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Abstract In this work we propose high-order transparent boundary condi-
tions for the weighted wave equation on a fractal tree, with an application to
the modeling of sound propagation in a human lung. This article follows the
recent work [29], dedicated to the mathematical analysis of the correspond-
ing problem and the construction of low-order absorbing boundary conditions.
The method proposed in this article consists in constructing the exact (trans-
parent) boundary conditions for the semi-discretized problem, in the spirit of
the convolution quadrature method developed by Ch. Lubich. We analyze the
stability and convergence of the method, and propose an efficient algorithm for
its implementation. The exposition is concluded with numerical experiments.

Keywords Convolution quadrature · transparent boundary conditions ·
fractal trees · DtN operator · quantum graph

1 Introduction

Sound propagation in a human lung can be used for non-invasive diagnosis
of the respiratory diseases, see e.g. [40] for some experimental studies, a PhD
thesis [24], and, in particular, the Audible Human Project [1] and references
therein. A human lung can be viewed as a network of small tubes (bronchioles),
immersed into the lung tissue (parenchyma) and coupled with their ends to
microscopic cavities in the parenchyma (alveoli). The physical phenomenon of
the wave propagation in a lung is highly complex, due to the fractal geometry
of lung airways, heterogeneity of parenchyma, interactions/couplings between
various types of tissues, and, eventually, multiscale nature of the problem, and
thus in practice one uses simplified models. For instance, in the mathemat-
ical literature, in [13,12], the sound propagation in a highly heterogeneous
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parenchyma is modelled using the homogenization techniques. In [36] Sobolev
spaces associated to the Laplace equation on a fractal tree that models the
network of bronchioli are studied, and in [20] the wave equation with a viscous
non-local term on a dyadic infinite tree is analyzed, see as well the mono-
graph [35]. This point of view at the bronchioli as a self-similar network (with
possibly multiple levels of self-similar structure) seems to be rather classical
(though indeed simplified) in the medical and medical engineering literature,
see in particular [43,15,38,25] for the related discussion. In this article we
adapt this, simplified, approach of studying wave propagation in lungs.

In the limit when the thickness of the bronchiolar tubes tends to zero, the
problem becomes essentially one-dimensional inside each of the tubes. A rig-
orous asymptotic analysis [30,42] allows to take into account the differences
between the thicknesses of the tubes at different levels of the bronchiolar tree
via incorporating weights into the originally homogeneous wave equation. Con-
structing an efficient numerical method for the resolution of such a 1D weighted
wave equation defined on a fractal tree is the subject of the present work. In
the literature [8] the type of problems we consider is sometimes referred to as
problems posed on a quantum graph, to underline the distinction between this
kind of models and discrete, finite-difference-like models on graphs.

This problem gives rise to numerous interesting questions from the ana-
lytical (relations between associated weighted Sobolev spaces on fractal trees,
in particular, embeddings and existence of a trace), and from the numerical
point of views (since the fractal tree has an infinite number of edges). The
analysis related questions have been answered in [29], while the construction
of efficient numerical methods for such problems is mainly the subject of the
present work. Our principal idea is to construct transparent boundary condi-
tions for the wave propagation in a fractal tree that would allow to perform
all the computations on a truncated tree. Most of such boundary conditions
are based on an approximation of the Dirichlet-to-Neumann (DtN) operator.

In this work we construct an exact DtN operator for a semi-discretized in
time system, in the spirit of the convolution quadrature (CQ) methods [33,34],
see in particular numerous recent works dedicated to the coupling of boundary
integral equations and volumic wave equations (FEM-BEM coupling) [6,32,
23,37]. Let us mention a related approach, based on constructing transparent
boundary conditions for problems discretized in space and time, see e.g. [3,10,
11,9,31] and references therein. Our transparent boundary conditions can be
viewed as Johnson-Nédélec style coupling [26], which was, in the context of the
acoustic wave equation, studied in the PhD thesis [21], or, for the Schrödinger
equation, in [41]. In this work we perform the convergence and stability analysis
for such a coupling. The principal difference between our work and many other
works on CQ is that we perform the analysis purely in the time domain (unlike
e.g. [6,32]), and use an explicit time discretization for the volumic terms and
an implicit discretization for the boundary terms (unlike [23,37]).

Another important difficulty for the CQ treatment is that neither the con-
volution kernel, nor its Fourier-Laplace transform are known in a closed form



Transparent BCs for fractal trees with CQ 3

(unlike many other applications of the CQ); we thus propose a procedure for
its approximation, suitable for the use in the convolution quadrature.

This article is organized as follows. In Section 2 we recall the notation and
formulate the problem. Section 3 is dedicated to the construction of transpar-
ent boundary conditions, as well as their analysis (stability and convergence).
In Section 4 we provide algorithmic aspects of the method and perform its
complexity analysis. Finally, Section 5 is dedicated to the numerical experi-
ments. We conclude with a discussion of the obtained results in Section 6.

2 Problem setting

2.1 Notation

We will adhere to the notation and terminology used in [29]. Let us recall some
of the geometric assumptions:

1. By T we will denote a p-adic tree [29, Definiton 2.1] with an infinite
number of edges. These edges are ordered in generations (collections of edges)
Gi in the following manner: G0 consists of a root edge; Gn+1 is a union of
children edges of all the edges from the generation Gn. Each generation Gn,
n ∈ N, contains pn edges Σn,k, k = 0, . . . , pn − 1.

The children of the edge Σn,k (of the generation n+ 1) are indexed as

Σn+1,pk+j , j = 0, . . . , p− 1. (1)

The root vertex of the tree is denoted by M∗. Every edge Σn,k can be as-

M∗

Σ0,0

M1,0

M1,1
Σ1,1

M1,2

. . .M0,0 M∗

µ0,0 = 1

µ0

µ1

µ2

. . .

µ2
0 µ0µ1

µ0µ2

µ1µ0

µ2
1

µ1µ2

µ2µ0

µ2µ1

µ2
2

Fig. 1 A self-similar 3-adic infinite tree. Left: In blue we mark the edges that belong to G0,
in red the edges of G1, in black the edges of G2. Right: Distribution of weights on the edges
of a 3-adic infinite self-similar tree.

sociated with two vertices [An,k, Bn,k]. Given a vertex M , let d(M) be the
length of the path (sum of the respective edge lengths) between the root edge
M∗ and M ; then we denote by Mn,k = argmax(d(An,k), d(Bn,k)). This vertex
uniquely identifies the edge Σn,k, see Figure 1.
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2. Each edge Σn,k is assigned two numbers: its length `n,k and a weight
µn,k > 0.

3. We will assume that the tree is self-similar (fractal), in the sense of [29,
Definition 2.3]. Let us explain this in more details. Let α = (α0, . . . , αp−1) and
µ = (µ0, . . . , µp−1) be two vectors with positive elements. Then the length and
the weight of the edge Σn+1,pk+j are related to the length and the weight of
the parent edge Σn,k, cf. (1), as follows:

`n+1,pk+j = αj`n,k, µn+1,pk+j = µjµn,k, j = 0, . . . , p− 1.

Without loss of generality, we will assume that µ0,0 = 1. An illustration to the
above is given in Figure 1.

Finally, we will denote by T m the subtree of T truncated to m generations,
whose edges are given by a collection

T m := {Σn,k, 0 ≤ k ≤ pn − 1, 0 ≤ n ≤ m} ≡
m⋃
`=0

G`. (2)

By Tm,j we will denote a p-adic subtree of the tree T , whose root edge is Σm,j .
All over the article we will assume that |α|∞ < 1 (i.e. the tree can be

compactly embedded into Rd, d ≥ 2). We will refer to a weighted tree T as to
a reference tree if the length of its root edge satisfies `0,0 = 1.

2.2 Wave propagation in self-similar weighted trees

We consider the problem of wave propagation on a self-similar weighted refer-
ence tree T . For this we introduce a parametrization of each edge Σn,j of the
tree, associated with the segment [M∗n,j ,Mn,j ], by an abscissa sn,j ∈ [an,j , bn,j ],
an,j , bn,j ∈ R. This parametrization is chosen so that

[M∗n,j , Mn,j ] ≡ {M ∈ Rd : M = M∗n,j+(Mn,j−M∗n,j)(sn,j−an,j)(bn,j−an,j)−1}.

With s being an abscissa on the tree T , defined on each edge Σn,j as above,
we define the weight function µ(s) on T :

µ(s) = µn,j , s ∈ Σn,j .

An acoustic pressure u(s, t) satisfies the weighted wave equation, which can
be written in a compact manner as

µ∂2t u− ∂s(µ∂su) = f(s, t), u(., 0) = ∂tu(., 0) = 0, (3)

with f being a source term. We equip this problem with a boundary condition
u(M∗, t) = 0. It remains to pose the boundary conditions at the ’infinite’
boundary of the tree, the meaning of which will become clear in Section 2.3.
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For the moment, let us explain in more detail the meaning behind (3). With
the notation un,j = u|Σn,j , the above problem reads:

∂2t un,j − ∂2sun,j = fn,j on Σn,j , j = 0, . . . pn − 1, n ≥ 0, (4)

u(., 0) = ∂tu(., 0) = 0, u(M∗, t) = 0, (5)

which we additionally equip with the continuity (C) and Kirchoff (K) condi-
tions at each of the vertices, cf. (1),

un,j(Mn,j , t) = un+1,pj+k(Mn,j , t), k = 0, . . . , p− 1, (C)

∂sun,j(Mn,j , t) =

p−1∑
k=0

µk ∂sun+1,pj+k(Mn,j , t), j = 0, . . . pn − 1, n ≥ 0, (K)

with an abuse of notation u(Mn,j , t) ≡ u(bn,j , t), see the start of this section.

Remark 1 In this work we chose to study the problem with vanishing initial
conditions and the source term; however, all the stability/convergence results
easily extend to the case when the problem with initial conditions and vanish-
ing source is examined. Then the results for the problem with non-vanishing
i.c. and non-vanishing source can be obtained by linearity.

2.3 Dirichlet and Neumann problems for the wave equation

The problem (4, 5, C, K) needs to be equipped with some conditions at the
’infinite’ boundary of the tree. This becomes more clear when studying the
family of problems (3) posed on subtrees T m, m→∞: for their well-posedness,
it is necessary to define boundary conditions on the ’outer’ boundary of the
tree T m, consisting of the points {Mm,j , j = 0, . . . , pm−1}. This will be done
variationally, via the Sobolev spaces.

2.3.1 Sobolev Spaces on T

Provided an abscissa s on T , we can define a function v = v(s), v : T → C.
For brevity, let us denote∫

T

µv :=

∞∑
n=0

pn−1∑
k=0

∫
Σn,k

µn,kv(s)ds. (6)

We will need the following three spaces:

– square-integrable functions

L2
µ(T ) = {v : v|Σn,j ∈ L2(Σn,j), ‖v‖L2

µ(T ) <∞},

‖v‖2L2
µ(T ) = ‖v‖2 =

∫
T

µ|v|2, (v, g) :=

∫
T

µ v g.
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– square-integrable continuous functions with square-integrable derivatives:
denoting by C(T ) continuous functions on T ,

H1
µ(T ) := {v ∈ C(T ) ∩ L2

µ(T ) : |v|H1
µ(T ) <∞},

|v|H1
µ(T ) ≡ ‖∂sv‖L2

µ(T ), ‖v‖2H1
µ(T ) = ‖v‖2L2

µ(T ) + |v|2H1
µ(T ).

– closure of compactly supported H1
µ-functions. For this let us define

C0(T ) := {v ∈ C(T ) : v = 0 on T \ T m, for some m ∈ N},

i.e. functions which are supported inside T m, for some m ∈ N. Then

H1
µ,0(T ) := C0(T ) ∩H1

µ(T )
‖.‖H1

µ(T )
.

The above definitions can be naturally extended to the spaces defined on a
truncated tree T m, with an associated L2

µ-scalar product denoted by (., .)Tm .

2.3.2 The boundary value problems

To derive the variational formulation, we test (4) with a compactly supported
v ∈ C0(T ), v(M∗) = 0; then any H1

µ(T )-solution of (4, 5, C, K) satisfies∫
T

µ
d2

dt2
u v +

∫
T

µ∂su ∂sv =

∫
T

µfv, for all v ∈ C0(T ), s.t. v(M∗) = 0.

Reciprocally, any H1
µ(T )-solution to the above problem solves (4, C, K).

To formulate Dirichlet/Neumann problems for (3), let us introduce

Vn(T ) = {v ∈ H1
µ(T ) : v(M∗) = 0}, Vd(T ) = {v ∈ H1

µ,0(T ) : v(M∗) = 0}.

Let the final time T > 0 be fixed.

Definition 1 (Neumann problem) Find

un ∈ C([0, T ];Vn(T )) ∩ C1([0, T ]; L2
µ(T )),

s.t. un(., 0) = ∂tun(., 0) = 0, and∫
T

µ
d2

dt2
un v +

∫
T

µ∂sun∂sv =

∫
T

µfv, for all v ∈ Vn(T ). (N)

Definition 2 (Dirichlet problem) Find

ud ∈ C([0, T ];Vd(T )) ∩ C1([0, T ]; L2
µ(T )),

s.t. ud(., 0) = ∂tud(., 0) = 0, and∫
T

µ
d2

dt2
ud v +

∫
T

µ∂sud∂sv =

∫
T

µfv, for all v ∈ Vd(T ). (D)
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Remark 2 Although, strictly speaking, the problem (N) is a mixed problem
(because of the Dirichlet condition at the root of T ), we call it ’Neumann’,
since we are interested in the behaviour at the ’infinite’ boundary of T .

These problems are well-posed, as summarized below.

Theorem 1 Let f ∈ L1(0, T ; L2
µ(T )). Then the problem (N) (resp. (D)) has a

unique solution ua ∈ C([0, T ];Va(T ))∩C1([0, T ]; L2
µ(T )), a = n (resp. a = d).

This solution ua, a ∈ {n, d}, satisfies the following bound

‖∂tua(T )‖L2
µ(T ) + ‖∂sua(T )‖L2

µ(T ) ≤
√

2

T∫
0

‖f(t)‖L2
µ(T )dt. (7)

Proof The proof is classical. The existence and uniqueness result follows from
the semigroup theory (in particular, the arguments of [39, Section 7.4] (semi-
group framework for the wave equation) and [39, Section 4.2] (existence and
uniqueness of mild solutions) extend almost verbatim to our case).

To show (7), one first tests e.g. (N) with ∂tun, which gives

d

dt
En(t) = (f, ∂tun), En =

1

2

(
‖∂tun‖2 + ‖∂sun‖2

)
.

The application of the Gronwall inequality yields the desired result. ut
Later on we will make use of the following corollary about the dependence of
the time regularity of the solution on the regularity of the source f .

Corollary 1 Let f ∈W k,1(0, T ; L2
µ(T )), k ≥ 1, and

f(., 0) = . . . = ∂k−1t f(., 0) = 0.

Then the problem (N) (resp. (D)) has a unique solution ua, a = n (resp.
a = d). Moreover, this solution satisfies:

ua ∈ Ck([0, T ];Va(T )) ∩ Ck+1([0, T ]; L2
µ(T )),

‖∂`+1
t ua(T )‖L2

µ(T ) + ‖∂s∂`tua(T )‖L2
µ(T ) ≤

√
2

T∫
0

‖∂`tf(t)‖L2
µ(T )dt, 0 ≤ ` ≤ k.

Proof It suffices to notice that ϕ = ∂`tua, ` ≤ k, solves the problem (N) (resp.
(D)) with f replaced by f (`) ∈ L1(0, T ; L2

µ(T )), hence Theorem 1 applies. ut
It is natural to ask whether the solutions to (N) and (D) coincide (as in the
case p = 1, µ = 1 and α = 1, when T can be identified with R+). The answer
depends on the following two quantities:〈

µα
〉

:=

p−1∑
i=0

µiαi,
〈µ
α

〉
:=

p−1∑
i=0

µi
αi
.

Because of the assumption |α|∞ < 1,
〈
µα
〉
<
〈
µ
α

〉
.

Theorem 2 ([29]) If
〈
µα
〉
≥ 1 or

〈
µ
α

〉
≤ 1, the spaces H1

µ,0(T ) and H1
µ(T )

coincide, and thus un = ud. Otherwise, H1
µ,0(T ) ( H1

µ(T ), and un 6= ud.
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2.4 Transparent boundary conditions

In [29] it was shown how to construct exact (transparent) boundary conditions
for the problems (N) and (D). To recall the main ideas, we fix m ≥ 1, and
assume the following.

Assumption 1 The source f(s, t) is s.t. for all t ≥ 0, supp f(s, t) ⊆ T m−1.

We will use this assumption without reference in the remainder of the article.
When f satisfies Assumption 1, for all ` ≥ 0, ∂`tu(Mm,j , 0) = 0, j = 0, . . . , pm−
1, because of finiteness of the speed of wave propagation.

2.4.1 Auxiliary notation

We will denote by V (T m) the following subspace of H1
µ(T m):

V (T m) := {v ∈ H1
µ(T m) : v(M∗) = 0}.

Let us introduce additionally the following partial trace operator

γm : V (T m)→ Rp
m

,

defined for v ∈ V (T m) (recall that v is continuous) by

γmv =
(
v(Mm,0), . . . , v(Mm,pm−1)

)
.

It is not difficult to verify that γm is continuous:

‖γmv‖Rpm ≤ Cγm‖∂sv‖H1
µ(T m), v ∈ V (T m).

Remark 3 Let us remark that γm differs from the partial trace operator τm
introduced in [29], which maps V (T m) into L2(0, 1). The reason for this dis-
crepancy is that in [29] we were interested in a trace of a function v defined
on T , considered as a limit of its traces on T m, as m →∞, and thus needed
to introduce a common ’boundary’ for all the trees T m, m ≥ 0. In the present
work, we fix m and consider functions defined on truncated trees T m, which
enables us to work with the more classical definition of the trace.

In the sequel, by 〈., .〉 we will denote the Eucledian scalar product in Rpm .

2.4.2 Transparent boundary conditions

We truncate the computational domain to the tree T m, and impose transpar-
ent boundary conditions at the (’right’) boundary of this tree in the form:

−µm,j∂sum,j(Mm,j , t) = Bam,j(∂t)um,j(Mm,j , t), j = 0, . . . , pm − 1, (8)

where a ∈ {d, n} and Bam,j(∂t) is an exact DtN map for the Dirichlet (corresp.
Neumann problem), associated to the point Mm,j , that we describe below. Let

H1
c ([0, T ];X) = {v ∈ H1([0, T ];X), v(0) = 0}.
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Then this operator is a continuous mapping

Bam,j(∂t) ∈ L
(
H1
c ([0, T ];R), L2([0, T ];R)

)
.

