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Abstract

In this work, a multiscale model for thermomechanical properties of composite structures containing phase change particles
is developed. For the mechanical part, a classical linear computational homogenization procedure is employed. For the thermal
part, due to the strong nonlinear, history-dependent thermal effects, a concurrent multiscale (FE2) method is extended to take into
account the presence of Phase Change Materials particles (PCM) at the microscale. The PCM inclusions change from liquid to
solid state in the range of room temperature. This phase change induces a modified macroscopic thermal behavior, which can be
used e.g. to design materials with enhanced thermal inertia and reduce energy consumption in civil engineering constructions.
The technique allows taking into account accurately the fully nonlinear, history-dependent thermal behavior through numerical
calculations at the microscale based on a Representative Volume Element (RVE) and its effect at the macroscale. The method
is applied to concrete material including paraffin wax PCM. The results show the benefits of the PCM on the thermal behavior,
including shifted and smoothed temperature response as compared to materials without PCM particles.

Keywords: Phase Change Material, Heat conduction, Computational homogenization, Multiscale modeling, FE2 method

1. Introduction

PCMs generally refer to substances with high latent heat, and which can change phase from liquid to solid over
a restricted temperature range. These materials are able to store and release a significant amount of energy during
thermal phase changes between solid and liquid states. To improve thermal inertia of buildings and reduce energy
consumption, several works have demonstrated the effectiveness of building materials embedding PCMs [1, 2, 3, 4, 5].
For example in [6], different paraffin samples have been tested and defined as the most advantageous PCMs for
building applications. In passive applications of solar energy, paraffin can be introduced into building materials to
provide energy storage around the comfort temperature of 25 °C. PCM wall can be constructed by incorporating
PCMs into construction materials such as cement, concrete and bricks (see Fig. 1). The incorporated PCMs can
increase the thermal inertia of the wall so as to reduce the indoor temperature fluctuations, to increase the thermal
comfort and to reduce the energy consumption due to air conditioning or heating.

The use of PCM composites in buildings is still in experimental stage, and requires simulation methodologies to
predict and design these new structures. The present limitations are related to the strong nonlinear, history-dependent
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Figure 1: Micrographs of encapsulated PCM (Micronal DS 5040 X) embedded in cement-paste matrix [7]

thermomechanical behavior of such materials and its multiscale nature. Due to the nonlinear phase change at the
microscale, classical thermal models cannot be employed at the macroscale, and defining the overall macroscopic
behavior cannot be performed by classical (linear) homogenization approaches. In addition, describing explicitly all
heterogeneities in a numerical nonlinear model such as the Finite Element Method is not feasible due to the scale
separation, i.e. the large ratio between the characteristic dimensions of the structures and of the PCM capsules.

In [8], an algorithm based on Finite Volume Method was employed to simulate a 2D model of PCMs incorporated
in porous metals, combining fluid dynamics and heat transfer. In [9], a Volume Of Fluid model was used to simulate
thermal phase changes. In [10], an analytical model based on Mori-Tanaka method [11] was developed to evaluate
thermal performances of composites including PCMs, but neglecting phase changes effects.

In the present work, we propose to model the fully nonlinear thermomechanical behavior of PCM composites by
using a concurrent multiscale method (FE2 method, see e.g. [12, 13, 14, 15] and a recent review on these classes
of methods in [16]). The FE2 employs at each integration point of the macroscopic finite element structural model
an explicit description of the representative Volume Element, whose nonlinear response is obtained numerically and
transferred to the structure through boundary conditions and numerical averaging operations. The technique has
recently been applied to nonlinear conduction (without phase changes) in [17, 18]. The objective of this work is
to extend the FE2 method to RVE containing PCM, where local equations include fluid mechanics combined with
thermal phase change and description of solid/liquid transitions. The overall response of the structure can then be
obtained numerically to describe the effects of the PCM on the response of the structure, which is proposed here for
the first time, to our best knowledge.

The overview of the present paper is as follows: in section 2, the equations at the microscale are presented,
describing the liquid-solid phase change. In section 3, the mechanical macroscopic model is described, and we show
that in the assumption of weak thermomechanical coupling, these effective properties can be computed apart from
thermal ones. The coupling between the micro and macroscale nonlinear thermal properties is provided in section 4.
Finally, 2D and 3D numerical examples are presented in section 5 to verify the method and to study the effects of
PCM on the overall thermal response of the structure.

2. Microscale phase change thermal model

In this section, we present the equations of the model to be solved at the microscale, involving the presence of a
fluid in capsules which can undergo phase change. We consider the RVE described in Fig. 2. The matrix is assumed
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Figure 2: RVE associated with the microscale embedding phase change inclusion: (a) geometry; (b) Finite Element Mesh.

to be linearly elastic. The thermal model for the matrix is assumed to be linear. The capsule is composed of a
membrane, considered as a linear solid with finite thickness. Inside the capsule, the PCM can change from solid to
liquid according to the temperature. The related equations are provided in the following.

