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Abstract. This paper accounts for some scientific aspects related to the
international standardization process about physically unclonable functions
(PUF3), through the drafting of ISO/IEC 20897 project. The primary mo-
tivation for this standard project is to structure and expand the market of
PUFs, as solutions for non-tamperable electronic chips identifiers.

While drafting the documents and discussing with international experts, the
topic of PUF also gained much maturity. This article accounts how scientific
structuration of the PUF as a field of embedded systems security has been
emerging as a byproduct. First, the standardization has allowed to merge two
redundant security requirements (namely diffuseness and unpredictability)
into one (namely randomness), which in addition better suits all kinds of
PUFs. As another contribution, the standardization process made it possible
to match unambiguous and consistent tests with the security requirements.
Furthermore, the process revealed that tests can be seen as estimators from
their theoretic expressions, the so-called stochastic models.

1 Introduction

Security is an enabler for the expansion of our digital society. The trend is all
the more important with the settling of Internet of Things (IoT). Communicat-
ing parties become not only humans but also machines, and without surprise,
there are today more machines than humans on our planet. Typically, each hu-
man uses many machines to service him personally. Besides, some mutualized
infrastructures also leverage on IoT or Machine-To-Machine (M2M) objects.
In this context, it is crucial to attest of the identity of parties. Indeed,
communicating with unidentified IoT objects can lead to malware infection and
can of course be subverted by attackers to build attacks. Most simple attacks
consist in masquerade, that is malevolent situation whereby one device pretends
it is another one. These vulnerabilities are the premise of building botnets.
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Beyond these attacks, which target individual devices, the issue propagates to
service providers. With the possibility of such device impersonation, the cloud
operators happen to exchange and receive information from unreliable sources.
Consequently, the information manipulated by the cloud is thus unreliable too.
However, it is known that big data market can only thrive provided the collected
data can be relied on. This is captured by the attribute “veracity” of big data
characterization in 5Vs (Volume, Velocity, Variety, Veracity, and Value).
Therefore, trustworthy identification is paramount. Besides, it is also
important to safeguard other immaterial assets, such as data confidentiality (for
privacy concerns) and program authentication (in the case of software updates).
All these properties are part and parcel of the scope of security requirements.

Security technologies. Security is thus an important aspect of digital communi-
cations. It must thus be addressed rigorously. Building security from a technical
point of view requires the collaboration of various technologies, including:

— cryptographic algorithms, which implement building blocks for confidential-
ity (through encryption), integrity (through hash functions) and authen-
tication (through message authentication codes and/or digital signatures),

— sensitive security parameters' management, which consists in their gen-
erating, in ensuring their protection while they are in memory (in use or
backed-up), and in warranting their erasure when they shall be disposed of,

— proving the correctness of the implementation, since bugs are known
to be devastating in their exploitation [13], included but not limited by
cyber-attacks,

— checking for the absence of side-channels in cryptographic implementations,
which can be revealed by timing biases in micro-architectural behaviors,
or by effects related to reliability issues in Double Data Rate (DDR)
modules [15,17] or in FLASH memories [3] (collectively being known as
RowHammer attacks).

The complexity of implementing such security technologies has led to
many attacks, which leverage on inconsistent interaction between primitives.
Typical examples are authenticated encryption using AES-CBC with AES-
based CMAC, which natively does not provide authentication, or compression
oracles, whereby the combination of compression and use of MAC-then-encrypt
paradigm makes it possible to extract plaintext bytes just by analyzing the
size of the encrypted data.

! Sensitive security parameters (SSPs) consist either in critical security parameters (CSPs)
or public security parameters (PSPs). CSPs shall be kept secret. Examples are nonces,
long-term and ephemeral keys. PSPs are public, but shall not be chosen. Examples are
initialization vectors.
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Specificities of standardization in security. Because of this complexity and in
order to prevent the thrive of so numerous attacks, security mechanisms have
been standardized. Standardization ensures that the design and the choice of
cryptographic primitives are done without errors (trivially) leading to attacks.

But standardization goes beyond simplification of choice regarding security
algorithms. It also simplifies the understanding of the whole solution, thereby
provided a more clear vision of the design rationale. This is important because
the adoption of security can be considered as trust delegation into a security
standard. Therefore, standardized solutions give more confidence in the fact
that no security issue will happen. As a matter of facts (recall Snowden affair),
one of the risks is about backdoors in security protocols. It is indeed cynical to
invest in a security solution which actually helps attackers hack your devices.

Another aspect related to security is that the Devil lays in the details. In
particular, unintentional vulnerabilities might be injected while implementing
cryptographic solutions. Typically, side-channels (i.e., non-functional albeit ad-
versarially observable behaviors) might leak information about the secrets. This
includes timing, cache hit/miss patterns, power consumption, electromagnetic
field radiation, etc.

