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Abstract In this work we propose high-order transparent boundary condi-
tions for the weighted wave equation on a fractal tree, with an application to
the modeling of sound propagation in a human lung. This article follows the
recent work [35], dedicated to the mathematical analysis of the correspond-
ing problem and the construction of low-order absorbing boundary conditions.
The method proposed in this article consists in constructing the exact (trans-
parent) boundary conditions for the semi-discretized problem, in the spirit of
the convolution quadrature method developed by Ch. Lubich. We analyze the
stability and convergence of the method, and propose an efficient algorithm for
its implementation. The exposition is concluded with numerical experiments.

Keywords Convolution quadrature · transparent boundary conditions ·
fractal trees · DtN operator · quantum graph

1 Introduction

Sound propagation in a human lung can be used for non-invasive diagnosis
of the respiratory diseases, see e.g. [46] for some experimental studies, a PhD
thesis [27], and, in particular, the Audible Human Project [1] and references
therein. A human lung can be viewed as a network of small tubes (bronchi-
oles), immersed into the lung tissue (parenchyma) and coupled with their ends
to microscopic cavities in the parenchyma (alveoli). The physical phenomenon
of sound propagation in a lung is highly complex, due to the fractal geometry
of lung airways, heterogeneity of parenchyma, interactions/couplings between
various types of tissues, and, eventually, multiscale nature of the problem.
Thus, in practice, one uses simplified models. For instance, in the mathe-
matical literature, in [14,13], sound propagation in a highly heterogeneous
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parenchyma is modelled using the homogenization techniques. In [42] Sobolev
spaces associated to the Laplace equation on a fractal tree that models the
network of bronchioli are studied, and in [23] the wave equation with a viscous
non-local term on a dyadic infinite tree is analyzed, see as well the mono-
graph [41]. This point of view at the bronchioli as a self-similar network (with
possibly multiple levels of self-similar structure) seems to be rather classical
(though indeed simplified) in the medical and medical engineering literature,
see in particular [49,17,44,28] for the related discussion. In this article we
adapt this, simplified, approach of studying wave propagation in lungs.

In the limit when the thickness of the bronchiolar tubes tends to zero, the
problem becomes essentially one-dimensional inside each of the tubes. A rig-
orous asymptotic analysis [36,48] allows to take into account the differences
between the thicknesses of the tubes at different levels of the bronchiolar tree
via incorporating weights into the originally homogeneous wave equation. Con-
structing an efficient numerical method for the resolution of such a 1D weighted
wave equation defined on a fractal tree is the subject of the present work. In
the literature [9] the type of problems we consider is sometimes referred to as
problems posed on a metric graph, to underline the distinction between this
kind of models and discrete, finite-difference-like models on graphs.

This problem gives rise to numerous interesting questions from the ana-
lytical (relations between associated weighted Sobolev spaces on fractal trees,
in particular, embeddings and existence of a trace), and from the numerical
point of views (since the fractal tree has an infinite number of edges). The
analysis related questions have been answered in [35], while the construction
of efficient numerical methods for such problems is mainly the subject of the
present work. Our principal idea is to construct transparent boundary condi-
tions for the wave propagation in a fractal tree, which would allow to perform
all the computations on a truncated tree. Note that the transparent boundary
conditions in the present article can be extended to the case when the whole
tree T is not fractal, provided that after a certain generation, all of its sub-
trees are (as defined [35]). Most of such boundary conditions are based on an
approximation of the Dirichlet-to-Neumann (DtN) operator.

In this work we construct an exact DtN operator for a semi-discretized in
time system, in the spirit of the convolution quadrature (CQ) methods [39,40],
see in particular numerous recent works dedicated to the coupling of boundary
integral equations and volumic wave equations (FEM-BEM coupling) [7,38,
26,43]. Let us mention a related approach, based on constructing transparent
boundary conditions for problems discretized in space and time, see e.g. [3,11,
12,10,37] and references therein. Our transparent boundary conditions can be
viewed as Johnson-Nédélec style coupling [30], which was, in the context of the
acoustic wave equation, studied in the PhD thesis [24], or, for the Schrödinger
equation, in [47]. In this work we perform the convergence and stability analysis
for such a coupling.

In view of the abundance of the literature on the numerical methods for
similar wave problems, let us discuss the novel aspects of the work.
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First of all, up to our knowledge, no work in the literature was devoted to
the design of numerical method for time domain wave propagation in fractal
trees, together with the development of the corresponding rigorous analysis.
We have been developing simultaneously two competing approaches for dealing
with this kind of problems: high order local approximations of the DtN map
[34,33] and adaptation of the convolution quadrature method, which is the
subject of the present article. Let us remark that from the point of view of
physics, the problem that we consider is different from the classical setting of
the wave equation in the free space. The ’infinite’ boundary of the fractal tree
reflects waves, rather than absorbs them (i.e. loosely speaking the problem
is more similar to the wave equation on the interval than the wave equation
in the free space). It is therefore more advantageous to use non-dissipative
discretization methods (e.g. trapezoid rule convolution quadrature).

Second, concerning the contribution to the convolution quadrature itself,
we would like to cite a few novel aspects of this work:

– in the problem that we consider, neither the convolution kernel, nor its
Fourier-Laplace transform are known in a closed form (unlike many other
applications of the CQ). We thus propose an efficient procedure for its ap-
proximation, suitable for the use in the convolution quadrature.

– for the sake of efficiency, we use an explicit leapfrog time discretization
for the volumic terms and an implicit trapezoid rule discretization for the
boundary terms. This is different from the existing works [26,43] where
for the discretization purely implicit schemes were used. From this point
of view, the closest existing paper is the one by Banjai, Lubich, Sayas
[7]. However, we work with a different type of volumic-interface coupling.
Moreover, because of the combination of the discretization schemes used
in our work, there is no need for a stabilization term (unlike in [7]).

– finally, the full convergence analysis of the trapezoid rule (which we use
here) for boundary operators occurring in wave problems is much less devel-
oped compared to the analysis of the L-stable Runge-Kutta methods. The
complete convergence estimates (explicit in time) have been established
only very recently, cf. [21], based on the Laplace domain estimates; the
same is true for the coercivity preserving properties, cf. [6]. It is nonethe-
less not clear whether the error bounds of [21] are optimal. In the present
work we perform the analysis purely in the time domain (unlike e.g. [7,38]);
numerical experiments indicate that our error bounds are close to optimal
(we lose only one power of the final simulation time T in the estimates).

This article is organized as follows. In Section 2 we recall the notation and
formulate the problem. Section 3 is dedicated to the construction of transpar-
ent boundary conditions, as well as their analysis (stability and convergence).
In Section 4 we provide algorithmic aspects of the method and perform its
complexity analysis. Finally, Section 5 is dedicated to the numerical experi-
ments. We conclude with a discussion of the obtained results in Section 6.
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2 Problem setting

2.1 Notation

We will adhere to the notation and terminology used in [35]. Let us recall some
of the geometric assumptions:

1. By T we will denote a p-adic rooted tree with infinitely many edges and
no leaves. These edges are ordered in generations (collections of edges) Gi in
the following manner: G0 consists of a root edge (where by the root edge we
mean an edge whose one of the vertices is the root vertex); Gn+1 is a union
of children edges of all the edges from the generation Gn. Each generation Gn,
n ∈ N, contains pn edges Σn,k, k = 0, . . . , pn − 1.

The children of the edge Σn,k (of the generation n+ 1) are indexed as

Σn+1,pk+j , j = 0, . . . , p− 1. (1)

The root vertex of the tree is denoted by M∗. We will study metric trees.

M∗

Σ0,0

M1,0

M1,1

Σ1,1

M1,2

. . .M0,0 M∗

µ0,0 = 1
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Fig. 1 A self-similar 3-adic infinite tree. Left: In blue we mark the edges that belong to G0,
in red the edges of G1, in black the edges of G2. Right: Distribution of weights on the edges
of a 3-adic infinite self-similar tree.

This means that each edge of the tree Σn,k can be viewed as a line segment
of non-zero length. This allows to introduce a distance d(M,M∗) between a
vertex M and the root vertex M∗ as the length of the path between M and
M∗, i.e. the sum of the lengths of the edges that connect M and M∗. Then,
provided that the edge Σn,k is incident to two vertices M0,M1, we denote by
Mn,k = argmaxV ∈{M0,M1} d(V,M∗). See Figure 1, left, for an illustration.

2. Each edge Σn,k is assigned its length `n,k > 0 and a weight µn,k > 0.

3. We will assume that the tree is self-similar (fractal), in the sense of [35,
Definition 2.3]. Let us explain this in more details. Let

α = (α0, . . . , αp−1) and µ = (µ0, . . . , µp−1)

be two vectors with positive elements. Then the length `n+1,pk+j and the
weight µn+1,pk+j of the edge Σn+1,pk+j are related to the length and the
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weight of the parent edge Σn,k, cf. (1), as follows:

`n+1,pk+j = αj `n,k, µn+1,pk+j = µjµn,k j = 0, . . . , p− 1.

Without loss of generality, we will assume that µ0,0 = 1. An illustration to the
above is given in Figure 1, right.

Finally, we will denote by T m the subtree of T truncated to m+1 generations,
whose edges are given by a collection

T m := {Σn,k, 0 ≤ k ≤ pn − 1, 0 ≤ n ≤ m} ≡
m⋃
`=0

G`. (2)

By Tm,j we will denote a p-adic infinite subtree of the tree T , whose root edge
is Σm,j . All over the article we will assume that |α|∞ := sup |αj | < 1 (i.e. the
tree can be compactly embedded into Rd, d ≥ 1). We will refer to a weighted
tree T as to a reference tree if the length of its root edge satisfies `0,0 = 1.

2.2 Wave propagation in self-similar weighted trees

We consider the problem of wave propagation on a self-similar weighted ref-
erence tree T . For this we introduce a parametrization of each edge Σn,j of
the tree, incident to the vertices M∗n,j , Mn,j , by an abscissa sn,j ∈ [0, `n,j ],
with `n,j being the length of the edge. This parametrization is chosen so that
0 is associated to the vertex M∗n,j and `n,j to the vertex Mn,j . With s being
an abscissa on the tree T , defined on each edge Σn,j as above, we define the
weight function µ(s) on T , with an abuse of notation:

µ(s) = µn,j , s ∈ Σn,j .
An acoustic pressure u : T ×R+ → R (here R+ = [0,∞)) satisfies the weighted
wave equation, which can be written in a compact manner as

µ∂2t u− ∂s(µ∂su) = f̃ , u(., 0) = ∂tu(., 0) = 0, (3)

with f̃ : T × R+ → R being a source term. We equip this problem with a
boundary condition at the root vertex u(M∗, t) = 0. It remains to pose the
boundary conditions at the ’infinite’ boundary of T , the meaning of which
will become clear in Section 2.3. For the moment, let us explain in detail the
meaning behind (3). With the notation un,j = u|Σn,j , from (3) it follows that:

∂2t un,j − ∂2sun,j = fn,j on Σn,j , j = 0, . . . pn − 1, n ≥ 0, (4)

u(., 0) = ∂tu(., 0) = 0, u(M∗, t) = 0, (5)

where fn,j is the restriction of µ−1f̃ to Σn,j . It is equipped with the continuity
(C) and Kirchoff (K) conditions in all the vertices, cf. (1),

un,j(Mn,j , t) = un+1,pj+k(Mn,j , t), k = 0, . . . , p− 1, (C)

∂sun,j(Mn,j , t) =

p−1∑
k=0

µk ∂sun+1,pj+k(Mn,j , t), j = 0, . . . pn − 1, n ≥ 0. (K)
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2.3 Dirichlet and Neumann problems at the fractal boundary of the tree

The problem (4, 5, C, K) needs to be equipped with boundary conditions at
the fractal boundary of the tree. This becomes more clear when studying the
family of problems (3) posed on subtrees T m, m→∞: for their well-posedness,
it is necessary to define boundary conditions on the ’outer’ boundary of the
tree T m, i.e. vertices {Mm,j , j = 0, . . . , pm−1}. This will be done variationally,
by introducing the associated Sobolev spaces.

2.3.1 Sobolev Spaces on T

Given a function v = v(s), v : T → R, let

∫
T

µ v :=

∞∑
n=0

pn−1∑
k=0

∫
Σn,k

µn,k v(s)ds.

We will need the following three spaces:

– square-integrable functions

L2
µ(T ) = {v : v|Σn,j ∈ L2(Σn,j), ‖v‖L2

µ(T ) <∞},

‖v‖2L2
µ(T ) = ‖v‖2 =

∫
T

µ|v|2, (v, g) :=

∫
T

µ v g.

– square-integrable continuous functions with square-integrable derivatives:
denoting by C(T ) continuous functions on T ,

H1
µ(T ) := {v ∈ C(T ) ∩ L2

µ(T ) : |v|H1
µ(T ) <∞},

|v|H1
µ(T ) ≡ ‖∂sv‖L2

µ(T ), ‖v‖2H1
µ(T ) = ‖v‖2L2

µ(T ) + |v|2H1
µ(T ).

– the closure of compactly supported H1
µ-functions. For this let us define

H1
µ,c(T ) :=

{
v ∈ H1

µ(T ) : v = 0 on T \ T m, for some m ∈ N
}
,

i.e. functions which are supported inside T m, for some m ∈ N. Then

H1
µ,0(T ) := H1

µ,c(T )
‖.‖H1

µ(T )
.

The above definitions can be naturally extended to the spaces defined on a
truncated tree T m, with an associated L2

µ-scalar product denoted by (., .)Tm .

Remark 1 All over this article we work with real-valued function spaces in the
time domain, and with complex-valued function spaces in the frequency do-
main (as this is clear from the context, we do not provide explicit indications).
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2.3.2 The evolution problems in weak form

It is easily seen that any H1
µ(T )-solution of (4, C, K) satisfies

(∂2t u, v) + (∂su, ∂s v) = (f, v), for all v ∈ H1
µ,c(T ), s.t. v(M∗) = 0.

Reciprocally, any H1
µ(T )-solution to the above problem solves (4, C, K).

To distinguish the Dirichlet and Neumann problems for (3), let us introduce

Vn(T ) = {v ∈ H1
µ(T ) : v(M∗) = 0}, Vd(T ) = {v ∈ H1

µ,0(T ) : v(M∗) = 0}.

Definition 1 (Neumann problem) Find

un ∈ C(R+;Vn(T )) ∩ C1(R+; L2
µ(T )),

s.t. un(., 0) = ∂tun(., 0) = 0, and, for all t > 0,

(∂2t un, v) + (∂sun, ∂sv) = (f, v), for all v ∈ Vn(T ). (N)

Definition 2 (Dirichlet problem) Find

ud ∈ C(R+;Vd(T )) ∩ C1(R+; L2
µ(T )),

s.t. ud(., 0) = ∂tud(., 0) = 0, and, for all t > 0,

(∂2t ud, v) + (∂sud, ∂sv) = (f, v), for all v ∈ Vd(T ). (D)

Remark 2 Although, strictly speaking, the problem (N) is a mixed problem
(because of the Dirichlet condition at the root of T ), we call it ’Neumann’,
since we are interested in the behaviour at the fractal boundary of T .

These problems are well-posed, as summarized below.

Theorem 1 Let f ∈ L1
loc(R+; L2

µ(T )). Then the problem (N) (resp. (D)) has
a unique solution

ua ∈ C(R+;Va(T )) ∩ C1(R+; L2
µ(T )), a = n (resp. a = d).

Moreover, there exists C > 0, s.t. for all T > 0 and 0 ≤ t ≤ T ,

‖∂tua(t)‖L2
µ(T ) + ‖∂sua(t)‖L2

µ(T ) ≤ C‖f‖L1(0,T ;L2
µ(T )). (6)

Proof The proof is classical. The existence and uniqueness result follows from
the semigroup theory (see in particular [45, Section 7.4] and [45, Section 4.2]).
To show (6), one first tests e.g. (N) with ∂tun, which gives

d

dt
En(t) = (f, ∂tun), En =

1

2

(
‖∂tun‖2 + ‖∂sun‖2

)
.

The application of a Gronwall inequality (cf. [32, Appendix E]) yields the
desired result. ut
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To state the following result, let us recall that, provided a Banach space X,
the spaces W k,1

loc (R+;X) of X-valued distributions are defined as follows:

W k,1
loc (R+;X) =

v : R+ → X s.t.

T∫
0

k∑
j=0

‖∂jt v(t)‖Xdt <∞, ∀T > 0

 .

Corollary 1 Let k ≥ 1, f ∈ W k,1
loc (R+; L2

µ(T )) and f(0) = . . . = ∂k−1t f(0) =
0. Then

ua ∈ Ck(R+;Va(T )) ∩ Ck+1(R+; L2
µ(T )), a ∈ {d, n}.

Moreover, there exists C > 0, s.t. for all 0 ≤ ` ≤ k, all T > 0 and 0 ≤ t ≤ T ,
it holds:

‖∂`+1
t ua(t)‖L2

µ(T ) + ‖∂s∂`tua(t)‖L2
µ(T ) ≤ C‖∂`tf‖L1(0,T ;L2

µ(T )). (7)

Proof The function ϕ = ∂`tua, 0 ≤ ` ≤ k, solves the problem (N) (resp. (D))
with f replaced by f (`) ∈ L1(R+; L2

µ(T )), hence Theorem 1 applies. ut

It is natural to ask whether the solutions to (N) and (D) coincide (like in the
case p = 1, µ = 1 and α = 1, when T can be identified with R+). The answer
depends on the following two quantities:

〈
µα
〉

:=

p−1∑
i=0

µiαi,
〈µ
α

〉
≡
〈
µ/α

〉
:=

p−1∑
i=0

µi
αi
.

Theorem 2 ([35]) If
〈
µα
〉
≥ 1 or

〈
µ/α

〉
≤ 1, H1

µ,0(T ) and H1
µ(T ) coincide,

and thus un = ud. Otherwise, H1
µ,0(T ) ( H1

µ(T ), and un 6= ud.

2.4 Transparent boundary conditions

In [35] it was shown how to construct transparent boundary conditions for the
problems (N), (D). To recall the main ideas, we fix m ≥ 1, and assume that

Assumption 1 The source f(s, t) is s.t. for all t ≥ 0, supp f(., t) ⊆ T m−1.

We will use this assumption in the remainder of the article. When f satisfies
Assumption 1, for all ` ≥ 0, ∂`tu(Mm,j , 0) = 0, j = 0, . . . , pm − 1, because of
the finiteness of the wave propagation velocity.
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2.4.1 Auxiliary notations

We will denote by Vµ(T m) the following subspace of H1
µ(T m):

Vµ(T m) := {v ∈ H1
µ(T m) : v(M∗) = 0}.

Let us introduce additionally the trace operator γm : H1
µ(T m)→ Rpm , defined

for v ∈ H1
µ(T m) (recall that v is continuous on T m) by

γmv =
(
v(Mm,0), . . . , v(Mm,pm−1)

)
.

In the sequel, by 〈., .〉 we will denote the Euclidean scalar product in Rpm .
Obviously, by the usual trace theorem

‖γmv‖Rpm ≤ Cγm‖∂sv‖H1
µ(Tm), v ∈ Vµ(T m).

2.4.2 Transparent boundary conditions

We truncate the computational domain to the tree T m, and impose transpar-
ent boundary conditions at the (truncated) boundary of this tree:

−µm,j∂sum,j(Mm,j , t) = Bam,j(∂t)um,j(Mm,j , t), j = 0, . . . , pm − 1, (8)

where a ∈ {d, n} and Bam,j(∂t) is an exact DtN map for the Dirichlet (corresp.
Neumann problem), associated to the point Mm,j , that we describe below. Let

H1
0,loc(R≥0) = {v ∈ H1

loc(R≥0), v(0) = 0}.

Then this operator is a continuous mapping:

Bam,j(∂t) ∈ L
(
H1

0,loc(R+), L2
loc(R+)

)
.