2.1. Equations describing the PCM
To model the phase change and the thermal behavior within the PCM, the equivalent heat capacity method is

used [19]. In its liquid phase, the PCM is considered as an incompressible Newtonian fluid. The interfaces are
assumed to be perfect and viscous dissipation is neglected. In addition, we neglect the volume change associated
with phase transition. Under these assumptions, the governing equations are provided as follows. In the matrix, the
membrane and the solid phase of the PCM, the energy conservation is expressed as:

ρsCps
∂T
∂t

= ∇ · (λs∇T ), (1)

where ∇ · (.) denotes the divergence operator, ρs is the density, Cps the specific heat, T the temperature, t the time, λs

the thermal conductivity matrix. The conduction is assumed to be isotropic, i.e. λs = λs1, and 1 is the second-order
identity tensor. The mass conservation within the liquid phase of the PCM is given by:

∇ · v = 0, (2)

where v is the fluid velocity. The equilibrium is given by:

ρ`
∂v
∂t

+ ρ`(v · ∇v) = ∇ ·
[
−p1 + ηa(∇v + (∇v)T )

]
+ Fb, (3)

where ρ` is density of the liquid PCM, p is the pressure, ηa is the dynamic viscosity, ∇(.) is the gradient operator and
Fb is used to force a trivial solution of v = 0 in the solid PCM:

Fb = −Av(T )v. (4)

According to the Darcy model used in [20], Av(T ) is given by

A(T ) = C
(1 − f (T ))2

( f (T ))3 + b
, (5)

where b = 10−3 is a numerical perturbation parameter which prevents from divisions by zero, and C is another constant
whose numerical values range between 104 and 107, and acts on the melting front. In [21] for example, C = 105 was
chosen. The liquid fraction f in the PCM is defined by:
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f (T ) =


0 if T < Ts,

T − Ts

T` − Ts
if Ts < T < T`,

1 if T > T`,

(6)

where Ts is the temperature transformation from solid to liquid and T` is the temperature at which the transformation
from liquid to solid begins. Below Ts, the PCM is solid and above T`, the PCM is liquid. Between Ts and T`, there
is a smooth description of the phase transition, where λ, η and Cp vary in the PCM. A function λa(T ) is used to take
into account the variations of thermal conductivity in the PCM:

λa(T ) = λs + (λ` − λs) f (T ). (7)

The following approximation is used for the apparent viscosity:

ηa(T ) = η`(1 + Av(T )). (8)

Above, Av(T ) tends towards infinity when the PCM is solid and ηa(T ) = ηl when the PCM is liquid. The latent heat
of fusion LF , due to phase changes is introduced in the apparent specific heat Cpa:

Cpa =


Cps if T < Ts,

1
2

(Cps + Cp`) +
LF

T` − Ts
if Ts < T < T`,

Cp` if T > T`.

(9)

In (9), the apparent specific heat exhibits a peak in the temperature range between Ts and T`. This peak increases with
LF . Finally, the energy conservation in the PCM inclusion is given by [19]:

ρ`Cpa
∂T
∂t

+ ρ`Cpav · ∇T = ∇ · (λa∇T ). (10)

We assume that the velocity of the liquid PCM on the boundary of the membrane Γinc is equal to zero:

v = 0 on Γinc. (11)

The above equations are solved by the finite element method (see [22, 23] for more details). The associated mesh
for FEM resolution is depicted in Fig. 2 (b).

2.2. Illustration of PCM’s thermal behavior

In what follows, we provide a numerical illustration of the phase change within the inclusion during a temperature
transition. The length of the RVE is L = 1 mm, the radius of the PCM is R = 0.2 mm and the thickness of the
membrane is e = 0.015 mm (see Fig. 2). To obtain phase transition, the temperature profile shown in Fig. 3 is
prescribed on the boundaries y = 1 mm and y = 0 mm, the other boundaries are insulated. The PCM has a melting
point at 300.15 K and its latent heat of fusion is LF = 1.68 × 105 J.kg−1. The dynamic viscosity of the liquid phase is
η` = 3.42 × 10−3 Pa.s. The thermo-physical coefficients of each constituents are provided in Table 2.

The prescribed temperature is increased from 293.15 K to 310.15 K in 3.5 s, then decreased to 293.15 K again in
3.5 s. The phase transitions are shown in Figs 4 and 5, where the function f (T ) indicates the local concentration of
liquid phase (in red).

In a second example, the melting process and the thermo-physical properties of the PCM are studied. Using the
same RVE as previously, a constant temperature of 303.15 K is applied on the upper and lower sides y = 0 and y = L,
the heat flux is zero on the other boundaries. The temperature profiles are plotted for a point on the boundary, and in
points A and B, where A is located at the center of the domain and B is at xB = 0.5 mm, yB = 0.66 mm (see Fig. 2
(b)).
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Figure 3: Temperature prescribed on the boundary of the RVE.

(a) t=0s (b) t=0.75s (c) t=2s

Figure 4: f (T ) during melting (0 s< t < 3.5 s). The red region indicates the liquid phase, the blue region denotes the solid phase.

(a) t=3.5s (b) t=4.5s (c) t=6.0s

Figure 5: f (T ) during solidification (3.5 s< t < 7 s). The red region indicates the liquid phase, the blue region denotes the solid
phase.
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Figure 6: Temperature and liquid PCM phase indicator f (T ) during melting
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Figure 7: Variations of ρCpa in the PCM during melting
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Figure 8: Variations of λa in the PCM during melting

6



K. Kodjo et al. / 00 (2018) 1–25 7

(a)

1 2 3 4 5

L [m] 10
-3

1.14

1.16

1.18

1.2

1.22

e
ff

1
1
 [

W
.m

-1
]

Mean values

Standard deviation

RVE 1

(b)

Figure 9: RVE size problem: variation of effective thermal conductivity as a function of RVE size for 20% of PCM volume
fraction: (a) example of periodic microstructure with ramdomly distributed PCM particles (L = 5.013 × 10−3 m, only the mesh of
the PCM domain is displayed); (b) mean values and standard deviation of effective thermal conductivity (the red curve denote the
response of the microstructure with only one PCM particle).