Scope of the paper. In this article, we survey the role of standardization for
Physically Unclonable Functions (PUFs) as a key generation technology. Such
technology is a cornerstone, since cryptography bases itself on the principle
that all the design can be made public, whilst the only secrecy lays in the key,
according to a doctrine which is known as the Auguste Kerckhoffs law.

In particular, we detail the service which is expected from the PUFs, derive
security requirements, and expose ways to test and evaluate them. These
aspects are part and parcel of the mandatory normative features of project
ISO/IEC 20897.

Outline and contributions. The rest of the paper is organized as follows. First
of all, we provide the reader with a high-level description of PUFs. This topic is
addressed in Sec. 2. In this section, we stress the progress which has been made
during standardization process concerning the definition of independent fea-
tures of PUFs of seemingly different nature. Our main contribution lays in Sec. 3.
We here account for a remarkable progress in the modelization of PUFs, namely
the duality between challenges and responses. Based on this achievement, we
enunciate clearly in this Sec. 3 the unified security requirements for PUFs. Even-
tually, we explain in Sec. 4 how to test and /or evaluate whether or not security
requirements are met, and how, in a given device. Conclusions are in Sec. 5.



4 Nicolas Bruneau et al.

2 Description of a PUF

A PUF is a function implemented in a device that is produced or configured
with the security objective that random fluctuations in the production process
lead to different behaviours and are hard to reproduce physically.

This means that a PUF generates data which do not result from a read
access in a Non Volatile Memory (NVM). Indeed, no data are stored in the
PUF during its whole life cycle.

2.1 Towards a standard related to PUFs

The international standards of PUFs are discussed in ISO/TEC 20897-1 and
20897-2 |12]: the former deals with the security requirements and the latter deals
with the test and evaluation methods of PUFs. The documents of the standards
are edited within ISO/IEC JTC 1/SC 27/WG 3. Notice that the contents of
this paper concerns only the authors, and is not endorsed by ISO/IEC.

There have been many PUF variants reported so far [2,1], and excerpt of
technologies taken from a selection of published academic papers is reported
below:

— Optical PUF [20],

— Coating PUF [23],

— SRAM PUF [J],

— Glitch PUF [27),

— Arbiter PUF [19,0],

— Loop PUF [1],

— Memory contention PUF [3],

— Oxide rupture PUF [29],

— Transistor voltage threshold [26].

All those very different structures aim at providing a similar service to the final
users. Namely, they all implement a function which is hard if not impossible
to copy. All those objects are covered by the scope of ISO 20897-1/-2 drafts.

2.2 Parameters of PUF

A PUF is, by definition, a function. The input parameters are termed challenges,
and output parameters are termed responses.

In this paper we focus on so-called silicon PUFs. Their challenges and re-
sponses are digital, i.e., consist in bitstrings. Precisely, PUFs obtain digital(ized)
responses by amplifying analog signals from physical properties of tiny imperfec-
tions of the device implementation. This property allows PUFs to be unclonable.
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The goal of standardization is to provide portable metrics along with tests
and evaluation methods which are comparable whilst they embrace a wide
array of very different PUF technologies. The effort to be carried out is thus
to abstract away all peculiarities inherent to various PUF technologies. The
method to do so is to think about the services expected by a PUF in general,
without referring to any implementation specific choice.

It is customary in the literature to classify PUFs as either weak or strong.
A weak PUF has no input, but usually a (unique) response of large size. A
strong PUF has many inputs, but usually short responses in size. As the
standardization process has revealed, this classification is a bit caricatural. A
softer classification will be introduced in Sec. 3.1.

We provide here-after some useful notations.

The responses from multiple PUFs are arranged into a cube as Fig. 1
shows. The repetitive calls to a PUF are illustrated in Fig. 2. The single small
cube describes a 1-bit response from a PUF. The three axes of the cube and
the time are described hereafter, as directions:

— direction B: “4#bit” shows the bit length of the response obtained from a
single challenge. In a 1-bit response PUF, e.g., arbiter PUF, the dimension
B collapses.

— direction C: “#challenge” shows the number of different challenges given
to a PUF. In a no-challenge PUF (or, more rigorously, a one-challenge PUF,
see discussion in Sec. 3.1), e.g., SRAM PUF, the dimension C collapses.

— direction D: “#/PUF” shows the number of different PUF devices under
test.

— direction T: “#query” shows the number of query iterations under the
fixed PUF device and challenge.

2.3 Use-cases of PUFs

By definition, a PUF is a “non-stored sensitive security parameter”. Therefore,
PUFs can be used to fulfill different needs where non-tamperability is a strong
requirement.