As we will see later, this follows from (18) and Theorem 6. To define this
operator, let Tk := Tm,pj+k, k = 0, . . . , p − 1, are p-adic self-similar infinite
subtrees of T sharing Mm,j as the root vertex (cf. notation in the end of
Section 2.1 and (1)). Because of the self-similarity property, see Section 2.1,
the weights of their roots edges are respectively µk µm,j , k = 0, . . . , p−1. Then
the DtN Bam,j(∂t) associates to g ∈ H1

0,loc(R+) the quantity

Bam,j(∂t)g = −
p−1∑
k=0

µm,j µk ∂su
a
g,k(Mm,j , ·), (9)

where uag,k ∈ C1(R+; L2
µ(Tk)) is defined as follows:

1. if a = n, ung,k ∈ C(R+; H1
µ(Tk)) solves the Neumann problem:∫

Tk

µ∂2t u
n
g,k v +

∫
Tk

µ∂su
n
g,k ∂sv = 0, for all v ∈ Vn(Tk),

ung,k(Mm,j , t) = g(t), ung,k(., 0) = ∂tu
n
g,k(., 0) = 0. (10)
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2. if a = d, udg,k ∈ C(R+; H1
µ,0(Tm,pj+k)) solves the Dirichlet problem:∫

Tk

µ∂2t u
d
g,k v +

∫
Tk

µ∂su
d
g,k ∂sv = 0, for all v ∈ Vd(Tk),

udg,k(Mm,j , t) = g(t), udg,k(., 0) = ∂tu
d
g,k(., 0) = 0. (11)

The definition (9) of the DtN map is obviously consistent with the Kirchoff
conditions, cf. (8) and (K). In a short form, we will write

Bam(∂t) = diag
(
Bam,0(∂t), . . . ,Bam,pm−1(∂t)

)
. (12)

With this notation, the transparent condition (8) rewrites

− γm
(
µ∂su)(t) =

(
Bam(∂t)u

)
(t). (13)

Since the coefficients of the problem do not depend on time, Bam(∂t) is a con-
volution operator; the corresponding convolution kernel is not known in closed
form. The goal of this work is to provide an accurate discrete approximation
to Bam(∂t), which relies on a tractable characterization of its convolution kernel
that was obtained in [35]. In order to show how to obtain an expression for
Bam(∂t), let us first introduce the notion of the reference DtN operator.

Remark 3 The above boundary conditions are called transparent, because any
ua solving the Dirichlet (corresp. the Neumann problem) satisfies (9) exactly.

2.4.3 Reference DtN operator

A reference DtN operator associated to the Dirichlet/Neumann problems on
the reference tree T (i.e. the tree with `0,0 = 1 and the same µ, α) is a
continuous operator, see Theorem 6,

Λa(∂t) ∈ L
(
H1

0,loc(R+), L2
loc(R+)

)
, a ∈ {d, n},

defined as

Λa(∂t)g(t) = −∂suag(M∗, t), (14)

where uag ∈ C1
(
R+; L2

µ(T )
)

is defined as follows:

1. if a = n, ung ∈ C
(
R+; H1

µ(T )
)

solves the Neumann problem:∫
T

µ∂2t u
n
gv +

∫
T

µ∂su
n
g ∂sv = 0, for all v ∈ Vn(T ),

ung(M∗, t) = g(t), ung(., 0) = ∂tu
n
g(., 0) = 0.

(15)

2. if a = d, udg ∈ C
(
R+; H1

µ,0(T )
)

solves the Dirichlet problem:∫
T

µ∂2t u
d
g v +

∫
T

µ∂su
d
g ∂sv = 0, for all v ∈ Vd(T ),

udg(M
∗, t) = g(t), ung(., 0) = ∂tu

d
g(., 0) = 0.

(16)
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Again, the operator Λa(∂t) is a convolution operator, i.e. formally:

Λa(∂t)g(t) =

t∫
0

λa(t− τ)g(τ)dτ.

Defining the Fourier-Laplace transform of a causal tempered distribution λ as

(Fλ)(ω) =

∞∫
0

eiωtλ(t)dt, ω ∈ C,

we denote the symbol (Fλa)(ω) of the convolution operator Λa(∂t) by Λa(ω).

Characterization and properties of Λa(ω). Positivity of Λa(∂t). A practical
use of the CQ relies on the ability to compute the symbol of the DtN map,
cf. (9), for various complex frequencies ω. In Section 2.4.4 we will show that
this symbol can be easily expressed with the help of Λa(ω). The latter func-
tion, in turn, satisfies the following non-linear equation, which will serve the
computational purposes.

Lemma 1 (Lemma 5.3 in [35]) The symbol of the reference DtN operator
Λ(ω) = Λa(ω), a ∈ {n, d}, Λ : C \ R→ C, satisfies the following equation:

Λ(ω) = −ω ω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, Fα,µ(ω) =

p−1∑
i=0

µi
αi

Λ(αiω). (17)

Since the solutions of (17) are, in general, non-unique, to single out the so-
lutions that correspond to the symbols of the DtN operators, we restrict the
solution space to meromorphic even functions analytic in the origin, cf. The-
orem 4. To distinguish between the solutions corresponding to the Dirichlet
and Neumann problems (where needed, cf. Theorem 2), we fix the value Λ(0);
this ensures the uniqueness. This is similar to initial-value problems, where
fixing the value in zero leads to the uniqueness as well.

Theorem 3 (Lemma 5.5, Corollary 5.6 in [35])

– if
〈
µ/α

〉
≤ 1, the symbol of the reference DtN operator Λd(ω) = Λn(ω) is

the unique even meromorphic solution of (17) that satisfies Λ(0) = 0.

– let
〈
µ/α

〉
> 1 and

〈
µα
〉
< 1. Then the function Λd(ω) is the unique even

meromorphic solution of (17) that satisfies Λ(0) = 1− 1/
〈
µ/α

〉
.

Similarly, the function Λn(ω) is the unique even meromorphic solution of
the equation (17) that satisfies Λ(0) = 0.

– if
〈
µα
〉
≥ 1, Λd(ω) = Λn(ω) is the unique even meromorphic solution of

(17) that satisfies Λ(0) = 1− 1/
〈
µ/α

〉
.

The symbol Λa(ω) satisfies the following property, which extends the well-
known bounds for the DtN map for the classical wave equation on Rd [18].
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Theorem 4 Λa(ω) : C → C is an even meromorphic function, whose poles
are all real. Moreover,

(a) Im
(
ω−1Λa(ω)

)
< 0 for ω ∈ C+ = {z ∈ C : Im z > 0}.

(b) There exists C > 0, s.t. for all ω ∈ C+, |Λa(ω)| < C|ω|max
(
1, 1

Imω

)
.

Proof The fact that Λa(ω) is an even meromorphic function with real poles
was shown in [35, Section 5.1]. The statement (a) is from Theorem 5.9 in [35].
The bound (b) is new and its proof is given in Appendix A. ut

The time-domain analogue of Theorem 4 (a) is the following (important) pos-
itivity result.

Theorem 5 Let g ∈ H1
0,loc(R+). The reference DtN operator satisfies

T∫
0

(
Λa(∂t)g

)
(t) ∂tg(t) dt ≥ 0, a ∈ {d, n}, for all T > 0.

Proof The proof is classical. The result follows from energy identities for prob-
lems (15) and (16). One finds that

T∫
0

(
Λa(∂t)g

)
(t) ∂tg(t) dt = Eag (T ) :=

1

2

(
‖∂tuag(·, T )‖2 + ‖∂suag(·, T )‖2

)
.ut

On the other hand, Theorem 4 (b) translates into the time domain as follows.

Theorem 6 The operator Λa(∂t) : H1
0,loc(R+;R) → L2

loc(R+;R) is continu-
ous.

Proof The result is a trivial corollary of the upper bound for Λa(ω) stated in
Theorem 4(b) and the Plancherel’s inequality. We nonetheless chose to make
a proof completely in the time domain, see Appendix F.

2.4.4 Transparent boundary conditions via the reference DtN

Using the reference DtN, we can express the operator Bam,j(∂t) as follows [35]:

Bam,j(∂t) = µm,j α
−1
m,j

p−1∑
k=0

µk
αk
Λa(αkαm,j∂t). (18)

Let us remark that by Λa(αkαm,j∂t) we denote a convolution operator with
the symbol Λa(αkαm,jω). The above representation was derived using the Kir-
choff conditions and a scaling argument (recall in particular that αm,j is the
length of the branch Σm,j). We have thus reduced the problem of the construc-
tion of transparent boundary conditions to the problem of approximating a
convolution operator with the symbol Λa(ω).
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Remark 4 Everything that follows, unless stated otherwise, holds true both
for the Dirichlet and the Neumann problems, and the distinction between
these two problems is encoded in the proper choice of the symbol Λa. Hence,
where possible, we will omit the index a = {d, n}. We will study the Neumann
problem, keeping in mind that the Dirichlet problem can be handled similarly.

Remark 5 The construction of the transparent boundary conditions in the
present article can be extended to the case when the tree T is not fractal
(self-similar, as defined in [35]), however, some of its subtrees are.

2.4.5 Formulation on a truncated tree

With the notation from Section 2.4.1 and (12), the coupled problem with the
transparent BCs reads, in the weak form:

Find um ∈ C(R+;Vµ(T m))∩C1(R+; L2
µ(T m)), (19a)

s.t. um(., 0) = ∂tum(., 0) = 0, and, for all t > 0, (19b)

(∂2t um, v)T m + (∂sum, ∂sv)Tm + 〈Bm(∂t)γmum, γmv〉
= (f, v)Tm , for all v ∈ Vµ(T m).

(19c)

We have the following easy-to-prove result.

Theorem 7 For all f ∈ L1
loc(R+; L2

µ(T )) satisfying Assumption 1, (19) has
a unique solution um. Moreover, um = u|Tm , where u solves (N).

Proof It is not difficult to verify that u|Tm = um (by construction of the
transparent condition via the operator Bm(∂t), cf. (9, ??)). This implies the
existence for (19). The uniqueness follows easily from the energy identity

1

2

(
‖∂tum(T )‖2Tm + ‖∂sum(T )‖2Tm

)
+

T∫
0

〈Bm(∂t)γmum, γm∂tum〉 dt =

T∫
0

∫
T m

µ(s)f(s, t)um(s, t)ds dt.
(20)

If f = 0, (20), (18) and the positivity result of Theorem 5 imply um = 0. ut

3 Discrete transparent boundary conditions (Convolution
Quadrature (CQ))

The main idea behind the CQ is to construct the exact transparent boundary
conditions for the problem (3) semi-discretized in time [47,4]. Provided that
the time discretization scheme is chosen so that the resulting problem is stable,
the corresponding exact transparent boundary conditions inherit its stability.
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Remark 6 For the implementation of the convolution quadrature, it is impor-
tant that the symbol of the operator Bam,j(∂t), i.e. Ba

m,j(ω) (consequently,
Λa(ω)) can be evaluated for any frequency ω ∈ C+ = {z ∈ C : Im z > 0}. The
description of the respective method is postponed to Section 4, while here we
address the questions of stability and convergence of the method.

This section is organized as follows:

– in Section 3.1 we derive discrete transparent boundary conditions based on
the (implicit) trapezoid rule (also called θ-scheme with θ = 1

4 );

– Section 3.2 is dedicated to the analysis of the semi-discretization in space;

– in Section 3.3 we provide the time discretization, demonstrate its stability
and prove the convergence estimates;

– finally, Section 3.4 is dedicated to the solution of the discretized system.

3.1 Derivation of a CQ approximation for the transparent BCs

First, we will derive a discrete approximation for the reference DtN operator,
see Section 2.4.3, and next employ the obtained results to derive an approxima-
tion for the transparent boundary conditions. Let ∆t be a time step, tn = n∆t.
We denote by un an approximation to u(., tn). Also,

D∆tv
n =

vn+1 − vn−1

2∆t
, D2

∆tv
n =

vn+1 − 2vn + vn−1

(∆t)2
,

{vn}1/4 =
vn+1 + 2vn + vn−1

4
, vn+1/2 =

vn + vn+1

2
,

D∆tv
n+1/2 =

vn+1 − vn

∆t
.

(21)

3.1.1 Discrete approximation of Λ(∂t)

To derive the CQ approximation of Λ(∂t), we will proceed like in the con-
tinuous case, see Section 2.4.3. We start with the problem (15), which we
semi-discretize in time using the trapezoid rule (θ-scheme with θ = 1

4 ). As
well-known [15], this scheme is unconditionally stable, and thus the discretiza-
tion results in a well-posed and stable problem. Recall that our goal is to
approximate the transparent boundary conditions (8), cf. (18); because of the
finite velocity of the wave propagation, um(Mm,j , .) vanishes in the vicinity of
t = 0 (cf. Assumption 1); therefore, without loss of generality in what follows
we assume that g(0) = g′(0) = g′′(0) = 0. The discretized problem then reads:

Given u0g = 0, u1g = 0, ung (M∗) = gn, find (ung )n∈N ⊂ H1
µ(T ), s.t.(

D2
∆tu

n
g , v
)

+
(
∂s{ung }1/4, ∂sv

)
= 0, for all v ∈ Vn, n ≥ 1.

(22)
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The reference DtN is then defined analogously to the continuous case (14),
Λ(∂∆tt ) : RN → RN and, with g = (gn)n∈N,(

Λ(∂∆tt )g
)n

= −∂sung (M∗), n ≥ 0. (23)

Where convenient, we will write instead of the above Λ(∂∆tt )gn, with the ob-
vious abuse of notation. In the above form, the reference DtN operator is not
suitable for the computations; thus, let us find a tractable expression for its
discrete symbol. For this we will use the Z-transform.

The symbol of the discrete DtN operator. Let us apply the Z-transform to the
above problem. Recall that for a sequence (vn)n∈N, s.t. |vn| < C(1+n)q, q ≥ 0,
its Z-transform is defined as follows:

Z : v = (vn)n∈N 7→ V (z) =

∞∑
n=0

vnzn, z ∈ B1(0) = {z ∈ C : |z| < 1}. (24)

The function V is obviously analytic in B1(0). Applying the Z-transform to
(22), and using the following property of the Z-transform of the shift τ :

for v = (0, v1, v2, . . .), τv := (v1, v2, . . .) and Z(τv) = z−1V (z), (25)

we deduce that Ug(z) ∈ H1
µ(T ) satisfies Ug(M

∗, z) = G(z) and

−
(
i
δ(z)

∆t

)2

(Ug, v) + (∂sUg, ∂sv) = 0, ∀ v ∈ Vn, δ(z) = 2
1− z
1 + z

. (26)

Since iδ : B1(0)→ C+ = {ω ∈ C : Imω > 0}, the problem (26) is coercive for
any z ∈ B1(0). With the help of (26), we can then define the discrete symbol
of the reference DtN as the mapping

Λ∆t : C→ C, Λ∆t(z) : G(M∗, z)→ −∂sUg(M∗, z). (27)

Comparing (26) and the definition of the symbol Λ(ω), we obtain

Λ∆t(z) ≡ Λ

(
i
δ(z)

∆t

)
. (28)

Because Λ(ω) is analytic in C+ := {ω ∈ C : Imω > 0}, cf. Theorem 4, and

z 7→ iδ(z)
∆t is an analytic function from B1(0) into C+, we conclude that Λ∆t (z)

is analytic inside B1(0). Thus, Λ∆t can be expressed via its Laurent series

Λ∆t (z) =

∞∑
`=0

λ∆t` z`, |z| < 1. (29)

The coefficients λ∆t` are called convolution weights. Alternatively, they can be
represented via the Cauchy integrals (with γ being a directly oriented circle
of radius r < 1 centered at the origin):

λ∆t` =
1

2πi

∫
γ

z−`−1Λ∆t (z) dz =
1

2πi

∫
γ

z−`−1Λ

(
i
δ(z)

∆t

)
dz. (30)
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Λ(∂∆tt ) as a convolution operator. Inverting the Z-transform in (27), using
(29) and the property (25), we obtain the discretization of the reference DtN:

−∂sung (M∗) =

n∑
`=0

λ∆t` gn−` =: Λ(∂∆tt )gn. (31)

In what follows, provided a convolution operator with the symbol KKK(ω) (and
the respective discrete symbolKKK

(
i δ(z)/∆t

)
), we will use the notationK(∂∆tt )gn

to denote the discrete convolution of the discretized operator and the sequence
(gn)n∈N (cf. Remark ?? for the continuous case). To compute the convolution
(31), it is sufficient to know the convolution weights λ∆t` ; classically [40], their
evaluation is done based on the fast numerical computation of the Cauchy
integrals (30), see Section 4.1.

Positivity properties of Λ(∂∆tt ). The following result, which we state here for
consistency reasons, is a discrete counterpart of Theorem 5.

Theorem 8 Let (gn)n∈N ∈ RN, with g0 = g1 = 0. Then, for all N ≥ 2,

N−1∑
n=1

{
Λ(∂∆tt )gn

}
1/4

D∆tg
n ≥ 0.

Proof The proof mimics the proof of Theorem 5, namely, the result is obtained
by testing the strong form of (22) with D∆tu

n
g . In particular one finds

N−1∑
n=1

{
Λ(∂∆tt )gn

}
1/4

D∆tg
n =

1

2

(
‖D∆tu

N− 1
2

g ‖2L2
µ(T ) + ‖∂su

N− 1
2

g ‖2L2
µ(T )

)
. ut

3.1.2 Discrete approximation of the operators Bm,j (∂t)

To derive a discrete approximation of Bm,j (∂t), we follow the same arguments
as in the continuous case, cf. Sections 2.4.2 and 2.4.4. This yields the following
discrete counterpart of (18), cf. (23) for the definition of Λ(∂∆tt ):

Bm,j
(
∂∆tt

)
= µm,j α

−1
m,j

p−1∑
k=0

µk
αk
Λ
(
αm,jαk∂

∆t
t

)
, (32)

which is a discrete convolution operator with the symbol

B∆tm,j(z) = µm,j α
−1
m,j

p−1∑
k=0

µk
αk

Λ
(
iαm,jαk

δ(z)

∆t

)
, (33)

cf. (28). As a consequence, the convolution weights
(
b∆tm,j;n

)
of B∆tm,j(z) are

related to the convolution weights
(
λ∆tn

)
via the identity

b∆tm,j;n = µm,j α
−1
m,j

p−1∑
k=0

µk
αk
λ
∆tm,j;k
n , ∆tm,j;k =

∆t

αm,j αk
. (34)
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Finally, let us introduce the notation for the discrete version of the aggregate
operator Bm(∂t), cf. (12): its discretization will be denoted by Bm(∂∆tt ), the
corresponding symbol by B∆tm (z), and the respective convolution weights by
b∆tm,n (remark that they are m×m diagonal matrices).

3.2 Semi-discretization in space

3.2.1 Semi-discretization in space: basics

To semi-discretize the system (19) in space, we use the Lagrange P1-elements.
Let us parametrize each edge Σn,j , identified with a segment [M∗n,j , Mn,j ],
with an abscissa sn,j ∈ [0, `n,j ], and define a quasi-uniform mesh

Tn,j = {skn,j , k = 0, . . . ,Kn,j}, s.t. skn,j < sk+1
n,j , (35)

where s0n,j is identified with M∗n,j , and s
Kn,j
n,j with Mn,j .

The mesh on the truncated tree T m is then
m⋃
n=0

pn−1⋃
j=0

Tn,j . Let

hn,j := max
1≤k≤Kn,j

|skn,j − sk−1n,j |, h := max
n

max
j
hn,j . (36)

Let the finite element space be defined as Uh ⊂ Vµ(T m), Uh = span{ϕk, k =
0, . . . , Ns − 1}. The construction of this basis is classical on the nodes interior
to Σn,j , but a special treatment is needed in the vertices of the graph Mn,j ,
see [2]: we define the respective shape function as a piecewise-linear function
that equals to 1 in Mn,j and vanishes in the rest of the nodes, see Figure 2.

Mn,j

Fig. 2 A shape function ϕ s.t. ϕ(Mn,j) = 1.

In the following, uh =
∑
u(k)ϕk will denote the approximation to the exact

solution um, u(k) being a nodal value. For convenience we omit the index m.

3.2.2 Semi-discrete system: formulation and stability

The semi-discrete formulation of (19) with the exact transparent boundary
conditions thus reads:

Find uh ∈ C1(R+;Uh), s.t. uh(0) = ∂tuh(0) = 0, and, for all vh ∈ Uh,(
∂2t uh, vh

)
Tm + (∂suh, ∂svh)Tm + 〈Bm(∂t)γmuh, γmvh〉 = (f, vh)T m . (37)
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The stability of the above problem follows trivially using the argument of
Theorem 7; however, the existence of a solution is somewhat more difficult.
For analysis purposes, we will rewrite the above problem in a different form.

Rewriting of (37). The idea is to propose an auxiliary semi-discrete problem,
set on the whole tree T , whose restriction to T m solves (37).