This is a corollary of (15) and Theorem 6. To define its action, recall that the
point Mm,j is a root vertex of p subtrees of the tree T , which we denote for

simplicity by T (m,j)
k , k = 0, . . . , p−1. The weights assigned to their roots edges

are respectively µm,jµk (because of the self-similarity property, see Section
2.1). Then the DtN map Bam,j(∂t) associates to a function g ∈ H1

c ([0, T ];R)
the sum of conormal derivatives (weighted normal derivatives):

Bam,j(∂t)g = −
p−1∑
k=0

µm,jµk∂su
a
g,k, (9)

where, depending on the considered problem,

1. if a = n (Neumann), ung,k ∈ C1([0, T ]; L2
µ(T (m,j)

k )) ∩ C([0, T ]; H1
µ(T (m,j)

k ))
solves the following Neumann initial boundary-value problem:∫
Tk

µv ∂2t u
n
g,k +

∫
Tk

µ∂sv ∂su
n
g,k = 0, for all v ∈ V n(T (m,j)

k ),

ung,k(Mm,j , t) = g(t), ung,k(., 0) = ∂tu
n
g,k(., 0) = 0, k = 0, . . . , p− 1.

(10)

2. if a = d (Dirichlet), udg,k ∈ C1([0, T ]; L2
µ(Tk))∩C([0, T ]; H1

µ,0(T (m,j)
k )) solves

(10), where ung,k is substituted by udg,k and V n(T (m,j)
k ) by V d(T (m,j)

k ).

This definition of the DtN map is obviously consistent with the Kirchoff con-
ditions, cf. (8) and (K). In a short form, we will write

Bam(∂t) = diag
(
Bam,0(∂t), . . . ,Bam,pm−1(∂t)

)
. (11)

Since the coefficients of the problem do not depend on time, Bam(∂t) is a con-
volution operator; the corresponding convolution kernel is not known in closed
form. The goal of this work is to provide an accurate discrete approximation
to Bam(∂t), which relies on a tractable characterization of its convolution kernel
that was obtained in [29]. In order to show how to obtain an expression for
Bam, let us first introduce the notion of the reference DtN operator.

Remark 4 The above boundary conditions are called transparent, because any
ua solving the Dirichlet (corresp. the Neumann problem) satisfies (9) exactly.

2.4.3 Reference DtN operator

A reference DtN operator associated to the Dirichlet/Neumann problems on
the reference tree T is a continuous operator, see Theorem 6,

Λa(∂t) : H1
c ([0, T ];R)→ L2([0, T ];R), a ∈ {d, n},
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defined as

Λa(∂t)g(t) = −∂suag(M∗, t), (12)

where, depending on the problem considered,

1. for a = n (Neumann), ung ∈ C([0, T ]; H1
µ(T )) ∩ C1([0, T ]; L2

µ(T )) solves∫
T

µ∂2t u
n
g v +

∫
T

µ∂su
n
g ∂sv = 0, for all v ∈ Vn,

vng (M∗, t) = g(t), ung(., 0) = ∂tu
n
g(., 0) = 0.

(13)

2. for a = d (Dirichlet), udg ∈ C([0, T ]; H1
µ,0(T ))∩C1([0, T ]; L2

µ(T )) solves (13)
where ung is substituted by udg and Vn by Vd.

This operator is a convolution operator, formally defined as follows:

Λa(∂t)g(t) =

t∫
0

λa(t− τ)g(τ)dτ.

Defining the Fourier-Laplace transform of a causal tempered distribution λ as

(Fλ)(ω) =

∞∫
0

eiωtλ(t)dt, ω ∈ C,

we denote the symbol (Fλa)(ω) of the convolution operator Λa(∂t) by Λa(ω).

Characterization and properties of Λa(ω). Positivity of Λa(∂t). To use the
convolution quadrature, it is necessary to be able to compute the symbol of
the DtN map, cf. (9), for various complex frequencies ω. In Section 2.4.4 we
will show that this symbol can be easily expressed with the help of Λa(ω).
The latter function, in turn, satisfies the following non-linear equation, which
will serve the computational purposes.

Lemma 1 (Lemma 5.3 in [29]) The symbol of the reference DtN operator
Λ(ω) = Λa(ω), a ∈ {n, d}, Λ : C \ R, satisfies

Λ(ω) = −ωω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, Fα,µ(ω) =

p−1∑
i=0

µi
αi

Λ(αiω) (14)

Since the solutions of (14) are, in general, non-unique, to single out the so-
lutions that correspond to the symbols of the DtN operators, we restrict the
solution space to meromorphic even functions analytic in the origin, cf. The-
orem 4. It remains to distinguish between the solutions corresponding to the
DtNs for the Dirichlet and Neumann problems (where applicable, cf. Theorem
2). For this we fix the value Λ(0); this leads to the uniqueness of the solution
to (14). This is similar to initial-value problems, where fixing the value in zero
leads to the uniqueness as well.



Transparent BCs for fractal trees with CQ 11

Theorem 3 (Lemma 5.5, Corollary 5.6 in [29])

– if
〈
µ
α

〉
≤ 1, the symbol of the reference DtN operator Λd(ω) = Λn(ω) is a

unique even meromorphic solution of (14) that satisfies Λ(0) = 0.

– let
〈
µ
α

〉
> 1 and

〈
µα
〉
< 1. Then the function Λd(ω) is a unique even

meromorphic solution of (14) that satisfies Λ(0) = 1−
〈
µ
α

〉−1
.

Similarly, the function Λn(ω) is a unique even meromorphic solution of
the equation (14) that satisfies Λ(0) = 0.

– if
〈
µα
〉
≥ 1, Λd(ω) = Λn(ω) is a unique even meromorphic solution of

(14) that satisfies Λ(0) = 1−
〈
µ
α

〉−1
.

Additionally, the symbol Λa(ω) satisfies the following property, useful in the
sequel, which is an extension of the well-known identities for the DtN map for
the classical wave equation [16].

Theorem 4 Λa(ω) : C → C is an even meromorphic function, whose poles
are all real. Moreover,

(a) Im
(
ω−1Λa(ω)

)
< 0 for ω ∈ C+ = {z ∈ C : Im z > 0}.

(b) there exists C > 0, s.t. for all ω ∈ C+, |Λa(ω)| < C|ω|max
(
1, (Imω)−1

)
.

Proof See Appendix A.

These properties can be translated as positivity/regularity mapping properties
of Λa(∂t), cf. e.g. Lemma 2.2 in [6]. In particular, the time-domain analogue
of Theorem 4 (a), important for the stability of the coupled problem, reads.

Theorem 5 Let g ∈ H1
c ([0, T ]). The reference DtN operator satisfies

T∫
0

(Λa(∂t)g) (t) ∂tg dt ≥ 0, a ∈ {d, n}.

Proof The proof is classical. Without loss of generality, let us take a = d. Then
testing the strong form of (13) with ∂tu

d
g and integrating by parts gives

Λa(∂t)g ∂tg ≡ −∂sudg(t,M∗) ∂tudg(t,M∗) =

∫
T

µ∂2t u
d
g ∂tu

d
g +

∫
T

µ∂su
d
g ∂t∂su

d
g

=
d

dt
Edg , Edg (t) =

1

2

(
‖∂tudg‖2 + ‖∂sudg‖2

)
.

The result follows by integrating the above from 0 to T and using Edg (0) = 0.

On the other hand, Theorem 4 (b) translates into the time domain as.

Theorem 6 The operator Λa(∂t) : H1
c ([0, T ];R→ L2([0, T ];R is continuous.

Proof The proof mimics the proof of Theorem 4, see Appendix F.
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2.4.4 Transparent boundary conditions via the reference DtN

Using the reference DtN, we can express the operator Bam,j(∂t) as follows [29]:

Bam,j(∂t) = µm,jα
−1
m,j

p−1∑
k=0

µk
αk

Λa(αkαm,j∂t). (15)

Recall that αm,j is the length of the branch Σm,j . The above representation
was derived using the Kirchoff conditions and a scaling argument. We have thus
reduced the problem of the construction of transparent boundary conditions to
the problem of approximating a convolution operator with the symbol Λa(ω).

Remark 5 Everything that follows, unless stated otherwise, holds true for the
Dirichlet and for the Neumann problems, and the distinction between these
two problems is encoded in the proper choice of the symbol Λa. Hence, where
possible, we will omit the index a = {d, n}. We will study the Neumann prob-
lem, keeping in mind that the Dirichlet problem can be handled similarly.

Remark 6 The construction of the transparent boundary conditions in the
present article can be extended to the case when the tree T is not fractal
(self-similar, as defined in [29]), however, some of its subtrees are.

2.4.5 Coupled formulation

With the notation from Section 2.4.1 and (11), the coupled problem with the
transparent BCs reads:

Find um ∈ C([0, T ];V (T m))∩C1([0, T ]; L2
µ(T m)), (16a)

s.t. um(., 0) = ∂tum(., 0) = 0, and (16b)

(∂2t um, v)Tm + (∂sum, ∂sv)T m + 〈Bm(∂t)γmum, γmv〉
= (f, v)Tm , for all v ∈ V (T m).

(16c)

We have the following easy-to-prove result.

Theorem 7 For all f ∈ L1(0, T ; L2
µ(T )), satisfying Assumption 1, the prob-

lem (16) has a unique solution um, which satisfies the stability bound (7) with
u replaced by um.

The restriction of the solution u = un to (N) to T m satisfies u|T m = um.

Proof It is not difficult to verify that u|Tm = um (by definition of the trans-
parent boundary conditions, cf. (10)). This implies the existence for (16). If
we show the uniqueness for (16), then the bound (7) is a corollary of (7) for
u = un. However, the uniqueness follows easily by energy techniques: set f = 0
in (16c), test it with ∂tum, and next integrate from 0 to T . This gives (where
we use as well vanishing initial conditions (16b))

1

2

(
‖∂tum(T )‖2T m + ‖∂sum(T )‖2T m

)
+

T∫
0

〈Bm(∂t)γmum, γm∂tum〉 dt = 0.
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Using (15) and the positivity property of Theorem 5, we deduce from the above
identity that ‖∂tum(t)‖2T m = 0. With (16b), we conclude that um = 0. ut

3 Discrete transparent boundary conditions (Convolution
Quadrature (CQ))

The main idea behind the CQ is to construct the exact transparent boundary
conditions for the problem (3) semi-discretized in time [41,4]. Provided that
the time discretization scheme is chosen so that the resulting problem is stable,
the corresponding exact transparent boundary conditions inherit its stability.

Remark 7 For the implementation of the convolution quadrature, it is impor-
tant that Bam,j(ω) (consequently, Λa(ω)) can be evaluated for any frequency
ω ∈ C+ = {z ∈ C : Im z > 0}. The description of the respective method is
postponed to Section 4, while here we address the questions of stability and
convergence of the method.

This section is organized as follows:

– in Section 3.1 we derive discrete transparent boundary conditions based on
the (implicit) trapezoid rule (also called θ-scheme with θ = 1

4 );
– Section 3.2 is dedicated to the semi-discretization in space, its stability and

convergence;
– in Section 3.3 we show the time discretization, demonstrate its stability

and prove the convergence estimates;
– finally, Section 3.4 is dedicated to the solution of the discretized system.

3.1 Derivation of a CQ approximation for the transparent BCs

First, we will derive a discrete approximation for the reference DtN operator,
see Section 2.4.3, and next employ the obtained results to derive an approxima-
tion for the transparent boundary conditions. Let ∆t be a time step, tn = n∆t.
We denote by un an approximation to u(., tn). Let Nt = dT (∆t)−1e. Also,

D∆tv
n =

vn+1 − vn−1

2∆t
, D2

∆tv
n =

vn+1 − 2vn + vn−1

(∆t)2
,

{vn}1/4 =
vn+1 + 2vn + vn−1

4
, vn+1/2 =

vn + vn+1

2
,

D∆tv
n+1/2 =

vn+1 − vn

∆t
.

(17)

3.1.1 Discrete approximation of Λ

To derive the CQ approximation of Λ(∂t), we will proceed like in the continuous
case, see Section 2.4.3. The reference DtN is then defined analogously to the
continuous case (12), Λ(∂∆tt ) : RNt+1 → RNt+1. To define its action, we start
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with the problem (13), which we semi-discretize in time using the trapezoid
rule (θ-scheme with θ = 1

4 ). As well-known [14], this scheme is unconditionally
stable, and thus the discretization results in the following well-posed and stable
problem (where without loss of generality we assume that g(0) = g′(0) =
g′′(0) = 0 to ensure that taking u1g = 0 does not alter the order of the scheme):

Given u0g = 0, u1g = 0, ung (M∗) = gn, find (ung )Ntn=0 ⊂ H1
µ(T ), s.t.(

D2
∆tu

n
g , v
)

+
(
∂s{ung }1/4, ∂sv

)
= 0, for all v ∈ Vn, n < Nt.

(18)

The reference DtN associates to the vector (gn)
Nt
n=0 ∈ RNt+1 the following

quantity: (
Λ(∂∆tt )g

)n
= −∂sung (M∗), n = 0, . . . , Nt. (19)

Where convenient, we will write instead of the above Λ(∂∆tt )gn, with the ob-
vious abuse of notation. In the above form, the reference DtN operator is not
suitable for the computations; thus, let us find a tractable expression for its
discrete symbol. For this we will use the Z-transform.

The symbol of the discrete DtN operator. Let us apply Z-transform to the
above problem, assuming that Nt = ∞. Recall that for a sequence (vn), s.t.
|vn| < C(1 + n)q, q ≥ 0, its Z-transform is defined as follows:

Z : v = (vn)→ V (z) =

∞∑
n=0

vnzn, z ∈ B1 = {z ∈ C : |z| < 1}. (20)

The function V (z) is obviously analytic in B1. Applying the Z-transform to
(18), and using the standard property of the Z-transform of the shift operator

τ : v = (vn)n≥0 → (vn−1)n≥1, Zτv = zV (z), (21)

we deduce that Ug(z) ∈ H1
µ(T ) satisfies Ug(z)|M∗ = G(z) and

−
(
i
δ(z)

∆t

)2

(Ug, v) + (∂sUg, ∂sv) = 0, ∀ v ∈ Vn, δ(z) = 2
1− z
1 + z

. (22)

Since iδ : B1 → C+ = {ω ∈ C : Imω > 0}, the problem (22) is coercive for
any z ∈ B1. With the help of (22), we can then define the discrete symbol of
the reference DtN as the mapping

Λ∆t : C→ C, Λ∆t(z) : G(M∗, z)→ −∂sUg(M∗, z). (23)

Comparing (22) and the definition of the symbol Λd(ω), we obtain

Λ∆t(z) ≡ Λ

(
i
δ(z)

∆t

)
. (24)
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Because Λ(ω) is analytic in C+ := {ω ∈ C : Imω > 0}, cf. Theorem 4, and
because z → iδ(z) is an analytic function from B1 into C+, we conclude that
Λ∆t (z) is analytic inside B1. Thus, Λ∆t can be expressed via its Laurent series

Λ∆t (z) =

∞∑
`=0

λ∆t` z`, |z| < 1. (25)

The coefficients λ∆t` are called convolution weights. Alternatively, they can be
represented via the Cauchy integrals (with γ being a contour inside B1):

λ∆t` =
1

2πi

∫
γ

z−`−1Λ

(
i
δ(z)

∆t

)
dz. (26)

Λ(∂∆tt ) as a convolution operator. Inverting the Z-transform in (23), using
(25) and the property (21), we obtain the discretization of the reference DtN:

−∂sung (M∗) =

n∑
`=0

λ∆t` gn−` =: Λ(∂∆tt )gn. (27)

To compute the above convolution it is sufficient to know the convolution
weights λ∆t` ; classically [34], their evaluation is done based on the fast numer-
ical computation of the Cauchy integrals (26), see Section 4.1.

Positivity properties of Λ(∂∆tt ). The following property, which we state here
for consistency reasons, is a discrete version of Theorem 5.

Theorem 8 Let (gn)Nn=0 ∈ RN+1, with g0 = 0. Then

N−1∑
n=1

{
Λ(∂∆tt )gn

}
1/4

D∆tg
n ≥ 0.

Proof The proof mimics the proof of Theorem 5, namely, the result is obtained
by testing (18) with D∆tu

n
g . The details are left to the reader.

3.1.2 Discrete transparent BCs

To derive the discrete transparent boundary condition at the vertex Mm,j ,
corresponding to (8), we use the same arguments as in continuous case, cf.
Sections 2.4.2 and 2.4.4. This yields the following discrete counterpart of (15):

Bm,j
(
∂∆tt

)
= µm,jα

−1
m,j

p−1∑
k=0

µk
αk
Λ
(
αm,jαk∂

∆t
t

)
, (28)

where Λ(∂∆tt ) is defined in (19). The discrete symbol of the above operator is

B∆tm,j(z) = µm,jα
−1
m,j

p−1∑
k=0

µk
αk

Λ

(
iαm,jαk

δ(z)

∆t

)
, (29)
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cf. (24). As a consequence, the convolution weights
(
b∆tm,j;n

)
of B∆tm,j(z) are

related to the convolution weights
(
λ∆tn

)
via the simple identity

b∆tm,j;n = µm,jα
−1
m,j

p−1∑
k=0

µk
αk
λ
∆tm,j;k
n , ∆tm,j;k =

∆t

αm,jαk
. (30)

Finally, let us introduce the notation for the discrete version of the aggregate
operator Bm(∂t), cf. (11): its discretization will be denoted by Bm(∂∆tt ), the
corresponding symbol by B∆tm (z), and the respective convolution weights by
b∆tm,n (remark that they are m×m diagonal matrices).

3.1.3 Motivation for the analysis that follows

One could first discretize (16) with the θ-scheme in time, next in space and
proceed to its resolution, but in this case one would end up with an implicit
scheme. Thus, we will proceed as follows (see [27] for a general framework):

– first semi-discretize the system (16) in space and perform the respective
convergence analysis;

– next discretize the resulting system in time, using the explicit leapfrog
scheme for the volume terms and trapezoid rule for the boundary terms.