Phase change occurs at almost constant temperature (T` − Ts = 1 K) as shown in Fig. 6. The thermal properties
of the PCM depend on the temperature field (see Fig. 7 and 8). This leads to a time-dependency of the effective
thermo-physical properties.

There is a peak of stored energy during phase transition (solid to liquid here) due to the latent heat. This property
is necessary to store and release more thermal energy in the composite. The apparent thermal conductivity at each
position inside the PCM varies linearly with the liquid fraction indicator f (T ) as expressed by (6). The microscale
parameters (energy, thermal conductivity, heat flux) which will be used at the macroscale must be computed at each
time step and for every integration point. The variation of these parameters at microscale is the source of non linearities
in the macroscale model. Assuming small RVE dimensions as compared to the structure, steady state conditions can
be considered in the RVE. Under this assumption, Eqs. (1), (3) and (10) can be safely reduced to:

∇ · (λs∇T ) = 0, (12)

ρl(v · ∇v) = ∇ ·
[
−p1 + ηa(∇v + (∇v)T )

]
+ Fb, (13)

ρ`Cpav · ∇T = ∇ · (λa∇T ). (14)

It is important to ensure that the microscale domain is representative. For this purpose, an RVE size study is
conducted. The effective thermal conductivity of a composite with 20% of PCM volume fraction is considered.
Different unit cells containing randomly distributed PCM particles are investigated with varying size L. For each size
L, 20 realizations are generated (see Fig. 9). The thermal conductivity of the matrix is 1.6 W.m−2.K−1. The PCM is
assumed to be in its solid state and its thermal conductivity is 0.23 W.m−2.K−1. Fig. 9 shows that the RVE containing
only one inclusion gives an effective thermal conductivity with an error of 0.76% as compared to the converged mean
value. Then, in the following, the RVE with only one PCM inclusion is considered in the multiscale analysis.

3. Homogenization of mechanical properties during phase changes

3.1. Homogenization problem

In this section, we investigate how the thermal phase change in the PCM affects the effective mechanical properties
of the RVE. As depicted in Fig. 2, the RVE is composed of three materials: (a) the matrix, composed of solid cement

7
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paste; (b) the solid membrane made of PMMA; (c) the inclusion, made of paraffin wax, which can be either liquid or
solid.

The numerical model presented at Section 2 is used to handle the thermal behavior of the RVE. Thus, the effective
mechanical constitutive law (the elasticity tensor Ci jkl) is determined at each time-step of the thermal phase change by
homogenization. The problem is to find the effective elastic properties of the equivalent homogeneous material while
the PCM is melting or solidifying. The matrix and the membrane are assumed to have constant elastic properties,
while the PCM has two phases described by f (T ) (liquid phase volume fraction). The phase change model gives
a smooth concentration function f (T ) (see Fig. 6) which varies from 0 to 1 around the interface (see Figs. 4–5).
Different mechanical properties are used in each phase of the PCM. The fourth-order elastic tensor Ci jkl describes
the local elastic constitutive law in the matrix such that σ = C : ε, with σ and ε the Cauchy stress tensor and
the linearized elastic strain tensor, respectively. In order to use the smooth function f (T ) to define the solid-liquid
interface, the liquid part of the PCM is assumed to be a linear elastic isotropic material that mimics the behavior of a
static liquid, with very low shear coefficient and Poisson’s ratio close to 0.5. In summary, the stiffness matrix used for
the PCM is given by:

CPCM = (1 − f (T ))CS
PCM + f (T )C`

PCM , (15)

where CS
PCM and C`

PCM denote the stiffness matrix for the solid and liquid phase in the PCM, respectively. Assuming
small strain elastostatics and neglecting body forces due to the small size of the inclusions, the problem to be solved
on the RVE is given by:

∇ · σ(x) = 0 ∀x ∈ Ω, (16)

with

σ(x) = C(x) : ε(x), (17)

ε(x) =
1
2

(
∇u(x) + ∇T u(x)

)
(18)

and

1
|Ω|

∫
Ω

ε dΩ = ε. (19)

In the above, u is the displacement field and ε is the macroscopic strain applied on the RVE. Different boundary
conditions can be applied on the RVE: KUBC (Kinematic Uniform Boundary Conditions), SUBC (Static Uniform
Boundary Conditions) or PB (Periodic boundary conditions). In this work, periodic boundary conditions are em-
ployed, expressed by:

u(x) = εx + ũ(x), (20)

where ũ(x) is a periodic function over Ω. Condition (20) can be re-written as:

u+ − u− = ε(x+ − x−), (21)

where u+, u− and x+, x− are respectively the displacement and the position of each pair of opposite nodes on ∂Ω (see
Fig. 10). Such conditions can be prescribed e.g. by Lagrange multipliers techniques.

The problem being linear, the solution u depends on the three independent components of ε in the 2D case. Using
the superposition principle, we can write:

ε = ε11ε11 + ε22ε22 + 2ε12ε12, (22)

where ε is the solution of the problem (16)-(19) for an applied macroscopic strain tensor

εkl =
1
2

(ek ⊗ el + el ⊗ ek) , (23)
8



K. Kodjo et al. / 00 (2018) 1–25 9

O x

y

x x- +

Figure 10: 2D RVE with symmetric mesh and nodes for prescribing periodic boundary conditions.

