved for each plant OTU with the commapdrse of the software
USEARCH and blasted on NCBI against Nucleotide Collection (nr/nt) database (percentage of
identity: mean = 99.1, median = 99.7; alignment length in bp: mean = 739, median = 771;
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alignment length in percent: mean = 99.4, median = (D&Yasetsl and 2). In addition, the
presence of the plant species in the Migirénées region was checked by using the databases
of The French Botany Networkw{vw.telabotanica.ory and The Global Biodiversity

Information Servicewyww.gbif.org).

We established an abundance matrix of the 244 plant OTUs across the 145 populations
(Dataset3). For each quadrat, we estimatbd species richness and Shanmatex by using
WKH IXQFWLRQV UVSHFQXPEHUY D Q GOksheretal 201@jn thel Q WK H
R environment (Version 1.0.136© 20092016 Rstudio, Inc.). To estimate plant community
composition in each quadrat, we performed a Principal Codediaalysis (PCoA) (function
MSFRDY R QDWK HJH(Raad@ddtfal. 2004)on a BrayCurtis dissimilarity matrix
IXQFWLRQ pYRISOLAWMNDPH QYWHKID QY EDVHG RQ WKH DEXQGD

prevalent OTUs (i.e. presence in more thapdpulations).

Characterization of the climate and soil variables

To control for the putative relationships between plant communities and abiotic factors,
our initial set of 168A. thalianapopulations were characterized for both climate saoil
variablesClimatic characterization was previously performed in Frachon et al. (2018). Briefly,
an average valuacross th0032013annual dataf 21 climatic variables was obtained from
the ClimateEU databases (hhtp://tinyurl,com/ClimateEB% descibed in Frachon et al.
(2018) only six climate variablegmean annual temperature, mean coldest month temperature
and precipitations in winter, spring, summer, and aujuwvere consideretierebecaus«i)
they did not displajnter-correlation (i.e.6 S H D U thDl@vikthan 0.8 and (ii)theypresented
the most obvious link to the ecology Af thaliana For thecharacterization afoil properties,
we followed the procedure described in Braehial. (2013) by characterizing for each
populationtwo samples of the upper soil layer for 13 chemical prope(timstent of total N
and organic C, C/N ratio, content of organic matter, concentrations of P205, K, Ca, Mg, Mn,
Al, Na and Felnd one physical propertynéximal water holding capacitywWHC) (Dataset
5). The two soil samples were collected in autumn 2014 and winter 20Memadiried in a
laboratory dry oven &0°C for 10 hous and90% of ventilation As for climatedatg inter-
correlation between two soil variables was avoided by considering only variables that did not
GLVSOD\ D o6rBdigeedter har ¥ 8Dataset 10, thereby leading to the removal of

content of oganicC, content oforganic maer andconcentration of MnThe characterization
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of some of the 11 remaining soil variabfaged for sevenA. thalianapopulationsdue to the
low quantity of soil availablde Q WKHLU QDWLYH KDELWDWVFotthdseVWRQH
populations,we asignedthe mean value of eackoil variable obtained from the other

populations Datasetb).

Statistical analyses

To test whether the five plant community descriptors (species richness, Shannon
diversity and the first three PCa®mponents) differed among the 145 populations, we ran the
following mixed model under the SAS environment with inference performed using ReML
estimation (PROC MIXED procedure in SAS9.3, SAS Institute Inc., Cary, North Carolina,
USA):

Yi = Wrait + popuhbtion 0 ()

ZKHYN bV ROQH RI WKH ILYH GHVFULSWRUNV RW KSHO IRQ'W UPBROR
HSRSXODWLRQY DFFRXQWYV IRU GLIITHUHQFHYV DPRQJ SRSXOL
ZDV XVHG WR HVWLPDWH WKH UDQGRP HIIHFW pSB&S&XODWLR

Linear Unbiased Predictions (BLUPs) wetgtained for each population.