3.2 Semi-discretization in space

3.2.1 Semi-discretization in space: basics

To semi-discretize the system (16) in space, we use the Lagrange P1-elements.
Let us parametrize each edge Σn,j , identified with a segment [M∗n,j , Mn,j ] ⊂
T m, with an abscissa sn,j ∈ (0, αn,j), and define a quasi-uniform mesh

Tn,j = {skn,j , k = 0, . . . ,Kn,j}, s.t. skn,j < sk+1
n,j , (31)

where s0n,j is identified with M∗n,j , and s
Kn,j
n,j with Mn,j . The mesh on the

truncated tree T m is then defined as
m⋃
n=0

pn−1⋃
j=0

Tn,j . Let

hn,j := max
1≤k≤Kn,j

|skn,j − sk−1n,j |, h := max
n

max
j
hn,j . (32)

Let the finite element space be defined as Uh ⊂ V (T m), Uh = span{ϕk, k =
0, . . . , Ns − 1}. The construction of this basis is classical on the nodes interior
to Σn,j , but a special treatment is needed in the vertices of the graph Mn,j ,
see [2]: we define the respective shape function as a piecewise-linear function
that equals to 1 in Mn,j and vanishes in the rest of the nodes, see Figure 2.

We denote by uh =
Ns−1∑
k=0

u(k)ϕk an approximation to the exact solution um,

with u(k) being a nodal value of uh. Remark that for convenience we omit the
index m in the definition of uh.
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Mn,j

Fig. 2 A shape function ϕ s.t. ϕ(Mn,j) = 1.

3.2.2 Semi-discrete system: formulation and stability

The semi-discrete formulation of (16) with the exact transparent boundary
conditions thus reads:
Find uh ∈ C1([0, T ];Uh), s.t. uh(., 0) = ∂tuh(., 0) = 0, and, for all vh ∈ Uh,(

∂2t uh, vh
)
T m + (∂suh, ∂svh)T m + 〈Bm(∂t)γmuh, γmvh〉 = (f, vh). (33)

The stability of the above problem follows trivially using the argument of
Theorem 1; however, the existence of the solution is somewhat more difficult.
For analysis purposes, we will rewrite the above problem in a different form.

Rewriting of (33). Let us introduce the following two Hilbert spaces:

Lh := {v ∈ L2
µ(T ) : v|T m ∈ Uh}, ‖.‖Lh := ‖.‖L2

µ
,

Xh := {v ∈ Vn(T ) : v|T m ∈ Uh}, ‖.‖Xh := ‖.‖H1
µ
. (34)

Contrary to the space Uh, these spaces are infinite-dimensional. In particular,
the restriction of functions from Xh to each Tm,j (see the end of Section 2.1
for the notation) coincides with the space H1

µ(Tm,j) (had we considered the

Dirichlet problem, it would have coincided with H1
µ,0(Tm,j)).

Let us now study the following counterpart of (33):

find ūh ∈ C([0, T ];Xh) ∩ C1([0, T ];Lh), s.t. ūh(0) = ∂tūh(0) = 0, and

(∂2t ūh, vh) + (∂sūh, ∂svh) = (f, vh), for all vh ∈ Xh. (35)

Using the above auxiliary problem, it is easy to show the well-posedness and
stability of (33). Let us remark that this approach to the analysis of the coupled
problem bears some similarities with [23,37], see also references therein.

Well-posedness and stability of (33). We proceed as follows: first, in Lemma
2 we show the well-posedness/stability of (35), next, in Lemma 3 argue that
ūh|Tm solves (33). Finally, a complete well-posedness/stability result for (33)
is summarized in Theorem 9.

Lemma 2 (Well-posedness, stability of (35)) For all f ∈ L1(0, T ; L2
µ(T )),

the problem (35) has a unique solution. Moreover, it satisfies the stability bound
(7) with u replaced by ūh.
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Proof The existence and uniqueness to (35) follows from the semigroup theory.
In particular, let us introduce the operator Ah : D(Ah) → Lh defined for
vh, wh ∈ Xh by (Ahvh, wh) = (∇vh,∇wh). Here

D(Ah) = {vh ∈ Xh : ∃Cvh > 0, |a(vh, wh)| ≤ Cvh‖wh‖Lh , ∀wh ∈ Lh}.

Then the problem (35) can be reformulated as an abstract wave equation

d2

dt2
ūh +Ahūh = Phf,

where Ph is an L2
µ-orthogonal projector on Lh. We conclude using the same

arguments as in the proof of Theorem 1. The stability bound also follows like
in the proof of Theorem 1.

In the following we state that the solution of (35) solves (33).

Lemma 3 Let f ∈ L1(0, T ; L2
µ(T )), and ūh solve (35). Then uh = ūh|T m

satisfies (33).

Proof We can split the variational formulation in (35) into two parts:

(∂2t ūh, vh)Tm + (∂sūh, ∂svh)T m

+ (∂2t ūh, vh)T \T m + (∂sūh, ∂svh)T \T m = (f, vh)Tm , ∀vh ∈ Xh.
(36)

By definition (34) of Xh, the function ūh|T \T m ∈ C([0, T ]; H1
µ(T \T m)). More-

over, taking the test functions vh vanishing in T m, we deduce that

(∂2t ūh, vh)T \T m + (∂sūh, ∂svh)T \T m = 0,

for all vh ∈ H1
µ(T \ T m), s.t. vh(Mm,j) = 0, j = 0, . . . , pm − 1,

i.e. (10), with appropriate boundary conditions in Mm,j . Integrating by parts
the two last terms in rhs of (36) and using the definition of the transparent
BCs (9) (and continuity of ūh in Mm,j , j = 0, . . . , pm − 1), we conclude that
ūh ∈ Xh satisfies

(∂2t ūh, vh)T m + (∂sūh, ∂svh)Tm

+ 〈Bm(∂t)γmūh, γmvh〉 = (f, vh)Tm , ∀vh ∈ Xh.
(37)

Because Xh|T m ≡ Uh, we deduce that ūh|Tm solves (33).

The following theorem is a simple corollary of the two above results.

Theorem 9 (Well-posedness, stability of (33)) For all f ∈ L1(0, T ; L2
µ(T )),

the problem (33) has a unique solution. It satisfies

‖∂tuh(T )‖Tm + ‖∂suh(T )‖Tm ≤
√

2‖f‖L1(0,T ;L2
µ(Tm)). (38)

Proof Existence: by Lemma 2, there exists a unique ūh solving (33); by Lemma
3, ūh|Tm ∈ Uh satisfies (35). The uniqueness is a corollary of (38), which, in
turn, follows from the same argument as in the proof of Theorem 7.
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3.2.3 Convergence estimates for the spatial semi-discretization

In this section we will compare um solving (16) to uh solving (33). The proofs
presented below use classical techniques of convergence of FEM for time-
dependent problems, see e.g. [27] and references therein, or the monograph
[17, Chapter 6]. The difference between our case and these works lies in the
fact that we analyze the problem (35), posed on an infinite-dimensional, rather
than FEM, space. The principal result of this section is summarized below.

Theorem 10 (Convergence of the spatial discretization) Let uh solve
(33), and um solve (16). Then, with C(T ) = C max(1, T ), C > 0,

‖∂t(um − uh)‖L2
µ(T m) + ‖∂s(um − uh)‖L2

µ(T m) ≤ C(T )h‖f‖W 3,1(0,T ;L2
µ(Tm)).

We will prove this result by comparing the solution u of (N) to the solution
ūh of (35), which is justified by Theorem 7 and Lemma 3. Obviously,

‖∂t(um − uh)‖L2
µ(Tm) + ‖∂s(um − uh)‖L2

µ(Tm) ≤

‖∂t(u− ūh)‖L2
µ(T m) + ‖∂s(u− ūh)‖L2

µ(T ).
(39)

The proof itself is quite classical. Let us introduce an elliptic projection oper-
ator Ph : Vn(T )→ Xh defined for v ∈ Vn(T ) via

(v − Phv, vh)T + (∂s(v − Phv), ∂svh)T = 0, for all vh ∈ Xh. (40)

To analyze the convergence, we split the error into two parts:

u− uh = ηh + εh, ηh = u− Phu, εh = Phu− uh, (41)

and estimate εh in terms of ηh (which, in turn, will be shown to be small), via
the energy techniques. Let us first provide lemmas that quantify ηh.

Estimates on the projection error Let us introduce the space

H̃2
µ(T m) := {u ∈ H1

µ(T m) : ∂2su ∈ L2
µ(T m)},

‖u‖2
H̃2
µ(Tm)

= ‖u‖2T m + ‖∂su‖2T m +

∫
T m

µ
∣∣∂2su∣∣2 .

The following is a usual approximation result extended to Xh.

Lemma 4 For v ∈ Vn(T ), s.t. v|T m ∈ H̃2
µ(T m), it holds

‖v − Phv‖L2
µ(T ) + ‖∂s(v − Phv)‖L2

µ(T ) ≤ Ch‖∂2sv‖L2
µ(T m),

where C depends on p,m only.
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Proof Thanks to Céa’s Lemma,

‖v − Phv‖T + ‖∂s(v − Phv)‖T ≤ inf
vh∈Xh

‖v − vh‖H1
µ(T )

≤ inf
vh∈Xh: vh|T \Tm=v|T \Tm

‖v − vh‖H1
µ(T m).

It suffices to bound the above quantity using as vh a piecewise-linear inter-

polant of v on the mesh
m⋃
n=0

pn−1⋃
j=0

Tn,j . ut

As a corollary of this result, we obtain the following.

Lemma 5 (Estimate for ‖∂kt ηh‖) Let f ∈W 3,1([0, T ],L2
µ(T )), with f(., 0) =

∂tf(., 0) = ∂2t f(., 0) = 0. Let u solve (N) and ηh be defined in (41). Then,

‖∂`tηh‖H1
µ(T ) ≤ Ch‖∂`+1

t f‖L1(0,t;L2
µ(T )), 0 ≤ ` ≤ 2. (42)

Proof By Lemma 4,

‖∂`tηh‖H1
µ(T ) ≤ Ch‖∂`t∂2su‖L2

µ(T m). (43)

Our goal is to provide an explicit bound for the right-hand side. By Corollary
1, u ∈ C4([0, T ]; L2

µ(T )). Moreover,

∂2t u− ∂2su = f, on Σn,j , 0 ≤ n ≤ m, j = 0, . . . , pn − 1. (44)

Therefore,

‖∂`t∂2su‖L2
µ(T m) ≤ ‖∂2+`t u‖L2

µ(T m) + ‖∂`tf‖L2
µ(Tm), ` = 0, . . . , 2. (45)

To bound the first term we use the bound of Corollary 1; for the second term,

‖∂`tf‖L2
µ(T m) =

∥∥∥∥∥∥
t∫

0

∂`+1
t fdt

∥∥∥∥∥∥
L2
µ(Tm)

≤
t∫

0

∥∥∂`+1
t f

∥∥
L2
µ(T m)

dτ.

Finally, (42) follows by combining all the above bounds with (43). ut

Proof (Proof of Theorem 10) As discussed, see (39), we will compare the so-
lution u of (N) to ūh from (35). With (41), we can see that εh ∈ Xh satisfies(

∂2t εh, vh
)

+ (∂sεh, ∂svh) = −(∂2t ηh, vh)− (∂sηh, ∂svh), vh ∈ Xh.

By (40) and the definition of ηh,(
∂2t εh, vh

)
+ (∂sεh, ∂svh) = −(∂2t ηh, vh) + (ηh, vh), vh ∈ Xh.
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By Lemma 2, the bound (7) applies to εh defined as above; thus,

‖∂tεh(T )‖+ ‖∂sεh(T )‖ ≤ C
T∫

0

(
‖∂2t ηh‖L2

µ(T ) + ‖ηh‖L2
µ(T )

)
dt

≤ C̃h2T
T∫

0

(
‖∂3t f‖L2

µ(T m) + ‖∂tf‖L2
µ(T m)

)
dt,

where the last inequality follows from (42). Combining the above bound with
the triangle inequality

‖∂t(u− uh)‖+ ‖∂s(u− uh)‖ ≤ ‖∂tηh‖+ ‖∂sηh‖+ ‖∂tεh‖+ ‖∂sεh‖,

and using (42) to bound the first two terms in the right hand side, we obtain
the desired result in the statement of the theorem. ut

Remark 8 Obviously, the convergence is only O(h) because we measure the
error in the energy norm; using the Aubin-Nitsche techniques, we can deduce
the convergence O(h2) when measuring ‖u− uh‖.

3.3 Fully discrete problem

3.3.1 Formulation

In what follows we denote by unh (ūnh) a discrete approximation to uh(tn)
(ūh(tn)). To discretize (33) in time, as discussed in Section 3.1.3, we use the
trapezoid rule, however, replace the implicit term (∂s{un}1/4, ∂sv)T m by an
explicit discretization (∂su

n
h, ∂svh)Tm . To explain the intuition behind the sta-

ble discretization of the transparent boundary condition term, let us first start
with the implicit discretization of the equivalent problem (35).
Derivation. The trapezoid rule discretization in time of (35) reads:(

D2
∆tū

n
h, vh

)
+
(
∂s{ūnh}1/4, ∂svh

)
= (fn, vh), ∀vh ∈ Xh. (46)

The above can be equivalently rewritten as(
D2
∆tū

n
h, vh

)
Tm +

(
∂s{ūnh}1/4, ∂svh

)
Tm (47)

+
(
D2
∆tū

n
h, vh

)
T \T m +

(
∂s{ūnh}1/4, ∂svh

)
T \T m = (fn, vh)T m , ∀vh ∈ Xh.

It remains to integrate by parts the last two terms in the left hand side,
similarly to the proof of Lemma 3. Because ūnh|T \T m , vh|T \T m ∈ H1

µ(T \T m),

we can use the definition of the discrete DtN, cf. (19) and Section 3.1.2:(
D2
∆tū

n
h, vh

)
Tm +

(
∂s{ūnh}1/4, ∂svh

)
Tm

+ 〈{Bm(∂∆tt )γmū
n
h}1/4, γmvh〉 = (fn, vh)Tm , ∀vh ∈ Xh.

(48)
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The above formulation inherits its unconditional stability from (46): the cor-
responding energy identity can be obtained by testing the above with D∆tū

n
h.

However, now the above problem is posed on a fully discrete space Xh|T m ≡
Uh, and thus we can make it explicit, by attempting to preserve the property
that the respective energy is obtained by testing the above with D∆tū

n
h. This

is easily achieved by replacing the term {ūnh}1/4 by ūnh, which results in the
leap-frog discretization of the volume terms.
Fully discrete (16). Without loss of generality we will assume that the source
term is sufficiently regular, and that f(., 0) = ∂tf(., 0) = 0 (this will ensure
that taking u1h = 0 in the discretization does not alter the scheme order). In
this case we end up with the following problem:

find (unh)Ntn=0 ⊂ Uh, s.t. u0h = 0, u1h = 0, and for all vh ∈ Uh, 1 ≤ n ≤ Nt − 1,(
D2
∆tu

n
h, vh

)
Tm + (∂su

n
h, ∂svh)Tm (49)

+ 〈{Bm(∂∆tt )γmu
n
h}1/4, γmvh〉 = (fn, vh)T m .

3.3.2 Well-posedness and stability of the fully discrete problem (49)

This section is dedicated to the stability analysis of (49). We will demonstrate
that, provided that the CFL condition holds true, i.e.

C2
CFL =

(
∆t

2

)2

sup
vh∈Uh:‖vh‖L2

µ(Tm)=1

‖∂svh‖2L2
µ(T m) < 1, (50)

the problem (49) is well-posed and stable.

Remark 9 It is easy to see that CCFL can be reduced to the CFL number for
the classical wave equation on the interval, and can be bounded independently
of µ. For this let us introduce a broken space Ũh =

⊕
Σ∈T m

Vh(Σ). Here Vh(Σ) ⊂

H1(Σ) is a P1-finite element space constructed on the quasi-uniform mesh Tn,j
(see (31)) associated to the edge Σ = Σn,j . The space Ũh is larger than Uh,
since the functions that lie in this space are not necessarily continuous in the
vertices Mm,j of the tree T m. Thus, by definition of the space Ũh,

C2
CFL ≤

(
∆t

2

)2

sup
vh∈Ũh:‖vh‖L2

µ(Tm)=1

‖∂svh‖2L2
µ(Tm)

=

(
∆t

2

)2

sup
vn,jh ∈Vh(Σn,j): ‖vh‖L2

µ(Tm) 6=0

m∑
n=0

pn−1∑
j=0

∫
Σn,j

µn,j |∂svh|2ds

m∑
n=0

pn−1∑
j=0

∫
Σn,j

µn,j |vh|2ds

≤
(
∆t

2

)2

max
0 ≤ n ≤ m,
0 ≤ j ≤ pn − 1

sup
vh∈Vh(Σn,j)\{0}

∫
Σn,j

µn,j |∂svh|2ds∫
Σn,j

µn,j |vh|2ds
,

(51)
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where the last inequality follows from

(
n∑
i=1

λi

)(
n∑
i=1

ηi

)−1
≤ max
i=1,...,n

λiη
−1
i . In

other words,

C2
CFL ≤ max

Σ∈Tm

(
∆t

2

)2

sup
vh ∈ Vh(Σ) :
‖vh‖L2(Σ) = 1

∫
Σ

|∂svh|2ds

where in the last expression we recognize the CFL number (squared) for the
trapezoid-rule/P1-discretization (on the mesh Tn,j associated to the edge Σ =
Σn,j) for the non-weighted wave equation with Neumann BCs on Σ.

Theorem 11 Let (50) hold true. For all (fn)Nt−1n=0 ⊂ L2
µ(T m), the problem

(49) has a unique solution (unh)Ntn=0. Moreover, the discrete energy

E
n+ 1

2

h =
1

2

(∥∥∥D∆tu
n+ 1

2

h

∥∥∥2
T m
−
(
∆t

2

)2 ∥∥∥∂sD∆tu
n+ 1

2

h

∥∥∥2
Tm

)

+
1

2
‖∂su

n+ 1
2

h ‖2Tm

(52)

satisfies

√
E
n+ 1

2

h ≤ C∆t
n∑
k=1

‖fk‖T m , where C depends on the CFL (50) only.

Remark 10 It is not difficult to verify that when (50) holds true, E
n+1/2
h defines

an energy: with v
n+ 1

2

h := D∆tu
n+ 1

2

h ,∥∥∥vn+ 1
2

h

∥∥∥2
T m
−
(
∆t

2

)2 ∥∥∥∂svn+ 1
2

h

∥∥∥2
T m

≥ (1− C2
CFL)

∥∥∥vn+ 1
2

h

∥∥∥2
T m

. (53)

Proof It suffices to show the stability bound (52), which implies uniqueness.
Then the existence is obvious, since the problem is finite-dimensional.
Derivation of (52) is simple: testing (49) written for n = k with D∆tu

k
h yields

1

∆t

(
E
k+ 1

2

h − Ek−
1
2

h

)
+ 〈{Bm(∂∆tt )γmu

k
h}1/4, D∆tγmu

k
h〉 = (fk, D∆tu

k
h)T m .