Table 1: Mechanical proprieties of the RVE

Young’s modulus [MPa] Poisson’s ratio
Matrix 2 × 104 0.2
Membrane 3.2 × 103 0.3
Solid PCM 60 0.4

and ei, i = 1, 2 in 2D are unitary basis vectors. The above relation can be re-written as

ε(x) = A(x) : ε (24)

where the fourth-order localization tensor A is defined by:

Ai jkl = εkl
i j. (25)

Taking the space average of (17) over Ω, we obtain the effective elastic tensor at each time step of thermal load:

C(t) =
1
|Ω|

∫
Ω

C(x, t) : A(x, t) dΩ. (26)

3.2. Results

The mechanical properties are listed in the table 1. When the PCM is in the liquid phase, a pseudo elastic model
with low shear modulus taken as 1 MPa (negligible as compared to the stiffness of the matrix) and Poisson’s ratio of
0.49 is considered.

The 2D RVE of Fig. 15a is used. The time-dependent temperature given in Fig. 3 is applied at y = 0 and y = 1
mm while the other boundaries are insulated. Fig. 11 shows the variation of the components of C with time. All
components of C have similar evolutions. The unsymmetric evolution of the curves is explained as follows. During
melting, the solid PCM is surrounded by the liquid phase, such that the macroscopic loads ε applied on ∂Ω cannot
be transmitted to the solid part of the inclusion. But during solidification, the solid part of the PCM is connected to
the shell and the matrix, so the solid phase contributes to the RVE’s effective mechanical response. As expected, the
variation of each component of C during thermal phase changes remains small (does not exceed 1.6% in this case),
because of the high ratio between the mechanical properties of the matrix and the PCM.

To confirm these results for larger volume fractions, we have conducted in Fig. 12 an analysis to evaluate the
effects of a real incompressible fluid on the mechanical effective behavior. We consider two cases: (a) the present

9



K. Kodjo et al. / 00 (2018) 1–25 10

0 2 4 6

t [s]

1.546

1.548

1.55

1.552

1.554

1.556
×10

10

[P
a
]

(a) C1111

0 2 4 6

t [s]

1.546

1.548

1.55

1.552

1.554

1.556
×10

10

0 2 4 6

t [s]

1.546

1.548

1.55

1.552

1.554

1.556
×10

10

[P
a
]

(b) C2222

0 2 4 6

t [s]

3.82

3.84

3.86

3.88

3.9
×10

9

[P
a
]

(c) C1122

0 2 4 6

t [s]

4.995

5

5.005

5.01

5.015

5.02
×10

9

[P
a
]

(d) C1212

Figure 11: Variation of the components of C during thermal phase changes.

simplified model, i.e. an RVE composed of a solid matrix and a solid PCM, whose effective properties are computed
using classical linear homogenization (denoted as C

S
), and (b) a liquid PCM where the equilibrium of the RVE for an

applied strain is computed by solving a full fluid-structure interaction problem. As the details of such calculations are
out of the scope of this paper, we do refer to [24] for more details. In this second case, the effective elastic properties
are denoted as C

S−`
. The relative error between the effective tensor for solid PCM C

S
and for liquid PCM is computed

here for a large volume fraction of PCM (19%) as:

Er =
C

S
i jkl − C

S−`
i jkl

C
S−`
i jkl

. (27)

As an example, Fig. 12 shows the relative error for the component C1212. We can see from this curve that the
present simplified model and the associated assumption of decoupled mechanical and thermal problems is valid as
soon as the ratio between the Young modulus of the matrix (Em) and of the solid PCM (EPCM) is larger than 102.

In conclusion, the effective elastic tensor C can be assumed as constant and be computed a priori with respect to
the thermal analysis, which greatly simplifies the multiscale analysis described in the next section.

4. Multiscale (FE2) modeling of the transient thermal behavior with phase change

Due to the phase change of the PCM capsules, the effective thermal behavior is strongly nonlinear and the clas-
sical computational homogenization can no more be applied in that case. In this work, the FE2 method is employed
and extended to transient thermal behavior with phase change to obtain at each point (integration point of the macro-
scopic mesh) of the structure the macroscopic thermal behavior through RVE calculations. The phase change model

10
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presented in section 2 is used for the microscale thermal problem. Assuming that the thermal solution has negligi-
ble impact on the mechanical solution (see section 3), the effective elastic tensor is computed separately before the
analysis. Then the following FE2 procedure is only related to the nonlinear thermal analysis.

4.1. Microscale problem
The microscale problem is solved at each integration point of the macroscale structure (see Fig. 13) to obtain the

macroscopic heat flux Φ, the effective conductivity λ and the effective specific heat density ρCp, given the macroscale
temperature T and temperature gradient ∇T . The scale separation is assumed, which means that the characteristic
size of the inclusions is much smaller than the dimensions of the structure. In addition to the local equations for the
nonlinear microscopic thermal problem (see section 2), the RVE is subjected to homogeneous temperature gradient
through the condition:

1
|Ω|

∫
Ω

∇TdΩ = ∇T . (28)

Classically, this condition can be satisfied for the boundary conditions:

T (x) = ∇T · x on ∂Ω (29)

or
T (x) = ∇T · x + T̃ (x) on ∂Ω (30)

where T̃ (x) is a periodic function over Ωm. The boundary condition (30) can be rewritten as:

T + − T− = ∇T · (x+ − x−), (31)

where T + and T− are the temperature at each pair of opposite nodes (see Fig. 10). To ensure a unique solution at the
microscale, the macroscale temperature T is used to introduce an additional constraint such that [17]:

ρCpT =
1
Ω

∫
Ω

ρCpTdΩ. (32)

4.2. Macroscale problem
4.2.1. Homogenized quantities

The macroscopic heat storage to be used is defined as its volume average over the RVE, as proposed in [17]:

ρCp =
1
|Ω|

∫
Ω

ρCpdΩ, (33)

11
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Macroscale Microscale

Figure 13: Scheme of the FE2 procedure.

and:

Φ =
1
|Ω|

∫
Ω

φdΩ. (34)

The effective tangent conductivity matrix is defined through:

λ = −
∂Φ

∂∇T
. (35)

At each integration point of the macroscale discretization, λ can be evaluated numerically by finite difference
approximation around the macroscopic temperature gradient ∇T by:

λi j = −
Φi(∇T j + δ) − Φi(∇T j)

δ
(36)

where δ is a small numerical parameter chosen to be negligible as compared to ∇T j. In 2D, λi j requires three FEM
computations on the RVE, and four FEM computations in 3D. In 2D for example, each of the three FEM computations
corresponds to the RVE problem in which equation (31) is used with ∇T , ∇T + δ[1 0]T and ∇T + δ[0 1]T respectively.
For the self-consistency of the paper, details on above relations are proposed in Appendix A.

4.2.2. Macroscale equations
The multiscale scheme is depicted in Fig. 13. At the macroscale, the model uses the effective quantities computed

numerically from the RVE.
Considering a domain Ω ⊂ RD, where D is the domain dimension with boundary ∂Ω, the problem to be solved at

the macroscale is given by:

ρCp
∂T
∂t
− ∇ · Φ + h(T − T∞) = 0 in Ω, (37)

Φ = −λ ∇T . (38)

where h is the convection coefficient and T∞ is the temperature of the media in contact with ∂Ωh.

4.2.3. FEM discretization and nonlinear solving procedure
The weak form corresponding to (37) is given by∫

Ω

ρCp
∂T
∂t
δTdΩ −

∫
Ω

Φ · ∇δTdΩ +

∫
∂Ωh

hTδTdΓh −

∫
∂Ωh

hT∞δTdΓh = 0 = R(T ) (39)

12
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where δT is a test function with sufficient regularity and satisfying δT = 0 on ∂Ω. The above problem being highly
nonlinear, a Newton solving procedure is proposed. Using Taylor expansion of R around a known temperature solution
T

k
, we have at the first order:

R(T
k

+ ∆T ) = R(T
k
) + D∆T R(T

k
)∆T + O(∆T

2
) = 0 (40)

where D∆T R(T
k
) is the directional derivative, defined by:

D∆T R(T
k
) =

[
dR
dα

{
T

k
+ α∆T

}]
α=0

. (41)

We have:

D∆T

(∫
Ω

Φ · ∇δTdΩ +

∫
∂Ωh

hTδTdΓ

)
=

∫
Ω

D∆T

{
Φ · ∇δT

}
dΩ +

∫
∂Ωh

hD∆T

{
T
}
δTdΓ

=

∫
Ω

∂Φ

∂∇T
D∆T

(
∇T

)
· ∇δTdΩ +

∫
∂Ωh

h∆TδTdΓ = −

∫
Ω

λ∇
(
∆T

)
· ∇δTdΩ +

∫
∂Ωh

h∆TδTdΓ. (42)

Introducing the following approximation for the time derivative:

∂T
∂t
'

T n+1 − T n

∆t
, (43)

then

D∆T

∂T
∂t

 ' ∆T n+1

∆t
≡

∆T
∆t

. (44)

Then:

D∆T

∫
Ω

ρCp
∂T
∂t
δTdΩ

 =

∫
Ω

ρCp
∆T
∆t

δTdΩ. (45)

We finally obtain the linearized problem:∫
Ω

ρCp
∆T
∆t

δTdΩ +

∫
Ω

λ∇
(
∆T

)
· ∇δTdΩ +

∫
∂Ωh

h∆TδTdΓ

=

∫
Ω

ρCp

[
T

k
n+1 − T n

]
∆t

δTdΩ −

∫
Ω

Φ(T
k
n+1) · ∇(δT )dΩ +

∫
∂Ωh

[
T

k
n+1 − T∞

]
δTdΓ, (46)

that is solved to obtain ∆T . Then, the temperature at time tn+1 is corrected until convergence of the norm of the
residual is sufficiently small according to:

T
k+1
n+1 = T

k
n+1 + ∆T . (47)

The macroscale structure is discretized using FEM elements. For the 2D examples, 3-nodes triangular elements are
used while 4-nodes tetrahedral or 8-nodes hexaedral elements are used in 3D cases. In each element, the temperature
increment and its gradient are approximated by:

∆T = N(x)∆T
i
, ∇(∆T ) = B(x)∆T

i
(48)

where ∆Ti denotes a vector of nodal values of ∆T . The same discretization is used for the test function:

δT = N(x)δT
i
, ∇(δT ) = B(x)δT

i
, (49)

13
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where N(x) and B(x) are vectors and matrices of shape functions, and of shape functions derivatives, respectively.
Introducing the above discretization in (46) we obtain a linear system of equations in the form:(

1
∆t

C + K
)
∆T = −R, (50)

where

C =

∫
Ω

NTρCp(T
k
n+1)NdΩ, (51)

K =

∫
Ω

BTλ(T
k
n+1)BdΩ +

∫
∂Ωh

NT hNdΓ (52)

and

R =

∫
Ω

NTρCp(T
k
n+1)N

([
T

k
n+1

]i
− T

i
n

)
dΩ −

∫
Ω

BT Φ

(
T

k
n+1

)
dΩ

+

∫
∂Ωh

hNT
(
N

[
T

k
n+1

]i
− T∞

)
dΓ. (53)

Then, when the transient nonlinear thermal regime is considered, the overall algorithm is described as follows:

Algorithm 1 Solving procedure

for each time step n + 1 do
Given macroscale boundary conditions at time tn+1
for each iteration k do

Compute ρCp(T
k
n+1), Φ(T

k
n+1) and λ(T

k
n+1) by (33,34,36).