Let us introduce the following two Hilbert spaces:

Lh := {vh ∈ L2
µ(T ) : vh|Tm ∈ Uh}, ‖.‖Lh := ‖.‖L2

µ
,

Xh := {vh ∈ Vn(T ) : vh|T m ∈ Uh}, ‖.‖Xh := ‖.‖H1
µ
. (38)

Contrary to the space Uh, these spaces are infinite-dimensional, the reason
why we use h as a superscript. In particular, the restriction of functions from
Xh to each Tm+1,pj+k, j = 0, . . . , pm, k = 0, . . . , p − 1 (see the end of Section
2.1 and (1) for the notation) coincides with the space H1

µ(Tm+1,pj+k) (recall
that we consider the Neumann problem).

Let us now study the following auxiliary problem (a counterpart of (37)):

find ūh ∈ C(R+;Xh) ∩ C1(R+;Lh), s.t. ūh(0) = ∂tūh(0) = 0, and

(∂2t ūh, vh) + (∂sūh, ∂svh) = (f, vh), for all vh ∈ Xh. (39)

Using the above auxiliary problem, it will be easy to show the well-posedness
and stability of (37). This approach to the analysis of the coupled problem
bears some similarities with [26,43], see also references therein.

Well-posedness and stability of (37). We proceed as follows: first, in Lemma
2 we show the well-posedness/stability of (39), next, in Lemma 3 argue that
ūn|T m solves (37). Finally, a complete well-posedness/stability result for (37)
is summarized in Theorem 9.

Lemma 2 (Well-posedness, stability of (39)) For any source term f ∈
L1
loc(R+; L2

µ(T )), the problem (39) has a unique solution. Moreover, it satisfies
the stability bound (6) with u replaced by ūh.

Proof The existence and uniqueness to (39) follows from the semigroup theory.
In particular, let us introduce the operator Ah : D(Ah) → Lh defined for
vh, wh ∈ Xh by (Ahvh, wh) = a(vh, wh) :=(∇vh,∇wh). Here

D(Ah) = {vh ∈ Xh : ∃ C(vh) > 0, |a(vh, wh)| ≤ C(vh) ‖wh‖Lh , ∀ wh ∈ Xh}.

Then the problem (39) can be reformulated as an abstract wave equation

d2

dt2
ūh +Ahūh = Πhf,

where Πh is the L2
µ-orthogonal projector on Lh. We conclude using the same

arguments as in the proof of Theorem 1. The stability bound also follows like
in the proof of Theorem 1. ut
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In the following we state that the solution of (39) solves (37).

Lemma 3 Let f ∈ L1
loc(R+; L2

µ(T )) satisfy Assumption 1, and let ūh solve
(39). Then, the restriction of ūh to T m is the solution uh of (37).

Proof We can split the variational formulation in (39) into two parts:

(∂2t ūh, vh)T m + (∂sūh, ∂svh)T m

+ (∂2t ūh, vh)T \T m + (∂sūh, ∂svh)T \T m = (f, vh)Tm , ∀vh ∈ Xh.
(40)

Taking the test functions vh vanishing in T m, we deduce that

(∂2t ūh, vh)T \T m + (∂sūh, ∂svh)T \T m = 0,

for all vh ∈ H1
µ(T \ T m), s.t. vh(Mm,j) = 0, j = 0, . . . , pm − 1,

i.e. (??) with g(t) ≡ ūh(Mm,j , t). Integrating by parts the two last terms in the
r.h.s. of (40) and using the definition of the transparent BCs (9), we conclude
that ūh ∈ Xh satisfies: for all vh ∈ Xh,

(∂2t ūh, vh)Tm + (∂sūh, ∂svh)T m + 〈Bm(∂t)γmūh, γmvh〉 = (f, vh)T m . (41)

Since Xh
∣∣
Tm ≡ Uh, we deduce that ūh|Tm solves (37). ut

The following theorem is a simple corollary of the two above results.

Theorem 9 (Well-posedness, stability of (37)) The problem (37) has a
unique solution for any f ∈ L1

loc(R+; L2
µ(T m)). Also, for all T > 0, 0 ≤ t ≤ T ,

‖∂tuh(t)‖T m + ‖∂suh(t)‖Tm ≤
√

2‖f‖L1(0,T ;L2
µ(Tm)). (42)

Proof Existence: by Lemma 2, there exists a unique ūh solving (37); by Lemma
3, ūh|Tm ∈ Uh satisfies (39). The uniqueness is a corollary of (42), which, in
turn, follows from the same argument as in Theorem 7. ut

3.2.3 Convergence estimates for the spatial semi-discretization

In this section we will compare um solving (19) to uh solving (37). The proofs
presented below use classical techniques of the FEM convergence for time-
dependent problems, see e.g. [31] and references therein, or the monograph
[19, Chapter 6]. The difference between our case and these works lies in the
fact that we analyze the problem (39), posed on an infinite-dimensional, rather
than FEM, space. We shall make the following regularity assumption on f (the
assumption of vanishing derivatives at t = 0 is not necessary but allows us to
simplify the obtained estimates):

f ∈W 3,1
loc (R+; L2

µ(T m)), ∂`tf(., 0) = 0, 0 ≤ ` ≤ 2. (43)
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Theorem 10 (Convergence of the spatial discretization) Assume (43).
Let uh solve (37), and um solve (19). Then, for all T > 0, with CT =
C max(1, T ), C > 0, it holds, for all 0 ≤ t ≤ T ,

‖∂t(um − uh)(t)‖L2
µ(T m) + ‖∂s(um − uh)(t)‖L2

µ(Tm) ≤ CTh‖f‖W 3,1
(
0,T ;L2

µ(T m)
).

We will prove this result by comparing the solution u of (N) to the solution
ūh of (39), which is justified by Theorem 7 and Lemma 3. Obviously,

‖∂t(um − uh)‖L2
µ(T m) + ‖∂s(um − uh)‖L2

µ(Tm) ≤

≤ ‖∂t(u− ūh)‖L2
µ(Tm) + ‖∂s(u− ūh)‖L2

µ(T m).
(44)

The proof itself is quite classical. Let us introduce an elliptic projection oper-
ator Ph : Vn(T )→ Xh defined for v ∈ Vn(T ) via

(v − Phv, vh)T + (∂s(v − Phv), ∂svh)T = 0, for all vh ∈ Xh. (45)

To analyze the convergence, we split the error into two parts:

u− ūh = ηh + εh, ηh = u− Phu, εh = Phu− ūh, (46)

and estimate εh in terms of ηh (which, in turn, will be shown to be small), via
the energy techniques. Let us first provide lemmas that quantify ηh.

Estimates on the projection error. Let us introduce the space

H̃2
µ(T m) := {v ∈ H1

µ(T m) : ∂2sv
∣∣
Σ`,j
∈ L2(Σ`,j), 0 ≤ ` ≤ m, 0 ≤ j ≤ p` − 1},

‖v‖2
H̃2
µ(Tm)

= ‖v‖2H1
µ(T m) + |v|2

H̃2
µ(Tm)

, |v|2
H̃2
µ(T m)

:=

m∑
`=0

p`−1∑
j=0

µ`,j

∫
Σ`,j

∣∣∂2sv∣∣2 ds.
The following is a usual approximation result extended to Xh. The proof,
based on Céa’s lemma, is left to the reader.

Lemma 4 For v ∈ Vn(T ), s.t. v|T m ∈ H̃2
µ(T m), it holds

‖v − Phv‖L2
µ(T ) + ‖∂s(v − Phv)‖L2

µ(T ) ≤ C h |v|H̃2
µ(T m),

where C depends on p, m only.

As a corollary of this result, we obtain the following.

Lemma 5 (Estimate for ‖∂kt ηh‖) Let f satisfy (43). Let u solve (N) and
ηh be defined in (46). Then, for all T > 0, 0 ≤ t ≤ T , and all 0 ≤ ` ≤ 2,

‖∂`tηh(t)‖H1
µ(T ) ≤ Ch‖∂`+1

t f‖L1(0,T ;L2
µ(T )). (47)
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Proof By Corollary 1, u ∈ C4(R+; L2
µ(T )). By Lemma 4, for v = ∂`tu,

‖∂`tηh(t)‖H1
µ(T ) ≤ Ch |∂`tu(t)|H̃2

µ(T m). (48)

Let us prove that the right-hand side is bounded and provide an explicit bound
for it. Since on all edges Σ`,j , it holds that ∂2su = ∂2t u− f , we have

|∂`tu(t)|H̃2
µ(T m) ≤ ‖∂

2+`
t u(t)‖L2

µ(Tm) + ‖∂`tf(t)‖L2
µ(T m).

One concludes using (48), (7) and ‖∂`tf(t)‖L2
µ(T m) ≤

t∫
0

∥∥∂`+1
t f(τ)

∥∥
L2
µ(Tm)

dτ .

ut

Proof (Proof of Theorem 10) As discussed, see (44), we will compare the so-
lution u of (N) to ūh from (39). With (46), we can see that εh ∈ Xh satisfies(

∂2t εh, vh
)

+ (∂sεh, ∂svh) = −(∂2t ηh, vh)− (∂sηh, ∂svh), vh ∈ Xh.

By (45) and the definition of ηh in (46),(
∂2t εh, vh

)
+ (∂sεh, ∂svh) = −(∂2t ηh, vh) + (ηh, vh), vh ∈ Xh.

By Lemma 2, the bound (6) applies to εh defined as above; thus, for all T ≥ 0
and all 0 ≤ t ≤ T ,

‖∂tεh(t)‖+ ‖∂sεh(t)‖ ≤ C
T∫

0

(
‖∂2t ηh(τ)‖L2

µ(T ) + ‖ηh(τ)‖L2
µ(T )

)
dt

≤ C̃ h T
T∫

0

(
‖∂3t f(τ)‖L2

µ(T m) + ‖∂tf(τ)‖L2
µ(Tm)

)
dt,

where the last inequality follows from (47). Combining the above bound with
the triangle inequality, i.e.

‖∂t(u− uh)‖+ ‖∂s(u− uh)‖ ≤ ‖∂tηh‖+ ‖∂sηh‖+ ‖∂tεh‖+ ‖∂sεh‖,

and using (47) to bound the first two terms in the right hand side, we obtain
the desired result in the statement of the theorem. ut

Remark 7 Obviously, the convergence is only O(h) because we measure the
error in the energy norm; using the Aubin-Nitsche techniques, we can deduce
the convergence O(h2) when measuring ‖um − uh‖L2

µ(T m).
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3.3 Fully discrete problem

For the time discretization of the semi-discrete problem (37), we wish to use
the leap-frog scheme, at least for the first two terms of the left hand side of
(37). An advantage is that, if a mass lumping procedure is applied [16], the
scheme becomes fully explicit. Moreover, if one uses a uniform space step h
for meshing T m, and the time step ∆t equals h, the scheme becomes exact.

In what follows, for simplicity, we shall not consider mass lumping in our
analysis, but this analysis could be easily extended to the mass lumped case.
The main issue is the approximation of the boundary term in (37). This is
where the discrete operators Bm(∂∆tt ) will be involved. In order to guarantee
the stability of the resulting scheme, we will use the equivalence between (37)
and (39) and discretize (39) in time in a specific way.

3.3.1 Construction of the numerical scheme

In what follows we denote by unh (resp. ūnh) a discrete approximation to uh(tn)
(resp. ūh(tn)). To discretize (37), we start with the split variational formula-
tion (40). The key point is that we use an explicit/implicit time discretiza-
tion of the stiffness bilinear form: we use (∂sū

n
h, ∂sv)T m for approximating

(∂sūh(tn), ∂sv)T m (thus obtaining the leapfrog discretization) and the θ-scheme
with θ = 1

4 , namely (∂s{ūnh}1/4, ∂sv)T \T m , for approximating the remaining
term (∂sūh(tn), ∂sv)T \T m . The resulting scheme reads:(

D2
∆tū

n
h, vh

)
Tm +

(
∂sū

n
h, ∂svh

)
T m (49)

+
(
D2
∆tū

n
h, vh

)
T \T m +

(
∂s
{
ūnh
}
1/4
, ∂svh

)
T \T m

= (fn, vh)T m , ∀vh ∈ Xh.

According to Lemma 3, it is natural to define unh as the restriction to T m of
ūnh (assuming it exists, it will be shown in Lemma 6). Proceeding like in the
proof of Lemma 3, and using the definition of the operators Bm(∂∆tt ), Section
3.1.2, it is easy to see that unh ∈ Uh satisfies(

D2
∆tu

n
h, vh

)
Tm + (∂su

n
h, ∂svh)T m

+ 〈{Bm(∂∆tt )γmu
n
h}1/4, γmvh〉 = (fn, vh)T m , ∀ vh ∈ Uh,

(50)

which, assuming also that f(., 0) = ∂tf(., 0) = 0, we complete with

u0h = 0, u1h = 0. (51)

Remark 8 Reinterpreting (50), we see that the discrete transparent condition
issued from (50) (to be compared with the continuous one (13)) reads

−γm
(
µ∂su

n
h) =

{
Bm(∂∆tt )γmu

n
h

}
1/4
, (52)

which is not a priori the most natural (or naive) idea.
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3.3.2 Well-posedness and stability of the fully discrete problem (50, 51).

This section dedicated to the proof of the well-posedness and stability of (50,
51) under the following CFL condition

C2
cfl =

∆t2

4
sup

vh∈Uh:‖vh‖L2
µ(Tm)=1

‖∂svh‖2L2
µ(T m) < 1. (53)

The CFL condition (53) comes from the definition of the discrete energy:

E
n+ 1

2

h :=
1

2

(∥∥D∆tu
n+ 1

2

h

∥∥2
Tm −

∆t2

4

∥∥∂sD∆tu
n+ 1

2

h

∥∥2
Tm
)

+
1

2

∥∥∂sun+ 1
2

h

∥∥2
Tm ,

which is positive when (53) holds. More precisely :

E
n+ 1

2

h ≥ 1

2

(
1− C2

cfl

)∥∥D∆tu
n+ 1

2

h

∥∥2
T m +

1

2

∥∥∂sun+ 1
2

h

∥∥2
T m . (54)

Theorem 11 Let (53) hold true and fn ∈ L2
µ(T m), n ∈ N. The scheme (50,

51) has a unique solution unh, n ∈ N. Moreover,√
E
n+ 1

2

h ≤ C∆t
n∑
k=1

‖fk‖Tm , (55)

where C depends on Ccfl only.

Proof It suffices to show the stability bound (55), which implies uniqueness.
Then, the existence is obvious, since the problem is finite-dimensional.

The main trick for deriving the energy identity consists in writing(
∂su

n
h, ∂svh

)
T m =

({
∂su

n
h

}
1/4
, ∂svh

)
T m −

∆t2

4

(
D2
∆t(∂su

n
h), ∂svh

)
T m . (56)

Then, testing (50) written for n = k with vh = D∆tu
k
h, yields

1

∆t

(
E
k+ 1

2

h − Ek−
1
2

h

)
+
〈
{Bm(∂∆tt )γmu

k
h}1/4, D∆tγmu

k
h

〉
= (fk, D∆tu

k
h)Tm .

Summing the above in k = 1, . . . , n, and using E
1
2

h = 0 results in

E
n+ 1

2

h +∆t

n∑
k=1

〈
{Bm(∂∆tt )γmu

k
h}1/4, D∆tγmu

k
h

〉
= ∆t

n∑
k=1

(fk, D∆tu
k
h)T m . (57)

Let us bound the right-hand side of the above via E
k+ 1

2

h , k ≤ n. First of all,∥∥D∆tu
k
h

∥∥
T m ≤

1

2

(
‖D∆tu

k+ 1
2

h ‖T m + ‖D∆tu
k− 1

2

h ‖T m
)

(54)

≤ C

(√
E
k+ 1

2

h +

√
E
k− 1

2

h

)
.
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The above yields (where we again use E
1
2

h = 0)∣∣∣∆t n∑
k=1

(fk, D∆tu
k
h)Tm

∣∣∣ ≤ C∆t ‖fn‖Tm
√
E
n+ 1

2

h

+ C∆t
n−1∑
k=1

( ∥∥fk∥∥T m+
∥∥fk+1

∥∥
Tm
)√

E
k+ 1

2

h .

(58)

Since the last term in the left-hand side of (57) is non-negative (see (32) and
Theorem 8), we deduce that

E
n+ 1

2

h ≤ C∆t

(
‖fn‖T m

√
E
n+ 1

2

h +

n−1∑
k=0

(∥∥fk∥∥Tm +
∥∥fk+1

∥∥
Tm
)√

E
k+ 1

2

h

)
.

A discrete Gronwall inequality (cf. [32, Appendix E]) yields the desired stabil-
ity bound. ut

Remark 9 Using the fact that the function µ is constant along each edge, it
is straightforward to check that, if h denotes the smallest step of the mesh of
T m, then, for some constant c0 independent of µ, we have

C2
cfl ≤ c20

∆t2

h2
,

so that c0∆t/h < 1 is a sufficient stability condition. Moreover, a finer analysis
would also provide stability in the equality case, cf. e.g. [29, Chapter 6].

3.3.3 Error estimates for the time discretization

We compare in this section uh(t) and unh. To simplify the computations we
will assume that f satisfies (43).

Theorem 12 Assume that f satisfies (43) and the CFL condition (53) holds.
Let uh and unh be the solutions of (37) and (50, 51), respectively. Then, with
C(tn) = cmax(1, tn)2, where c > 0 depends only on Ccfl,

‖uh(tn)− unh‖T m ≤ C(tn)∆t2
∫ tn

0

‖∂3t f‖T m dt, (59)

∥∥∂suh(tn+
1
2 )− ∂su

n+ 1
2

h

∥∥
Tm ≤ C(tn)∆t2

∫ tn+1

0

‖∂3t f‖T m dt. (60)

To prove the convergence of the time discretization, we will use the equivalence
between (49) and (50), more precisely that unh is the restriction to T m of the
solution ūnh of (49). The existence of ūnh the subject of the next lemma.

Lemma 6 (Well-posedness of (49)) If f satisfies (43), there exists a unique
sequence ūnh ∈ Xh, that solves (49) and satisfies ū0h = ū1h = 0.
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Proof The proof is slightly non-classical, because Xh is infinite-dimensional.
On Xh we can define an equivalent scalar product:

(v, w)Xh =

∫
T

µ(s)v(s)w(s) +

∫
T \T m

µ(s) ∂sv(s) ∂sw(s). (61)

Equipped with the above scalar product, Xh is a Hilbert space, because
Xh
∣∣
T m = Uh, where Uh is a finite-dimensional space, and thus the respec-

tive norm is equivalent to the H1
µ-norm on Xh. Let us next rewrite (49), by

singling out terms with ūn+1
h , cf. (61):

(
ūn+1
h , vh

)
T +

∆t2

4
(∂sū

n+1
h , ∂svh)T \T m = 〈`nh, vh〉 ∀ vh ∈ Xh, (62)

where


〈`nh, vh〉 := ∆t2(fn, vh)Tm +

(
2ūnh − ūn−1h , vh

)
T −∆t

2(∂sū
n
h, ∂svh)T m

−
(
∆t2/4

) (
∂s(2 ū

n
h + ūn−1h ), ∂svh

)
T \T m .

Note that 〈`nh, vh〉 defines a bounded linear functional on Xh; in particular,

|(∂sūnh, ∂svh)T m | ≤ C(h) ‖ūh‖Tm‖vh‖T m ,

because ūh|Tm , vh|T m ∈ Uh. The existence and uniqueness of the solution to
the above thus follows from Lax-Milgram’s lemma (cf. (61)). ut

Based on the definition of the discrete transparent boundary conditions, cf.
Section 3.1.1, and the proof of Lemma 3 in the semi-discrete case, we can state
the following result.

Lemma 7 The solution (ūnh)n∈N of (49) with the initial conditions ū0h = ū1h =
0 and the solution (unh)n∈N of (50, 51) satisfy ūnh|T m = unh, n ∈ N.

The stability of (49) relies, like for (50), on an energy estimate. Let us define

E
n+ 1

2

h :=
1

2

(∥∥D∆tū
n+ 1

2

h

∥∥2
T −

∆t2

4

∥∥∂sD∆tū
n+ 1

2

h

∥∥2
Tm
)

+
1

2

∥∥∂sūn+ 1
2

h

∥∥2
T ,

which satisfies (as in (54))

E
n+ 1

2

h ≥
1− C2

cfl

2

∥∥D∆tū
n+ 1

2

h

∥∥2
T m +

1

2

∥∥D∆tū
n+ 1

2

h

∥∥2
T \T m +

1

2

∥∥∂sūn+ 1
2

h

∥∥2
T . (63)

Then, proceeding as in Theorem 11, one easily proves

Lemma 8 (Stability of (49)) Under the assumptions of Theorem 12, one
has, with C > 0 depending on Ccfl only, for all n ∈ N,√

E
n+ 1

2

h ≤ C∆t
n∑
k=1

‖fk‖. (64)
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We now have all the auxiliary results needed to prove Theorem 12.