Summing the above in k = 1, . . . , n, and using E
1
2

h = 0 results in

E
n+ 1

2

h +∆t

n∑
k=1

〈{Bm(∂∆tt )γmu
k
h}1/4, D∆tγmu

k
h〉

= ∆t

n∑
k=1

(fk, D∆tu
k
h)T m .

(54)

Let us bound the right-hand side via E
j+ 1

2

h , j ≤ n. First of all,∥∥D∆tu
k
h

∥∥
Tm ≤

1

2

(
‖D∆tu

k+ 1
2

h ‖T m + ‖D∆tu
k− 1

2

h ‖Tm
) (53)

≤ C

(√
E
k+ 1

2

h +

√
E
k− 1

2

h

)
.
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The above yields (where we again use E
1
2

h = 0)∣∣∣∣∣∆t
n∑
k=1

(fk, D∆tu
k
h)Tm

∣∣∣∣∣ ≤ C∆t
(
‖fn‖Tm

√
E
n+ 1

2

h

+

n−1∑
k=1

(∥∥fk∥∥Tm +
∥∥fk+1

∥∥
Tm
)√

E
k+ 1

2

h

)
.

(55)

Since the last term in the left-hand side of (54) is non-negative (see (28) and
Theorem 8), we deduce that

E
n+ 1

2

h ≤ C∆t

(
‖fn‖Tm

√
E
k+ 1

2

h +

n−1∑
k=0

(∥∥fk∥∥T m +
∥∥fk+1

∥∥
T m
)√

E
k+ 1

2

h

)
.

The discrete Gronwall inequality yields the desired stability bound. ut

3.3.3 Convergence of the time discretization

The principal result of this section reads.

Theorem 12 Given f ∈W 3,1(0, T ; L2
µ(T m)) with f(., 0) = ∂tf(., 0) = ∂2t f(., 0) =

0, let uh solve (33), and unh be the solution to (49), with the CFL condition
(50) holding true. Then

‖uh(tn)− unh‖Tm +
∥∥∥∂s(uh(tn−

1
2 )− un−

1
2

h )
∥∥∥
T m
≤ C(tn)(∆t)2

tn∫
0

‖∂3t f‖T mdt,

where C(tn) = C max(1, tn)2, and C > 0.

To prove the convergence of the time discretization, we will use an idea already
employed in Section 3.2, where we reformulated the problem (33), posed on
the truncated tree T m, in the form (35), posed on the tree T .

Let us remark that such a result can be alternatively obtained by using
the existing convergence estimates for the trapezoid rule discretization of the
operator Bm(∂t), see [4, Appendix A] or a recent work [18], which requires fre-
quency dependent coercivity/continuity bounds on the symbol Bm(ω). How-
ever this may lead to non-optimal estimates (at least in terms of the powers
of the final time).

An auxiliary problem used for the analysis of (49). The auxiliary problem
which will serve the analysis purposes resembles an explicit version of (47):

Given ū0h = ū1h = 0, find (ūnh)Ntn=0 ⊂ Xh, s.t. for all v ∈ Xh, 1 ≤ n ≤ Nt − 1,(
D2
∆tū

n
h, v
)
T + (∂sū

n
h, ∂sv)T m +

(
∂s{ūnh}1/4, ∂sv

)
T \T m = (fn, v)T m . (56)

We start with the well-posedness and stability result.
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Lemma 6 (Well-posedness and stability of (56)) For any (fn) ⊂ L2
µ(T ),

the problem (56) has a unique solution.
If, additionally, the CFL condition (50) holds true, then the energy

E
n+1/2

h =
1

2

(∥∥∥D∆tū
n+ 1

2

h

∥∥∥2
Tm
−
(
∆t

2

)2 ∥∥∥∂sD∆tū
n+ 1

2

h

∥∥∥2
T m

)

+
1

2
‖∂sūn+1/2

h ‖2Tm +
1

2

(∥∥∥D∆tū
n+ 1

2

h

∥∥∥2
T \T m

+ ‖∂sūn+1/2
h ‖2T \T m

)

satisfies

√
E
n+ 1

2

h ≤ C∆t
n∑
k=1

‖fn‖, where C depends on the CFL (50) only.

Proof Well-posedness. This part of the proof is slightly non-classical, because
Xh is infinite-dimensional. On Xh we can define an equivalent scalar product:

(v, g)Xh =

∫
T

µ(s)v(s)g(s) +

∫
T \T m

µ(s)∂sv∂sg. (57)

Equipped with above scalar product, Xh is a Hilbert space, because Xh|T m =
Uh, where Uh is a finite-dimensional space, and thus the respective norm is
equivalent to the H1

µ-norm on Xh.

Let us next rewrite (56), by singling out terms with ūn+1
h , cf. (57):

(
ūn+1
h , vh

)
T +

(
∆t

2

)2

(∂sū
n+1
h , ∂svh)T \T m = (∆t)2(fn, vh)T m

+
(
2ūnh − ūn−1h , vh

)
T −

(
∆t

2

)2

(∂s(2ū
n
h + ūn−1h ), ∂svh)T \T m

− (∆t)2(∂sū
n
h, ∂svh)T m .

The right-hand defines a bounded linear functional on Xh; in particular,

|(∂sūnh, ∂svh)Tm | ≤ C(h)‖ūh‖Tm‖vh‖Tm ,

because ūh|Tm , vh|T m ∈ Uh. The existence and uniqueness of the solution to
the above are thus a direct consequence of the Lax-Milgram lemma (cf. (57)).

Stability. The stability proof mimics the proof of Theorem 11. ut

The next lemma relates the problem (56) posed on Xh to (49) posed on Uh.

Lemma 7 The solutions of (49) and (56) satisfy ūnh|Tm = unh, 0 ≤ n ≤ Nt−1.

Proof The proof is a trivial consequence of the definition of the discrete trans-
parent boundary conditions, cf. Section 3.1.1, as well as the proof of Lemma
3 in the semi-discrete case.

We now have all the auxiliary results needed to prove Theorem 12.
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Proof (Proof of Theorem 12) By Lemmas 3 and 7, instead of comparing uh(tn)
with unh, we will compare the solution to (56) ūh(tn) with ūh solving (35). The
proof is not fully standard, because in one part of the domain in (56) an explicit
scheme is used, while in the another part an implicit scheme is employed.
Step 1. Error bound in the energy norm. The error enh = ūnh − ūh(tn) ∈ Xh

solves

(D2
∆te

n
h, vh)T + (∂se

n
h, ∂svh)Tm + (∂s{enh}1/4, ∂svh)T \T m (58)

= −(D2
∆tūh(tn)− ∂2t ūh(tn), vh)T − (∂s

(
{ūh(tn)}1/4 − ūh(tn)

)
, ∂svh)T \T m ,

with the initial condition e0h = 0, and e1h = ū1h − ūh(t1) ≡ −ūh(t1) to be
quantified later. Let us denote by

δnh := D2
∆tūh(tn)− ∂2t ūh(tn), εnh := ∂s

(
{ūh(tn)}1/4 − ūh(tn)

)
.

Testing (58), written for n = k, with vkh = D∆te
k
h, we obtain

E
k+ 1

2

e − Ek−
1
2

e

∆t
= −(δkh, D∆te

k
h)T − (εkh, D∆t∂se

k
h)T \T m , (59)

where E
k+ 1

2

e is the discrete energy norm of the error ekh:

E
k+ 1

2

e =
1

2

(∥∥∥D∆te
k+ 1

2

h

∥∥∥2
Tm
−
(
∆t

2

)2 ∥∥∥∂sD∆te
k+ 1

2

h

∥∥∥2
Tm

+
∥∥∥∂sek+ 1

2

h

∥∥∥2
T m

)

+
1

2

(∥∥∥D∆te
k+ 1

2

h

∥∥∥2
T \T m

+
∥∥∥∂sek+ 1

2

h

∥∥∥2
T \T m

)
. (60)

Summing (59) in k = 1, . . . , n, and next applying the discrete integration by
parts to the sum involving D∆t∂se

k
h, we end up with the following identity:

E
n+ 1

2

e = E
1
2

e −∆t
n∑
k=1

(
δkh, D∆te

k
h

)
T

− (εnh, ∂se
n+ 1

2

h )T \T m +∆t

n−1∑
k=1

(
εk+1
h − εkh
∆t

, ∂se
k+ 1

2

h

)
T \T m

.

The second term in the rhs can be bounded like in the proof of Th. 11, cf.
(55). For the two last terms we use the Cauchy-Schwartz inequality and (60):

E
n+ 1

2

e ≤ E
1
2

e + C

(
∆t

2
‖δnh‖

√
E
n+ 1

2

e +∆t

n−1∑
k=0

‖δkh‖+ ‖δk+1
h ‖

2

√
E
k+ 1

2

e

+‖εnh‖T \T m
√
E
n+ 1

2

e +∆t

n−1∑
k=1

∥∥∥∥∥εk+1
h − εkh
∆t

∥∥∥∥∥
T \T m

√
E
k+ 1

2

e
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The constant C depends on the CFL (50). Applying to the above the discrete
Gronwall inequality, we obtain

√
E
n+ 1

2

e ≤
√
E

1
2

e + C

(
∆t

n∑
k=1

‖δkh‖

+ max
0≤k≤n

‖εkh‖T \T m +∆t

n−1∑
k=1

∥∥∥∥∥εk+1
h − εkh
∆t

∥∥∥∥∥
T \T m

 .

(61)

Step 2.1. Bounding (61): the error stemming from approximating the initial
conditions. This is very classical: indeed,

E
1
2

e ≤
1

2

(∥∥∥D∆te
1
2

h

∥∥∥2
T

+
∥∥∥∂se 1

2

h

∥∥∥2
T

)
=

1

2

(
∆t−2‖ūh(t1)‖2 + ‖∂sūh(t1)‖2

)
.

For the first term, using first the Taylor expansion, and then extending the
bound of Corollary 1 to (35), cf. Lemma 2, we obtain

‖ūh(t1)‖ ≤ c(∆t)2 sup
0≤t≤t1

‖∂2t ūh(t)‖ ≤
∆t∫
0

‖f ′(t)‖dt ≤ ∆t
∆t∫
0

‖f (2)(t)‖dt.

The bound on the second term follows directly from Lemma 2:

‖∂sūh(t1)‖ ≤
∆t∫
0

‖f(t)‖dt =

∆t∫
0

‖
t∫

0

τ2∫
0

f (2)(τ1)dτ1dτ2‖dt ≤ (∆t)2
∆t∫
0

‖f (2)(t)‖dt.

Combining the above bounds results in

√
E

1
2

e ≤ C(∆t)2
t∫

0

‖∂2t f‖T mdt. (62)

Bounding (61): the consistency error. To obtain a bound on the terms in the
rhs in the above, we use the Taylor theorem:

‖δkh‖ ≤ c(∆t)2 sup
t∈(tk−1,tk+1)

‖∂4t ūh(t)‖,

‖εkh‖T \T m ≤ c(∆t)2 sup
t∈(tk−1,tk+1)

‖∂2t ∂sūh(t)‖T \T m ,∥∥∥∥∥εkh − εk−1h

∆t

∥∥∥∥∥
T \T m

≤ c(∆t)2 sup
t∈(tk−1,tk+1)

‖∂3t ∂sūh(t)‖T \T m
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Thus, plugging in the above and (62) into (61), results in (for some C > 0),√
E
n+ 1

2

e ≤ C(∆t)2
t∫

0

‖∂2t f‖T mdt+ C(∆t)2

(
sup

t∈(0,tn+1)

‖∂2t ∂sūh(t)‖T \T m
)

+ C(∆t)2(n∆t)

(
sup

t∈(0,tn+1)

‖∂3t ∂sūh(t)‖T \T m + sup
t∈(0,tn+1)

‖∂4t ūh(t)‖T \T m
)
.

Finally, we

– employ the bound

‖∂2t ∂sūh(t)‖T \T m ≤
t∫

0

‖∂3τ∂sūh(τ)‖T \T mdτ ≤ t sup
τ∈(0,t)

‖∂3τ∂sūh(τ)‖T \T m ,

– apply the bound of Corollary 1, which can be extended to the semi-discretized
system (35), to bound ‖∂3t ∂sūh(t)‖ and ‖∂4t ūh‖ (cf. Lemma 2).

This procedure yields the following bound, with C > 0 depending on CCFL:√
E
n+ 1

2

e ≤ C(∆t)2
t∫

0

‖∂2t f‖T mdt+ C(∆t)2tn+1‖∂3t f‖L1(0,tn+1;L2
µ(T m)).

The above, combined with (50), yields∥∥∥∥en+1
h − enh
∆t

∥∥∥∥
T

+
∥∥∥∂sen+ 1

2

h

∥∥∥
T
≤ C̃(∆t)2tn+1

∥∥∂3t f∥∥L1(0,tn+1;L2
µ(T ))

. (63)

Step 2. Estimating enh. The bound for the error ‖enh‖T from the statement of
the theorem follows from a classical argument of telescopic sums. The estimate
of ‖∂senh‖T is a corollary of

‖∂sūh(tn+1/2)− ∂sūn+1/2
h ‖T ≤ ‖∂sen+1/2

h ‖T (64)

+

∥∥∥∥∂s( ūh(tn+1) + ūh(tn)

2
− ūh(tn+1/2)

)∥∥∥∥
T
.

The first summand is estimated using (63). The latter quantity can be bounded
using the Taylor theorem and the Corollary 1 extended to (35):∥∥∥∥∂s ūh(tn+1) + ūh(tn)

2
− ∂sūh(tn+1/2)

∥∥∥∥
T
≤ C(∆t)2 sup

0≤t≤(n+1)∆t

|∂2t ūh|2H1
µ(T )

≤ C(∆t)2
tn+1∫
0

‖∂2t f‖dt ≤ C(∆t)2tn+1

tn+1∫
0

‖∂3t f‖dt. (65)

Step 3. Estimating the error between the solutions of (49) and (33). Because of
Lemmas 3, 7, the error between the solutions of (49) and (33) does not exceed
the error between the solutions of (56) and (33), and hence the conclusion. ut
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3.3.4 Convergence of the time and space discretizations

The following is a corollary of Theorems 10 and 12.

Theorem 13 Given f ∈ W 3,1(0, T ; L2
µ(T m)) with f(., 0) = . . . = ∂2t f(., 0) =

0, let um solve (16), and let unh be the solution to (49), with the CFL condition
(50) holding true. Then, for all n ∈ N, s.t. n∆t ≤ T ,

‖um(tn)− unh‖T m + ‖∂sum(tn−
1
2 )− ∂su

n− 1
2

h ‖T m

≤ C max(1, tn)2
(
(∆t)2 + h

) tn∫
0

‖∂3t f‖dt,

where C > 0 depends on the CFL.

3.4 Solving the fully discrete system (49). Complexity

In practice, to solve (49), we use the mass lumped FEM. This renders the
respective system fully explicit. In fact, the only implicit terms are the bound-
ary ones, which are essentially one-dimensional (and thus in total there are
pm = O(1) of such terms). To see this, let us assume that ` > 0 is s.t. un` (with
an obvious abuse of notation: ` here is a spatial index, rather than m from
T m) is a nodal value of unh in Mm,j , and un`−1 is the nodal value in the closest

to Mm,j node. Then mass-lumped (49) for un+1
` reads

un+1
` − 2un` + un−1`

(∆t)2
+ 2

un` − un`−1
h2

+
2

h

1

4

(
n+1∑
k=0

b∆tm,j;ku
n+1−k
` + 2

n∑
k=0

b∆tm,j;ku
n−k
` +

n−1∑
k=0

b∆tm,j;ku
n−1−k
`

)
= 0.

It is easy to see that the above can be written in an explicit form. This nonethe-
less requires evaluating several discrete convolutions, each of O(n) size, in order
to compute the right-hand side. The total complexity of computing the solu-
tion to (56) is thus O(NtNs) +O(N2

t ), where O(N2
t ) comes from computation

of the convolutions in the boundary terms.

4 Convolution quadrature: computing convolution weights

One of the major practical difficulties of the application of the CQ is linked
to the computation of convolution weights b∆tm,n, that is to say, λ∆tn , cf. (30),
particularly in our case, as the symbol Λ(ω) is not known in an explicit form.
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4.1 Classical FFT-based algorithm for computing convolution weights

The convolution weights for Bm(∂t) can be expressed via the reference DtN
convolution weights, see (30). The latter, in turn, can be evaluated by dis-
cretizing the Cauchy integral (26), first by choosing the contour γ as a circle
of radius ρ, and next applying the N -point trapezoid quadrature (N ≥ Nt+1):

λ∆tn ≈
ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λ (ωk) , ωk = i

δ(ρei
2πk
N )

∆t
, n = 0, . . . , Nt. (66)

If the value of (26) does not depend on ρ, this is not the case for the above
approximation. An optimal choice of ρ is ensured by minimizing the numer-
ical error in the above expression, which is the sum of the quadrature error
O(ρN ) and the error stemming from imprecise evaluation of Λ(ω), estimated
by O(ρ−Ntε), cf. (66), where ε is the accuracy of evaluation of Λ(ω). Crucially,
this latter error can not be smaller than the machine epsilon. More details can
be found in [34], [7] and [4]; see as well Section 4.3.1. In particular, the choice

N = Nt + 1 and ρ = ε
1

2N results in the error O(
√
ε).

Obviously, (66) can be easily computed via the FFT. Provided that the
computational cost of evaluation of Λ(ωk) is bounded by cΛ, the above com-
putations require O(Nt logNt) time to perform the FFT, and O(NtcΛ) to
evaluate all Λ(ωk). Of course, these costs depend on ωk, and, just like in the
case of the exterior problem for the wave equation, cf. [4,5], increase with
∆t → 0. One of the main goals of this section is to quantify the efficiency of
the CQ method for the approximation of the transparent BCs in fractal trees.
This section is organized as follows:

– in Section 4.2 we present an algorithm to evaluate Λ(ω), and very briefly
discuss its stability, convergence and complexity. In the end, we will demon-
strate how Λ(ω) can be approximated efficiently when Imω is large enough.

– in Section 4.3 we will discuss the numerical aspects of (66): dependence
of the error of evaluation of λ∆tn depending on the error of evaluation of
Λ(ω), and, as a result, the choice of the parameters in (66); next, we will
present a strategy to compute convolution weights, and then provide the
respective asymptotic complexity bounds, as ∆t→ 0.