Update solution: Compute ∆T by (50).
if Convergence :

∣∣∣Rk
n+1

∣∣∣ 6 tolerance then
New time step : n← n + 1

else
New iteration : k ← k + 1

end if
end for

end for

If the steady-state regime is considered for the thermal problem, the above linear system reduces to:

K∆T = −R′, (54)

with

R′ = −

∫
Ω

BT Φ

(
T

k
n+1

)
dΩ +

∫
∂Ωh

hNT
(
N

[
T

k
n+1

]i
− T∞

)
dΓ. (55)

5. Numerical examples

5.1. Stationary heat transfer

We first validate the present procedure in a steady-state regime at both scales. The geometry of the structure is
depicted in Fig. 14.

The RVEs used in 2D and 3D are depicted in Fig. 15. The radius of the PCM inclusions is taken as R = 0.2 mm
and the thickness of the membrane is taken as e = 0.015 mm. The thermo-physical properties of the matrix, of the
membrane and of the PCM phases are listed in table 2. The PCM latent heat of fusion is taken as LF = 1.68 × 105

14
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20 cm
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Tl = 303.15 K

Tr = 293.15 K
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Figure 14: 2D steady state problem: geometry of the macroscale structure.
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Figure 15: RVE: geometry; (a) 2D RVE; (b) 3D RVE.
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Table 2: Thermo-physical proprieties of the phase within the RVE.

λ [W. m−1. K−1] ρ [kg. m−3] Cp [J. kg−1]
Matrix 0.92 2300 880
Membrane 0.17 1200 1400
Solid PCM 0.23 900 2400
Liquid PCM 0.15 934 1800

J.kg−1 with a melting point at 300.15 K (Ts = 299.65 K and T` = 300.65 K). The dynamic viscosity of the liquid
phase is η` = 3.42 × 10−3 Pa.s.

At the macroscale, the mesh is composed of 512 triangular elements. The RVE is discretized with 2518 triangular
elements. Constant temperatures are applied on the macroscale structure boundaries: Tl = 303.15 K at x = 0 cm and
Tr = 293.15 K at x = 20 cm (see Fig. 14). On the other boundaries, the heat flux is zero.

f(T)

Solid

Liquid

Figure 16: Two scales steady-state solution for the 2D case.

Fig. 16 shows the temperature solution at the macroscale and the liquid phase indicator f (T ) within different
RVEs. The indicator f (T ) takes 0 value for solid phase and 1 for liquid phase. In regions of the structure where the
macroscopic temperature field is close to the melting point of the PCM, we can notice incomplete melted PCM in the
corresponding RVEs. To validate the FE2 model, a complete FEM analysis is performed where all heterogeneities are
explicitly described (see Fig. 17). The heterogeneous structure is composed of periodically distributed cells identical
to the RVE of Fig. 15a.

In this case, the constant temperatures T = 303.15 K and T = 297.15 K are prescribed on the left and right ends.
The macroscale mesh is composed of 40 triangular elements. For the full FEM analysis, the mesh is composed of
406768 triangular elements.

Fig. 18 shows the x−component of the heat flux and the phase indicator in the PCM inclusions for the full FEM
analysis. The temperature at y = 0.5 mm is compared to the FE2 solution (see Fig. 19). We can note a good agreement,
even though the FE2 solution cannot describe the small fluctuations due to the PCM particles, as expected. To compare
the heat fluxes, we compute the mean value of Φx along the y-axis for the full FEM solution as a function of x:

16
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T = 303.15K T = 297.15K
Insulated

Insulated

2cm

1mm

O x

y

Figure 17: Structure used for the validation of the FE2 procedure.
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Figure 18: Full FEM analysis: (a) x-component of the heat flux; (b) phase indicator.

Φx(x) =
1

ymax − ymin

∫ ymax

ymin

φxdy. (56)

For the FE2 model, the x-component of the flux does not vary along the y axis. In Fig. 19, the x-component of
the heat flux obtained from FE2 is compared to the mean value expressed by Eq. (56), showing a good agreement
on the average values. As the microscale temperature fluctuations are averaged out, we observe a small gap between
the curves, especially around the melting temperature. However, the zoom box in 19a shows that this gap remains
negligible.

296
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300
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304

T
[K
]

FEM

FE
2
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300
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300.2
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Φ
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 .
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-2
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<Φ
x
> FEM

Φ
x

FE
2

(b)

Figure 19: Comparison between FEM and FE2 results along x-axis: (a) temperature field; (b) heat fluxes.

The computational gains between the direct solving and the FE2 are (54% reduction). However, the reference
problem of Fig. 18 is of small size to allow its resolution in a reasonable time. For this reason, the computational
gains between the direct solving and the FE2 are not drastic. However, these gains dramatically increase with the size
of the mesh and especially in 3D where the direct solving is simply not feasible (see section 5.3). To better show the
micro-scale phase changes effects, the transient regime is studied in the following.
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h

Insulated

Figure 20: Geometry and boundary conditions for the 2D transient thermal problem.