Proof (Proof of Theorem 12) By Lemmas 3 and 7, instead of comparing unh
with uh(tn), we will compare the solution ūnh of (49) with initial conditions
ū0h = ū1h = 0 with ūh(tn) solving (39). The proof is not fully standard, because
in one part of the domain an explicit scheme is used, while an implicit scheme
is employed in the other part.
Step 1. Error bound in the energy norm. The error ēnh = ūnh − ūh(tn) ∈ Xh

satisfies, for any vh ∈ Xh,

(D2
∆tē

n
h, vh)T + (∂sē

n
h, ∂svh)Tm + (∂s{ēnh}1/4, ∂svh)T \T m (65)

= −(D2
∆tūh(tn)− ∂2t ūh(tn), vh)T − (∂s

(
{ūh(tn)}1/4 − ūh(tn)

)
, ∂svh)T \T m ,

with the initial condition ē0h = 0, and ē1h = ū1h − ūh(t1) ≡ −ūh(t1) to be
quantified later. Let us introduce the truncation errors

δnh := D2
∆tūh(tn)− ∂2t ūh(tn), εnh := ∂s

(
{ūh(tn)}1/4 − ūh(tn)

)
.

Testing (65), written for n = k, with vh = D∆tē
k
h, we obtain (with (56) again)

E
k+ 1

2

e − Ek−
1
2

e

∆t
= − (δkh, D∆tē

k
h)T − (εkh, D∆t∂sē

k
h)T \T m , (66)

where E
k+ 1

2

e is the discrete energy of the error ēkh:

E
n+ 1

2

e :=
1

2

(∥∥D∆tē
n+ 1

2

h

∥∥2
T −

∆t2

4

∥∥∂sD∆tē
n+ 1

2

h

∥∥2
T m
)

+
1

2

∥∥∂sēn+ 1
2

h

∥∥2
T .

Summing (66) in k = 1, . . . , n, and next applying a discrete integration by
parts to the sum involving D∆t∂se

k
h, we end up with the following identity:

E
n+ 1

2

e = E
1
2

e −∆t
n∑
k=1

(
δkh, D∆tē

k
h

)
T − (εnh, ∂sē

n+ 1
2

h )T \T m +
(
ε1h, ∂sē

1/2
h

)
T \T m

+∆t

n−1∑
k=1

(εk+1
h − εkh
∆t

, ∂sē
k+ 1

2

h

)
T \T m

.

The right hand side can be bounded using (63) and the Cauchy-Schwarz
inequality (see also the proof of Theorem 11):

E
n+ 1

2

e ≤ E
1
2

e + ∆t ‖δnh‖
√
E
n+ 1

2

e

+ C

(
∆t

n−1∑
k=0

‖δkh‖+ ‖δk+1
h ‖

2

√
E
k+ 1

2

e + ‖εnh‖T \T m
√
E
n+ 1

2

e

+‖ε1h‖T \T m
√
E

1
2

e + ∆t

n−1∑
k=1

∥∥∥εk+1
h − εkh
∆t

∥∥∥
T \T m

√
E
k+ 1

2

e

)
.
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The constant C depends on the CFL (53). Applying to the above a discrete
Gronwall inequality (see [32, Appendix E]), we obtain (with a different con-
stant C > 0):√

E
n+ 1

2

e ≤
√
E

1
2

e + C max
1≤k≤n

‖εkh‖T \T m + C ∆t

n∑
k=1

‖δkh‖

+ C ∆t

n−1∑
k=1

∥∥∥εk+1
h − εkh
∆t

∥∥
T \T m .

(67)

Step 2. Bounding the error stemming from initial conditions. This is classical.
One simply uses Taylor expansions and a priori estimates of ūh(t), as a solution
of (39), similar to the ones of Corollary 1, to get√

E
1
2

e ≤ C ∆t2
∆t∫
0

‖∂3t f(τ)‖Tmdτ. (68)

Step 3. Bounding in (67) the terms due to the consistency errors. To obtain
a bound on the right-hand side of (67), we use the Taylor theorem again:

‖δkh‖ ≤ c ∆t2 sup
t∈(tk−1,tk+1)

‖∂4t ūh(t)‖,

‖εkh‖T \T m ≤ c ∆t2 sup
t∈(tk−1,tk+1)

‖∂2t ∂sūh(t)‖T \T m ,

∥∥εkh − εk−1h

∆t

∥∥∥
T \T m

≤ c ∆t2 sup
t∈(tk−1,tk+1)

‖∂3t ∂sūh(t)‖T \T m .

(69)

Step 4. Bounding the energy of the error. Substituting (68) and (69) into (67),
results in (for some C > 0),√

E
n+ 1

2

e ≤ C ∆t2
∆t∫
0

‖∂3t f‖T m dt+ C ∆t2 sup
t∈(0,tn+1)

‖∂2t ∂sūh(t)‖T \T m

+ C tn∆t2
(

sup
t∈(0,tn+1)

‖∂3t ∂sūh(t)‖T \T m + sup
t∈(0,tn+1)

‖∂4t ūh(t)‖T \T m
)
.

Applying again a priori estimates for ūh similar to the ones of Corollary 1, we
obtain the following bound, with C > 0 depending on Ccfl:√

E
n+ 1

2

e ≤ C ∆t2 max(1, tn+1)‖∂3t f‖L1(0,tn+1;L2
µ(T m)). (70)

Step 5. Derivation of (59, 60). Combining (70) with (63) yields, with C̃ > 0
depending on Ccfl,∥∥∥ ēn+1

h − ēnh
∆t

∥∥∥
T

+
∥∥∂sēn+ 1

2

h

∥∥
T ≤ C̃ ∆t

2 max(1, tn+1) ‖f‖L1(0,tn+1;L2
µ(T )) . (71)
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A classical argument of telescopic sums (with C(tn) as in the statement of the
theorem) yields

‖ēnh‖Tm = ‖ūh(tn)− ūnh‖T m ≤ C(tn)∆t2
∫ tn

0

‖∂3t f‖T m dt. (72)

Next, writing

ūh(tn+
1
2 )− ūn+

1
2

h = ē
n+ 1

2

h +

(
ūh(tn+

1
2 )− ūh(tn+1) + ūh(tn)

2

)
,

and then using (71) and Taylor estimates, we obtain (the details are omitted)

∥∥∂s(uh(tn+
1
2 )− un+

1
2

h )
∥∥
T ≤ C(tn)∆t2

∫ tn+1

0

‖∂3t f‖T m dt. (73)

To obtain the bounds (59, 60) we use (72, 73) and the fact uh(t) and unh are
the restrictions of respectively ūh(t) and ūnh to T m (Lemmas 3 and 7). ut

Remark 10 We used a direct time domain approach. An alternative approach
is to use convergence estimates for the trapezoid rule discretization of the
operator Bm(∂t), see [4, Appendix A] or a recent work [20], based on frequency
dependent coercivity/continuity bounds on the symbol Bm(ω). However often
this approach leads to non-optimal estimates in terms of the powers of T .

3.3.4 Convergence of the time and space discretizations

From Theorems 10 and 12 and the triangle inequality, we deduce

Theorem 13 Assume that f satisfies (43) and the CFL condition (53) holds.
Let um be a solution of (19) and unh the solution of (50, 51). Then, with
C(tn) = cmax(1, tn)2, where c > 0 depends on the CFL only, the following
error bound holds:

‖um(tn)− unh‖T m ≤ C(tn) (∆t2 + h)‖f‖W 3,1(0,tn;L2
µ(T m)), (74)

∥∥∂s(um(tn+
1
2 )− un+

1
2

h )
∥∥
T m ≤ C(tn) (∆t2 + h)‖f‖W 3,1(0, tn+1;L2

µ(Tm)). (75)

3.4 Solving the fully discrete system (50, 51). Complexity

In practice, to solve (50), we use the mass lumped FEM. This renders the re-
spective system fully explicit. In fact, the only implicit terms are the boundary
ones, which are essentially one-dimensional (and in total there are pm = O(1)
of such terms). To see this, let us assume that ` > 0 is s.t. (with an abuse
of notation: ` here is a spatial index, rather than m from T m) un` is a nodal
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value of unh in Mm,j , and un`−1 is the nodal value in the closest to Mm,j node.

Then the mass-lumped (50) for un+1
` reads

un+1
` − 2un` + un−1`

(∆t)2
+ 2

un` − un`−1
h2

+
1

2h

(
n+1∑
k=0

b∆tm,j;ku
n+1−k
` + 2

n∑
k=0

b∆tm,j;ku
n−k
` +

n−1∑
k=0

b∆tm,j;ku
n−1−k
`

)
= 0,

see (34) for the definition of the convolution weights b∆tm,j;k. It is easy to see
that the above can be written in an explicit form. This nonetheless requires
evaluating several discrete convolutions, each of O(n) size, in order to compute
the right-hand side. Provided that the spatial discretization has Ns degrees of
freedom, the total complexity of computing the solution to (50, 51) for Nt time
steps is thus O(NtNs) +O(N2

t ), where O(N2
t ) comes from the computation of

the convolutions in the boundary terms.

4 Convolution quadrature: computing convolution weights

One of the major practical difficulties of the application of the CQ is linked
to the computation of convolution weights b∆tm,n, that is to say, λ∆tn , cf. (34),
particularly in our case, since the symbol Λ(ω) is not known explicitly.

4.1 Classical FFT-based algorithm for computing convolution weights

The convolution weights for Bm(∂t) can be expressed via the reference DtN
convolution weights, see (34). The latter, in turn, can be evaluated by dis-
cretizing the Cauchy integral (30), first by choosing the contour γ as a circle
of radius ρ, and next using a quadrature. To compute Nt+1 weights, we apply
the trapezoid quadrature with N quadrature points (where N ≥ Nt + 1):

λ∆tn ≈
ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λ (ωk) , ωk = i

δ(ρei
2πk
N )

∆t
, n = 0, . . . , Nt. (76)

While the value of (30) does not depend on ρ, this is not the case for the above
approximation. An optimal choice of ρ is ensured by minimizing the numerical
error in the above expression, which is the sum of the quadrature error O(ρN )
and the error stemming from the numerical computation of the value Λ(ω),
estimated by O(ρ−Ntε), cf. (76), where ε is the accuracy of evaluation of Λ(ω).
Crucially, this latter error can not be smaller than the machine epsilon. More
details can be found in [40], [8] and [4]; see as well Section 4.3.1. In particular,

the choice N = Nt + 1 and ρ = ε
1

2N results in the error O(
√
ε).

Obviously, (76) can be easily computed via the FFT. Provided that the com-
putational cost of evaluation of Λ(ωk) for all k = 0, . . . , Nt is bounded by
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cΛ, the above computations require O(Nt logNt) time to perform the FFT,
and O(NtcΛ) complexity to evaluate all Λ(ωk). Of course, these costs depend
on the frequencies ωk, and, just like in the case of the exterior problem for
the wave equation, cf. [4,5], increase with ∆t → 0. One of the main goals of
this section is to quantify the efficiency of the CQ method for the approxima-
tion of the transparent BCs in fractal trees. This section is organized as follows:

– in Section 4.2 we present an algorithm to evaluate Λ(ω), and very briefly
discuss its stability, convergence and complexity. In the end, we will demon-
strate how Λ(ω) can be approximated efficiently when Imω is large enough.

– in Section 4.3 we will discuss the numerical aspects of (76), in particular,
the dependence of the evaluation error of λ∆tn on the evaluation error of
Λ(ω), and, as a result, the choice of the parameters in (76). Next, we will
present a strategy to compute convolution weights, and then provide the
respective asymptotic complexity bounds, as ∆t→ 0.

Remark 11 When ∆t → 0, |Λ(ωk)| ∼ |ωk|, cf. Theorem 4. Since the frequen-
cies |ωk| grow at least as O((∆t)−1) (cf. (76)), to preserve the O(1) scaling as
∆t → 0, instead of computing the convolution weights for Λ(ω), we compute
the convolution weights for the scaled quantity Λs(ω) := (−iω)−1Λ(ω) (hence
the use of the index ’s’ for ’scaled’). This can be incorporated into the coupled
formulation (50, 51) as follows.

With (32), see also (31) and the explanation below for the notation, denot-
ing by ∂∆tt Λs

(
αm,jαk∂

∆t
t

)
a discrete convolution operator with the discrete

symbol δ(z)
∆t Λs

(
iαm,jαk

δ(z)
∆t

)
, we have

Bm,j(∂∆tt ) = µm,j α
−1
m,j

p−1∑
k=0

µk
αk
αm,jαk∂

∆t
t Λs

(
αm,jαk∂

∆t
t

)
,

Let Bsm,j(∂∆tt ) := µm,j

p−1∑
k=0

µkΛ
s
(
αm,jαk∂

∆t
t

)
, so that

Bm,j(∂∆tt ) ≡ ∂∆tt Bsm,j(∂∆tt ). (77)

The corresponding aggregate operator Bsm(∂∆tt ) is defined like in (12); see
also Section 3.1.2. In the final discretization (50, 51), it suffices to replace

{Bm(∂∆tt )γmu
n} 1

4
by D∆t

(
Bsm(∂∆tt )γmu

n
)
. (78)

To see this, by the injectivity property of the Z-transform, it suffices to verify
that for any sequence (vn)n∈N, the Z-transform of D∆t

(
Bsm(∂∆tt )γmv

n
)

coin-
cides with the Z-transform of {Bm(∂∆tt )γmv

n} 1
4
. This is indeed the case: for
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all j = 0, . . . , pm − 1, we have

Z{Bm,j(∂∆tt )vn} 1
4

=
z−1 + 2 + z

4
Bm,j

(
i
δ(z)

∆t

)
V (z)

(77)
=

z−1 + 2 + z

4

(
δ(z)

∆t

)
Bsm,j

(
i
δ(z)

∆t

)
V (z)

=
z−1 − z

2∆t
Bsm,j

(
i
δ(z)

∆t

)
V (z),

where to obtain the last expression we used the explicit form of δ(z) = 2 1−z
1+z .

We finally remark that the last expression in the above is nothing more than
Z
(
D∆tBsm,j(∂∆tt )vn

)
.

4.2 Evaluation of Λ(ω)

4.2.1 A method for computing Λ(ω)

The method for computation of Λ(ω) presented in this section resembles the
method of [35], which aims at approximating Λ(ω) in a domain of C+ = {ω :
Imω > 0}. However, the approach of this article is better suited to the case
when a highly accurate evaluation of Λ(ω) at a set of points on a curve in a
complex plane is needed, like in (76). It is based on the following ideas:

– to be able to evaluate Λ(ω), it suffices to know the values of Λ(αiω),
i = 0, . . . , p− 1 (i.e., for p ’smaller’ frequencies), cf. Lemma 1;

– for |ω| < r, where r is a fixed value smaller than the first pole of Λ,
Λ(ω) can be accurately approximated by 2N∗ + 2 first terms of its Taylor
expansion in zero. Provided even coefficients {λ2n}n∈N of the Taylor series
for Λ in ω = 0 (Λ is even by Theorem 4), this approximation reads

Λ(ω) ≈
N∗∑
n=0

λ2n ω
2n. (79)

The coefficients λ2n can be computed recursively, cf. [35, Appendix C].

To formulate the algorithm, let us fix ω ∈ C+ for which we need to evaluate
Λ(ω), and introduce the following sets:

Ln(ω) :=
{

Λ(αk00 · · ·α
kp−1

p−1 ω) : 0 ≤ ki ≤ n, i = 0, . . . , p− 1,

p−1∑
i=0

ki = n
}
.

These sets possess the following properties:

(a) the set L0(ω) = {Λ(ω)}.
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(b) provided that the values in Ln(ω) are known, it is possible to compute
all the elements in Ln−1(ω) using the expression (17) (rewritten below, cf.
(80)) and the elements of Ln(ω).

Λ(ω) = −ω ω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, Fα,µ(ω) =

p−1∑
i=0

µi
αi

Λ(αiω). (80)

This is immediate when n = 1, and not difficult to check for n > 1.

(c) in Ln(ω), there are Cp−1n+p−1 = O(np) elements.

Given r as described before (79), let us assume that |ω| > r and fix L ∈ N s.t.

|α|L∞ |ω| < r, i.e. L := L(ω, r) =

⌊(
log |α|−1∞

)−1
log
|ω|
r

⌋
+ 1. (81)

The above ensures that all the arguments of Λ(.) in LL(ω) satisfy:

p−1∏
`=0

αk`` |ω| ≤ (|α|∞)

p−1∑̀
=0

k`
|ω| = |α|L∞|ω| < r.

Knowing all the elements in the set LL(ω), we can compute exactly the ele-
ments of LL−1(ω), then LL−2(ω), and so on, up to Λ(ω). The method pre-
sented here is based on this idea, with the only modification that the elements
in LL(ω) are approximated with the help of (79). The respective approxima-
tion of the sets Ln(ω) will be denoted by L∗n(ω) = L∗n.

Given k = (k0, . . . , kp−1), by Λk = Λk0,...,kp−1 we will denote an approxima-

tion to Λ

(
p−1∏
`=0

αk`` ω

)
.

1: procedure EvalLambda(ω,N∗, r, {λ2n}N∗n=0)
2: for n = L, L− 1, . . . , 0 do
3: if n = L then
4: L∗L := ∅

5: for ki : 0 ≤ ki ≤ L, i = 0, . . . , p− 1,
p−1∑
i=0

ki = L do

6: k := (k0, . . . , kp−1)

7: ωk :=
p−1∏
i=0

αkii ω

8: Λk :=
N∗∑
n=0

λ2nω
2n
k , see (79)

9: L∗L := L∗L ∪ {Λk}
10: else
11: L∗n := ∅

12: for ki : 0 ≤ ki ≤ n, i = 0, . . . , p− 1,
p−1∑
i=0

ki = n do
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13: k := (k0, . . . , kp−1)

14: ωk :=
p−1∏
i=0

αkii ω

15: F∗k :=
p−1∑̀
=0

µ`
α`

Λk0,k1,··· ,k`−1,k`+1,k`+1,··· ,kp−1

. Remark: Λk0,k1,··· ,k`−1,k`+1,k`+1,··· ,kp−1 ∈ L∗n+1 for all ` = 0, . . . , p− 1

. Remark: F∗k plays a role of Fα,µ(ωk) in (80)

16: Λk := −ωk
ωk tanωk − F∗k
tanωkF∗k + ωk

, see (80)

17: L∗n := L∗n ∪ {Λk}
return L∗0

Remark 12 A somewhat tricky part in the practical implementation of the
above procedure is arranging and accessing the computed values in the sets
L∗n; this nonetheless can be done efficiently, as described in the section that
follows.

Remark 13 In the above algorithm, the choice whether the DtN for the Dirich-
let or Neumann problem is computed is encoded in the coefficients {λ2n}N∗n=0.

4.2.2 An implementation of the algorithm for computing Λa(ω)

Storing and accessing the values in L∗n; implementation of the method. In our
implementation of the method, we store and access the values of Λ in the sets
Ln in the following manner.

Let L be fixed. We construct the tree which will store the values of Λ from
L∗n for all n = 0, . . . , L. This leads to an extra minor memory overhead (which
we will discuss later) compared to storing the sets L∗n for each n = 0, . . . , L,
separately; however, this algorithm is somewhat easier to implement. It allows
to generate a single tree for all the sets and reformulate the algorithm of the
previous section in terms of a simple recursive algorithm for computing Λ(ω).

The main idea of this construction is that the value approximating Λ(
p−1∏
k=0

αnkk )

is stored in the leaf of the tree, which can be located by the path

(n0, 0)− (n1, 1)− . . .− (np−1, p− 1),

where (nj , j) is the label of each of the vertices on the path.
We construct the tree TL,p according to the following rules:

1. the height of the tree is p+ 1
2. to each vertex v an integer nv ∈ [−1, p] (’level’) is assigned. If the vertex
v has the level equal to nv, the level of its children is nv + 1. For the root
vertex v∗, nv∗ = −1.
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3. each vertex (but the root) is labelled by (k, `), where ` is the level at which
the vertex is located, and k corresponds to a power of α` (we’ll explain
later what it means).