To test whether the five plant community descriptors displayed a geographic pattern, we
ran the following model (PROC GLM procedureSAS9.3, SAS Institute Inc., Cary, North
Carolina, USA):

Yik = latitude + longitude + altitude: + latitude*longitudg + latitude*altitudect+
longitudeg*altitudex + latitude*longitudg*altitude« R  (2)
ZKHYH Wwv RQH Rl WKH ILYH SODQW FRPPXQLW\ GHVFULSWR!
have been retrieved from the GE&®rdinates of the 145 populatiom¥ataset3; Frachon et al.
puog LV WKH UHVLGXDO WHUP

In order b investigate the relationships between plant communities and abiotic factors,
a sparse Partial Least Square Regression (sPLl®RJaoet al.2008; Carrascadt al.2009)
was adopted to maximize the covariance between @aitte 49 following plant community
descriptors (species richness, Shannon index, coordinates on three first PCoA axes and
abundance of the 44 most prevalent OT&l®) linearcombinations of the six climate factors
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and 11 soil factorssPLSR was run using the mixOmics package implemented iRthe
environment (Lé Caet al.2008; Lé Cao et a010). sSPLSResults were validated by plotting
the Root Mean Square Error of Prediction (Maestre 2084Caoet al.2008). For thebiotic
environmentwe calculated the final loadings for the &dotic variablesvith the highest initial
loadings on the first congment.Following the procedure described in Bartoli et al. (2018), we
tested theignificance of theabiotic variablesncluded in the linear combinations bglopting

a Jackknife resampling approach by leaving out 10% of the samples 1,000Viimesly
considered as significamibiotic variablesvith a loading value above 0.2 in morath75% of

the resampled matrices

Genomic characterization and data filtering

Based on a Podbeq approach, a representative picture of wifltipulation genetic
variationacross the genome was previously obtained for the 145 populéfi@thon et al.
2018) Briefly, to performA. thalianaDNA extraction,a portion ofarosetteeaf was sampled
from 2,574 plants collected in late Februatgarly March 2015 (approximately 16 plants per
populations,min = 5 plants, max = 16 plants, mean = 15.32 plants, median = 16)plants
Individual samples were placed in 9ell S-block plates ontaining beads, immerdé liquid
nitrogen and crushed under cold conditibgausing Mixer Mill MM 300 Retsch®DNA was
extractedon each individual by following the pmtol described in Brachi et g2013) and
further quantified withQuantiTTM PicoGreen® dsDNA Assay Kit with a g°PCR ABI7900
machine.DNA quantification values were used to establistb equimolar pod of the
individuals of each populatigmvhichwerethenused to build lllumina librarieas described in
Frachon et al(2018). Libraries weresequencethy usinglllumina HiSeq 3000 sequenceith
a pairedend read length of 2 x150 bp at thetPlaGe core facility (INRA, Toulouse, France).
Raw genomic datdor eachA. thalianapopulation are available at the NCBI Sequence Read
Archive (SRA)under thestudy accession number SRP1031R&w reads were mapped against
the reference genome GBlwith glint tool (version 1.0.rc8.77%9nd mapped reads further
filtered with SAMtool(Li et al. 2009) SNPCalling was performed with SAMtamhdVarScan
mpileup2sngKoboldt et al.2012) aslescribed in Frachon et §2018).

Following Frachoret al.(2018, the matrix of population allele frequencies was trimmed
according to ive successive criterjaresulting in a final number of 1,519,748\Ps (i)
removing SNPs with missing values in more than seven populatiprafter calculating for
each population the relative coverage of each SNP as the ratio of its coverage to the median
coverage (computed over all the SNRejnoving SNPs with eneanrelative coverage depth
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across the 145 populatiombove 1.5t0 take into account multiple gene copies in the 145
populations that map to a unique gene copy in the reference genofdgifotemoving SNPs
with a standard deviation of allele frequencyoss the populations below 0.004) removing
SNPs with aneanrelative coverage depticross the 145 populatiobglow 0.5 to take into
accountindels that corresponeither genomic regions present in @obut absent in the 145
populations or genomiegions present in the 145 populations but absent iF0Card (v)
removing SNPs with the alternative allele present in less than 11 populttidake into

account bias in GWA/GEA analysis due to rare alleles (Bergelson & Roux.2010)