5.2. 2D transient thermal conduction
In this example, we consider transient thermal conduction regime at the macroscopic scale. Choosing large time

steps at the macroscale yields steady state regime at the microscale due to scale separation. For this analysis, we
consider the case depicted in Fig. 20. The thermal conductivity of the matrix is 1.7 W.m−1.K−1. The macroscale time
step is ∆t = 60 s. Time-dependent boundary conditions are prescribed at x = 0 cm by:

T(x=0) = T0 + δT sin
(

2πt
tF

)
. (57)

A convective exchange is considered at the right-end of the structure, with h = 10 W.m−2.K−1 and T∞ = 297.15
K. The other boundaries are insulated. In (57), t is the current time, T0 = 300.15K, δT = 10K and tF is the total
simulation time fixed at 12 hours. T(x=0) is a sine function which varies up to ±5K around the melting temperature of
the PCM every 3 hours (see Fig. 21). The initial temperature is considered as Ti = 300.15K.

Fig. 21 shows the temperature applied at x = 0 cm and the temperature at different locations of the macroscale
structure with and without PCM. These curves show a significant offset between the inner temperature of the structure
embedding PCM and the structure without PCM capsules. The temperature peaks are smoother in the structure with
PCM. There is an offset up to 4 K compared to the homogeneous structure. This confirms the experimental results
reported in several works of the literature [25], and demonstrates the capacity of the PCM capsules to regulate the
temperature in structures and buildings.

5.3. 3D transient thermal conduction
We now consider the 3D case shown in Fig. 22. The thermo-physical properties of the RVE are the same as in

Table 2. The RVE used is shown in Fig.15b. The radius of the PCM capsule is R = 0.3 mm (corresponding to a volume
fraction of 0.113). Initially, the whole structure is at Ti = 297.15 K. A constant temperature of 303.15 K is applied at
x = 0 cm and T = 297.15 K at x = 20 cm, while the rest of the boundary is insulated. The final time simulation is 4
hours. The macroscale time step is ∆t = 60 s. The structure is discretized with 6144 tetrahedral elements while the
RVE is composed of 36315 tetrahedral elements. Fig. 23 shows the macroscale temperature solution and the liquid
phase indicators on four specific RVEs at t = 4 hours.

As expected, at x = 5 cm, as the macroscale temperature is higher than the melting point, the PCM is fully melted.
In the same way, there is a fully solid PCM in the RVE at x = 19.17 cm because the macroscale temperature is less
than the melting temperature of PCM. On the other hand, there are partially melted PCM in the RVEs where the
macroscale temperature is close to the melting point of the PCM. Fig. 24 shows the temperature at the center cross
line (y = 5 cm, z = 5 cm) for different times, and the temperature evolution with time at x = 10 cm, y = 5 cm, z = 5
cm, with and without PCM.

5.4. 3D thermo-mechanical example
In this next example, we apply the method by taking into account the thermo-mechanical effects. We consider

the 3D macroscale structure shown in Fig. 25. The geometry is discretized with 2795 8-node hexahedra. A constant
18
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(d) x = 20 cm, y = 2.5 cm

Figure 21: Temperature at different points of the macroscopic structure.
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Figure 22: Maroscopic scale structure for the 3D thermal problem.
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Figure 23: Two scales temperature solution at t = 4 h.
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Figure 24: Temperature in the structure at the macro scale: (a) temperature along the x−axis for different times; (b) temperature at
the center of the structure with and without PCM particles.
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Figure 25: 3D thermo mechanical example: geometry and boundary conditions.

temperatures of 305.15 K, 299.15 K and 291.15 K are respectively applied on the surfaces at x = 0, y = 0 and
z = 0. A convection heat flux is considered at three surfaces and the others are insulated, as described in Fig. 25.
The mechanical load is as follows: the bottom side of the structure (z = 0) is blocked and z-components of the
displacement at the upper side are set to -0.15 m. The material properties are listed in Tables 1 and 2. The thermal
conductivity of the matrix is 1.7 W. m−1.K−1 and the radius of PCM is 0.3 mm.

Fig. 26 shows the thermal fields within the macroscopic structure. At the side parallel to the plan x = 0, we can
observe that the temperature gradient is high, resulting in an important heat flux. Close to the bottom, the heat flux
decreases and far from this location, the heat flux is almost one-dimensional.

The mechanical fields are depicted in Fig. 27: the displacement magnitude and the mean stress (von Mises). The
macroscale solution has been obtained using the effective stiffness matrix, considering the PCM at solid state, as it has
been shown in section 3 that the phase change does not affect significantly the effective elastic tensor if the stiffness
of the matrix is high. This example shows the potential of the present framework to handle more realistic industrial
cases of thermomechanical simulation of buildings embedding micro-encapsulated PCM.

5.5. Effects of PCM volume fraction

In this example, the volume fraction of PCM is varied to study its effects on the macroscopic heat transfer. The
case presented in Fig. 20 is performed for five values of R : 100 µm, 150 µm, 200 µm, 250 µm and 300 µm. A constant
temperature of T = 313.15 K is applied at x = 0 cm.