Remark 11 When ∆t → 0, |Λ(ωk)| ∼ |ωk|, cf. Theorem 4. Since the frequen-
cies |ωk| grow at least as O((∆t)−1) (cf. (66)), to preserve the O(1) scaling as
∆t → 0, instead of computing the convolution weights for Λ(ω), we compute
the convolution weights for Λs(ω) := (−iω)−1Λ(ω). This can be incorporated
into the coupled formulation (49) as follows. With (28),

Bm,j(∂∆tt ) = µm,jα
−1
m,j

p−1∑
k=0

µk
αk
αm,jαk∂

∆t
t Λs

(
αm,jαk∂

∆t
t

)
= µm,j∂

∆t
t

p−1∑
k=0

µkΛ
s
(
αm,jαk∂

∆t
t

)
.



Transparent BCs for fractal trees with CQ 31

Let us define the discrete operator

Bsm,j(∂∆tt ) := µm,j

p−1∑
k=0

µkΛ
s
(
αm,jαk∂

∆t
t

)
,

so that Bm,j(∂∆tt ) ≡ ∂∆tt Bsm,j(∂∆tt ). Its discrete symbol reads

Bs,∆tm,j (z) = µm,j

p−1∑
k=0

µkΛ
s

(
iαm,jαk

δ(z)

∆t

)
.

and the respective aggregate operator Bsm(∂∆tt ) is defined like in (11); see also
Section 3.1.2. In the formulation (49) it suffices to replace {Bm(∂∆tt )γmu

n} 1
4

by D∆t

(
Bsm(∂∆tt )γmu

n
)
.

4.2 Evaluation of Λ(ω)

4.2.1 A method for computing Λ(ω)

The method for computation of Λ(ω) presented in this section resembles the
method of [29], which aims at approximation of Λ(ω) in a domain of C+ =
{ω : Imω > 0}. However, the approach of this article is better suited to the
case when a highly accurate evaluation of Λ(ω) at a set of points on a curve
in a complex plane is needed, like in (66). It is based on the following ideas:

– to be able to evaluate Λ(ω), it suffices to know the values of Λ(αiω),
i = 0, . . . , p− 1 (i.e., for p ’smaller’ frequencies);

– for |ω| < r, where r is a fixed value smaller than the first pole of Λ(ω),
Λ(ω) can be accurately approximated by 2N∗ + 2 first terms of its Taylor
expansion in zero. Provided {λ2n}n∈N even coefficients of the Taylor series
for Λ(ω) in ω = 0 (Λ is even by Theorem 4), this approximation reads

Λ(ω) ≈ Λt
r,N∗(ω) :=

N∗∑
n=0

λ2nω
2n. (67)

The coefficients λ2n are computable, cf. [29, Appendix C]. The index t in
Λt
r,N∗

stands for ’truncated’.

To formulate the algorithm, let us fix ω ∈ C+ for which we need to evaluate
Λ(ω), and introduce the following sets:

Ln(ω) := {Λ(αk00 · · ·α
kp−1

p−1 ω) : 0 ≤ ki ≤ n, i = 0, . . . , p− 1,

p−1∑
i=0

ki = n}.

These sets possess the following properties:

(a) the set L0 = {Λ(ω)}.
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(b) given Ln(ω), it is possible to compute all the elements in Ln−1(ω) using
the expression (14), rewritten below for the convenience of the reader:

Λ(ω) = −ωω tanω − Fα,µ(ω)

tanωFα,µ(ω) + ω
, Fα,µ(ω) =

p−1∑
i=0

µi
αi

Λ(αiω) (68)

This is immediate when n = 1, and not difficult to check for n > 1.
(c) in Ln, there are Cp−1n+p−1 = O(np) elements.

Given r as described before (67), let us assume that |ω| > r and fix L s.t.

|α|L∞|ω| < r, i.e. L := L(ω, r) =

⌈(
log |α|−1∞

)−1
log
|ω|
r

⌉
. (69)

The above ensures that all the arguments of Λ(.) in LL(ω) satisfy:

p−1∏
`=0

αk`` |ω| ≤ (|α|∞)

p−1∑̀
=0

k`
|ω| = |α|L∞|ω| < r.

Knowing all the elements in the set LL(ω), we can compute exactly the
elements of LL−1(ω), then LL−2(ω), and so on, up to Λ(ω). The method pre-
sented here is based on this idea, with the only modification that the elements
in LL(ω) are approximated with the help of (67). The respective approxima-
tion of the sets Ln(ω) will be denoted by L∗n(ω) = L∗n.

By Λk0,··· ,kp−1
we will denote the approximation to Λ

(
p−1∏
`=0

αk`` ω

)
.

1: procedure EvalLambda(ω,N∗, r, {λ2n}N∗n=0)
2: for n = L, L− 1, . . . , 0 do
3: if n = L then
4: L∗L ← ∅

5: for ki : 0 ≤ ki ≤ L, i = 0, . . . , p− 1,
p−1∑
i=0

ki = L do

6: ωk ←
p−1∏
i=0

αkii ω

7: Λk0,··· ,kp−1
←

N∗∑
n=0

λ2nω
2n
k , see (67)

8: L∗L := L∗L
⋃
{Λk0,··· ,kp−1

}
9: store L∗L

10: else
11: L∗n ← ∅

12: for ki : 0 ≤ ki ≤ n, i = 0, . . . , p− 1,
p−1∑
i=0

ki = n do

13: F∗k ←
p−1∑̀
=0

µ`
α`

Λk0,k1,··· ,k`−1,k`+1,k`+1,··· ,kp−1

. Remark that Λk0,k1,··· ,k`−1,k`+1,k`+1,··· ,kp−1
∈ L∗n+1 for all ` = 0, . . . , p− 1

. {Fk plays a role of Fα,µ(ωk) in (68)}
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14: ωk ←
p−1∏
i=0

αkii ω

15: Λk0,··· ,kp−1 ← −ωk
ωk tanωk−F∗k
tanωkF∗k+ωk

16: L∗n := L∗n
⋃
{Λk0,··· ,kp−1}

17: store L∗n
18: erase L∗n+1

return L∗0

Remark 12 A somewhat tricky part in the practical implementation of the
above procedure is arranging and accessing the computed values in the sets
L∗n; this nonetheless can be done efficiently, as described in the small section
that follows.

Remark 13 In the above algorithm, the choice whether the DtN for the Dirich-
let or Neumann problem is computed is encoded in the coefficients {λ2n}N∗n=0.

Storing and accessing the values in L∗n; implementation of the method In our
implementation of the method, we store and access the values of Λ in the sets
Ln in the following manner.

Let L be fixed. We construct the tree which will store the values of Λ
from Ln for all n = 0, . . . , p − 1. This leads to an extra minor memory over-
head (which we will discuss later) compared to storing the sets Ln for each
n = L, . . . , 0 separately, but is somewhat easier to implement, and allows to
generate a single tree for all the sets, as well as reformulate the above algorithm
in terms of a simple recursive algorithm for computing Λ(ω).

The main idea of this construction is that the value Λ(
p−1∏
k=0

αnkk ) is stored in

the leaf of the tree, which can be located by the path (n0, 0)− (n1, 1)− . . .−
(np−1, p− 1), where (nj , j) is the label of each of the vertices.

1. this tree has in total p+ 1 levels
2. each vertex is labelled by (k, `), where ` is the level at which the vertex

is located, and k corresponds to a power of α` (we’ll explain later what it
means). The root vertex is located at the level −1, and n` := 0.

3. the root vertex has L+ 1 children, labelled as (j, 0), with j = 0, . . . , L.
4. the vertex (j, 0) has L + 1 − j children, labelled as (L − j, 1), with j =

0, . . . , L; In particular, the vertex (L, 0) has 1 child, labelled as (0, 1).
5. if the level k < p, and the vertex (j, k) has q children, its children are

labelled as (0, k+1), · · · (q−1, k+1) and have correspondingly q, q−1, . . . , 1
children.

Remark that the tree above can accomodate Λ(
p−1∏
k=0

αnkk ), for all
p−1∑
k=0

nk ≤ L.

An illustration of such a tree for L = 2 and p = 3 is given below.

This tree has the following properties.
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Fig. 3 The tree described in Section 4.2.1 for L = 2 and p = 3.

– in total it has O(Lp) nodes. The number of nodes at each level k =
0, . . . , p− 1 is bounded by Lk, and there are in total p levels. Then this is
a geometric progression sum.

– the leaf vertices are uniquely identified by the sequences (n0, . . . , np−1).
– accessing any vertex, provided the values (n0, . . . , np−1), requires O(p) =
O(1) operations.

The recursive version of EvalLambda for computing Λ then proceeds as fol-
lows. Assume that each leaf vertex (n0, . . . , np−1) has an extra label IsLambdaSet,
which takes the value true, if Λ(αn0 · · ·αnp−1ω) had been computed, and false
otherwise.

We initialize it by the constructed tree with all leaf vertices having labels
IsLambdaSet = false, and (n0, . . . , np−1) = (0, 0, . . . , 0).

We will assume that V ertex(Tree, n0, . . . , np−1) returns a corresponding
leaf vertex and V ertex(Tree, n0, . . . , np−1)→ Λ the stored value in this vertex.

1: procedure EvalLambdaRecursive(Tree, (n0, . . . , np−1), ω,N∗, r, {λ2n}N∗n=0)
2: if Vertex(Tree, n0, . . . , np−1)→ IsLambdaSet then
3: return Vertex(Tree, n0, . . . , np−1)→ Λ
4: else
5: for k = 0, p− 1 do
6: nk → (n0, . . . , nk + 1, . . . , np−1)
7: if Vertex(Tree, nk)→ IsLambdaSet then
8: Λnk ← (Vertex(Tree, nk)→ Λ)
9: else

10: if
p−1∑
k=0

nk + 1 = L then

11: Λnk ←
N∗∑
n=0

λ2nω
2n
nk

, see (67)

12: else
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13: Λnk ← EvalLambdaRecursive (Tree, (nk), ω,N∗, r, {λ2n}N∗n=0)

14: (Vertex(Tree, nk)→ Λ) ← Λnk
15: (Vertex(Tree, nk)→ IsLambdaSet)← true

16: F∗n ←
p−1∑
k=0

µk
αk

Λnk

17: Λn ← −ωn ωn tanωn−F∗n
tanωnF∗n+ωn

18: return Λn

4.2.2 Well-definiteness and convergence of the method

Well-definiteness. One could wonder whether using (68) may result in division
by zero in the course of EvalLambda. The answer is given below.

Proposition 1 There exists rH > 0, s.t. for all r < rH , N∗ ≥ 0, no division
by zero occurs in the course of the procedure EvalLambda (ω,N∗, r, {λ2n}N∗n=0).

The proof is based on the following auxiliary result. We remark that rH in the
result below is the same as in Proposition 1.

Lemma 8 Let {λ2n}∞n=0 be even coefficients of the Laurent expansion of Λ(ω)
around ω = 0. Then, there exists rH > 0, s.t. for any N∗ > 0,

Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
< 0, for all ω ∈ C+ ∩ {z : |z| < rH}.

When N∗ = 0, the inequality in the above is not necessarily strict.

Proof We will show that for all sufficiently small ω ∈ C+,

sign Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
= sign Im(λ0ω

−1 + λ2ω) < 0, for all N∗ ≥ 1.

With Lemma 5.5, Corollary 5.6 in [29], we observe that

λ0 ≥ 0 and λ2 < 0. (70)

Case N∗ ≤ 1. When N∗ = 1, a direct calculation gives

Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
= λ0 Imω−1 + λ2 Imω < 0 for all ω ∈ C+,

while when N∗ = 0, the above holds with < replaced by ≤.
Case N∗ ≥ 2. Let us now assume that N∗ ≥ 2. Given ω = |ω|eiϕ, ϕ ∈ (0, π),

Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
=

N∗∑
k=0

λ2k |ω|2k−1 sin(2k − 1)ϕ

= −λ0|ω|−1 sinϕ+ λ2|ω| sinϕ+

N∗∑
k=2

λ2k |ω|2k−1 sin(2k − 1)ϕ.
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Provided that the sum of the first two terms is strictly negative, cf. (70), it
suffices to show that the latter sum can be controlled. For this we use the
following expression:

sin(2k − 1)ϕ =

k−1∑
`=0

(−1)`C`2k−1 sin2`+1 ϕ cos2(k−`−1) ϕ,

which allows to rewrite

Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
= sinϕ

(
−λ0|ω|−1 + λ2|ω|+Q(ω, ϕ)

)
, (71)

Q(ω, ϕ) =

N∗∑
k=2

λ2k |ω|2k−1
k−1∑
`=0

(−1)`C`2k−1 sin2` ϕ cos2(k−`−1) ϕ.

A uniform in ϕ bound for Q(ω, ϕ) follows from the Cauchy estimate for λ2`
[19, p.118]:

|λ2`| ≤Mρρ
−2`, for all 0 < ρ < ω0, (72)

where ω0 is the smallest positive pole of Λ(ω), and Mρ = max
z∈Bρ(0)

|Λ(ω)|. Fixing

ρ > 0, and applying the above estimate to bound |λ2k| in Q(ω, ϕ) results in

|Q(ω, ϕ)| ≤Mρ

N∗∑
k=2

ρ−2k |ω|2k−1
k−1∑
`=0

C`2k−1

∣∣∣sin2` ϕ cos2(k−`−1) ϕ
∣∣∣

≤Mρ

N∗∑
k=2

ρ−2k |ω|2k−1
2k−1∑
`=0

C`2k−1 = 2Mρ

N∗∑
k=2

ρ−2k |2ω|2k−1 ≤ Cρ|ω|3,

for some Cρ > 0, where the last bound holds for all sufficiently small |ω|. By
(71), for all ω = |ω|eiϕ ∈ C+, s.t. |ω| is sufficiently small, it holds

sign Im

(
ω−1

N∗∑
k=0

λ2kω
2k

)
= sign

(
sinϕ

(
−λ0|ω|−1 + λ2|ω|

)) (70)
< 0. ut

Proof (Proof of Proposition 1) To prove the statement of the proposition, we
will use the same idea as in Lemma 5.15 in [29]. It suffices to show that

Im

(
ω−1Λr,N∗

(
p−1∏
k=0

αnkk ω

))
< 0, s.t.

p−1∑
k=0

nk = L, (73)

i.e. for all elements of L∗L(ω). Then, by Lemma 5.13 in [29], the same holds
true for the elements of L∗L−1, as they are computed with the help of (68) (and
thus by induction for L∗n, n ≤ L− 2). Let us remark that it can be shown (by
a trivial generalization of the result of Lemma 5.13), that it suffices to have
the equality sign in (73).
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Recall that the elements from L∗L are computed with the help of (67).

Provided
p−1∑
k=0

nk = L, the quantity
p−1∏
k=0

αnkk ω ∈ C+, and, moreover, belongs to

B(0, r), where r is from (69). Hence it suffices to show that exists r0 > 0, s.t.
for all r < r0, N∗ ≥ 0,

Im

(
ω−1

N∗∑
n=0

λ2nω
2n

)
≤ 0, ω ∈ C+ ∩B(0, r).

This had been shown in Lemma 8.

From the proof of the above result we obtain the corollary almost immediately
(in the formulation of the corollary we use the notation from the procedure
EvalLambda).

Corollary 2 With rH > 0 like in Proposition 1, all the quantities Λk com-
puted in the course of the algorithm EvalLambda(ω, r,N∗, {λ2n}N∗n=0), with
r < rH , N∗ ≥ 0, ω ∈ C+, satisfy

Im (ωkΛk) ≤ 0.

Convergence. There are two parameters in the method that affect its accuracy:
N∗ and r. Let us denote by Λr,N∗(ω) the solution computed with the help of

the procedure EvalLambda (ω,N∗, r, {λ2n}N∗n=0), and let

Er,N∗(ω) := |Λr,N∗(ω)−Λ(ω)| .

We study separately two cases: the ’low-frequency’ case |ω| ≤ r, i.e. Λ(ω) is
approximated by (67), and the ’high-frequency’ case |ω| > r.

Theorem 14 (Low-frequency case) For all ρ < ω0, where ω0 is the small-
est positive pole of Λ(ω), and all r < ρ, N∗ ≥ 0, for all ω ∈ C+, s.t. |ω| ≤ r,

Er,N∗(ω) < Cρ

(
1− r2

ρ2

)−1(
r

ρ

)2N∗+2

, Cρ > 0.

Proof The estimate is a trivial consequence of the Cauchy estimates for the
coefficients of Λ(ω). Recall that the coefficients {λ2n}n≥0 of the Taylor expan-
sion of Λ(ω) in ω = 0 satisfy the Cauchy estimate (72).

Thus, for all |ω| < ρ and N∗ ≥ 0,

|Er,N∗(ω)| =

∣∣∣∣∣
∞∑

n=N∗+1

λ2nω
2n

∣∣∣∣∣ ≤
∞∑

n=N∗+1

|λ2n||ω2n|

≤Mρ

(
|ω|
ρ

)2N∗+2

(1− |ω|−2ρ−2)−1.

(74)

The estimate in the statement of Theorem follows by taking |ω| = r.
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To formulate the high-frequency counterpart of the above, let us introduce

N0 = min

{
` ≥ 0 :

p−1∑
i=0

µiα
2`+1
i < 1

}
, (75)

C+
a,rb

:= {z ∈ C : Im z > a, |z| > rb}. (76)

Theorem 15 (High-frequency case) Let ρ > 0 be fixed, and be like in
Theorem 14. There exists r0, which depends on ρ, µ, α only, s.t. for all r < r0,
N∗ ≥ N0, and all ω ∈ C+

a,r, where a ∈ (0, 1], it holds

Er,N∗ ≤ Cρ,µ,α
(
a−2A

)γω
Bγ

2
ω

(
r

ρ

)2N∗+2

r−ν ,

γω =
log |ω|

log |α|−1∞
, ν =

log(a−2A)

log |α|−1∞
.

The constants Cρ,µ,α, A, B > 1 depend only on ρ, α, µ and the problem
(Dirichlet or Neumann) in question.

Remark 14 Necessarily, r̃0 < r0, where r0 is the same as in Proposition 1.

Theorems 14, 15 show that in order to ensure that E(r,N∗) < ε, we may fix
r > 0 sufficiently small, and choose N∗ so that, for some Cj ≥ 0, j = 1, . . . , 4,

N∗ ≥ C1 log ε−1 + C2 + max(C3 log2 |ω|+ C4 log |ω| log a−1, 0). (77)

Let us now prove Theorem 15. The proof is quite technical and requires
several additional lemmas.

Because the elements of L∗n−1 are computed using the set L∗n and (14) (and
the errors of approximation of elements computed from LL are essentially given
by 74), it suffices to understand how the error of approximating Λ(αiz) in (68)
affects the computation of Λ(z).