GenomeEnvironment Association analysion plant community descriptors

We performed a GEA analysis betwetre set 0f1,519,748 SNPs and 49 plant
community descriptors (species richness, Shammbgx, coordinates on three first PCakes
and abundance of the 44 most prevalent OTUs) based on a Bayesian hierarchicalmcldel
deab with PoolSeq dataand isimplemented in the program BayPd&autier2015). This
modelexplicitly accouns for the scaled covariance matrix of populatalele frequencies (),
which makes the analyses robust to complex demographic histdheseby allowing
decreasing drastically the rate of false positives (Gautier 2018)is study, weun the core
model to evaluate the association between diletpiencies along the genome and the 49 plant
community descriptors. For each SNP, we estimat&hyesian Factor (BEmeasured in
decibanunits) and the associated regression coefficient (Betaj)isusing an Importance
Sampling algorithm(Gautier 2005) The full posterior distribution of the parameters was
obtained based on a Metropatifastings within Gibbs Markov chain Monte Carlo (MCMC)
algorithm. A MCMC chain consisted of 15 pilot runs of 500 iterations each. Then, MCMC
chains were run for 25,000eitations after a 256#erations burAn period. The 49 plant
community descriptors were scalatglecovRSWLRQ VR W& HMBecause DIGhe
use of an Importance Sampling algorithm, we repeated the analyses three times for each plant
communty descriptor. The results presented in this study correspond to the averagelBF
values across theethree repeats.

As previously performed in Frachoet al. (2018) we parallelized the genome
environment analysis by dividing the full data set into 32datia sets, each containing 3.125%
of the 1,519,748 SNPs (ca, 51,000 SNPs taken 82I$NPS along the genojnairwise
comparisons of the 32 resulting covariance rio@s confirmed that all estimates were
consistent with highly correlated elements. In agreemeatpairwise FMD distancesmong

the 32covariance matriceg-orstnerandMoonen2003 had a narrow range of variation (from
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2.02 to 2.27)BFs and the associated regression coefficidltsetween SNP allele frequencies

and variation of plant community descriptors were therefore estimated for each SNP by
analyzing in parallel the 32 sufata sets described above, but with the same ma¥ix
(obtained on the first suttata setas an estimate of the scaled covariance matrix of population

allele frequencies.

To identify plant community descriptors for which the core model poorly converged,
we calculated for each plant community descriptor apemametric correlation coefficient
6 S H D U thb) @&tWeenthe Bayes FactorBFis) and the posterior mean of the absolute
regression coefficient; (Beta_i9. We discarded four plant community descriptors (OTU4,
OTU7, OTU67 and OTU203) with a correlatioaefficient below 0.75.

Comparing abiotic and biotic GEA signals

To evaluate the putative cresffect of the abiotic environment on the geneticibas
associated with plant descriptpvge run the core model to evaluate the association between
allele frequencie®f the 1,519,748 SNPs and tlee climate andll soil variables A GEA
analysis for the 6 climatic variables was previously performéaanhon et al(2018)but was
based on the wholeesof 168 natural populations &f thalianalocatedin the Midi-Pyrénées
region.To be consistent with the GEA analysis performed on the plant community descriptors,
we decided to rerun a climate related GEA analysis based osutiset of145 natural
populations used in this study.h& core model poorly convergddr the concentration in
aluminum andvater holding capacitffe. 6 SHD U P D Q F RHd hebhv@dd BRaRriQ falte
< 0.75) that were therefore removed from further analyses bas&Edresults.