As expected, the volume fraction of microscale inclusion has an effect on the macroscale heat conduction. In
Fig. 28, the temperature profile in the structure increases when the radius of the PCM capsule decreases. We can
observe a kink in the curves which corresponds to the position of the melting front. Due to the phase change, we have
two different macroscale thermal behaviour at each side of the kink. The offset between the zone with liquid PCM and
the zone with solid PCM increases with the PCM volume fraction which explains why the kink in the curves is more
pronounced for 28.27% of PCM. In Fig. 29b, we compare the offset of the temperature between the homogeneous
structure and the PCM composite, using data from Fig. 29a: this offset increases with the radius of PCM. This curve
shows the effectiveness of the composite compared to the matrix alone. As the heat flux passes through the matrix,
these results can be improved by using higher thermal conductivity of the PCM (see e.g. [26]).

6. Conclusion

In this study, a FE2 multilevel method has been developed to study the heat transfer and the mechanical behavior
in structures made of concrete based composites embedding PCMs in both 2D and 3D cases. An equivalent capacity
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Figure 26: Thermal fields: (a) temperature; (b) heat flux.
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Figure 27: Mechanical fields: (a) displacements; (b) von Mises stress.

0 0.05 0.1 0.15 0.2

x [m]

295

300

305

310

315

T
 [

K
]

Without PCM

3.14 %
7.07 %
12.57 %
19.64 %
28.27 %
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Figure 29: Effects of volume fraction of PCM: (a) Temperature at (x = 20 cm, y = 2.5 cm) with time. (b) Offset between the
temperature in the structure without PCM and the structures with different volume ratio of PCM at (x = 20 cm, y = 2.5 cm) after 6
hours.

method has been used to model thermal phase changes within the PCM. The developed numerical framework allows
studying the strong nonlinear, history-dependent thermal response of the structure embedding PCM, which is not
feasible if all heterogeneities are explicitly meshed due to the scale separation between the size of the structure and
of the dimensions of the PCM capsules. The study shows the benefits of PCM on the effective thermal behavior: the
peaks of temperature in the structure are smoothed and shifted as compared to the material without PCM. We have
shown that the offset between the temperature in the structure and the applied temperature increases with the radius
of the PCM’s capsule in the RVE. It has also been shown that due to the large stiffness of the matrix, the effects of
the thermal problem over the mechanical response are negligible. The trends obtained by the numerical results are in
good agreement with the experimental observations.
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Appendix A. Scale bridging relations

Appendix A.1. Average of temperature gradient
We consider a 2D RVE composed of two phases (see Fig. A.30). The two phases occupy respectively two domains

Ω1 and Ω2 which are separated by an interface Γ.
n is the outward unit vector at the boundary. The temperature fields in each domain are respectively denoted by

T 1 and T 2. Using the divergence theorem, the volume average of temperature gradient in the microscale domain
Ω = Ω1 ⋃

Ω2 is given by:

1
|Ω|

∫
Ω

∇TdΩ =
1
|Ω|

∫
∂Ω

T 1ndΓ +
1
|Ω|

∫
Γ

T 1n1dΓ +
1
|Ω|

∫
Γ

T 2n2dΓ

=
1
|Ω|

∫
∂Ω

T 1ndΓ +
1
|Ω|

∫
Γ

(T 1 − T 2)n1dΓ. (A.1)

Assuming perfect interfaces, T 1 = T 2 across Γ. Using (29) we have

1
|Ω|

∫
Ω

∇TdΩ =
1
|Ω|

∫
∂Ω

T 1ndΓ =
1
|Ω|

∫
∂Ω

∇T x · ndΓ. (A.2)

Applying the divergence theorem again on the last term of (A.2) and noting that ∇x = 1, we finally obtain
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Figure A.30: Two phases RVE.

1
|Ω|

∫
Ω

∇TdΩ =

(
1
|Ω|

∫
Ω

1dΩm

)
∇T = ∇T . (A.3)

Appendix A.2. Average of heat flux

In this section, we give the proof of (34) which express the equivalence between the volume average of the
microscale heat flux and the macroscale heat flux. Noting that φi,i = 0, we have:

∂

∂xi

(
φix j

)
=

(
φix j

)
,i

= φi,ix j + φi

(
x j

)
,i

= φiδi j = φ j. (A.4)

From (A.4) and using the divergence theorem,

1
|Ω|

∫
Ω

φ jdΩ =
1
|Ω|

∫
Ω

(
φix j

)
,i

dΩ =
1
|Ω|

∫
∂Ω

φinix jdΓ. (A.5)

Considering the RVE depicted in Fig. A.30, φ1 and φ2 denote the heat flux respectively in Ω1 and Ω2. Then,

1
|Ω|

∫
Ω

φ jdΩ =
1
|Ω|

∫
Ω1
φ1

jdΩ +
1
|Ω|

∫
Ω2
φ2

jdΩ

=
1
|Ω|

∫
∂Ω

φ1
i nix jdΓ +

1
|Ω|

∫
Γ

φ1
i n1

i x jdΓ −
1
|Ω|

∫
Γ

φ2
i n1

i x jdΓ (A.6)

Assuming perfect interface, φ1 = φ2 across Γ. (A.6) becomes

1
|Ω|

∫
Ω

φ jdΩ =
1
|Ω|

∫
∂Ω

φ1
i nix jdΓ. (A.7)

Using uniform heat flux boundary conditions expressed as

Φ · n = φ · n on ∂Ω, (A.8)

we have:

1
|Ω|

∫
Ω

φ jdΩ =
1
|Ω|

∫
∂Ω

Φinix jdΓ =
1
|Ω|

∫
Ω

(
Φix j

)
,i

dΩ = Φ j. (A.9)
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