Let z be fixed, and Λε
i be an approximation to Λ(αiz), i = 0, . . . , p − 1,

and

Λε(z) := −z
z tan z − F εα,µ
tan zF εα,µ + z

, F εα,µ :=

p−1∑
i=0

µi
αi

Λε
i . (78)

Then, by replacing Λε(z) from the above expression and Λ(z) from (68), we
obtain

Λε(z)−Λ(z) = −z2
(
tan2 z + 1

) F α,µ(z)− F εα,µ
(F εα,µ tan z + z)(F α,µ tan z + z)

(79)

= T (z)
(
F α,µ(z)− F εα,µ

)
,

T (z) =

(
1 +

1

tan2 z

)
1

(F εα,µz
−1 + cot z)(F α,µz−1 + cot z)

. (80)

It remains to provide an adequate estimate on T (z). It is given in Proposition
below.
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Proposition 2 Let z ∈ C+ be fixed, and let Λε
i ∈ C, i = 0, . . . , p − 1, be s.t.

Im
(
α−1i z−1Λε

i

)
≤ 0 for all i = 0, . . . , p − 1. Let T (z) be defined like in (80).

Then there exists C > 0, independent of Λε
i , µ, α, z, s.t.

|T (z)| ≤ C max(1, (Im z)−2).

Proof First of all,∣∣F εα,µz−1 + cot z
∣∣ ≥ ∣∣Im(F εα,µz

−1) + Im cot z
∣∣ ≥ |Im cot z| ,

because Im cot z < 0 (see (108), and Im(F εα,µz
−1) < 0, by the condition of

Lemma. Using the same argument as in (129), we arrive at∣∣F εα,µz−1 + cot z
∣∣ ≥ |Im cot z| = 1− |eiz|2

|1− eiz|2
, where eiz = e2iz. (81)

For the same reason (cf. Theorem 4(a)), the same lower bound holds for∣∣Fα,µz−1 + cot z
∣∣. Thus,∣∣∣∣ 1

(F εα,µz
−1 + cot z)(Fα,µz−1 + cot z)

∣∣∣∣ ≤ |1− eiz|4

(1− |eiz|2)2
. (82)

Next let us consider

1 +
1

tan2 z
=

1

sin2 z
= − 4e2iz

(e2iz − 1)
2 = − 4eiz

(eiz − 1)2
.

Hence, combining the above with (82), we deduce

|T (z)| ≤ 4|eiz|
(1− |eiz|2)2

|1− eiz|2
|eiz|≤1
≤ 16

(1− e−2 Im z)
2 ≤ C max(1, (Im z)−2),

where the last bound follows the same arguments as in the end of proof of
Lemma 12 in Appendix B.

The problem with using the above result in (79) lies in the fact that the
respective bound clearly deteriorates when Im z → 0, and that is why the
above result is not sufficient to demonstrate the convergence of the method
EvalLambda : the obtained bound is too pessimistic when |z| is small. However,
we can show that in the vicinity of z = 0, the dependence of the bound on
T (z) on Im z can be waived; this idea will be important for understanding the
convergence of the method. To see this, we will rewrite the quantity T (z) from
(80) as follows:

T (z) = (1 + tan2 z)D−1(z) (Dε(z))
−1
, (83)

D(z) := z−1 tan z

p−1∑
i=0

µiα
−1
i Λ(αiz) + 1, (84)

Dε(z) := z−1 tan z

p−1∑
i=0

µiα
−1
i Λε

i + 1. (85)
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This is very easy to see when Λε
i ≡ Λ(αiz), and Λ(0) = 0 (cf. Theorem 3): for

small |z|, D(z) = 1 +O(z2), Dε(z) = 1 +O(z2), and (1 + tan2 z) = 1 +O(z2),
which shows that T (z) is uniformly bounded in the vicinity of 0. This remains
true if Λε

i is sufficiently close to Λ(αiz).
The following proposition shows that the quantity T (z) is bounded from

above, when z is sufficiently small and Λε
i are quantities from L∗n, with n suffi-

ciently large, computed in the course of the procedure EvalLambda(ω,N∗, r, {λ2k}N∗k=0).

Proposition 3 Let N0 be defined in (75), and N∗ ≥ N0. Let ρ be like in
Theorem 14.

There exists rb > 0, which depends on ρ, µ, α only, s.t. the following
holds true. Let the elements in L∗n(ω), n ≥ 0, be evaluated in the course of
EvalLambda(ω,N∗, r, {λ2k}N∗k=0), with r < rb.

Let n be s.t. |ω||α|n∞ < rb and n > L. We denote by n := (n0, . . . , np−1),
p−1∑
k=0

nk = n, nk := (n0, n1, . . . , nk + 1, . . . np−2, np−1), and ωn = ω
p−1∏
k=0

αnkk .

Then the quantities T (ωn), defined in (83), with

Λε
i = Λni ,

are uniformly bounded: |T (ωn)| | ≤
(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

The proof of the above statement requires several auxiliary lemmas:

– we will first bound from below |D(z)| for |z| in the vicinity of z = 0

– next we bound |Dε(z)|, provided that |Λε
i −Λ(αiz)| < Cρ

∣∣αizρ−1∣∣2N∗+2
,

N∗ ≥ 0
– finally we show that when N∗ is sufficiently large, the above approximation

property holds for all values from L∗n.

Lemma 9 Let D(z) be defined in (84). There exists w0 > 0 and a constant
c, c∗ > 0, s.t. for all |z| < w0,

|D(z)| > 1− c|z|2 > c∗ > 0. (86)

The quantities w0, c, c
∗ depend on the problem in question (Neumann/Dirichlet),

µ and α.

Proof By to Theorem 3, Λ(0) = 0 or Λ(0) = 1−
〈
µ
α

〉−1
. We consider accord-

ingly the two cases:

1. let Λ(0) = 0. In this case, with (74), we deduce that there exists ω̃0, s.t.
for all |z| < ω̃0,∣∣∣∣∣

p−1∑
i=0

µiα
−1
i Λ(αiz)

∣∣∣∣∣ ≤Mω̃0
ω̃−20 |z|2 ≤ C(ω̃0)|z|2.
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Also, there exists Ct and ωt > 0, s.t.∣∣∣∣ tan z

z

∣∣∣∣ < Ct, for all |z| < ωt. (87)

Hence, for all |z| < min(ω̃0, ωt)∣∣∣∣∣z−1 tan z

p−1∑
i=0

µiα
−1
i Λ(αiz) + 1

∣∣∣∣∣ > 1− C(ω̃0)Ct|z|2.

2. let Λ(0) = 1 −
〈
µ
α

〉−1
. Recall, cf. Theorem 3, that this is possible only if〈

µ
α

〉
> 1.

Then D(z) can be rewritten as follows

D(z) = 1 + z−1 tan zΛ(0)
〈µ
α

〉
+ z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0))

= 1 + Λ(0)
〈µ
α

〉
+ (z−1 tan z − 1)Λ(0)

〈µ
α

〉
+ z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0))

=
〈µ
α

〉
+ (z−1 tan z − 1)Λ(0)

〈µ
α

〉
+ z−1 tan z

p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0)).

(88)

With (74), for all |z| < ω̃0,∣∣∣∣∣
p−1∑
i=0

µi
αi

(Λ(αiz)−Λ(0))

∣∣∣∣∣ < C(ω̃0)|z|2. (89)

Moreover, there exists ωt,2 > 0, s.t.∣∣∣∣ tan z

z
− 1

∣∣∣∣ < Ct,2|z|2, for all |z| < ωt,2.

Then, using the above bound for the second term in (88), (87) and (89)
for the third term, we deduce that there exists C1 > 0, s.t. for all |z| <
sufficiently small, it holds

|D(z)| >
〈µ
α

〉
− C1|z|2.

The desired result follows by recalling that
〈
µ
α

〉
> 1.

The above result can be extended to the case when Λ(αiω) is replaced by its
first-order approximation Λε

i .
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Lemma 10 Let Dε(z) be defined in (85), and let, additionally, Cρ, ρ > 0 and
k ≥ 0, be s.t. |z| < ρ and

|Λε
i −Λ(αiz)| ≤ Cρ

∣∣∣∣αizρ
∣∣∣∣2k+2

, i = 0, . . . , p− 1. (90)

Then there exists cε = c(ρ,
〈
µα
〉
), wε0, s.t.

|Dε(z)| > 1− cε(ρ)|z|2, for all |z| < wε0.

Proof With D(z) defined like in Lemma 9, with (90),

|Dε(z)−D(z)| ≤

∣∣∣∣∣z−1 tan z

p−1∑
i=0

µi
αi
Cρ

∣∣∣∣αizρ
∣∣∣∣2k+2

∣∣∣∣∣
≤ CtC(ρ)ρ−2|z|2

p−1∑
i=0

µiα
2k+1
i , ∀|z| < min(ωt, ρ),

(91)

where in the last expression we used (87) to bound z−1 tan z, and the fact that
|zρ−1| < 1. Now it remains to notice that because αi < 1 ∀i,

p−1∑
i=0

µiα
2k+1
i ≤

〈
µα
〉
, ∀k ≥ 0,

and hence

|Dε(z)−D(z)| ≤ C̃(ρ)|z|2
〈
µα
〉
, ∀|z| < min(ωt, ρ). (92)

Obviously,

|Dε(z)| ≥ |D(z)| − |Dε(z)−D(z)|,

and the conclusion follows from (86) and the above estimates.

The above two results suffice to show that the order of convergence is not
destroyed when computing the elements from the set L∗n from the elements of
L∗n+1.

Lemma 11 Let N0 be defined in (75), and N ≥ N0. Let ρ be like in Theorem
14. There exists r0 : 0 < r0 < ρ, which depends on ρ, µ, α only, s.t. the
following holds true for all |z| < rb. If, with some Cρ > 0,

|Λε
i −Λ(αiz)| ≤ Cρ

∣∣∣∣αizρ
∣∣∣∣2N+2

, i = 0, . . . , p− 1, (93)

then Λε(z) defined in (78), satisfies

|Λε(z)−Λ(z)| ≤ Cρ
∣∣∣∣zρ
∣∣∣∣2N+2

, i = 0, . . . , p− 1. (94)

Moreover, T (z) defined as in (83) satisfies |T (z)| ≤
(
p−1∑
i=0

µiα
2N0+1
i

)−1
.
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Proof By (79), and using (93),

|Λε(z)−Λ(z)| ≤ Cρ|T (z)|
p−1∑
i=0

µiα
2N+1
i

∣∣∣∣zρ
∣∣∣∣2N+2

. (95)

Next, by definition of T (z),

T (z) = (1 + tan2 z)D−1(z)D−1ε (z).

By (87), Lemmas 9 and 10, there exists w0 sufficiently small, s.t. for all |z| <
w0, it holds

|T (z)| ≤ (1 + C2
t |z|2)(1− c1|z|2)−1(1− c1,ε|z|2)−1, c1, c1,ε, Ct > 0.

Notice that w0 depends only on ρ, µ, α. Replacing T (z) in (95) by the above
bound yields

|Λε(z)−Λ(z)| ≤ Cρ
∣∣∣∣zρ
∣∣∣∣2N+2

(1 + C2
t |z|2)(1− c1|z|2)−1(1− c1,ε|z|2)−1

p−1∑
i=0

µiα
2N+1
i

Because N ≥ N0, and αi < 1 ∀i, the above can be rewritten as

|Λε(z)−Λ(z)| ≤ Cρ
∣∣∣∣zρ
∣∣∣∣2N+2

(1 + C2
t |z|2)(1− c1|z|2)−1(1− c1,ε|z|2)−1

p−1∑
i=0

µiα
2N0+1
i .

Because the function

B(|z|) :=

p−1∑
i=0

µiα
2N0+1
i (1 + C2

t |z|2)(1− c1|z|2)−1(1− c1,ε|z|2)−1

is monotonically increasing in |z|, changes its value from
p−1∑
i=0

µiα
2N0+1
i < 1 to

∞, as |z| varies from 0 to min(c−11,ε, c
−1
1 ), there exists

rb = rb

(
c1,ε, c

−1
1 , Ct,

p−1∑
i=0

µiα
2N0+1
i

)
,

s.t. for all |z| < zmin,

(1 + C2
t |z|2)(1− c1|z|2)−1(1− c1,ε|z|2)−1

p−1∑
i=0

µiα
2N0+1
i ≤ 1.

Therefore, if |z| < rb,

|T (z)|

(
p−1∑
i=0

µiα
2N0+1
i

)
| ≤ 1,
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and, in particular,

|Λε(z)−Λ(z)| ≤ Cρ
∣∣∣∣zρ
∣∣∣∣2N+2

,

and hence the conclusion of the lemma. Notice that this value rb depends only
on ρ, µ, α.

We now have all the necessary ingredients to write down the proof of Propo-
sition 3.

Proof (Proof of Proposition 3)
Let us choose r0 properly. Let N = N∗ ≥ N0, and let rb be like in Lemma

11. Let rH be like in Lemma 8.
We prove the result by induction,showing that the approximation property

(94) holds. We first show it for n = L − 1, then for n = L − 2, and the rest
follows similarly.

– n = L− 1. Because Λnk ∈ L∗L for all k, by (74), as αk|ωn| < rb < ρ0 < ρ,
where ρ0 is fixed (e.g. ρ0 = γρ), we have

|Λnk −Λ(ωnαk)| < Mρ

(
1− ρ20

ρ2

)−1 ∣∣∣∣αkωnρ
∣∣∣∣2N∗+2

< Cρ

∣∣∣∣αkωnρ
∣∣∣∣2N∗+2

.

(96)

By Lemma 11, because |ωn| < rb,

|Λn −Λ(ωn)| < Cρ

∣∣∣∣ωnρ
∣∣∣∣2N+2

. (97)

Moreover, by the same lemma, |T (ωn)| ≤
(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

– n = L−2. Thanks to the previous statement, shown in (97), for all elements
of L∗L−1 the following approximation property holds :

|Λnk −Λ(αkωn)| < Cρ

∣∣∣∣αk ωnρ
∣∣∣∣2N+2

.

By Lemma 11, because |ωn| < rb, we deduce the same property as (67).

Using the same lemma, |T (ωn)| ≤
(
p−1∑
i=0

µiα
2N0+1
i

)−1
.

The proof for n > L− 2 follows the same lines. For application of Lemma 11,
it is crucial that |ωn| < rb, and thus the above result may hold only when
|ωn| ≤ |α|n∞|ω| < rb.

We are now able to prove the result of Theorem 15.
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Proof (Proof of Theorem 15) Let rH be like in Corollary 2, and rb like in
Proposition 2. We take r0 :=, and assume that r is sufficiently small, r < rb.
To estimate the error propagation in L∗n, we use the expression (79), where we
will use the bound of Proposition 2 for n sufficiently small (i.e. the arguments of
Λ in Ln are large enough), and Proposition 3 otherwise (when the arguments
of Λ in Ln are smaller in their modulus than rb). Let us remark that one
could use the bound (90) for this latter case, but one would not get a desired
convergence result in r (i.e. the convergence will be regulated by N∗ only).

Provided n > 0, let us denote by n = (n0, . . . , np−1), ωn =
p−1∏
k=0

αnkk ω

and Λn ∈ L∗n the approximation to Λ(ωn) computed in the course of the
algorithm. Let

En := max
n
|Λn −Λ(ωn)| .

Let us estimate the error committed when passing from one level to an-
other, in terms of the error EL. Thanks to (79),

En ≤ max
n
|T (ωn)|

〈µ
α

〉
En+1.

Denoting by

Tn := max
n
|T (ωn)|,

we arrive at the following simple bound:

Er,N∗ ≡ E0 ≤
〈µ
α

〉L(L−1∏
`=0

T`

)
EL. (98)

Now let us estimate the product of T`. We split it into two parts. First of all,
if n is s.t. |ωn| < r0, we can apply Proposition 3:

|Tn| ≤

(
p−1∑
i=0

µiα
2N0+1
i

)−1
:= η, n ≥ n∗. (99)

Remark that η > 1.
The smallest n for which this bound still holds true is given by

n∗ = blog

(
|ω|
r0

)
(logα−1∞ )−1c+ 1.

For n < n∗, we use the bound valid for all ωn, provided by Proposition 2.
Remark that because we chose r < rH , where rH is like in Corollary 2, the
positivity condition Im(ωnΛn) ≤ 0 holds true. Therefore, the result of Propo-
sition 2 applies, and gives, as Imω > a and Imωn > a(min

i
αi)

n,

Tn ≤ max

(
1,
(

(min
i
αi)

na
)−2)

≤
(

min
i
αi

)−2n
a−2, since a ≤ 1.
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Denoting by amin := min
i
αi, we obtain the following bound:

Tn ≤ a−2nmina
−2, n < n∗. (100)

Combining (99) and (100) into (98) gives

Er,N∗ ≤
〈µ
α

〉L
ηL−n∗+1a

−2
n∗−1∑
k=0

k

min a−2n∗+2EL (101)

≤
〈µ
α

〉L
ηL−n∗+1a−2n∗+2a

−n2
∗

minEL (102)

≤
〈µ
α

〉L
ηLa−2La

−n2
∗

minEL, (103)

which holds true because η > 1, a−1 < 1 and n∗ + 1 < L.

It remains to make the above bound explicit in r,N∗ and ω. Denoting

A :=
〈
µ
α

〉
η, we get, with (69),

(
Aa−2

)L
=
(
Aa−2

)γω
r−ν ,

where γω, ν are defined in the statement of the theorem.

Remark now that

n∗ ≤ γω + 1− log |r0|
(
logα−1∞

)−1
, hence (104)

n2∗ ≤ 2γω + 2(1− log |r0|
(
logα−1∞

)−1
)2. (105)

Therefore, denoting by B := a−2min and by C = a
2(1−log |r0|(logα−1

∞ )
−1

)2

min , we
obtain

a
−n2
∗

min ≤ B
γ2
ωC.

Finally, it remains to insert the above bounds into (103), and replace EL by
the bound from Theorem 14 (because the elements in L∗L are approximated
like ω from Theorem 14). This gives

Er,N∗ ≤ CCρBγ
2
ω
(
Aa−2

)γω
r−ν

(
1− r2

ρ2

)−1(
r

ρ

)2N∗+2

.