To compare abiotic and biotic GEA signals, estimatedor each plant community
descriptorthe proportion ofop SNPs(i.e. 0.1% of the SNPwith the highest BE n=1,520
that were common to the1%top SNPs identified bGEA analysigerformedon climate and

soil variables

Enrichment analyses and identification of candidate genes associated with plant

community descriptors

For supporting localadaptationsignals identified by GEA analysesd identifying
candidate genes associateith plant community descriptarsve only consideredop SNPs
that were detected for plant community descriptors butan@biotic variablegi.e. SNPs that

werespecific to plant community descriptors)
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For supporting local adaptation signals identified by GEA analyseé§iyst performed
a genomeavide selection scan stimatingthe XtX measure o$patialgenetic differentiation
among the 145 populatiorfsor a given SNPheXtX measurethevariance dthe standardized
population allele frequencigthat is, rescaled using and across population allele frequencies
(Gunther & Coop 2013, Gautier 201&)prrecting for the genomeide effects of confounding
demographic evolutionary forces such as gerdhiit and gene flowthereforeallows for a
robust identification of SNPhat arehighly differentiatedcamong populationfGautier 2015).
Following the methodology described in Braehial (2015) we then tested for each plant
community descriptor wheginthe top SNP$0.1% uppetail of the BRsdistribution trimmed
for SNPs associated with abiotic variable@re significantly enriched ithe 0.1% upper tail
of the XtX distribution Based on Hancocét al (2011) statistical significance of enrichment
was assessed by running 10,000 null circular permutatiotine @bp plant community related
SNPs along the genome.

To identify the candidate genes associated with variation in plant community
descriptors, we adopd hreenon-exclusive approaches. Firstlysing the TAIR 10 database
(https://www.arabidopsis.org/ we retrievedfor each plant community descriptail the
annotated genes located witldr2kb region around eacti the 152top SNR. Secondly,we
testedfor each plant community descriptwhetherthel152top SNPswere overepresented in
each of the 736 Gene Ontology Biological Processes from the GOsl{@oetortium2008,
using a window size of 5kb on each side of each top. blRPwing Hancocket al (2011)and
Wanget al (2018), satistical significance ofhe enrichment was assesdey running 10,000
null circular permutations dhe 152top SNPs along the genomieor each plant community
descriptorwe only considered BPs that had at least 5 Rits.each significantly enriched BP
at aP < 0001, we retrieved the identity of all the genes contairiopgSNPs. Thirdlya gene
list combining the genes underlying significantly enriched biological processes and genes
associated with more than three plant community descriptors wasaiteedremoval of
duplicates,to identify significantly ovefrepresented functional class¢B < 0.G after
Bonferroni correctiopwith the classification superviewer tool on theiversity of Toronto
website http://bar.utoronto.ca/ntools/cgibmtbols_classification_superviewer.cgi) usifget
MAPMAN classification(Provart& Zhu, 2003).
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Figure legends.

Figure 1. Species richness and composition of plant communities associated wih
thaliana. (A) The MidiPyrénées region (southest of France) isepresentedn red on a
European map.B) Geographic variation of species richne§€y.Geographic variation of plant
community composition represented by the first PCoA ak)$, (E) and £) Photographs
illustratingthe degree of diffrentiation in plant community assemblagesngthe 145natural
populationsof A. thaliana Imagesn panels (D), (E) and (F)courtesy of L. Frachan

Figure 2. Relationships between plant community descriptors and climate and soil factors
based on a sparse partial lessquare regression (SPLSR)PVE (%): percentage of variance

in plant community descriptors explained byiaile factors.Only abiotic variableswith a
loading value above 0.2 in motikan 75% of the 1000 Jackknifesampledmatrices were
considered as significant. Tlkelor gradient indicates thatrength of the loading value$ the
abiotic variablesyellow: 0.20 < loadings < 0.50, orange: 0.50 < loadings < 0.65, red: 0.65 <
loadings <1)MAT = mean annual temperature (QWCMT = mean coldest month temperature
(C°), PPT_wt = winter precipitatia{mm), PPT_sp = spring precipitat®(mm), PPT_sm =
summer precipitatio(mm), PPT_at = autumn precipitatismm), N = nitrogen, ratioCN =

carbonnitrogen ratio, WHC = water hdinhg capacity.