4. the root vertex has L+ 1 children, labelled as (j, 0), with j = 0, . . . , L.
5. the vertex (j, 0) has L + 1 − j children, labelled as (L − j, 1), with j =

0, . . . , L. In particular, the vertex (L, 0) has 1 child, labelled as (0, 1).
6. let us consider the vertex (k`, `) with ` < p−1. Suppose that the path from

the root to this vertex is given by (k0, 0) − (k1, 1) − (k2, 2) − . . . − (k`, `).

Then this vertex has k`+1 := L −
∑̀
j=0

kj + 1 children, labelled as (0, ` +

1), (1, `+ 1), . . . , (k`+1 − 1, `+ 1).

An illustration of such a tree for L = 2 and p = 3 is given below.

Fig. 3 The tree described in Section 4.2.2 for L = 2 and p = 3.

Important properties of such labeled trees 1: connection between
Ln and the tree TL,p. We remark the following important properties:

(R1) the sequence

(k0, 0)− (k1, 1)− . . .− (kp−1, p− 1),

p−1∑
j=0

kj ≤ L, kj ∈ {0, . . . , L},

identifies the leaf vertex the path to which is

(k0, 0)− (k1, 1)− . . .− (kp−1, p− 1)

uniquely (i.e. the vertices cannot be identified uniquely by their labels;
but the sequences of the labels defining the paths to the leaf vertices are
unique).
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(R2) alternatively, we see that the leaf vertices are uniquely identified by the
sequences (k0, . . . , kp−1)

(R3) let k ∈ {0, 1, . . . , L}p−1, s.t.
p−1∑
i=0

ki ≤ L. Then there exists a unique leaf

vertex indexed with (kp−1, p−1), s.t. the path from the root to this vertex
is given by the sequence of vertices

(k0, 0)− (k1, 1)− . . .− (kp−2, p− 2)− (kp−1, p− 1).

(R4) This shows that for each 0 ≤ n ≤ L, the elements from the sets Ln can be

indexed by the leaf vertices of such a tree. For the element Λ(
p−1∏
`=0

αk`` ω),

for k` ≤ L, s.t.
p−1∑̀
=0

k` = n, the corresponding leaf vertex is given by the

path

(k0, 0)− (k1, 1)− (k2, 2)− . . .− (kp−1, p− 1),

i.e. is uniquely identified by the sequence (k0, . . . , kp−1), cf. (R2).

Important properties of labeled trees 2: related complexity esti-
mates. This tree has the following properties.

– in total it has O(Lp) vertices. To see this, we remark that the number of
the vertices at each level k = 0, . . . , p− 1 is bounded by Lk, and there are
in total p levels. Then this is a geometric progression sum.

– accessing any vertex, provided the values (k0, . . . , kp−1), requires O(p) =
O(1) operations.

Recursive Version of EvalLambda.
Auxiliary labels of the vertices. Assume that each leaf vertex labelled

with k := (k0, . . . , kp−1) has an extra label IsLambdaSet, which takes the
value true, if Λ(αk0 · · ·αkp−1ω) had been already approximated, and false
otherwise. We additionally store the corresponding computed value Λk ≈
Λ(αk0 · · ·αkp−1ω) in the respective leaf vertex.

We initialize the constructed tree TL,p with all leaf vertices having labels
IsLambdaSet = false.

We need two extra procedures:

– IsLambdaSet(TLp ,k) returns IsLambdaSet for the vertex indexed by k =
(k0, . . . , kp−1)

– Λ(TL,p,k) returns the value of Λk stored in the vertex indexed by k =
(k0, . . . , kp−1).

The recursive version of EvalLambda for computing Λ then proceeds as
follows.

1: procedure EvalLambdaRecursive(TL,p, k, ω,N∗, r, {λ2n}N∗n=0)
2: if IsLambdaSet(TL,p, k) then
3: . Remark: case when Λ∗k had been computed before
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4: return Λ(TL,p,k)
5: else
6: for ` = 0, . . . , p− 1 do
7: k` := (k0, . . . , k` + 1, . . . , kp−1)
8: if IsLambdaSet(TLp , k`) then
9: Λk` := Λ(TL,p,k`)

10: else
11: . Remark: here we compute Λk`

12: if
p−1∑
i=0

(k`)i = L then

13:

14: ωk` :=
p−1∏
i=0

αkii ω × α`
15:

16: Λk` :=
N∗∑
n=0

λ2nω
2n
k`

, see (79)

17:

18: else
19: Λk` := EvalLambdaRecursive (TL,p, k`, ω,N∗, r, {λ2n}N∗n=0)

20: Λ(TL,p,k) := Λk`
21: IsLambdaSet(TL,p,k) := true

22: ωk :=
p−1∏
i=0

αkii ω

23: F∗k :=
p−1∑̀
=0

µ`
α`

Λk`

24: Λk := −ωk ωk tanωk−F∗n
tanωkF∗k+ωk

25: return Λk

4.2.3 Well-definiteness and convergence of the method for computing Λ

Well-definiteness. One could wonder whether using (80) may result in division
by zero in the course of EvalLambda. The answer is given below.

Proposition 1 There exists rH > 0, s.t. for all r < rH , N∗ ≥ 0, for all
ω ∈ C+, no division by zero occurs in the course of the procedure EvalLambda
(ω,N∗, r, {λ2n}N∗n=0).

The proof is based on the following auxiliary result. We remark that rH in the
result below is the same as in Proposition 1.

Lemma 9 Let {λ2n}∞n=0 be even coefficients of the Laurent expansion of Λ(ω)
around ω = 0. Then, there exists rH > 0, s.t. for any N > 0,

Im

(
ω−1

N∑
k=0

λ2kω
2k

)
< 0, for all ω ∈ C+ ∩ {z : |z| < rH}.

When N = 0, the above inequality holds with < replaced by ≤.



Transparent BCs for fractal trees with CQ 37

Proof We will show that for all sufficiently small ω ∈ C+,

sign Im

(
ω−1

N∑
k=0

λ2kω
2k

)
= sign Im(λ0ω

−1 + λ2ω) < 0, for all N ≥ 1.

With Lemma 5.5, Corollary 5.6 in [35], we observe that

λ0 ≥ 0 and λ2 < 0. (82)

Case N ≤ 1. When N = 1, a direct calculation gives

Im

(
ω−1

N∑
k=0

λ2kω
2k

)
= λ0 Imω−1 + λ2 Imω < 0 for all ω ∈ C+,

while when N = 0, the above holds with < replaced by ≤, cf. (82).
Case N ≥ 2. Let us now assume that N ≥ 2. Given ω = |ω|eiϕ, ϕ ∈ (0, π),

Im

(
ω−1

N∑
k=0

λ2kω
2k

)
=

N∑
k=0

λ2k |ω|2k−1 sin(2k − 1)ϕ

= −λ0|ω|−1 sinϕ+ λ2|ω| sinϕ+

N∑
k=2

λ2k |ω|2k−1 sin(2k − 1)ϕ.

Provided that the sum of the first two terms is strictly negative, cf. (82), it
suffices to show that the latter sum can be controlled. For this we use the
following expression (which can be easily proven by writing sin(2k − 1)ϕ =
1
2i

((
eiϕ
)2k−1 − (e−iϕ)2k−1) and replacing e±iϕ = cosϕ± i sinϕ):

sin(2k − 1)ϕ =
1

2

k−1∑
`=0

(−1)`C2`+1
2k−1 sin2`+1 ϕ cos2(k−`−1) ϕ,

which allows to rewrite

Im

(
ω−1

N∑
k=0

λ2kω
2k

)
= sinϕ

(
−λ0|ω|−1 + λ2|ω|+Q(ω, ϕ)

)
, (83)

QN (ω, ϕ) =
1

2

N∑
k=2

λ2k |ω|2k−1
k−1∑
`=0

(−1)`C2`+1
2k−1 sin2` ϕ cos2(k−`−1) ϕ.

A uniform in ϕ bound for Q(ω, ϕ) follows from the Cauchy estimate for λ2`
[22, p.118]:

|λ2`| ≤Mρρ
−2`, for all 0 < ρ < ω0, (84)
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where ω0 is the smallest positive pole of Λ(ω), and Mρ = max
z∈Bρ(0)

|Λ(ω)|. Fixing

ρ > 0, and applying the above estimate to bound |λ2k| in Q(ω, ϕ) results in

|QN (ω, ϕ)| ≤ Mρ

2

N∑
k=2

ρ−2k |ω|2k−1
k−1∑
`=0

C2`−1
2k−1

∣∣∣sin2` ϕ cos2(k−`−1) ϕ
∣∣∣

≤ Mρ

2

N∑
k=2

ρ−2k |ω|2k−1
2k−1∑
`=0

C2`−1
2k−1 < Mρ

N∑
k=2

ρ−2k |2ω|2k−1 .

With some Cρ > 0, for all sufficiently small |ω|, we then have |QN (ω, ϕ)| ≤
Cρ|ω|3. Importantly, this bound is uniform in N . By (83), for all ω = |ω|eiϕ ∈
C+, s.t. |ω| is sufficiently small, it holds

sign Im

(
ω−1

N∑
k=0

λ2kω
2k

)
= sign

(
sinϕ

(
−λ0|ω|−1 + λ2|ω|

)) (82)
< 0. ut

Proof (Proof of Proposition 1) To prove the statement of the proposition, we
will use the same idea as in Lemma 5.15 in [35]. To re-use the proof of the
lemma, it suffices to show that

Im

(
ω−1Λr,N∗

(
p−1∏
k=0

αnkk ω

))
< 0, s.t.

p−1∑
k=0

nk = L, (85)

i.e. for all elements of L∗L(ω). Then, by Lemma 5.13 in [35], the same holds
true for the elements of L∗L−1, as they are computed with the help of (80) (and
thus by induction for L∗n, n ≤ L− 2). Let us remark that it can be shown (by
a trivial generalization of the result of Lemma 5.13), that it suffices to have
the equality sign in (85).

Recall that the elements from L∗L are computed with the help of (79).

Provided
p−1∑
k=0

nk = L, the quantity
p−1∏
k=0

αnkk ω ∈ C+, and, moreover, belongs to

B(0, r), where r is from (81). Hence it suffices to show that exists r0 > 0, s.t.
for all r < r0, N∗ ≥ 0,

Im

(
ω−1

N∗∑
n=0

λ2nω
2n

)
≤ 0, ω ∈ C+ ∩B(0, r).

This had been shown in Lemma 9, with r0 = rH . ut

From the proof of the above result we obtain almost immediately the following
corollary (in the formulation of the corollary we use the notation from the
procedure EvalLambda).

Corollary 2 With rH > 0 like in Proposition 1, all the quantities Λk com-
puted in the course of the algorithm EvalLambda(ω, r,N∗, {λ2n}N∗n=0), with
r < rH , N∗ ≥ 0, ω ∈ C+, satisfy

Im (ωkΛk) ≤ 0.
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Error estimate. There are two parameters in the method that affect its accu-
racy: N∗ and r. Let us denote by Λr,N∗(ω) the solution computed with the

help of the procedure EvalLambda (ω,N∗, r, {λ2n}N∗n=0), and let

Er,N∗(ω) := |Λr,N∗(ω)−Λ(ω)| .

To formulate the error estimates, let us introduce the following notations. First
lf all, let us fix a parameter ρ > 0 that can be chosen arbitrarily from

ρ ∈ (0, ω0), (86)

where ω0 is the smallest positive pole of Λ(ω). Let also

N0 = min

{
` ≥ 0 :

p−1∑
i=0

µiα
2`+1
i < 1

}
. (87)

Then, provided r > 0, we define an exteriour of the circle in C+ as follows:

C+
r := {z ∈ C+ : |z| > r}.

Because we will be interested in approximating Λ(ω) for ω s.t. Imω > a > 0,
with a being fixed, let us additionally define

C+
a,r := {z ∈ C+

r : Imω ≥ a}, a ∈ (0, 1]. (88)

Obviously, for any r > 0, any ω ∈ C+, we have:

either ω ∈ C+ ∩ Br(0) or ω ∈ C+
a,r, where a = min(1, Imω).

We state the dependence of Er,N∗(ω) on r, N∗ separately in two cases: the

case ω ∈ C+ ∩ Br(0), i.e. when Λ(ω) is approximated by (79), and the case
ω ∈ C+

a,r, when (80) is used.

Theorem 14 Let ρ be like in (86). Then there exists r0 > 0, which depends
on ρ, µ, α, and the problem in question (Dirichlet or Neumann), s.t. for all
r < r0, N∗ ≥ N0, with N0 defined in (87), it holds:

– for all ω ∈ C+ ∩ Br(0),

Er,N∗(ω) < C

(
r

ρ

)2N∗+2

.

– for all ω ∈ C+
a,r (see (88) for notation), with W = max(log |ω|, 1),

Er,N∗(ω) < C

(
r

ρ

)2N∗+2−n
γW

2+W log a−1

.

The constants C > 0, n ≥ 0, γ > 1 depend only on ρ, α, µ and the problem
(Dirichlet or Neumann) in question.
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The proof of this result is based on two propositions, whose proofs are post-
poned to the section that follows.

Proposition 2 (Low-frequency case) Let 0 < r < ρ and N∗ ∈ N be fixed.
Then for all ω ∈ C+, s.t. |ω| ≤ r, it holds:

Er,N∗(ω) < Cω0,ρ

(
1− r2

ρ2

)−1(
r

ρ

)2N+2

, Cω0,ρ > 0.

Proposition 3 (High-frequency case) Let ρ > 0 be fixed, and be like in
Theorem 2. There exists r0 > 0, which depends on ρ, µ, α, and the problem
in question (Dirichlet or Neumann), such that for all r < r0, N∗ ≥ N0, and
all ω ∈ C+

a,r, it holds:

|Er,N∗(ω)| ≤ C
(
r

ρ

)2N∗+2−n
γW

2+W log a−1

, W = max(log |ω|, 1).

The constants C > 0, n ≥ 0, γ ≥ 1 depend only on ρ, α, µ and the problem
(Dirichlet or Neumann) in question.

Proof (Proof of Theorem 14) For ω ∈ C+
a,r the result is stated exactly in

Proposition 3. For ω ∈ C+ ∩ Br(0), we use Proposition 2, to obtain

Er,N∗(ω) < Cω0,ρ

(
1− r2

ρ2

)−1(
r

ρ

)2N+2

≤ Cω0,ρ

(
1− r20

ρ2

)−1(
r

ρ

)2N+2

,

hence the result in the statement of the theorem.

Theorem 14 show that in order to ensure that Er,N∗(ω) < ε, we may fix r > 0
sufficiently small, and choose N∗ ≥ N0, so that, for some C∗ > 0,

N∗ ≥ C∗
(
log ε−1 +W log a−1 +W 2

)
, W = max(log |ω|, 1). (89)

Proof of Proposition 2 The estimate is a trivial consequence of the Cauchy
estimates for the coefficients of Λ(ω). Recall that the coefficients {λ2n}n≥0 of
the Taylor expansion of Λ(ω) in ω = 0 satisfy the Cauchy estimate (84).

Let 0 < r < ρ be fixed. Then, for all |ω| < r and N∗ ≥ 0,

|Er,N∗(ω)| =

∣∣∣∣∣
∞∑

n=N∗+1

λ2nω
2n

∣∣∣∣∣ ≤
∞∑

n=N∗+1

|λ2n||ω2n|

≤Mρ

(
|ω|
ρ

)2N∗+2

(1− |ω|2ρ−2)−1.

(90)

The estimate in the statement of the theorem follows by taking |ω| = r. ut
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Auxiliary results for the proof of Proposition 3. Let us now prove Proposition
3. The proof is quite technical and requires several additional lemmas.

Because for n = 0, . . . , L − 1, the elements of L∗n are computed using the
set L∗n+1 and (17) (and the errors of approximation of elements computed
from LL are essentially given by 90), it suffices to understand how the error
of approximating Λ(αiz) in (80) affects the computation of Λ(z). For this we
will need the following auxiliary estimate.

Let z ∈ C+ be fixed, and Λε
i be an approximation to Λ(αiz), i = 0, . . . , p−

1, and

Λε(z) := −z
z tan z − F εα,µ
tan zF εα,µ + z

, F εα,µ :=

p−1∑
i=0

µi
αi

Λε
i . (91)

Then, by replacing Λε(z) from the above expression and Λ(z) from (80), we
obtain

Λε(z)−Λ(z) = −z2
(
tan2 z + 1

) Fα,µ(z)− F εα,µ
(F εα,µ tan z + z)(Fα,µ tan z + z)

= T (z)
(
Fα,µ(z)− F εα,µ

)
, (92)

T (z) =

(
1 +

1

tan2 z

)
1

(F εα,µz
−1 + cot z)(Fα,µz−1 + cot z)

. (93)

It remains to provide an adequate estimate on T (z). It is given in Proposition
below.

Proposition 4 (A bound on T (z)) Let z ∈ C+ be fixed. Let Λε
i ∈ C, i =

0, . . . , p− 1, be s.t.

Im
(
α−1i z−1Λε

i

)
≤ 0, for all i = 0, . . . , p− 1. (94)

Let T (z) be defined like in (93).
Then there exists CT > 0, independent of Λε

i , µ, α, z, s.t.

|T (z)| ≤ CT max(1, (Im z)−2).

Proof First of all,∣∣F εα,µz−1 + cot z
∣∣ ≥ ∣∣Im(F εα,µz

−1) + Im cot z
∣∣ ≥ |Im cot z| ,

because Im cot z < 0 (see (134)), and Im(F εα,µz
−1) ≤ 0, by (94).

Using the expression (158) (let us remark that at this point of the proof
we do not use the estimates provided by Lemma 13 because they would lead
to non-optimal bounds), we arrive at

∣∣F εα,µz−1 + cot z
∣∣ ≥ |Im cot z| = 1− |e2iz|2

|1− e2iz|2
. (95)
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For the same reason (cf. Theorem 4(a)), the same lower bound holds for∣∣Fα,µz−1 + cot z
∣∣. Thus,∣∣∣∣ 1

(F εα,µz
−1 + cot z)(Fα,µz−1 + cot z)

∣∣∣∣ ≤ |1− e2iz|4

(1− |e4iz|)2
. (96)

Next let us consider

1 +
1

tan2 z
=

1

sin2 z
= − 4e2iz

(e2iz − 1)
2 .

Moreover, using |e2iz| ≤ 1,∣∣∣∣1 +
1

tan2 z

∣∣∣∣ ≤ 4

|e2iz − 1|2
.

Combining the above with (96) in (93), we deduce

|T (z)| ≤ 4
|1− e2iz|2

(1− |e4iz|)2
≤ 16

(1− e−4 Im z)
2 ≤ CT max(1, (Im z)−2),

where the last bound follows the same arguments as in the end of proof of
Lemma 13 in Appendix B. ut

The problem with using the above result in (92) lies in the fact that the
respective bound clearly deteriorates when Im z → 0, and that is why the
above result is not sufficient to demonstrate the convergence of the method
EvalLambda : the obtained bound is too pessimistic when |z| is small. This
in particular poses a problem for proving the convergence of the method with
respect to the choice of the parameter r in the procedure EvalLambda.

However, we can show that in the vicinity of z = 0, the dependence of
the bound on T (z) on Im z can be waived; this idea will be important for
understanding the convergence of the method. To see this, we will rewrite the
quantity T (z) from (93) as follows:

T (z) = (1 + tan2 z) (D(z)Dε(z))
−1
, (97)

D(z) := z−1 tan z

p−1∑
i=0

µiα
−1
i Λ(αiz) + 1, (98)

Dε(z) := z−1 tan z

p−1∑
i=0

µiα
−1
i Λε

i + 1. (99)

When Λε
i ≡ Λ(αiz), and Λ(0) = 0 (cf. Theorem 3), we remark the following:

for small |z|, D(z) = 1+O(z2), Dε(z) = 1+O(z2), and (1+tan2 z) = 1+O(z2),
which shows that T (z) is uniformly bounded in the vicinity of 0. This remains
true if Λε

i is sufficiently close to Λ(αiz).
The following result shows that the quantity T (z) is bounded from above,

when z is sufficiently small and Λε
i are from L∗n, with n sufficiently large,

computed in the course of the procedure EvalLambda(ω,N∗, r, {λ2k}N∗k=0).
The proof of this result will rely on a certain bootstrap argument.
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Proposition 5 (A bound on T (z)) There exists rb > 0 (depending on
ρ,µ,α), such that the following holds true.