Next, because r0 < ρ, we replace in the above(
1− r2

ρ2

)−1
<

(
1− r20

ρ2

)−1
,

and obtain the desired bound in the statement of the theorem.
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Fig. 4 Left: |Λ(ω)ω−1 + i| for the Neumann problem, α = {0.6, 0.8}, µ = {0.8, 0.2}. Right:
|Λ(ω)ω−1 + i| for the Neumann problem, α = {0.2, 0.7}, µ = {0.3, 0.3}. Remark that the
color scale is logarithmic. The respective plots for Λ(ω) for the Dirichlet problems with the
same parameters are similar to the above plots.

4.2.3 Asymptotic computational complexity of the method of Section 4.2.1

In this section we estimate the computational complexity of the procedure
EvalLambda, in terms of ω and the desired accuracy ε. We fix r > 0 suffi-
ciently small (cf. Theorem 15), and consider the case when ω ∈ C+

a,r, cf. (76),
with 0 < a ≤ 1 fixed. First of all, the evaluation of each value in Ln, n ≤ L−1,
requires O(p) = O(1) operations, while to compute each of the values in LL we
need O(N∗) operations. Thus the total computational complexity costs scale

as O

(
#
L−1⋃
n=0
Ln
)

+O(N∗#LL). With the property (c) from Section 4.2.1,

#

L−1⋃
n=0

Ln =

L−1∑
n=0

Cp−1n+p−1 = O(Lp+1), #LL = O(Lp).

With L given in (69), the cost of evaluating Λ(ω) as |ω| → ∞, and ω is s.t.
Imω > a, where a ≤ 1, scales as

cΛ = O
(
(log |ω|)p+1 +N∗(log |ω|)p

)
(77)
= O

(
logp+2 |ω|+ logp+1 |ω| log a−1

)
+O

(
logp+1 |ω| log ε−1

)
.

(106)

4.2.4 Approximating Λ(ω) for ω with large imaginary parts

The complexity of the method of Section 4.2.1 scales as O(logp+2 |ω|) for |ω| →
∞. Nonetheless, when Imω is sufficiently large, Λ(ω) can be approximated
with high accuracy by −iω (see Figure 4.2.4 for the numerical illustration).

Theorem 16 There exists C > 0, s.t for all ω ∈ C+,

|Λ(ω) + iω| ≤ C|ω|e−2 Imω max(1, (Imω)−3). (107)

Remark 15 When ω ∈ C− = {z ∈ C : Im z < 0}, it is possible to show that

|Λ(ω)− iω| ≤ C|ω|e−2|Imω|max(1, |Imω|−3).



48 Patrick Joly, Maryna Kachanovska

The proof of the above theorem relies on the following auxiliary result.

Lemma 12 There exist c, C > 0, s.t. all ω ∈ C+,

− Im (tanω)
−1 ≥ cmin(1, Imω), (108)∣∣∣1− i (tanω)
−1
∣∣∣ ≤ C max(1, (Imω)

−1
)e−2 Imω. (109)

Proof See Appendix B.

Proof (Proof of Theorem 16) Expressing Λ(ω) via (68), we get

Λ(ω) + iω = −ωω tanω − Fα,µ(ω)− iω − iFα,µ(ω) tanω

ω + Fα,µ(ω) tanω
= −ωN (ω)

D(ω)
,

(110)

N (ω) =
(tanω − i)

tanω
(1− iω−1Fα,µ(ω)) =

(
1− i(tanω)−1

)
(1− iω−1Fα,µ(ω)),

D(ω) = (tanω)
−1

+ ω−1Fα,µ(ω), Fα,µ =

p−1∑
i=0

µi
αi

Λ(αiω).

Let us first bound the numerator:

|N (ω)| =
∣∣1− i(tanω)−1

∣∣ (1 +

p−1∑
i=0

µi

∣∣∣∣Λ(αiω)

αiω

∣∣∣∣
)
.

To bound the first term in the product in the right-hand side above we use
(109), and to bound the second one, we make use of Theorem 4(b). This gives

|N (ω)| ≤ CN max(1, (Imω)−2)e−2 Imω, (111)

where the constant CN > 0 depends on µ and α.
It remains to deal with the denominator. For this we use the bound:

|D(ω)| ≥ | ImD(ω)| ≥

∣∣∣∣∣Im (tanω)
−1

+

p−1∑
i=0

µi Im
(
(αiω)−1Λ(αiω)

)∣∣∣∣∣ .
It remains to notice that Im (tanω)

−1
and Im

(
(αiω)−1Λ(αiω)

)
are all negative

for Imω > 0, cf. (108) and Theorem 4(a). Therefore,

|D(ω)| ≥
∣∣Im(tanω)−1

∣∣ (108)≥ cmin(1, Imω). (112)

Combining the bounds (111) and (112) in (110),we obtain the desired state-
ment.

4.3 Computing convolution weights: error, algorithm, complexity

Evaluation of convolution weights based on (66) requires computing Λ(ωk) for
a range of ωk ∈ C+. In this section we comment on the choice of the parameters
ρ and N in (66), see Section 4.3.1, discuss how Λ(ω) is computed within (66)
in Section 4.3.2 and present some complexity studies in Section 4.3.3.
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4.3.1 Accuracy of evaluation of convolution weights and choice of ρ,N

Let us relate the accuracy ε of evaluation of Λ and the parameters ρ and N
in (66) to the numerical error of evaluation of Nt values of λ∆tn . Because we
compute convolution weights for the scaled value of Λ(ω), namely Λs(ω) =
(−iω)−1Λ(ω), see Remark 11, we will perform the error analysis for these
re-scaled quantities λ∆ts,n, defined as, cf. (25),

Λs
∆t(z) =

∞∑
n=0

λ∆ts,nz
n, Λs

∆t(z) =

(
δ(z)

∆t

)−1
Λ

(
i
δ(z)

∆t

)
. (113)

The convolution weights λ∆ts,n are computed the help of (66):

λ∆ts,n ≈ λ∆t,εs,n :=
ρ−n

N

N−1∑
k=0

e−i
2πkn
N Λs,ε (ωk) ,

ωk = i
δ(ρei

2πk
N )

∆t
, n = 0, . . . , Nt,

(114)

where each Λs,ε (ωk) is an approximation with an error ε to Λs (ωk).
Before analyzing the error induced by the approximation (114), let us show

that the exact λ∆ts,n are bounded. To prove the result that follows, we will use
the following observation (see (133) in Appendix D):

Im

(
δ(ρeiϕ)

∆t

)
>

1− ρ
∆t

, ϕ ∈ [0, 2π). (115)

Proposition 4 The convolution weights satisfy, with some C > 0,∣∣λ∆ts,n∣∣ ≤ C max(1, n∆t), n ≥ 0. (116)

Proof The idea of the proof is from Lemma 5.3, Section 5.1 in [7]. Application
of the Cauchy estimate to (26), evaluated for ` = n, with γ being a circle of
radius rn := n

n+1 centered in the origin, and Λ replaced by Λs, yields

|λ∆ts,n| ≤ r−nn sup
z∈∂Brn (0)

∣∣∣∣∣
(
δ(z)

∆t

)−1
Λs

(
i
δ(z)

∆t

)∣∣∣∣∣
≤
(

n

n+ 1

)−n
sup

z∈∂Brn (0)
max

(
1,

(
Im

(
δ(z)

∆t

))−1)
,

where the last bound follows from Theorem 4 (b). With (115),

|λ∆ts,n| ≤
(

n

n+ 1

)−n
max(1, (n+ 1)∆t) ≤ C max(1, n∆t).ut

The error of the approximation (114) is given below.
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Proposition 5 Let N ≥ Nt + 1, and λ∆t,εs,n , n = 0, . . . , Nt be given by (114),

where max
k
|Λs,ε (ωk)−Λs (ωk)| < ε, for some ε > 0, and ρ = ε

1
N+Nt . Then

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < Cδε
N

N+Nt (1 + T ), T = Nt∆t.

Proof As the proof is rather classical in CQ theory, and some of its elements
appear in various works (cf. e.g. [7,34,4]), we postpone it to Appendix C.

Therefore, to ensure that the convolution weights are evaluated with an accu-
racy O(

√
ε) for a given ε, it suffices to choose

N = Nt + 1, ρ = ε
1

2Nt , (117)

and evaluate Λs,ε(ωk) in (114) with an accuracy ε for all k.

4.3.2 Evaluating convolution weights: algorithmic details

To compute Λs,ε(ω) in (114), for a given precision ε, we use the following
strategy, based on the results of Sections 4.2, 4.3.1 (here γε > 0 to be fixed
later):

– if Imωk < γε, evaluate Λ(ωk) using the procedure EvalLambda, with r
fixed and N∗ chosen as in (77) with |ω| = max

k
{|ωk| : Imωk < γε};

– if Imωk ≥ γε, approximate Λ(ωk) by −iωk, by Theorem 16.

Choosing γε = 1
2 log ε−1 + C, with some C > 0, ensures that Λs(ω) =

(−iω)−1Λ(ω) is approximated with an accuracy ε, cf. Remark 11, and Theo-
rem 16. The above strategy is illustrated in Figure 5 (left).
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∆t = 0.05, Nt = 100

∆t = 0.1, Nt = 50

∆t = 0.2, Nt = 25

Fig. 5 Left: Nt = 100 frequencies ωk defined in (66), with ∆t = 0.05 and ρ = ε
1

2Nt ,
ε = 10−8. In red we mark ωk s.t. Imωk > γ (we choose γ = 12), s.t. Λ(ωk) is approximated
by −iωk. Right: Nt frequencies ωk defined in (66) with given ∆t, chosen so that Nt∆t = 5.
Remark that in all cases Imωk > const.
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4.3.3 Complexity estimates

Let us estimate the complexity of the evaluation of (114) in terms of N, ∆t, ε.
Let us assume that T = Nt∆t fixed, and consider the regime Nt →∞; we also
assume that ε is sufficiently small.As discussed in the end of Section 4.1, this
necessitates a bound on the cost of computing Λ (ωk) in (114). This bound,
cf. (106), depends on ωk; thus, we must study how ωk behaves with N, ∆t, ε.
The following proposition is a minor refinement of some of the results from
[4].

Lemma 13 Let ωk, k = 0, . . . , Nt, be given by (114), with N , ρ defined in

(117), and ε < δ < 1. Then, with some cδ, Cδ > 0, (a) Imωk > cmin
(

1, log δ
−1

T

)
and (b) |ωk| < C

T Nt max
(

1, Nt
(
log δ−1

)−1)
.

Proof See Appendix D.

An illustration to the statement (a) is provided in Figure 5 (right).

By Lemma 13, ωk ∈ Caδ,aδ , with aδ = cmin
(

1, log δ
−1

T

)
, and thus the

results of Section 4.2.3 about the evaluation of Λ apply. The complexity of
evaluation of each of Λ(ωk) is O(1) when Imωk ≥ γε, and scales as (106) when
Imωk < γ. Replacing |ωk| by O(N2

t ), according to Lemma 13, the worst-case
complexity is given by

cΛ = O(logp+2Nt + logp+1Nt log ε−1).

Because (114) requires computing at most O(Nt) values of Λ(ωk), and then
performing the FFT, see the discussion in Section 4.1, the total complexity of
computing N convolution weights with an accuracy O (

√
ε) scales as

O(Nt logp+2Nt +Nt logp+1Nt log ε−1).

Remark that this complexity scales, in general, better, than O(N2
t ) complexity

of the solution of the problem, cf. Section 3.4.

5 Numerical results

In all the numerical results of this section we use the mass-lumped finite ele-
ment for the space discretization, and a regular spatial grid. This, in particular,
implies that the CFL number is CCFL = ∆t

h , cf. (50) and Remark 9. In most
of the experiments we fixed r,N∗ in the procedure of Section 4.2.1 for com-
putation of Λ(ω) to a (numerically determined) fixed value that allows to
approximate Λ in the convolution weight computation with high accuracy. As
for the evaluation of the convolution weights, we choose ε = 10−12 in (117).
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5.1 Validity of the method

In this section we would like to verify the validity of the transparent boundary
conditions constructed in the present article, by comparing a solution com-
puted on the truncated tree to an (ideally) solution computed on the tree T .
However, because the tree T is infinite, it is in general impossible to compute
such a reference solution. Thus, one of the options would be to truncate the
tree up to N generations, where N � 1, and perform the computation on
this truncated tree, as it was done e.g. in [29]. Because this is costly, we adapt
an alternative approach: given N generations, we compute the solution to the
problem (16) on T m with m = N −1, where we use the transparent boundary
conditions approximated with the help of the convolution quadrature. This is
the reference solution. We compare this solution with the CQ approximation
to (16), where m is fixed, m < N − 1.

Let us remark that no analysis had been made in this article about the
convergence of the method with respect to the number of the truncated gen-
erations m+ 1 (a related issue was addressed in [28]).

We solve the Neumann problem on the binary tree T , s.t. the length of the
root edge equals to `0,0 = 2, with α = (0.3, 0.5) and µ = (1, 0.25). The source
term is supported on the root branch of the tree and defined as

f(t, s) = 106(s− 1.5)e−σ(s−1.5)
2−σ(t−0.1)2 , σ = 5 · 103. (118)

The reference solution uN−1 is computed on the truncated tree T N−1 with
N = 5 generations; ∆t = 9.9 ·10−5, h = 10−4. The dependence of the solutions
um(s0, t) on t is depicted in Figure 5.1; here s0 = 1 is the middle of the root
branch. The complex behaviour of the solution is attributed to the multiple
reflection phenomena on the tree T : in general, waves are reflected from each of
the vertices of the tree. In particular, the second peak of the solution um(s0, t)
is due to the wave reflected of the vertex M0,0. The first reflections from the
infinite boundary of the tree reach s0 = 1 at t ≈ 3.3.

We compare it to the solution um computed on the truncated tree with
(m+1) generations, where m = 1, 2, 3, and the same discretization parameters.
For this we compute the relative errors by evaluating norms on the first two
generations (since 2 is the minimal value for the number of the truncated
generations in our experiments):

enm =
‖unN−1 − unm‖L2

µ(T k−1)

max
n=0,...,Nt

‖unN−1‖L2
µ(T k−1)

, k = 2, em := max
n=0,...,Nt

enm. (119)

Let us remark that these norms are computed with the help of the mass-
lumped matrices. They are correspondingly

e1 ≈ 7.1 · 10−4, e2 ≈ 3.7 · 10−4 e3 ≈ 1.6 · 10−4.

The errors enm as functions of tn = n∆t are shown in Figure 5.1, bottom.
Numerical experiments indicate that they grow linearly in time; this is not
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Fig. 6 Top: dependence on t of the solution to the problem (16) um(s0, t) in the point s0
(which is the middle of the root branch). We study the Neumann problem on the tree with
`0,0 = 2.0, α = (0.3, 0.5) and µ = (1, 0.25), the right hand side (118). Bottom: relative
errors enm (cf. (119)) as functions of tn = n∆t

surprising, in view of the results of Theorem 13. Figure 5.1 shows that the
errors almost vanish for smaller times (even where the solution is non-zero).
This can be explained by the fact that the wave reaches the outer boundary
of T m (where we use the approximated transparent boundary conditions) and
reflects into the tree T 1 (where we measured errors) at t ≈ 1.2 for m = 1,
t ≈ 1.6 for m = 2 and t ≈ 1.7 for m = 3.

5.2 Convergence rates and stability

5.2.1 Convergence.

We perform the convergence experiments on the tree with α = (0.2, 0.4) and
µ = (1, 0.25), and the length of the root edge `0,0 = 2. Because no closed form
solution is, in general, available, we compare the numerical solution computed
on a coarse grid (h, ∆t) to the numerical (’reference’) solution computed on
the finest grid (hf , ∆tf ) = (10−4, 0.99 · 10−4). The solutions are computed on
the tree T 2 (i.e. on 3 generations, cf. (2)), on the time interval (0, 10) and with
the right hand side supported on the root edge Σ0,0:

f(t, s) = 104e−100(t−0.75)
2−100(s−1)2(s− 1), s ∈ Σ0,0.

We consider the Neumann problem. We fix the CFL (50), i.e. the ratio ∆t
h =

∆tf
hf

, and perform the experiments on the sequence of grids (hk, ∆tk), 1 ≤ k ≤
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Fig. 7 Left: convergence rates for the experiment of Section 5.2.1. Right: dependence on
time of the L2-norm of the solution computed on the tree T 2.

9, with min
k
hk = 2 · 10−4. The reference solution computed at the time tk is

denoted by uref (tk), and the solution on the grid (h, ∆t) by ukh. The evolution
of the relative error eh,∆t, defined below, is shown in Figure 7.

eh,∆t = max
n

enh,∆t, where enh,∆t =
‖unh − uref (n∆t)‖L2

µ(T m)

‖uref‖L∞(0,T ;L2
µ(Tm))

,

‖uref‖L∞(0,T ;L2
µ(T m)) = max

k=0,...,Nt
‖uref (tk)‖L2

µ(Tm), Nt =

⌈
T

∆tf

⌉
.

(120)

5.2.2 Long-time stability.

To study the stability of the numerical method, we compute the solution to
the problem described in Section 5.2.1 on the time interval (0, T ) with T =
500, with the discretization (h,∆t) = (5 · 10−4, 4.99 · 10−4). The diameter of
the computational domain equals 2.8. Figure 7 depicts L2

µ(T m)-norm of the
solution, which clearly stays bounded on the whole time interval.

5.3 Performance of the method on different trees.

To explain the experiments that follow, let us provide more information about
Λ(ω). Recall that Λ(ω) is an even meromorphic in C function (cf. Theorem 4)
with real poles. The number of poles of Λ on an interval (0, λ) grows asymp-

totically as λ
d
2 , where d ≥ 1 and depends on α (see [28]). In particular, when

〈α〉 :=
p−1∑
i=0

αi < 1, one has d = 1, while when 〈α〉 > 1, it holds that d ≤ ds,

where ds > 1 is a unique number s.t.
p−1∑
i=0

αdsi = 1. Although these estimates are

asymptotic, the difference between these cases is observed already for small
λ. In particular, in Figure 8 we depict numerically computed poles of Λ(ω)
for two sets of parameters: α = (0.4, 0.4), µ = (0.5, 1) (case d = 1) and
α = (0.8, 0.4), µ = (0.5, 1) (case d ≤ ds ≈ 1.4).
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Fig. 8 Left: On top we show the poles of Λ(ω) on the interval (0, 10) for the Dirichlet
problem. Bottom: poles of Λ(ω) on the interval (0, 10) for the Neumann problem. On both
plots with blue vertical dashes we mark the poles corresponding to α = (0.8, 0.4), µ =
(0.5, 1), while with magenta circles the poles corresponding to α = (0.4, 0.4), µ = (0.5, 1).
Right: Errors eh,∆t, cf. (120), for different discretizations for the experiments of Section
5.3. In all the experiments µ = (0.5, 1.0).