Figure 3. lllustration of GEA signals shared betweenplant community descriptors and
abiotic factors. The upperand lower panes illustrate GEA signals obtained fromthe
abundance dbonchus oleraceay®TU 27) andPapaver rhoeagOTU149), respectively(A)
and D) Relationshipsetweernthe abundance o8. oleracusandsoil pH (A) andbetweerthe
abundance oPapaverrhoeasand summer precipitatisn(D). Manhattan plat of the GEA
resultsfor the abundance &. oleraceugB) andP.rhoeas(E). Thex-axis indicates the position
of the 1,519,748 SNPaongthe five chromosomes, represented by different shades of blue
The y-axis indicatesthe Bayes factor (B&expressed imlecibanunits) estimated by the core
model implemented in the program BayP&sddotsindicatetop SNPs shardoetween OTU
abundance andimate variables whereaggreendotsindicate top SNPs sharégtween OU
abundance and saibrriables Arrows indicatetwo association peaks for which a clege was
performed in(C) and £). (C) and F) Zoom spanning associatiqeals containingtop SNPs

shared between OTU abundance ahabtic factorsin (C), the green point iassociged with
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both the abundance &.oleraceusandpH, whereasin (F) all red pointsare associated with

both the abundance Bf rhoeasandsummer precipitation

Figure 4. Manhattan plots of the genomeenvironment association resultsfor the
abundance of four plant OTUs and plant composition (third PCoA axis) after removing

top SNPs shared with abiotic variablesThe x-axis indicates th&NPpositionalongthe five
chromosomes, represented different shadesof blue. They-axis indicates the Bayes factor
(BFis expressed imecibanunits) estimated by the core model implemented in the program
BayPasslmages of Sonchus oleraceus, Convolvulus arvensis and Poa nemmatiesy of

F. Roux.Images of Helminthotheca echioides and for PCoA3: courtesy of L. Frachon
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Table 1. Enrichment of each plant community descriptor related top SNPsQ.1% upper

tail of the BFis distribution) in the 0.1% tail of the genomewide spatial differentiation
(XtX) distribution . (A) Number of top SNPut of 1,520)shared between plant community
descriptors and abiotic factor®)(Enrichmentwhen consideringll the 0.1% top SNPgn =
1,520). (C) Enrichmentwhen consideringhe 0.1% top SNPsimmedfor thetop SNPs shared
with abioticvariables ) HT V W DIQ @Me lokRenrichment. Bold values indicate significant
enrichment after a false discovery rate (FDR) correction at the nominal level & 5%on
significant,* 0.05> P > 0.01, ** 0.01> P > 0.001, ** P < 0.001