Provided that the following holds true:

1) N∗ ∈ N is fixed, s.t. N∗ ≥ N0, with N0 being defined in (87),
2) r > 0 is fixed and s.t. r < rb,
3) ω ∈ C+ is fixed,
4) the sets L∗n(ω) are defined in the course of EvalLambda(ω,N∗, r, {λ2k}N∗k=0),
5) n∗ ∈ N0 is the largest integer s.t. |ω||α|n∗∞ < rb,
6) n∗ > L, where L is from (81) (this is ensured when r < |α|∞rb)

7) k := (k0, . . . , kp−1) ∈ Np0 is s.t. k :=
p−1∑̀
=0

ki ≥ n∗,

let us define ωk :=
p−1∏
`=0

αk`` ω, and set, for ` = 0, . . . , p− 1,

Λε
` := Λk` , k` := (k0, . . . , k`−1, k` + 1, k`+1, . . . , kp−1) ,

where Λk` is an approximation to Λ(α`ωk) from the set L∗k+1. Given these
values Λε

` , let us define T (ωk) by (97).
Then the following bound holds true:

|T (ωk)| ≤

(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

Remark 14 Let us comment on condition (6). To see that it is ensured when
r < |α|∞rb, let us proceed by contradiction. Assume that r < |α|∞rb and
n∗ = L. This implies that |ω||α|L−1∞ ≥ rb. Therefore, |ω||α|L∞ ≥ |α|∞rb > r,
i.e. a contradiction with |ω||α|L∞ < r.

Remark 15 The sense of the above proposition is the following: the quantity
T (ωk) in the course of the algorithm EvalLambda(r,N∗, ω, {λ2n}N∗n=0) remains
bounded for every |ωk| < rb, independently of the parameter r.

The proof of the above statement requires several auxiliary lemmas.

Lemma 10 Let D(z) be defined in (98), i.e.

D(z) = z−1 tan z

p−1∑
i=0

µiα
−1
i Λ(αiz) + 1.

There exist rLemma 10, cLemma 10 > 0, s.t. for all |z| < rLemma 10,

|D(z)| > 1− cLemma 10|z|2. (100)

The quantities rLemma 10, c depend on the problem in question (Neumann/Dirichlet),
µ and α.
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Proof By Theorem 3, Λ(0) = 0 or Λ(0) = 1−
〈
µ
α

〉−1
. We consider accordingly

the two cases:

1. let Λ(0) = 0. By the analyticity of Λ(ω) in the vicinity of the origin, we
deduce that there exists r̃, s.t. for all 0 < |z| < r̃,∣∣∣∣∣

p−1∑
i=0

µiα
−1
i Λ(αiz)

∣∣∣∣∣ ≤Mw̃0
|z|2.

Also, there exists Ctan > 0 and ωtan > 0, s.t.∣∣z−1 tan z
∣∣ < Ctan, for all |z| < ωtan. (101)

Hence, for all |z| < min(r̃, ωtan), we have the desired bound:∣∣∣∣∣z−1 tan z

p−1∑
i=0

µiα
−1
i Λ(αiz) + 1

∣∣∣∣∣ > 1− Cw̃0
Ctan|z|2.

2. let Λ(0) = 1 −
〈
µ
α

〉−1
. Recall, cf. Theorem 3, that this is possible only if〈

µ
α

〉
> 1. D(z) can be rewritten as follows:

D(z) = z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0)) + z−1 tan z

p−1∑
i=0

µi
αi

Λ(0) + 1

= z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0)) + z−1 tan z
(〈µ
α

〉
− 1
)

+ 1

(102)

= z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0))

+ (z−1 tan z − 1)
(〈µ
α

〉
− 1
)

+
〈µ
α

〉
.

Because (Λ(αiz)−Λ(0)) = O(|z|2), and (z−1 tan z− 1) = O(|z|2) for all z
sufficiently small, we have, with a constant cLemma 10 > 0 depending only
on µ,α:

|D(z)| ≥
〈µ
α

〉
− cLemma 10|z|2.

The desired result follows by recalling that
〈
µ
α

〉
> 1. ut

The above result can be extended to the case when Λ(αiω) is replaced by
its approximation Λε

i .
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Lemma 11 Let ρ be defined as in (86), and let C > 0 be fixed.
There exists rLemma 11 < ρ sufficiently small (which depends on ρ, C), such

that the following holds true.
Provided that the following holds:

– z ∈ C+ is fixed and s.t. |z| < rLemma 11;
– N ∈ N0 is fixed;
– for all i = 0, . . . , p− 1, Λε

i ∈ C satisfy the following bound:

|Λε
i −Λ(αiz)| ≤ C

∣∣∣∣αizρ
∣∣∣∣2k+2

, (103)

let us define Dε(z) like in (99), i.e.

Dε(z) = z−1 tan z

p−1∑
i=0

µiα
−1
i Λε

i + 1.

Then there exists a constant cLemma 11 > 0 that depends on C, ρ, µ,α
only, s.t. the following holds true:

|Dε(z)| > 1− cLemma 11|z|2.

Proof A straightforward computation, with D(z) defined like in (98) and using
the bound (103), yields:

|Dε(z)−D(z)| ≤

∣∣∣∣∣z−1 tan z

p−1∑
i=0

µi
αi
C

∣∣∣∣αizρ
∣∣∣∣2k+2

∣∣∣∣∣ . (104)

Taking |z| < ωtan, cf. (101), and because |z| < ρ, we have

|Dε(z)−D(z)| ≤ CtanCρ−2|z|2
p−1∑
i=0

µiα
2k+1
i , ∀|z| < min(ωt, ρ). (105)

Because αi < 1 for all i, we have in particular, for all k ≥ 0,

p−1∑
i=0

µiα
2k+1
i ≤

〈
µα
〉
,

and hence,

|Dε(z)−D(z)| ≤ CCtan|z|2
〈
µα
〉
, ∀|z| < min(ωtan, ρ). (106)

Obviously,

|Dε(z)| ≥ |D(z)| − |Dε(z)−D(z)|,

and the conclusion follows from (100) and the above estimates. ut

Lemmas 10, 11 will suffice to prove a bound for the error of computing the
elements of the set L∗n based on the elements of the set L∗n+1.
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Lemma 12 Let ρ be like in (86). Let C > 0 be fixed.
Then there exists rLemma 12 : 0 < rLemma 12 < ρ, which depends on ρ, C,

µ, α only, s.t. the following holds true.
Provided that

– N ∈ N0 is fixed, and N > N0 is defined in (87),
– z ∈ C+ is s.t. |z| < rLemma 12,
– the quantities Λε

i , i = 0, . . . , p− 1, are such that the following bound holds:

|Λε
i −Λ(αiz)| ≤ C

∣∣∣∣αizρ
∣∣∣∣2N+2

, i = 0, . . . , p− 1, (107)

let us define Λε(z) like in (91).
Then Λε(z) satisfies the following bound:

|Λε(z)−Λ(z)| ≤ C
∣∣∣∣zρ
∣∣∣∣2N+2

, i = 0, . . . , p− 1. (108)

Moreover, T (z) defined as in (97) satisfies

|T (z)| ≤

(
p−1∑
i=0

µiα
2N0+1
i

)−1
. (109)

Proof Step 1. Bounding |Λε(z)−Λ(z)| in terms of |T (z)|. By (92), and using
(107),

|Λε(z)−Λ(z)| ≤ C|T (z)|
p−1∑
i=0

µiα
2N+1
i

∣∣∣∣zρ
∣∣∣∣2N+2

. (110)

Step 2. Bounding |T (z)|. Next, by definition of T (z),

T (z) = (1 + tan2 z)D−1(z)D−1ε (z).

First, we remark that there exists rtan > 0, ctan > 0, s.t. for all |z| < rtan, it
holds

∣∣1 + tan2 z
∣∣ ≤ 1 + ctan|z|2.

Taking r1 := min(rLemma 10, rLemma 11), we see from Lemmas 10, 11, that
for all |z| < r1 it holds, with c1 = max(cLemma 10, cLemma 11):∣∣D−1(z)D−1ε (z)

∣∣ ≤ (1− c1|z|2)−2.

Therefore, for all |z| < min(rtan, r1),

|T (z)| ≤ (1 + ctan|z|2)(1− c1|z|2)−2. (111)

Step 3. Bounding |Λε(z)−Λ(z)|. Replacing T (z) in (110) by the bound (111)
yields, for |z| < min(r1, rtan):

|Λε(z)−Λ(z)| ≤ C
∣∣∣∣zρ
∣∣∣∣2N+2

(1 + ctan|z|2)(1− c1|z|2)2
p−1∑
i=0

µiα
2N+1
i .
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Because N ≥ N0, and αi < 1 ∀i, the above yields in particular:

|Λε(z)−Λ(z)| ≤ C
∣∣∣∣zρ
∣∣∣∣2N+2

(1 + ctan|z|2)(1− c1|z|2)2
p−1∑
i=0

µiα
2N0+1
i (112)

The function

|z| 7→ B(|z|) :=

p−1∑
i=0

µiα
2N0+1
i (1 + ctan|z|2)(1− c1|z|2)2

is continuous and monotonically increasing in |z|. Moreover, as |z| varies from

0 to min(r1, rtan), this function changes its value from
p−1∑
i=0

µiα
2N0+1
i < 1

to a constant a priori exceeding 1. Therefore, there exists 0 < rLemma 12 <
min(r1, rtan), s.t. for all |z| < rLemma 12, it holds

B(|z|) ≤ 1. (113)

Inserting this bound into (112) yields the desired bound in the statement of
the theorem:

|Λε(z)−Λ(z)| ≤ C
∣∣∣∣zρ
∣∣∣∣2N+2

, for all |z| < rLemma 12. (114)

Let us now show the bound for T (z). Since, by (111)

|T (z)| ≤ B(|z|)

(
p−1∑
i=0

µiα
2N0+1
i

)−1
,

we conclude with (113) that for all z : |z| < rLemma 12,

|T (z)| ≤

(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

We now have all the necessary ingredients to write down the proof of Propo-
sition 5.

Proof (Proof of Proposition 5) Step 1. Choice of rb. Let us take r
(0)
b < ρ (ρ

like in (86)). By (90), for all |ω| ≤ r(0)b ,

|Λ(ω)−ΛN∗(ω)| ≤ Cω0,ρ

(
1− |ω|

2

ρ2

)−1( |ω|
ρ

)2N∗+2

(115)

≤ Cω0,ρ

(
1−
|r(0)b |2

ρ2

)−1(
|ω|
ρ

)2N∗+2

≤ C
ω0,ρ,r

(0)
b

(
|ω|
ρ

)2N∗+2

.

(116)
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We fix
C := C

ω0,ρ,r
(0)
b

,

and choose rb like in Lemma 12, with C defined like above, i.e.

rb := rLemma 12.

We remark that rb depends on ρ, µ, α and the problem in question (Dirichlet
or Neumann). Let us now prove the statement of the proposition for this choice
of rb.

Step 2. Proof of the result. Let us take ω ∈ C+, r < |α|∞rb fixed (cf.
item (5) in the statement of the proposition), and let us consider the sets L∗n,
n ≥ n∗, with n∗ defined in the statement of the proposition. We will prove
the result for n = L − 1, next for n = L − 2, the remaining cases n ≥ n∗
follow similarly (by an induction argument). The the main idea is to prove the
approximation property (108) for the elements of L∗n.

1. n = L − 1. Let us fix k ∈ Np0 s.t.
p−1∑
i=0

ki = n. Recall that the elements

Λ∗k ∈ L∗n are computed from (80) with Fα,µ replaced by F∗α,µ =
p−1∑̀
=0

µ`
α`

Λk` ,

where Λk` ∈ L∗L, and with ω = ωk =
p−1∏
i=0

αkii ω.

In particular, if we set,

Λε
` = Λk` , ` = 0, . . . , p− 1,

then obviously Λk = Λε(ωk) defined in (91).
We remark that because Λε

` are computed using (79), we have from (116)
the following:

|Λε
` −Λ(ωkα`)| ≤ C

(
|α`ωk|
ρ

)2N+2

.

Because rb := rLemma 12 was chosen so that the conditions of Lemma 12
hold, we conclude, using this result, that Λk = Λε(ωk) satisfies

|Λk −Λ(ωk)| < C

(
|ωk|
ρ

)2N+2

, (117)

and, moreover, for T (ωk) defined as in the statement of the proposition,
we have

|T (ωk)| <

(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

2. the proof of the result for n = L − 2, n > n∗ is repeated from the above
proof almost verbatim, using (117).
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The proof for n > L − 2 follows the same lines. Let us remark that for the
application of Lemma 12, it is crucial that |ωn| < rb, and thus the above result
may hold only when |ωn| ≤ |α|n∞|ω| < rb. ut

Remark 16 From the proof of Proposition 5, it follows that for |ωk| < rb, we
have

|Λk −Λ(ωk)| < C

(
|ωk|
ρ

)2N+2

.

We will not use this bound directly in the proof of Proposition 3, because with
its use we will not be able to demonstrate the convergence of the algorithm
EvalLambda when r → 0. However, the above bound is used in a bootstrap
argument, as we have seen in the proof of Proposition 5.

We are now able to prove the result of Proposition 3.

Proof (Proof of Proposition 3) Let rb be like in Proposition 5. Let us fix
r0 := min(|α|∞rb, rH), where rH is from Lemma 9.

Let us choose r < r0 and fix N∗ ≥ N0.
Case 1. |ω| < r0. In this case, with the notation of Proposition 5, we

have that n∗ = 0.
To estimate how the error propagates when computing the values in the

set L∗n from the values in the set L∗L, we use the expression (92), where, in
turn, we will use the bound of Proposition 4.

Let us denote by k = (k0, . . . , kp−1) ∈ Np0, ωk =
p−1∏
`=0

αk`k ω and Λk ∈ L∗n the

approximation to Λ(ωk) computed in the course of EvalLambda(ω, r,N∗, {λ2n}N∗n=0).
Let us introduce

En := max

k∈Np0 :
p−1∑̀
=0

k`=n

|Λk −Λ(ωk)| .

Let us estimate the error committed when passing from one level to another, in
terms of the error EL. We have, for all k` = (k0, . . . , k`−1, k` + 1, k`+1, . . . , kp−1),
and for all Λk` ∈ L∗n+1,∣∣∣∣∣

p−1∑
`=0

µ`
α`

(Λk` −Λ(ωkα`))

∣∣∣∣∣ ≤ 〈µα〉En+1.

With the expression (92), we have

En ≤ max

k∈Np0 :
p−1∑̀
=0

k`=n

|T (ωk)|
〈µ
α

〉
En+1.

Denoting by

Tn := max

k∈Np0 :
p−1∑̀
=0

k`=n

|T (ωk)|,
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we arrive at the following error bound (where we denote by Λr,N∗ the ap-
proximation to the value of Λ(ω) computed in the course of the algorithm
EvalLambda(ω,N∗, r, (λ2n)N∗n=0)):

|Λr,N∗ −Λ(ω)| ≡ E0 ≤
〈µ
α

〉L(L−1∏
n=0

Tn

)
EL. (118)

Now let us estimate the product of Tn. By Proposition 5, we have

L−1∏
n=0

Tn ≤

(
p−1∑
i=0

µiα
2N0+1
i

)−L
.

Let us introduce

η :=

(
p−1∑
i=0

µiα
2N0+1
i

)−1
> 1. (119)

Then (118) yields

|Λr,N∗ −Λ(ω)| ≡ E0 ≤
(
η
〈µ
α

〉)L
EL. (120)

It remains to estimate the error EL. Because the elements in L∗L are computed
using (79), we use the result of Theorem 2:

EL ≤ Cρ,ω0

(
1− r2

ρ2

)−1(
r

ρ

)2N∗+2

< Cρ,ω0

(
1− r20

ρ2

)−1(
r

ρ

)2N∗+2

(121)

= C ′
(
r

ρ

)2N∗+2

, C ′ = Cρ,ω0

(
1− r20

ρ2

)−1
.

Therefore, with ν := max
(

1, η
〈
µ
α

〉)
, the bound (120) yields

|Λr,N∗ −Λ(ω)| ≤ C ′max(1, νL)

(
r

ρ

)2N∗+2

.

Next, let us recall (81) and bound L for all ω s.t. r ≤ |ω| < r0:

L =

⌈(
log |α|−1∞

)−1
log
|ω|
r

⌉
≤
⌈(

log |α|−1∞
)−1

log
r0
r

⌉
(122)

≤
(
log |α|−1∞

)−1
log

r0
r

+ 1.

We then have the following bound, with a constant Cr0 > 0 depending on
r0 > 0:

|Λr,N∗ −Λ(ω)| ≤ Cr0r−ν(log |α|
−1
∞ )
−1
(
r

ρ

)2N∗+2

.
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The above can be rewritten with C̃r0,ρ = Cr0ρ
ν(log |α|−1

∞ )
−1

,

|Λr,N∗ −Λ(ω)| ≤ C̃r0,ρ
(
r

ρ

)2N∗+2−ν(log |α|−1
∞ )
−1

.

The above yields the bound in the statement of the theorem in the case when
|ω| < r0.

Case 2. |ω| ≥ r0. We can repeat the arguments of the proof of the case
|ω| < r0 verbatim to obtain (118):

|Λr,N∗ −Λ(ω)| ≡ E0 ≤
〈µ
α

〉L(L−1∏
n=0

Tn

)
EL. (123)

The difference is in the treatment of the product
L−1∏
n=0

Tn, which we split into

two parts. Provided that n∗ is the smallest integer s.t. |αn∗∞ω| < r0, i.e. defined
in Proposition 5, and

n∗ =

⌊
(logα−1∞ )−1 log

|ω|
r0

⌋
+ 1, (124)

we split

L−1∏
n=0

Tn = Tn∗,L−1 × T0,n∗−1,

Tn∗,L−1 =

L−1∏
n=n∗

Tn, T0,n∗−1 =

n∗−1∏
n=0

Tn. (125)

The first factor, by Proposition 5, is bounded by, cf. (119),

Tn∗,L−1 ≤ ηL−n∗ . (126)

To bound the second factor T0,n∗−1, we will use Proposition 4. In particular,

Tn = max

k∈Np0 :
p−1∑̀
=0

k`=n

|T (ωk)| ≤ CT max

k∈Np0 :
p−1∑̀
=0

k`=n

max(1, (Imωk)−2).

Because by the condition of the theorem, ω ∈ C+
r,a, with a ∈ (0, 1], we have

Imωk =

p−1∏
`=0

αk`` Imω ≥ αnmina,

where αmin = min
i
αi. For all 0 ≤ n ≤ n∗ − 1, we obtain

Tn ≤ CTα−n∗mina
−1.
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Plugging in the above bound into (125), we obtain

T0,n∗−1 ≤ C
n∗
T a−n∗α−n

2
∗

min . (127)

Combining the bounds (126) and (127), as well as (121), into (123), yields

|Λr,N∗ −Λ(ω)| ≤
〈µ
α

〉L
Cn∗T a−n∗α−n

2
∗

minη
L−n∗Cρ,ω0,r0

(
r

ρ

)2N∗+2

. (128)

Because η > 1, cf. (119), we can bound

|Λr,N∗ −Λ(ω)| ≤ A
(
r

ρ

)2N∗+2

, A := Cρ,ω0,r0

(〈µ
α

〉
η
)L

Cn∗T a−n∗α−n
2
∗

min ,

(129)

or A = Cρ,ω0,r0

(〈
µ
α

〉
η
)L

Cn∗T en∗ log a
−1

α
−n2
∗

min . Then, with a constant

γ̃ = max
(〈µ
α

〉
η, CT , e, α

−1
)
,

we have

A ≤ Cρ,ω0,r0 γ̃
L+n∗+n∗ log a

−1+n2
∗ . (130)

Let us now recall how L and n∗ depend on ω, cf. (122) and (124). In particular,
we have

n∗ =

⌊(
log |α|−1∞

)−1 log |ω|
r0

⌋
+ 1 ≤

(
log |α|−1∞

)−1 (
log |ω|+ log r−10

)
+ 1

≤ c∗max (log |ω|, 1) ,

for some c∗ > 1 depending on r0, |α|∞.
As for L, cf. (122), we have:

L ≤
(
log |α|−1∞

)−1 (
log |ω|+ log r−1

)
+ 1

≤ cL max(log |ω|, 1) + cL log r−1,

with cL > 0 depending on |α|∞.
Therefore, cf. (130),

L+ n∗ + n∗ log a−1 + n2∗ ≤ cL max(log |ω|, 1)

+ cL log r−1 + c∗max(log |ω|, 1)

+ c∗max(log |ω|, 1) log a−1 + c2∗ (max(log |ω|, 1))
2

≤ 3 max(c2∗, cL, c∗) (max(log |ω|, 1))
2

+ cL log r−1

+ c∗max(log |ω|, 1) log a−1.
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Combining these two bounds in (130), we obtain with some γ > 1,

A ≤ Cρ,ω0,r0γ
W log a−1+W 2

r−cL log γ̃ , W := max(log |ω|, 1).