Our goal is to find out whether the density of poles influences the be-
haviour of the convolution quadrature. For this we compute the solutions to
the Dirichlet and Neumann problems on the reference tree T (length of its
root edge equals `0,0 = 1), constructed with different sets of the parameters,
on the time interval (0, 20). As a source we take

f(t, s) = 106e−σ(s−0.5)
2−σ(t−0.25)2(s− 0.5), σ = 103,

supported on the root edge. We repeat the experiment of Section 5.2.1, by
computing the solutions for different discretizations, the only difference being
that we compare the solutions computed on the truncated tree T 1 to the
reference solution computed on a fine discretization on the tree T 2. The time
interval is chosen so that the reflections from the ’infinite’ boundary of the
tree are able to reach the computational domain.

We do not observe any clear correlation between the density of poles and
the error behaviour, cf. Figure 8, right. We present the results for the Dirichlet
problem only, since in the Neumann case they are very similar. Let us remark
that in the experiment α = (0.9, 0.8) the Dirichlet and Neumann problems
coincide, see Theorem 2.

However, as expected, in these experiments we observe a difference in terms
of the computational times (in particular, since the complexity of evaluating
Λ(ω), see Section 4.2.3, depends on |α|∞, this is the case for the convolution
weights as well). In the largest computations on the tree T 2, discretized with
h = 10−4, ∆t = 0.99 · 10−4, we computed ∼ 2 · 105 convolution weights. On
a laptop, this requires about 5 seconds for the problem with α = (0.2, 0.2),
12 seconds for α = (0.4, 0.4), 167 seconds for α = (0.8, 0.4) and almost 12
minutes for α = (0.9, 0.8). These numbers can be improved by optimizing the
parameters in the computations.
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6 Conclusions

In this work we approximated the transparent boundary conditions for wave
propagation in fractal trees with the help of the convolution quadrature method.
Besides stability and convergence analysis, we have additionally considered
practical aspects of the algorithm, in particular, computation of the convolu-
tion weights. Obtained results, both theoretical and numerical, indicate sta-
bility and efficiency of the method.

Nonetheless, some numerical analysis questions remain open (e.g. stability
of the problem under perturbation of convolution weights); such analysis may
affect some estimates of Section 4.3.3 by imposing constraints on the choice
of parameters (in particular, the parameter ρ in (66)), cf. e.g. the respective
analysis for time-domain boundary integral equations in [7]. We nonetheless
believe that the results obtained in this work provide a technical background
for continuing the research in this direction.

One of the drawbacks of the CQ method is its complexity, which scales as
O(N2

t ) where Nt is the number ot time steps; this is prohibitive when compu-
tations on long times are required. This can be overcome using an algorithm
similar to the one proposed in [4], see also [22] and [5]. Additionally, alterna-
tive ideas for approximating the transparent boundary conditions, based on
the meromorphic expansion of the symbol of the DtN, are currently under
investigation.
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A Proof of Theorem 4

It remains to prove the upper bound on Λa(ω). Without loss of generality, we will show it
for Λn(ω). First, Λn(ω) can be defined via the solution of the frequency-domain problem:

Λn(ω) = −∂sλ(M∗), ω ∈ C+, (121)

where λ ∈ H1
µ(T ) solves the boundary-value problem:

ω2

∫
T

µ(s)λ v −
∫
T

µ(s) ∂sλ ∂sv = 0, for all v ∈ Vn, λ(M∗) = 1. (122)

We proceed as follows, defining ‖v‖ω :=
∫
T
µ
(
|∂sv|2 + |ωv|2

)
,

– first bound |Λn(ω)|2 by the energy of the solution (notice λ(M∗) = 1):

|Λn(ω)|2 ≤ |ω|2 + C0(1 + Imω)‖λ‖2ω , C0 > 0. (123)

– next show that the energy of the solution is bounded by 1
2
|Λn(ω)|2, with C0 as above:

C0(1 + Imω)‖λ‖2ω ≤
1

2
|Λn(ω)|2 + C1 max(1, (Imω)−2)|ω|2, C1 > 0. (124)
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– combine (123) and (124) to obtain the desired bound:

|Λn(ω)|2 ≤ C max(1, (Imω)−2)|ω|2.

Proof of the bound (123). Let v0(s) = χ(s)∂sλ, where χ ∈ C1(T ;R), suppχ(s) ⊆ Σ0,0,
χ(M∗) = 1 and χ(M0,0) = 0. The weak form (122) implies that

∂2sλ+ ω2λ = 0 on Σ0,0.

Testing the above with v0(s), we obtain the following identity on the edge Σ0,0, parametrized
by s ∈ [0, 1] (recall that we work with the reference tree, and thus the length of Σ0,0 is 1):

I1 + I2 = 0, where I1 =

1∫
0

∂2sλχ(s) ∂sλds, I2 = ω2

1∫
0

λχ(s) ∂sλds. (125)

Let ω = ωr + iωi, ωr ∈ R and ωi > 0. Let us consider the real part of the above:

Re I1 =
1

2

1∫
0

d

ds
|∂sλ|2χ(s)ds = −

1

2
|Λn(ω)|2 +

1

2

1∫
0

χ′(s)|∂sλ|2ds, (126)

where in the last identity we used χ(0) = 1 and χ(1) = 0. Similarly,

Re I2 =
1

2
Reω2

1∫
0

χ(s)
d

ds
|λ|2ds− Imω2

1∫
0

χ(s) Im(λ∂sλ)ds

= −
1

2
(ω2
r − ω2

i ) +
1

2
(ω2
r − ω2

i )

1∫
0

χ′(s)|λ|2ds− 2ωiωr

1∫
0

χ(s) Im(λ∂sλ)ds.

where we used χ(0) = 1, χ(1) = 0 and λ(0) = 1. Applying to the last integral the Young
inequality we obtain the following bound, with c1, c2 > 0,

|Re I2| ≤
1

2
|ω|2 + c1|ω|2

1∫
0

|λ|2ds+ c2ωi

|ωr|2 1∫
0

|λ|2ds+

1∫
0

|∂sλ|2ds

 . (127)

Combining (125), (126), we deduce that

|Λn(ω)|2 ≤ 2|Re I2|+ c3

1∫
0

|∂sλ|2ds, c3 > 0,

and inserting into the above (127) we prove (123).
Proof of the bound (124). Testing the Helmholtz equation corresponding to (122) with
ωλ(s) and integrating by parts we obtain the following identity (recall that λ(M∗) = 1):

ωΛ(ω) = ω

∫
T

µ|∂sλ|2 − |ω|2ω
∫
T

µ|λ|2.

Taking the imaginary part of the above results in

Im (ωΛ(ω)) = −ωi

∫
T

µ|∂sλ|2 + |ω|2
∫
T

µ|λ|2
 = −ωi‖λ‖2ω .
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Multiplying both sides of the above by −C0(1 + ωi)ω
−1
i , with C0 is as in (123), we obtain

−C0(ω−1
i + 1) Im (ωΛ(ω)) = C0(1 + ωi)‖λ‖2ω . (128)

It suffices to notice that the lhs in the above equality is bounded∣∣∣−C0(ω−1
i + 1) Im (ωΛ(ω))

∣∣∣ ≤ C0(ω−1
i + 1)|ω||Λ(ω)| ≤

1

2
|Λ(ω)|2 +

C2
0

2
(ω−1
i + 1)2|ω|2,

where we used the Young inequality. In the above we bound further C0(ω−1
i + 1) ≤

2 max(1, ω−1
i ). Inserting the bound into (128) gives

C0(1 + ωi)‖λ‖2ω ≤
1

2
|Λ(ω)|2 + 2C2

0 max(1, ω−2
i )|ω|2,

i.e. (124). Combining (123) and (124) proves the statement of the theorem.

B Proof of Lemma 12

We first show (108). By definition, tanω = i 1−z
1+z

, with z = e2iω , ω = ωr + iωi. Then,

− Im (tanω)−1 = Re
1 + z

1− z
= Re

(1 + z)(1− z)
|1− z|2

=
1− |z|2

1 + |z|2 − 2 Re z
≥

1− |z|2

(1 + |z|)2
(129)

=
1− |z|
1 + |z|

=
1− e−2ωi

1 + e−2ωi
≥


e2ωi−1
e2ωi+1

≥ 2ωi
e2+1

, if 0 < ωi ≤ 1,

1−e−2

1+e−2 , if ωi > 1,

hence the bound (108). Let us show (109). After straightforward computations,∣∣∣1− i (tanω)−1
∣∣∣ =

2|z|
|1− z|

≤
2|z|
|1− |z||

=
2e−2ωi

1− e−ωi
≤ C max(1, ω−1

i )e−2ωi ,

where the last bound follows by noticing that, for ωi > 0,

1− e−ωi ≥
{

1− e−1, if ωi ≥ 1,
e−1ωi, if ωi < 1

≥ cmin (1, ωi) , c > 0. (130)

C Proof of Proposition 5

To prove Proposition 5, we need the following auxiliary result.

Lemma 14 Let 0 < ρ < 1, N ≥ Nt + 1, ε > 0 and λ∆t,εs,n , n = 0, . . . , Nt be given by (114),
where max

k
|Λs,ε (ωk)−Λs (ωk)| < ε. Then

max
n=0,...,Nt

|λ∆t,εs,n − λ∆ts,n| < ρ−Ntε+ ρNCN (ρ),

CN (ρ) = (1− ρN )−1
(

1 +Nt∆t+∆t(1− ρN )−1
)
.

Proof (Proof of Lemma 14) For all n = 0, . . . , Nt,

|λ∆t,εs,n − λ∆ts,n| ≤

∣∣∣∣∣ ρ−n2πiN

N−1∑
k=0

e−i
2πkn
N (Λs,ε (ωk)−Λs (ωk))

∣∣∣∣∣
+

∣∣∣∣∣ ρ−n2πiN

N−1∑
k=0

e−i
2πkn
N Λs (ωk)− λ∆ts,n

∣∣∣∣∣ = S1 + S2. (131)
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An upper bound for S1 follows from the triangle inequality: S1 ≤ ρ−Ntε.

As for S2, it suffices to replace Λs (ωk) in the above sum by
∞∑̀
=0
λ∆ts,`ρ

`ei
2π`k
N , cf. (113), and

then use the aliasing argument. In particular,

ρ−n

2πiN

N−1∑
k=0

e−i
2πkn
N Λs (ωk) =

ρ−n

2πiN

N−1∑
k=0

∞∑
`=0

λ∆ts,`ρ
`ei

2πk(`−n)
N .

It remains to remark that

N−1
N−1∑
k=0

ei
2πk(`−n)

N =

{
1, (`− n) mod N = 0,
0, otherwise.

Therefore,

ρ−n

2πiN

N−1∑
k=0

e−i
2πkn
N Λs (ωk) = λ∆ts,n +

ρ−n

2πiN

∞∑
k=1

λ∆ts,kN+nρ
kN+n, and

S2 ≤
ρ−n

2πN

∞∑
k=1

∣∣∣λ∆ts,n+kN ∣∣∣ ρn+kN (116)

≤ C
∞∑
k=1

max(1, (n+ kN)∆t)ρkN .

The above sum is then estimated as follows:

S2 ≤
∞∑
k=1

ρkN +
∞∑
k=1

ρkN (n+ kN)∆t

≤ ρN (1− ρN )−1(1 + n∆t) +∆tρN (1− ρN )−2.

The result follows by bounding in the above n∆t by Nt∆t and combining bounds for S1

and S2 into (131). ut

The bound of Lemma 14 allows us to quantify the choice of ρ, N in (114).

Proof (Proof of Proposition 5) The desired bound follows by applying the result of Lemma
14. In particular, CN (ρ) can be estimated by remarking that, because N ≥ Nt + 1,

1− ρN = 1− ε
N

N+Nt ≥ 1− ε
Nt+1
2Nt+1 > 1− ε

1
2 > 1−

√
δ. ut

D Proof of Lemma 13

Let us show (a), which basically follows from Section 5.2.1 in [4]. It is not difficult to verify
that the frequencies ωk defined in (66), namely,

ωk = i
δ(ρei

2πk
N )

∆t

lie on the circle centered at cρ,∆t of radius Rρ,∆t:

cρ =
2i

∆t

1 + ρ2

1− ρ2
, Rρ =

2

∆t

2ρ

1− ρ2
, (132)

i.e. ωk = cρ +Rρeiψk , for some ψk ∈ [0, 2π). Hence

Imωk ≥ inf
0≤ϕ<2π

Im

(
i
δ(ρeiϕ)

∆t

)
=

2

∆t

1 + ρ2 − 2ρ

1− ρ2
=

2

∆t

1− ρ
1 + ρ

, (133)
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and because ρ < 1, Imωk >
1−ρ
∆t

. For ρ defined in (117),

1− ρ = 1− ε
1

2Nt = 1− exp

(
−

log ε−1

2Nt

)
> min

(
1,

log ε−1

Nt

)
, (134)

where the last bound follows from (130). Therefore, as ∆t < 1,

Imωk > cmin

(
1,

log δ−1

Nt∆t

)
.

To show (b), we use the same property (132), which results in

|ωk| ≤
2

∆t

(
1 + ρ2

1− ρ2
+

2ρ

1− ρ2

)
≤

2(1 + ρ)

∆t(1− ρ)
<

4

∆t(1− ρ)
.

Using (134), we deduce

|ωk| <
C

∆t
max

(
1, Nt

(
log ε−1

)−1
)
≤

C

∆t
max

(
1, Nt

(
log δ−1

)−1
)
.

E Gronwall inequalities

Lemma 15 (Continuous Gronwall inequality) Let E(t) ≥ 0, E(0) = 0. Let d
dt
E(t) ≤

f(t)
√
E(t). Then

√
E(T ) ≤ ‖f‖L1(0,T ) for all T ≥ 0.

Proof Integrating from 0 to t the inequality in the statement of the theorem gives

t∫
0

E′(τ)dτ ≤
t∫

0

f(τ)
√
E(τ)dτ =⇒ E(t) ≤ sup

0≤τ≤t
E(τ)‖f‖L1(0,t)

=⇒ sup
0≤t≤T

E(t) ≤ sup
0≤t≤T

(
sup

0≤τ≤t
E(τ)‖f‖L1(0,t)

)
≤
√

sup
0≤t≤T

E(t)‖f‖L1(0,T ),

and hence the result.

Lemma 16 (Discrete Gronwall inequality) Let Em ≥ 0, for all m ∈ N, and let, with
A ≥ 0,

En ≤ A+ γn
√
En +

n∑
`=0

δ`
√
E`, n ≥ 0.

Then
√
En ≤

√
A+ max

`=0,...,n
|γ`|+

n∑̀
=0

|δ`|.

Proof Taking max
0≤n≤N

from both sides of the inequality in the statement of the lemma:

max
0≤n≤N

En ≤ A+ sup
0≤n≤N

√
En

(
max

0≤n≤N
|γn|+

N∑
`=0

|δ`|
)
.

Next, if max
0≤n≤N

√
En <

√
A, then obviously the desired bound holds true. Otherwise, it

suffices to replace

max
0≤n≤N

En ≤
√
A max

0≤n≤N

√
En + sup

0≤n≤N

√
En

(
max

0≤n≤N
|γn|+

N∑
`=0

|δ`|
)
,

which results in the desired statement.
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F Proof of Theorem 6

We proceed like in the proof of Theorem 4. We will show the result for a = n, the proof for
the Dirichlet problem being almost verbatim the same.
Step 1. Let χ(s) be like in the proof of Theorem 4. Testing the wave equation (13) in its
strong form by ∂suχ(s) results in (where we parametrized Σ0,0 by s ∈ [0, 1]):

1∫
0

∂2t uχ(s) ∂su−
1∫

0

∂2su ∂suχ(s) = 0.

Let us rewrite the first term in the above:

I1 :=

1∫
0

∂2t uχ(s) ∂su =
d

dt

 1∫
0

∂tuχ∂su

− 1∫
0

∂tu ∂t∂suχ(s)

=
d

dt

 1∫
0

∂tuχ∂su

− 1

2

1∫
0

(
∂s(|∂tu|2χ(s))− χ′(s)|∂tu|2

)

=
d

dt

 1∫
0

∂tuχ∂su

+
1

2
|∂tg|2 +

1

2

1∫
0

χ′(s)|∂tu|2.

The second term

I2 := −
1∫

0

∂2su ∂suχ(s) = −
1

2

1∫
0

∂s(|∂su|2χ(s))− χ′(s)|∂su|2 = −
1

2
|Λn(∂t)g|2 +

1

2

1∫
0

χ′(s)|∂su|2.

Since I1 + I2 = 0, we obtain, with E = 1
2

∫
T

(
|∂tu|2 + |∂su|2

)
,

1

2
|Λn(∂t)g|2 ≤

1

2
|∂tg|2 +

d

dt

 1∫
0

∂tuχ∂su

+ CE(t).

Integrating the above from 0 to T we get, together with vanishing initial conditions :

‖Λn(∂t)g‖L2(0,T ) ≤ ‖∂tg‖
2
L2(0,T )

+ C

T∫
0

E(t)dt+

1∫
0

∂tu(s, T )χ(s)∂su(s, T )ds

≤
1

2
‖∂tg‖2L2(0,T )

+ C

T∫
0

E(t)dt+ CE(T ),

(135)

where we used the Young inequality to bound the latter term.
Step 2. Testing the wave equation (13) in the strong form by ∂tu and integrating by parts
gives

d

dt
E(t) = (Λn(∂t)g)∂tg.

Integrating from 0 to t the above we get

E(t) ≤
t∫

0

|Λn(∂t)g||∂tg|dt ≤
η

2
‖Λn(∂t)g‖2L2(0,t)

+
1

2η
‖∂tg‖2L2(0,t)

, η > 0, (136)
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where the last expression follows by the Young inequality.
In particular, the above implies, with η = η1 to be fixed later

T∫
0

E(t)dt ≤ T
1

2η1
‖∂tg‖2L2(0,T )

+
Tη1

2
‖Λn(∂t)g‖2L2(0,T )

. (137)

Therefore, replacing in (135):

– E(T ) by its bound (136) with η = 1
2C

–
T∫
0

E(t)dt by its bound (137) with η1 = 1
2TC

,

we obtain the following bound for ‖Λn(∂t)g‖L2(0,T ):

‖Λn(∂t)g‖2L2(0,T )
≤ C∗max(1, T )‖∂tg‖2L2(0,T )

,

and hence the continuity. Let us finally remark that we fixed g(0) = 0 for the compatibility
conditions, as u(0) = 0.
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