Plant community ~ Species Family A. Number of toj B. All top SNPs C. All top SNPs trimmet
descriptors SNPs shared wi for SNPs shared with
abiotic factors abiotic factors
Fe P Fe P
OTUl Conyza canadensis Asteraceae 3 1.32 ns 1.32 ns
OTU3 Crepis biennis Asteraceae 14 1.97 ns 2.01 ns
OoTuUs Lactuca serriola Asteraceae 1 3.29 b 3.29 b
OTU10 Achillea millefolium Asteraceae 3 3.95 b 3.96 b
OTU15 Hypochaeris radicata ~ Asteraceae 26 5.26 ok 4.77 i
OTU16 Helminthotheca echioid Asteraceae 4 4.60 ok 4.63 e
OTU18 Lapsana communis Asteraceae 8 2.63 * 2.66 *
OTU20 Senecio vulgaris Asteraceae 12 197 ns 1.34 ns
oTUu27 Sonchus oleraceus Asteraceae 9 1.32 ns 1.33 ns
OTU46 Valerianella locusta Caprifoliaceae 5 4.60 ok 4.63 i
OTU49 Fraxinus excelsior Oleaceae 31 0.00 ns 0.00 ns
OTU65 Plantago lanceolata Plantaginaceae 4 3.29 ok 3.30 ok
OTU71 Veronica arvensis Plantaginaceae 13 5.26 ok 5.35 ok
OTU72 Galium mollugo Rubiaceae 13 0.66 ns 0.67 ns
OTU78 Myosotis arvensis Boraginaceae 14 1.97 ns 2.01 ns
oTu8s3 Convolvulus arvensis  Convolvulaceae 14 9.87 ok 10.05 ok
» OTU87 Anagallis arvensis Primulaceae 2 3.29 ** 3.30 *
g OTU88 Polygonum aviculare  Polygonaceae 11 0.66 ns 0.67 ns
‘5 OTU100 Sagina apetala Caryophyllace:i 1 3.29 o 3.29 ok
§ OTU109 Arenaria serpyllifolia  Caryophyllacei 5 0.00 ns 0.00 ns
o 0OTul13 Cerastium glomeratum Caryophyllace: 67 5.26 ok 5.04 ok
':]5: OTUl14 Papaver rhoeas Papaveraceae 28 1.97 ns 1.36 ns
& oTu132 Bromus hordeaceus Poaceae 8 5.26 b 5.31 i
OTU136 Avena sp. Poaceae 2 7.89 ok 7.91 ok
OTU143 Festuca rubra Poaceae 10 6.58 ks 6.66 i
OTU145 Holcus lanatus Poaceae 22 1.97 ns 2.03 ns
0OTU146 Dactylis glomerata Poaceae 9 2.63 * 2.00 ns
OTU147 Catapodium rigidum Poaceae 9 197 ns 2.00 ns
OTU149 Poa nemoralis Poaceae 4 3.95 b 3.97 b
OTU154 Poa annua Poaceae 14 5.92 il 6.03 ok
OTU159 Aphanes arvensis Rosaceae 1 0.00 ns 0.00 ns
OTU179 Epilobium sp. Onagraceae 16 6.58 ok 6.72 i
0OTU192 Erophila verna Brassicaceae 0 3.29 ok 3.29 ok
OTU196 Capsella bursa-pastoris Brassicaceae 69 1.32 ns 1.44 ns
OTU198 Arabidopsis thaliana  Brassicaceae 2 9.87 ok 9.89 i
0OTU202 Cardamine hirsuta Brassicaceae 0 2.63 * 2.63 *
0OTU204 Geranium sp. Geraniaceae 4 2.63 * 2.65 *
0OTU216 Medicago lupulina Fabaceae 47 1.32 ns 1.40 ns
0OTU223 Vicia sativa Fabaceae 1 1.32 ns 1.32 ns
0OTU234 Trifolium campestre Fabaceae 7 2.63 * 2.66 *
» Species richness - - 242 3.95 ** 3.72 *
g g Shannon divers - - 286 4.60 ok 4.99 ok
o5 PCoAl - - 167 5.26 ok 4.98 ok
© 8 Pcoa2 - - 297 1.32 ns 1.02 ns
PCOA 3 - - 99 7.89 ** 7.53 ok
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Figure 2.