This rewrites, with λ = cL log γ̃:

A ≤ r−λγW log a−1+W 2

≤
(
r

ρ

)−λ
ρ−λγW log a−1+W 2

≤ C̃ρ
(
r

ρ

)−λ
γW log a−1+W 2

, (131)

with some C̃ρ > 0.

Plugging in (131) into (129) yields the desired bound in the statement of
the theorem:

|Λr,N∗ −Λ(ω)| ≤ Cα,µ,ρ,aγW
2+W log a−1

(
r

ρ

)2N∗+2−λ
,

for some constant Cα,µ,ρ,a > 0 that depends on ρ, parameters of the problem
and the problem (Dirichlet or Neumann) in question. ut

4.2.4 Asymptotic computational complexity of the method of Section 4.2.1

In this section we estimate the computational complexity of the procedure
EvalLambda, in terms of ω and the desired accuracy ε. We fix r > 0 suffi-
ciently small (cf. Theorem 14), and consider the case when ω ∈ C+

a,r, cf. (88),
with 0 < a ≤ 1 fixed. First of all, the evaluation of each value in Ln, n ≤ L−1,
requires O(p) = O(1) operations, while to compute each of the values in LL
we need O(N∗) operations. Thus the total computational cost scales as

O
(

#

L−1⋃
n=0

Ln
)

+O(N∗#LL).

With the property (c) from Section 4.2.1,

cΛ = #

L−1⋃
n=0

Ln =

L−1∑
n=0

Cp−1n+p−1 = O(Lp+1), #LL = O(Lp).

When |ω| → +∞, L defined (81) satisfies L = O(log |ω|), and the cost of
evaluating Λ(ω) scales as

cΛ = O
(
logp+1 |ω|+N∗ logp |ω|

)
(89)
= O

(
logp+2 |ω|+ logp+1 |ω| log a−1

)
+O

(
logp |ω| log ε−1

)
.

(132)



54 Patrick Joly, Maryna Kachanovska

Fig. 4 Left: |Λ(ω)ω−1 + i| for the Neumann problem, α = (0.6, 0.8), µ = (0.8, 0.2). Right:
|Λ(ω)ω−1 + i| for the Neumann problem, α = (0.2, 0.7), µ = (0.3, 0.3). Remark that the
color scale is logarithmic.

4.2.5 Approximating Λ(ω) for ω with large imaginary parts

It appears that when Imω is sufficiently large, Λ(ω) can be approximated with
high accuracy by −iω (see Figure 4 for the numerical illustration).

Theorem 15 There exists C > 0, s.t for all ω ∈ C+,

|Λ(ω) + iω| ≤ C|ω| e−2 Imω max(1, (Imω)−3). (133)

Remark 17 When ω ∈ C− = {z ∈ C : Im z < 0}, it is possible to show that

|Λ(ω)− iω| ≤ C|ω|e−2|Imω|max(1, |Imω|−3).

The proof of the above theorem relies on the following auxiliary result.

Lemma 13 There exist c, C > 0, s.t. all ω ∈ C+,

− Im (tanω)
−1 ≥ cmin(1, Imω), (134)∣∣∣1− i (tanω)
−1
∣∣∣ ≤ C max(1, (Imω)

−1
) e−2 Imω. (135)

Proof See Appendix B. ut

Proof (Proof of Theorem 15) Expressing Λ(ω) via (80), one computes that

Λ(ω) + iω = −ω
(
N (ω)/D(ω)

)
, (136)

where, with Fα,µ(ω) defined in (80),
N (ω) =

(
1− i(tanω)−1

)
(1− iω−1Fα,µ(ω)),

D(ω) = (tanω)
−1

+ ω−1Fα,µ(ω).

(137)

Let us first bound the numerator:

|N (ω)| =
∣∣1− i(tanω)−1

∣∣ (1 +

p−1∑
i=0

µi

∣∣∣∣Λ(αiω)

αiω

∣∣∣∣
)
.
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To bound the first term in the product in the right-hand side of the above we
use (135), and to bound the second one, we make use of Theorem 4(b). Thus,

|N (ω)| ≤ CN max(1, (Imω)−2)e−2 Imω, (138)

where the constant CN > 0 depends on µ and α.
It remains to deal with the denominator. For this we use the bound:

|D(ω)| ≥ | ImD(ω)| ≥
∣∣∣ Im (tanω)

−1
+

p−1∑
i=0

µi Im
(
(αiω)−1Λ(αiω)

) ∣∣∣.
It remains to notice that Im (tanω)

−1
and Im

(
(αiω)−1Λ(αiω)

)
are negative

for Imω > 0, cf. (134) and Theorem 4(a). Therefore,

|D(ω)| ≥
∣∣Im(tanω)−1

∣∣ (134)≥ cmin(1, Imω). (139)

Combining the bounds (138) and (139) in (136) yields the desired statement.
ut

4.3 Computing convolution weights: error, algorithm, complexity

Evaluation of convolution weights based on (76) requires computing Λ(ω) for
a range of complex frequencies ω. We comment on the choice of the parameters
ρ and N in (76), see Section 4.3.1, discuss how Λ(ω) is computed within (76)
in Section 4.3.2 and present some complexity studies in Section 4.3.3.

4.3.1 Accuracy of evaluation of convolution weights and choice of ρ,N

Let us relate the accuracy ε of evaluation of Λ as well as the parameters
ρ and N in (76) to the numerical error of evaluation of Nt values of λ∆tn .
Because we compute convolution weights for the scaled value of Λ(ω), namely
Λs(ω) = (−iω)−1Λ(ω), see Remark 11, we will perform the error analysis for
these re-scaled quantities λ∆ts,n, defined as, cf. (29),

Λs
∆t(z) =

∞∑
n=0

λ∆ts,nz
n, Λs

∆t(z) =

(
δ(z)

∆t

)−1
Λ

(
i
δ(z)

∆t

)
. (140)

Let us denote by Λs,ε (ωk) an approximation with an error ε to Λs (ωk). The
convolution weights λ∆ts,n are computed the help of (76):

λ∆ts,n ≈ λ∆t,εs,n :=
ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λs,ε (ωk) ,

ωk = i
δ(ρei

2πk
N )

∆t
, k = 0, . . . , Nt.

(141)
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Before analyzing the error induced by the approximation (141), let us show
that the exact λ∆ts,n are bounded. To prove the result that follows, we will use
the following observation (see (163) in Appendix D):

Im

(
i
δ(ρeiϕ)

∆t

)
>

1− ρ
∆t

, ϕ ∈ [0, 2π). (142)

Proposition 6 The convolution weights satisfy, with some C > 0,∣∣λ∆ts,n∣∣ ≤ C max(1, n∆t), n ≥ 0. (143)

Proof The idea of the proof is from Lemma 5.3, Section 5.1 in [8]. Application
of the Cauchy estimate to (30), evaluated for ` = n, with γ being a circle of
radius rn > 0 centered in the origin, and Λ replaced by Λs, yields

|λ∆ts,n| ≤ r−nn sup
z∈∂Brn (0)

∣∣∣∣∣
(
δ(z)

∆t

)−1
Λ

(
i
δ(z)

∆t

)∣∣∣∣∣
≤ r−nn sup

z∈∂Brn (0)
max

(
1,

(
Im

(
i
δ(z)

∆t

))−1)
,

where the last bound follows from Theorem 4 (b). With (142),

|λ∆ts,n| ≤ r−nn max

(
1,

(
1− rn
∆t

)−1)
.

For n = 0 the desired result is obtained by choosing r0 = 1− (∆t). For n ≥ 1,
the choice rn = n

n+1 yields, with C > 0,

|λ∆ts,n| ≤
(
n+ 1

n

)n
max (1, (n+ 1)∆t) ≤ C max (1, n∆t) . ut

The error of the approximation (141) is given below.

Proposition 7 Let 0 < ε < 1
2 , Nt ≥ 1, N ≥ Nt + 1 be fixed. Assume that

λ∆t,εs,n , n = 0, . . . , Nt are given by (141), with ρ = ε
1

N+Nt−1 . Moreover, assume
that

max
k=0,...,N−1

|Λs,ε (ωk)−Λs (ωk)| < ε. (144)

Then the following error bound holds true, with some C > 0:

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < C (1 +N∆t+ T ) ε
N−1

N+Nt−1 , T = Nt∆t.

Proof As the proof is rather classical in CQ theory, and some of its elements
appear in various works (cf. e.g. [8,40,4]), we postpone it to Appendix C. ut
It is then obvious that for a given ε > 0, the choice of the parameters

N = Nt + 1, ρ = ε
1

2Nt , (145)

and ensuring that the inequality (144) holds allows to compute the convolution
weights with O(

√
ε) error:

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < C max(1, T )
√
ε.
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4.3.2 Evaluating convolution weights: algorithmic details

To compute Λs,ε(ω) in (141) that approximate Λs(ω) = (−iω)Λs(ω) with a
given precision ε > 0 we use the following strategy, based on the results of
Sections 4.2, 4.3.1 (here γε > 0 is to be fixed later):

– if Imωk < γε, compute Λs,ε(ωk) as (−iωk)−1Λ(ωk), using the procedure
EvalLambda for computing Λ(ωk). For all ωk we use the same value of
r > 0 (sufficiently small) and N∗; the latter is chosen like in (89) with
|ω| = max

k
{|ωk| : Imωk < γε} and a = min(min

k
Imωk, 1).

– if Imωk ≥ γε, take Λs,ε(ωk) := 1, by Theorem 15.

Choosing γε = 1
2 log ε−1 + C, with some C > 0, ensures that Λs(ω) =

(−iω)−1Λ(ω) is approximated with an accuracy ε, cf. Theorem 15. The above
strategy is illustrated in Figure 5 (left).
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∆t = 0.05, Nt = 100

∆t = 0.1, Nt = 50

∆t = 0.2, Nt = 25

Fig. 5 Left (illustration to Section 4.3.2): Nt = 100 frequencies ωk defined in (76), with

∆t = 0.05 and ρ = ε
1

2Nt , ε = 10−8. In red we mark ωk s.t. Imωk > γ (we choose γ = 12), s.t.
Λs(ωk) is approximated by 1. Right (illustration to Section 4.3.3): Nt frequencies ωk defined
in (76) with given ∆t, chosen so that Nt∆t = 5. Remark that in all cases Imωk > const.

4.3.3 Complexity estimates

Let us estimate the complexity of the evaluation of (141) in terms of Nt, ∆t,
ε, provided that ρ, N are given by (145). Let us assume that T = Nt∆t fixed,
and consider the regime Nt → ∞; we also assume that ε is sufficiently small.
As discussed in Section 4.1, this necessitates a bound on the cost of computing
Λ (ωk) in (141). This bound, cf. (132), depends on ωk; thus, we must study how
ωk behaves with Nt, ∆t, ε. The following proposition is a minor refinement of
some of the results from [4].

Lemma 14 Let ωk, k = 0, . . . , Nt, Nt ≥ 1, be given by (141), with N , ρ
defined in (145), ∆t < 1 and 0 < ε < 1

2 . Then, with some c, C > 0

(a) Imωk > c min
(
1, T−1

)
,

(b) |ωk| < CT−1N2
t .
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Proof See Appendix D. ut

An illustration to the statement (a) is provided in Figure 5 (right).

By Lemma 14, ωk ∈ Ca,a, with a = min
(
1, c, c/T

)
. Thus the results of Section

4.2.4 about the evaluation of Λ(ω) apply. The complexity of computation of
each of Λ(ωk) is O(1) when Imωk ≥ γε, and scales as (132) when Imωk < γ.
Replacing |ωk| by O(N2

t ), according to Lemma 14, the worst case complexity
is given by

cΛ = O(logp+2Nt + logpNt log ε−1).

Because (141) requires computing at most O(Nt) values of Λ(ωk), and then
performing the FFT, see the discussion in Section 4.1, the total complexity of
computing N convolution weights with an accuracy O (

√
ε) scales as

O(Nt logp+2Nt +Nt logpNt log ε−1).

Remark that this complexity scales, in general, better, than O(N2
t ) complexity

of the solution of the full problem, cf. Section 3.4.

5 Numerical results

In all the numerical results of this section we use the mass-lumped finite ele-
ment for the space discretization, and a regular spatial grid. This, in particular,
implies that the CFL number is Ccfl = ∆t

h , cf. (53) and Remark 9. In the ex-
periments we fixed r,N∗ in the procedure of Section 4.2.1 for computation of
Λ(ω) to a (numerically determined) fixed value that allows to approximate
Λ(ω) in the convolution weight computation with a high accuracy. As for the
evaluation of the convolution weights, we choose ε = 10−12 in (145).

5.1 Validity of the method

In this section we would like to verify the validity of the transparent boundary
conditions constructed in the present article, by comparing a solution com-
puted on the truncated tree to a solution computed on the tree T . However,
because the tree T has infinitely many branches, it is in general impossible
to compute such a reference solution. Thus, one of the options would be to
truncate the tree up to N generations, where N � 1, and perform the com-
putation on this truncated tree, as it was done e.g. in [35]. Because this is
costly, we adapt an alternative approach: given N generations, we compute
the solution to the problem (19) on T m with m = N − 1, where we use the
transparent boundary conditions approximated with the help of the convolu-
tion quadrature. This is the reference solution. We compare this solution with
the CQ approximation to (19), where m is fixed, m < N − 1.
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Let us remark that no analysis had been made in this article about the
convergence of the method with respect to the number of the truncated gen-
erations m+ 1 (a related issue was addressed in [34]).

We solve the Neumann problem on the binary tree T , s.t. the length of the
root edge equals to `0,0 = 2, with α = (0.3, 0.5) and µ = (1, 0.25). The source
term is supported on the root branch of the tree and defined as

f(t, s) = 106(s− 1.5)e−σ(s−1.5)
2−σ(t−0.1)2 , σ = 5 · 103. (146)

The reference solution uN−1 is computed on the truncated tree T N−1 with
N = 5 generations; ∆t = 9.9 · 10−5, h = 10−4. We use the same discretization
parameters in all the experiments.

The dependence of the solutions um(s0, t) on t is depicted in Figure 5.1;
here s0 = 1 is the middle of the root branch. The complex behaviour of the
solution is attributed to the multiple reflection phenomena on the tree T : in
general, waves are reflected from each of the vertices of the tree. In particular,
the second peak of the solution um(s0, t) is due to the wave reflected from
the vertex M0,0. The first reflections from the infinite boundary of the tree
reach s0 = 1 at t ≈ 3.3. In order to compare quantitatively the approximated

Fig. 6 Top: dependence on t of the numerically approximated solution to the problem (19)
um(s0, t) in the point s0 (which is the middle of the root branch). We study the Neumann
problem on the tree with `0,0 = 2.0, α = (0.3, 0.5) and µ = (1, 0.25), the right hand side
(146). Bottom: relative errors enm (cf. (147)) as functions of tn = n∆t (computed for the
same experiment).

solutions um computed on the truncated tree with (m+ 1) generations, where
m = 1, 2, 3, with the reference solution uN−1, we compute the relative errors
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by evaluating norms on the first two generations (since 2 is the minimal value
for the number of the truncated generations in our experiments):

enm =
‖unN−1 − unm‖L2

µ(T k−1)

max
n=0,...,Nt

‖unN−1‖L2
µ(T k−1)

, k = 2, em := max
n=0,...,Nt

enm. (147)

The values em are as follows:

e1 ≈ 7.1 · 10−4, e2 ≈ 3.7 · 10−4 e3 ≈ 1.6 · 10−4.

The errors enm as functions of tn = n∆t are shown in Figure 5.1, bottom.
Numerical experiments indicate that they grow linearly in time; this is not
surprising, in view of the results of Theorem 13. Figure 5.1 shows that the
errors almost vanish for smaller times (even where the solution is non-zero).
This can be explained by the fact that the wave reaches the outer boundary
of T m (where we use the approximated transparent boundary conditions) and
reflects into the tree T 1 (where we measured errors) at t ≈ 1.2 for m = 1,
t ≈ 1.6 for m = 2 and t ≈ 1.7 for m = 3.

5.2 Convergence rates and stability

5.2.1 Convergence.

We perform the convergence experiments on the tree with α = (0.2, 0.4) and
µ = (1, 0.25), and the length of the root edge `0,0 = 2. Because no closed form
solution is, in general, available, we compare the numerical solution computed
on a coarse grid (h, ∆t) to the numerical (’reference’) solution computed on
the finest grid (hf , ∆tf ) = (10−4, 0.99 · 10−4). The solutions are computed on
the tree T 2 (i.e. on 3 generations, cf. (2)), on the time interval (0, T ), T = 10,
and with the right hand side supported on the root edge Σ0,0 and defined by

f(t, s) = 104e−100(t−0.75)
2−100(s−1)2(s− 1).

We again consider the Neumann problem. We fix the CFL (53), i.e. the ratio
∆t
h =

∆tf
hf

, and perform the experiments on the sequence of grids (hk, ∆tk),

1 ≤ k ≤ 9, with min
k
hk = 2 · 10−4. The reference solution computed at the

time tk is denoted by ukref , and the solution on the grid (h, ∆t) by ukh. The
evolution of the relative error eh,∆t, defined below, is shown in Figure 7, left.

eh,∆t = max
n

enh,∆t, where enh,∆t =
‖unh − unref‖L2

µ(T m)

‖uref‖`∞(L2
µ(Tm))

,

‖uref‖`∞(L2
µ(T m)) := max

k=0,...,Nt
‖ukref‖L2

µ(T m), Nt =

⌈
T

∆tf

⌉
.

(148)
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Fig. 7 Left: convergence rates for the experiment of Section 5.2.1. Right: dependence on
time of the L2-norm of the solution computed on T 2 in the experiment of Section 5.2.2.

5.2.2 Long-time stability.

To study the stability of the numerical method, we compute the solution to the
problem described in Section 5.2.1 on the time interval (0, T ) with T = 500,
with the discretization (h,∆t) = (5 ·10−4, 4.99 ·10−4) (i.e. on around 106 time
steps). Figure 7, right depicts L2

µ(T 2)-norm of the solution, which clearly stays
bounded on the whole time interval.

5.3 Performance of the method on different trees.

To explain the experiments that follow, let us provide more information about
Λ(ω). Recall that Λ(ω) is an even meromorphic in C function (cf. Theorem 4)
with real poles. The number of poles of Λ on an interval (0, λ) is asymptotically
bounded from above by Cλd, where d ≥ 1 and depends on α (see [33]). In
particular, when

∑
i

αi < 1, one has d = 1; while when
∑
i

αi > 1, it holds that

d = ds, where ds > 1 is a unique number s.t.

p−1∑
i=0

αdsi = 1.

Let us remark that in practice these bounds often appear to be optimal. Al-
though the estimates are asymptotic, the difference between these cases is
observed already for small λ. In particular, in Figure 8 we depict numerically
computed poles of Λ(ω) for two sets of parameters: α = (0.4, 0.4), µ = (0.5, 1)
(case d = 1) and α = (0.8, 0.4), µ = (0.5, 1) (case d = ds ≈ 1.4).

Our goal is to find out whether the density of poles influences the be-
haviour of the convolution quadrature. For this we compute the solutions to
the Dirichlet and Neumann problems on the reference tree T (length of its
root edge equals `0,0 = 1), constructed with different sets of the parameters,
on the time interval (0, 20). As a source we take

f(t, s) = 106e−σ(s−0.5)
2−σ(t−0.25)2(s− 0.5), σ = 103,
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Fig. 8 Left: On top we show the poles of Λ(ω) on the interval (0, 10) for the Dirichlet
problem. Bottom: poles of Λ(ω) on the interval (0, 10) for the Neumann problem. On both
plots with blue vertical dashes we mark the poles corresponding to α = (0.8, 0.4), µ =
(0.5, 1), while with magenta circles the poles corresponding to α = (0.4, 0.4), µ = (0.5, 1).
Right: Errors eh,∆t, cf. (148), for different discretizations for the experiments of Section
5.3. In all the experiments µ = (0.5, 1.0).

supported on the root edge. We repeat the experiment of Section 5.2.1, by
computing the solutions for different discretizations, the only difference being
that we compare the solutions computed on the truncated tree T 1 to the
reference solution computed on a fine discretization on the tree T 2. The time
interval is chosen so that the reflections from the ’infinite’ boundary of the
tree are able to reach the computational domain.