34

climate factors edaphic factors
£ g 2| €
| 5| 8|6|=|2]|E 3 £13|8|¢
Plant community 13 (R (L Y E|S| ¢ % g1 8|d|2|¢
descriptors Species Family PVE(®) = | = & & & & < 8 2ls|=z|5|s|8[8B|& |
OTU1 Conyza canadensis Asteraceae 26.3| 0.46 0.42 0.43 0.35 0.32 0.27
OTU3 Crepis biennis Asteraceae 11.8 0.38 0.49 0.60 0.34
OoTU4 Crepis capillaris Asteraceae 14.6( O. 9 0.25 0.23
OTU7 Taraxacum officinale Asteraceae 20.5 - 0.38 8|
OoTU8 Lactuca serriola Asteraceae 17.0 0.30 0.50 0.37 1
OTU10 Achillea millefolium Asteraceae 16.3 0.50 0.30 0.58 0.40 7
OTU15 Hypochaeris radicata  |Asteraceae 17.6 0.45 0.34 0.57 0.45
OTU16 Helminthotheca echioidegAsteraceae 26.5( 0.44 0.25 0.51 0.34 0.46
0OTU18 Lapsana communis Asteraceae 16.5 0.36 0.57 0.54
OTU20 Senecio vulgaris Asteraceae 11.0/ 0.34 0.44 0.33 0.26 0.64
oTu27 Sonchus oleraceus Asteraceae 25.7 0.49 0.29 0.29 0.41 0.57
OTU46 Valerianella locusta Caprifoliaceae 11.7 0.29 0.33 0.31
0OTU49 Fraxinus excelsior Oleaceae 25.3] 0.56 0.30 0.50 0.51 0.23
OTU65 Plantago lanceolata Plantaginaceae 21.00 0.27 0.27 0.34 0.26 0.44 0.65
OTU67 Veronica persica Plantaginaceae 21.3 0.36 0.31 0.27 0.37
OTU71 \eronica arvensis Plantaginaceae 12.3 0.52 0.35
OTU72 Galium mollugo Rubiaceae 15.6] 0.27 0.41 0.24 0.35
OTU78 Myosotis arvensis Boraginaceae 22.9 0.39 0.45 0.27 0.54 0.48
o |OTU83 Convolvulus arvensis _ |Convolvulaceaq  16.8| 0.28 0.44 0.37-
g_ oTu87 Anagallis arvensis Primulaceae 17.1] 0.29 0.40 4
§ OTU88 Polygonum aviculare Polygonaceae 20.0 0.31 0.29 0.61 0.33 0.48
g |OTU100 Sagina apetala Caryophyllaceap 27.00 0.32 0.34 0.38 0.44 0.59
£ |0TU109 Arenaria serpyliifolia Caryophyllaceap  11.4 0.41 0.32 0.25 0.62 0.26 q
‘S |oTu113 Cerastium fontanum Caryophyllaceag  12.1 -
& [oTu114 Papaver rhoeas Papaveraceae 20.9 0.27 0.27 0.37 0.42 0.25 0.61
0TU132 Bromus hordeaceus Poaceae 9.9 0.32 0.30 0.29 0.52 0.57
0OTU136 Avena sp. Poaceae 25.1| 0.38 0.36 0.41 0.42 0.50
0TU143 Festuca rubra Poaceae 8.4 0.38 0.37 0.49 0.6t
0TU145 Holcus lanatus Poaceae 231 0.22 0.31 0.28 0-.72 0.25
0TU146 Dactylis glomerata Poaceae 18.8 0.33 0.23 0.36 0.27 0.27
0oTU147 Catapodium rigidum Poaceae 24.1( 0.27 0.37 0.46 0.48 0.44 0.29 0.25
0TU149 Poa nemoralis Poaceae 24.3[ 0.51 0.39 0.50 0.43 0.28
0TU154 Poa annua Poaceae 26.8 0.28 0.64 0.36 0.32 7
OTU159 Aphanes arvensis Rosaceae 22.9 0.52 0.43 0.40 0.37 0.30
OTU179 Epilobium sp Onagraceae 17.9 0.29 0.32 0.29 q
0TU192 Erophila verna DC. Brassicaceae 19.4 0.38 0.52
0OTU196 Capsella bursa-pastoris [Brassicaceae 252 044 0.47 0.42 0.24 0.33 0.38
0TU198 Arabidopsis thaliana Brassicaceae 26.4 040 0.50 0.45 0.28 0.44
0TU202 Cardamine hirsuta Brassicaceae 19.9 0.29 0.56 8
0OTU203 Cardamine hirsuta Brassicaceae 20.4 0.59 0.52 0.28 0.35 1
0oTU204 Geranium sp. Geraniaceae 24.3] 0.33 0.33 0.30 | I
0OTU216 Medicago lupulina Fabaceae 14.9 - 0.46
0TU223 Vicia sativa Fabaceae 20.5( 041 0.41 0.46 0.51
0TU234 Trifolium campestre Fabaceae 8.6| 031 0.62 0.48 0.29 0.33
o |Species richness - - 13.9 0.38 . 0.30
=z £ [Shannon diversity - - 12.6 0.31 0.28
o 5 |PCoAl - - 21.0 0.30 0.42 0.29 0.51 0.54
oé PCoA2 - - 25.7 0.62 0.31 0.27 0.36 0.32 0.28
PCOA3 - - 17.0 | 0.40 0.32 B8 oz




Figure 3.

Sonchus oleraceus (Asteraceae)
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Figure 4.
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