The convergence plots for different parameters are shown in Figure 8, right.
In this figure we present the results for the Dirichlet problem only, since in the
Neumann case they are very similar. We do not observe any clear correlation
between the density of poles of Λ(ω) and the error behaviour. In particular, the
relative errors eh,∆t for the parameters α = (0.8, 0.4) (where d = ds ≈ 1.4)
and α = (0.4, 0.4) (where d = 1) are quite close. The same holds true for
α = (0.2, 0.2) (the case d = 1) and α = (0.9, 0.8) (where d = ds ≈ 4.42); let us
remark that in this latter case, for the Dirichlet problem, when α = (0.2, 0.2),
on the interval (0, 10) there are 3 poles, while when α = (0.9, 0.8), on the
interval (0, 5) there are more than 3000 poles.

Let us additionally remark that in the experiment α = (0.9, 0.8) the Dirich-
let and Neumann problems coincide, see Theorem 2.

Nonetheless, as expected, in these experiments we observe a difference in
terms of the computational times (in particular, since the complexity of evalu-
ating Λ(ω), see Section 4.2.4, depends on |α|∞, this is the case for the convo-
lution weights as well). In the largest computation on the tree T 2, discretized
with h = 10−4, ∆t = 0.99·10−4, we computed ∼ 2·105 convolution weights. On
a laptop, this requires about 5 seconds for the problem with α = (0.2, 0.2),
12 seconds for α = (0.4, 0.4), 167 seconds for α = (0.8, 0.4) and almost 12
minutes for α = (0.9, 0.8). These numbers can be improved by optimizing the
parameters in the computations.
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6 Conclusions

In this work we approximated the transparent boundary conditions for wave
propagation in fractal trees with the help of the convolution quadrature method.
Besides stability and convergence analysis, we have additionally considered
practical aspects of the algorithm, in particular, computation of the convolu-
tion weights. Obtained results, both theoretical and numerical, indicate sta-
bility and efficiency of the method.

Nonetheless, some numerical analysis questions remain open (e.g. stability
of the problem under perturbation of convolution weights); such analysis may
affect some estimates of Section 4.3.3 by imposing constraints on the choice
of parameters (in particular, the parameter ρ in (76)), cf. e.g. the respective
analysis for time-domain boundary integral equations in [8]. We nonetheless
believe that the results obtained in this work provide a technical background
for continuing the research in this direction.

One of the drawbacks of the CQ method is its complexity, which scales as
O(N2

t ) where Nt is the number ot time steps; this is prohibitive when compu-
tations on long times are required. This can be overcome using an algorithm
similar to the one proposed in [4], see also [25] and [5]. Additionally, alterna-
tive ideas for approximating the transparent boundary conditions, based on
the meromorphic expansion of the DtN symbol, are being investigated.
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A Proof of Theorem 4

It remains to prove the upper bound on Λa(ω). Without loss of generality, we will show it
for Λn(ω). First, Λn(ω) can be defined via the solution of the frequency-domain problem:

Λn(ω) = −∂sλ(M∗), ω ∈ C+, (149)

where λ ∈ H1
µ(T ) solves the boundary-value problem:

ω2

∫
T

µ(s)λ v −
∫
T

µ(s) ∂sλ ∂sv = 0, for all v ∈ Vn, λ(M∗) = 1. (150)

Let us define ‖v‖ω :=
∫
T
µ
(
|∂sv|2 + |ωv|2

)
. We proceed as follows:

– first prove the bound |Λn(ω)|2 by the energy of the solution (notice that λ(M∗) = 1):

|Λn(ω)|2 ≤ |ω|2 + C0(1 + Imω)‖λ‖2ω , C0 > 0. (151)

– next show that the energy of the solution is bounded by 1
2
|Λn(ω)|2, with C0 as above:

C0(1 + Imω)‖λ‖2ω ≤
1

2
|Λn(ω)|2 + C1 max(1, (Imω)−2)|ω|2, C1 > 0. (152)
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– combine (151) and (152) to obtain the desired bound:

|Λn(ω)|2 ≤ C max(1, (Imω)−2)|ω|2.

Proof of the bound (151). Let v0(s) = χ(s)∂sλ, where χ ∈ C1(T ;R), suppχ(s) ⊆ Σ0,0,
χ(M∗) = 1 and χ(M0,0) = 0. The weak formulation (150) implies that λ satisfies

∂2sλ+ ω2λ = 0 on Σ0,0.

Testing the above with v0(s), we obtain the following identity on the edge Σ0,0, parametrized
by s ∈ [0, 1] (recall that we work with the reference tree, and thus the length of Σ0,0 is 1):

I1 + I2 = 0, where I1 =

1∫
0

∂2sλχ(s) ∂sλds, I2 = ω2

1∫
0

λχ(s) ∂sλds. (153)

Let ω = ωr + iωi, ωr ∈ R and ωi > 0. Let us consider the real part of the above:

Re I1 =
1

2

1∫
0

d

ds
|∂sλ|2χ(s)ds = −

1

2
|Λn(ω)|2 −

1

2

1∫
0

χ′(s)|∂sλ|2ds, (154)

where in the last identity we used χ(0) = 1 and χ(1) = 0. Combining (153), (154), we deduce

|Λn(ω)|2 ≤ 2|Re I2|+ c1

1∫
0

|∂sλ|2ds, c1 > 0. (155)

Similarly,

Re I2 =
1

2
Reω2

1∫
0

χ(s)
d

ds
|λ|2ds− Imω2

1∫
0

χ(s) Im(λ∂sλ)ds

= −
1

2
(ω2
r − ω2

i )−
1

2
(ω2
r − ω2

i )

1∫
0

χ′(s)|λ|2ds− 2ωiωr

1∫
0

χ(s) Im(λ∂sλ)ds.

where we used χ(0) = 1, χ(1) = 0 and λ(0) = 1. Applying to the last integral the Young
inequality we obtain the following bound, with c2, c3 > 0,

|Re I2| ≤
1

2
|ω|2 + c2|ω|2

1∫
0

|λ|2ds+ c3ωi

|ωr|2 1∫
0

|λ|2ds+

1∫
0

|∂sλ|2ds

 . (156)

Inserting (156) into (155) we prove (151).

Proof of the bound (152). Testing the Helmholtz equation corresponding to (150) with
ωλ(s) and integrating by parts we obtain the following identity (recall that λ(M∗) = 1):

ωΛn(ω) = ω

∫
T

µ|∂sλ|2 − |ω|2ω
∫
T

µ|λ|2.

Taking the imaginary part of the above results in

Im (ωΛn(ω)) = −ωi

∫
T

µ|∂sλ|2 + |ω|2
∫
T

µ|λ|2
 = −ωi‖λ‖2ω .
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Multiplying both sides of the above by −C0(1 + ωi)ω
−1
i , with C0 is as in (151), we obtain

−C0(ω−1
i + 1) Im (ωΛn(ω)) = C0(1 + ωi)‖λ‖2ω . (157)

It suffices to notice that the left hand side in the above equality is bounded:∣∣∣−C0(ω−1
i + 1) Im (ωΛn(ω))

∣∣∣ ≤ C0(ω−1
i + 1)|ω||Λn(ω)| ≤

1

2
|Λn(ω)|2 +

C2
0

2
(ω−1
i + 1)2|ω|2,

where we used the Young inequality. In the above we bound further C0(ω−1
i + 1) ≤

2 max(1, ω−1
i ). Inserting the bound into (157) gives

C0(1 + ωi)‖λ‖2ω ≤
1

2
|Λn(ω)|2 + 2C2

0 max(1, ω−2
i )|ω|2,

i.e. (152). Combining (151) and (152) proves the statement of the theorem.

B Proof of Lemma 13

We first show (134). By definition, tanω = i 1−z
1+z

, with z = e2iω , ω = ωr + iωi. Then,

− Im (tanω)−1 = Re
1 + z

1− z
= Re

(1 + z)(1− z)
|1− z|2

=
1− |z|2

1 + |z|2 − 2 Re z
≥

1− |z|2

(1 + |z|)2
(158)

=
1− |z|
1 + |z|

=
1− e−2ωi

1 + e−2ωi
≥


e2ωi−1
e2ωi+1

≥ 2ωi
e2+1

, if 0 < ωi ≤ 1,

1−e−2

1+e−2 , if ωi > 1,

hence the bound (134). Let us show (135). After straightforward computations,∣∣∣1− i (tanω)−1
∣∣∣ =

2|z|
|1− z|

≤
2|z|
|1− |z||

=
2e−2ωi

1− e−ωi
≤ C max(1, ω−1

i )e−2ωi ,

where the last bound follows by noticing that, for ωi > 0,

1− e−ωi ≥
{

1− e−1, if ωi ≥ 1,
e−1ωi, if ωi < 1

≥ cmin (1, ωi) , c > 0. (159)

C Proof of Proposition 7

To prove Proposition 7, we need the following auxiliary result.

Lemma 15 Let 0 < ρ < 1, ε > 0, and λ∆t,εs,n , n = 0, . . . , Nt be given by (141), with
N ≥ Nt + 1, where max

k
|Λs,ε (ωk)−Λs (ωk)| < ε. Then

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < ρ−Ntε+ ρNCN (ρ),

CN (ρ) = (1− ρN )−1
(

1 +Nt∆t+N∆t(1− ρN )−1
)
.

(160)

Proof For all n = 0, . . . , Nt,

|λ∆t,εs,n − λ∆ts,n| ≤ S1 + S2,

S1 =

∣∣∣∣∣ρ−nN
N−1∑
k=0

e−i
2πkn
N (Λs,ε (ωk)−Λs (ωk))

∣∣∣∣∣ ,
S2 =

∣∣∣∣∣ρ−nN
N−1∑
k=0

e−i
2πkn
N Λs (ωk)− λ∆ts,n

∣∣∣∣∣ . (161)
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An upper bound for S1 follows from the triangle inequality and the assumption of the
proposition: S1 ≤ ρ−nε ≤ ρ−Ntε (because ρ < 1).

As for S2, it suffices to replace Λs (ωk) in the above sum by
∞∑̀
=0
λ∆ts,`ρ

`ei
2π`k
N , cf. (140), and

use the aliasing argument. In particular,

ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λs (ωk) =

ρ−n

N

N−1∑
k=0

∞∑
`=0

λ∆ts,` ρ
` ei

2πk(`−n)
N .

Since N−1
N−1∑
k=0

ei
2πk(`−n)

N = 1 when ` − n is a multiple of N and vanishes otherwise, and

n ≤ Nt ≤ N − 1, the above can be rewritten as follows:

ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λs (ωk) = λ∆ts,n + ρ−n

∞∑
k=1

λ∆ts,kN+nρ
kN+n, and

S2 ≤ ρ−n
∞∑
k=1

∣∣∣λ∆ts,n+kN ∣∣∣ ρn+kN (143)

≤ C

∞∑
k=1

max(1, (n+ kN)∆t)ρkN .

The above sum is then bounded:

S2 ≤
∞∑
k=1

ρkN +
∞∑
k=1

ρkN (n+ kN)∆t

≤ ρN (1− ρN )−1(1 + n∆t) +N∆t ρN (1− ρN )−2.

The result follows by bounding in the above n∆t by Nt∆t and combining bounds for S1

and S2 into (161). ut

The bound of Lemma 15 allows us to quantify the choice of ρ, N in (141).

Proof (Proof of Proposition 7) The desired bound follows by applying the result of Lemma
15. In particular, CN (ρ) can be estimated by providing an adequate estimate on 1− ρN =

1− ε
N

N+Nt−1 . Because Nt ≥ 1, the function N 7→ 1− ε
N

N+Nt−1 = 1− εε
1−Nt

N+Nt−1 grows in
N . Since, additionally, N ≥ Nt + 1, we have

1− ρN ≥ 1− ε
Nt+1
2Nt > 1−

√
ε > 1−

√
1

2
, for all 0 < ε <

1

2
.

Plugging in this bound into (160) yields CN (ρ) ≤ C(1 + (N +Nt)∆t) and

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < ε
N−1

N+Nt−1 + Cε
N

N+Nt−1 (1 + (N +Nt)∆t),

from which the desired bound is obtained immediately.

D Proof of Lemma 14

Let us show (a), which basically follows from Section 5.2.1 in [4]. The frequencies ωk defined
in (76), namely,

ωk = i
δ(ρei

2πk
N )

∆t
=

2i

∆t

1− ρeiϕk

1 + ρeiϕk
, ϕk = ei

2πk
N ,
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lie on the circle centered at cρ,∆t of radius Rρ,∆t (this follows from the fact that z 7→ 1−z
1+z

is a homography), with

cρ,∆t =
2i

∆t

1 + ρ2

1− ρ2
, Rρ,∆t =

2

∆t

2ρ

1− ρ2
, (162)

i.e. ωk = cρ,∆t +Rρ,∆te
iψk , for some ψk ∈ [0, 2π). Hence

Imωk ≥ inf
0≤ϕ<2π

Im

(
i
δ(ρeiϕ)

∆t

)
=

2

∆t

1 + ρ2 − 2ρ

1− ρ2
=

2

∆t

1− ρ
1 + ρ

, (163)

and, as ρ < 1, Imωk >
1−ρ
∆t

. For ρ defined in (145),

1− ρ = 1− ε
1

2Nt = 1− exp

(
−

log ε−1

2Nt

)
> c0 min

(
1,

log ε−1

Nt

)
, c0 > 0, (164)

where the last bound follows from (159). Therefore, as ∆t < 1, and ε < 1
2

,

Imωk > cmin

(
1,

1

Nt∆t

)
, c > 0.

To show (b), we use the same property (162), which results in

|ωk| ≤
2

∆t

(
1 + ρ2

1− ρ2
+

2ρ

1− ρ2

)
≤

2(1 + ρ)

∆t(1− ρ)
<

4

∆t(1− ρ)
.

Using (164), and then ε < 1
2

, we deduce the following inequality, for some C,C′ > 0,

|ωk| <
C

∆t
max

(
1, Nt

(
log ε−1

)−1
)
≤
C′

∆t
max (1, Nt) ≤

C′

Nt∆t
N2
t . ut

E Gronwall inequalities

Lemma 16 (Continuous Gronwall inequality) Let E(t) ≥ 0, E(0) = 0. Let d
dt
E(t) ≤

f(t)
√
E(t). Then

√
E(T ) ≤ ‖f‖L1(0,T ) for all T ≥ 0.

Proof Integrating from 0 to t the inequality in the statement of the theorem gives

t∫
0

E′(τ)dτ ≤
t∫

0

f(τ)
√
E(τ)dτ =⇒ E(t) ≤ sup

0≤τ≤t
E(τ)‖f‖L1(0,t)

=⇒ sup
0≤t≤T

E(t) ≤ sup
0≤t≤T

(
sup

0≤τ≤t
E(τ)‖f‖L1(0,t)

)
≤
√

sup
0≤t≤T

E(t)‖f‖L1(0,T ),

and hence the result.

Lemma 17 (Continuous Gronwall inequality 2) Let E(t) ≥ 0, E(0) = 0, E ∈ L∞loc.
Let

E(t) ≤ f(t)
√
E(t) +

t∫
0

g(τ)
√
E(τ)dτ, (165)

with f and g being non-negative functions, f ∈ L∞loc and g ∈ L1
loc.

Then, for all t > 0,
√
E(t) ≤ ‖f‖L∞(0,t) + ‖g‖L1(0,t) (166)
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Proof We fix T > 0, and take sup
t∈[0,T ]

of both sides of (165). This gives

sup
t∈[0,T ]

E(t) ≤ sup
t∈[0,T ]

(
f(t)

√
E(t)

)
+ sup
t∈[0,T ]

t∫
0

g(τ)
√
E(τ)dτ

≤ sup
t∈[0,T ]

f(t) sup
t∈[0,T ]

√
E(t) + sup

t∈[0,T ]
sup
τ∈[0,t]

√
E(τ)

t∫
0

g(τ)dτ

Let E∗ = sup
t∈[0,T ]

E(t). Then the above yields the inequality

E∗ ≤ ‖f‖L∞(0,T )

√
E∗ + ‖g‖L1(0,T )

√
E∗,

or, in other words,

√
E∗ ≤ ‖f‖L∞(0,T ) + ‖g‖L1(0,T ).

Because E∗ ≥ E(t) for all 0 ≤ t ≤ T , we obtain the desired bound.

Lemma 18 (Discrete Gronwall inequality) Let Em ≥ 0, for all m ∈ N, and let, with
A ≥ 0,

En ≤ A+ γn
√
En +

n∑
`=0

δ`
√
E`, n ≥ 0.

Then
√
En ≤

√
A+ max

`=0,...,n
|γ`|+

n∑̀
=0
|δ`|.

Proof Taking max
0≤n≤N

from both sides of the inequality in the statement of the lemma:

max
0≤n≤N

En ≤ A+ sup
0≤n≤N

√
En

(
max

0≤n≤N
|γn|+

N∑
`=0

|δ`|
)
.

Next, if max
0≤n≤N

√
En <

√
A, then obviously the desired bound holds true. Otherwise, it

suffices to replace

max
0≤n≤N

En ≤
√
A max

0≤n≤N

√
En + sup

0≤n≤N

√
En

(
max

0≤n≤N
|γn|+

N∑
`=0

|δ`|
)
,

which results in the desired statement.

F Proof of Theorem 6

We proceed like in the proof of Theorem 4. We will show the result for a = n, the proof for
the Dirichlet problem being almost verbatim the same.
Step 1. Let χ(s) be like in the proof of Theorem 4. Testing the wave equation (4), (5), (K),
(C) in its strong form by ∂suχ(s) results in (where we parametrized Σ0,0 by s ∈ [0, 1]):

1∫
0

∂2t uχ(s) ∂su−
1∫

0

∂2su ∂suχ(s) = 0.
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Let us rewrite the first term in the above:

I1 :=

1∫
0

∂2t uχ(s) ∂su =
d

dt

 1∫
0

∂tuχ∂su

− 1∫
0

∂tu ∂t∂suχ(s)

=
d

dt

 1∫
0

∂tuχ∂su

− 1

2

1∫
0

(
∂s(|∂tu|2χ(s))− χ′(s)|∂tu|2

)

=
d

dt

 1∫
0

∂tuχ∂su

+
1

2
|∂tg|2 +

1

2

1∫
0

χ′(s)|∂tu|2.

The second term

I2 := −
1∫

0

∂2su ∂suχ(s) = −
1

2

1∫
0

∂s(|∂su|2χ(s))− χ′(s)|∂su|2 = −
1

2
|Λn(∂t)g|2 +

1

2

1∫
0

χ′(s)|∂su|2.

Since I1 + I2 = 0, we obtain, with E = 1
2

∫
T

(
|∂tu|2 + |∂su|2

)
,

1

2
|Λn(∂t)g|2 ≤

1

2
|∂tg|2 +

d

dt

 1∫
0

∂tuχ∂su

+ CE(t).

Integrating the above from 0 to T we get, together with vanishing initial conditions :

‖Λn(∂t)g‖L2(0,T ) ≤ ‖∂tg‖
2
L2(0,T )

+ C

T∫
0

E(t)dt+

1∫
0

∂tu(s, T )χ(s)∂su(s, T )ds

≤
1

2
‖∂tg‖2L2(0,T )

+ C

T∫
0

E(t)dt+ CE(T ),

(167)

where we used the Young inequality to bound the latter term.
Step 2. Testing the wave equation (??) in the strong form by ∂tu and integrating by parts
gives

d

dt
E(t) = (Λn(∂t)g)∂tg.

Integrating from 0 to t the above we get

E(t) ≤
t∫

0

|Λn(∂t)g||∂tg|dt ≤
η

2
‖Λn(∂t)g‖2L2(0,t)

+
1

2η
‖∂tg‖2L2(0,t)

, η > 0, (168)

where the last expression follows by the Young inequality.
In particular, the above implies, with η = η1 to be fixed later

T∫
0

E(t)dt ≤ T
1

2η1
‖∂tg‖2L2(0,T )

+
Tη1

2
‖Λn(∂t)g‖2L2(0,T )

. (169)

Therefore, replacing in (167):

– E(T ) by its bound (168) with η = 1
2C
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–
T∫
0

E(t)dt by its bound (169) with η1 = 1
2TC

,

we obtain the following bound for ‖Λn(∂t)g‖L2(0,T ):

‖Λn(∂t)g‖2L2(0,T )
≤ C∗max(1, T )‖∂tg‖2L2(0,T )

,

and hence the continuity. Let us finally remark that we fixed g(0) = 0 for the compatibility
conditions, as u(0) = 0.
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