A first use-case consists in using the value of the PUF as a private data,
which can play the role of some secret key, known by nobody (neither by the
designer nor by the tester nor by the firmware developer, etc.). Therefore, such
solution solves the problem of key management, as each device handles its
own key.

A second use-case consists in device unfalsifiable identification. The PUF
is used as a public identifier, which shall therefore be non-tamperable.
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Fig. 1. The three dimensions involved in the PUFs entropy metrics
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Fig. 2. Illustration of the PUF repetitive usage, involved in the PUF steadiness metric

A third use-case consists in device authentication. This application is
demanding more security than the plain identification, as the protocol shall
be protected against replay attacks. Therefore, in this use-case, a subset of
PUF’s challenges and responses is saved and this whitelist enables future
interactive attestation that the device is genuine. The scenario is referred to
as challenge-response protocol (CRP).

Yet a forth use-case consists simply in generating randomness: this can
consist in the replacement of an unavailable true random number generator,
or for a source of random numbers, which can be reseeded (as if srand(0)
is called before a sequence of several rand() in a software implementation).
For this purpose, a list of selected challenges is queried, and the associated
responses are taken as random source unique to the device under consideration.
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2.4 PUF life-cycle

The usual steps involved in the life-cycle of a PUF are depicted in Fig. 3 for the
exemplar use-cases presented in Sec. 2.3. The design must first be realized, and
then it is sent to the silicon foundry for fabrication. Most PUFs are becoming
unique as soon as they are fabricated. However, some PUFs are prepared by the
foundry, but must be “revealed” later on (like a photographic picture after expo-
sition). For example, the oxide rupture PUF [29] is not operational right after
fabrication, but becomes operational subsequent to some locking process. Be-
sides, some PUFs are not steady by nature, and for them to be of practical use,
their overall steadiness must be improved by removing those entropy sources
which are the less steady. This step consists in so-called helper data extraction.
At this stage, the PUF is ready to be used, except for the authentication proto-
col. Indeed, it requires first to register all challenge-response pairs which will be
used later on to attest of the PUF identity. All those steps are carried out in a
safe environment, typically the PUF designers factory, hence no risk of attacks.

From this stage on, the PUFs are deployed in their operational environment:
responses are gathered, to either build a key, an identifier (ID), a response to
compare to formerly registered challenge-response pairs in the case of authenti-
cation protocols, or responses for static entropy gathering. Notice that most of
the PUFs require a response correction step, which attempts to remove errors
in the responses when they are not reliable enough.

Notice that Fig. 3 presents optional steps (which can be removed for some in-
stances of PUF if they do not jeopardize security requirements) between braces.

< PUF  helper data> REhe WHETE e cases:
activation extraction use (correction)
> 1. CSP generation
optional use (correction) — PUF is confidential
preprocessing steps : —> 2. Device unfalsified ID
enrollment CRP (correction) ~ — PUF is public
> 3. Device authentication
use (correction) — CRP
> 4. Random source
Trusted facilities time — PUF queried for
multiple challenges

fabrication

Fig. 3. Life cycle of a PUF in four use-cases
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3 Security requirements

One of the virtues of the standardization process has been to clarify and to
unite the vision of PUFs, as diverse as they are. In particular, we account
in Sec. 3.1 for the symmetrical role of challenges and responses, and then
introduce in Sec. 3.2 a consistent list of security requirements which apply
equally to any PUF avatars.

3.1 Duality between challenges and responses

It has been highlighted earlier in Sec. 2.2 that the PUFs are varied in terms of
number of challenges and responses. However, there is a way to unify this notion,
by analyzing the tradeoff between number of challenges and of responses.

Actually, we would like to introduce a transformation from a PUF with
a given number of challenge and response bits into a PUF with other such
parameters. In this respect, we highlight a broader interpretation which allows
to derive a duality notion between response number of bits and challenge
number of bits. It is indeed possible to trade some response bits for some
challenge bits. Let us introduce here-after the transformation.

Sub-selection to trade large response bitwidth for short challenge bitwidth. Let
us model an SRAM by a module with no input (or equivalently, an input of 0
bitwidth), and an output word on 2" bits; notice that memories of maximum
capacity always contain a number of bits which is a power of 2, since the n-bit
address is fully decoded. Thus, the address bitwidth is zero® and the data read
out has a bitwidth of 2™ bits. The SRAM can also be seen as two memories
of 2"~ bits each, or four memories memories of 2”2 bits each, etc. Those
tradeoffs are illustrated for n =8 in Fig. 4. The table 1 explains how such
tradeoffs work in general.

Actually, most SRAM modules are already partitioned in banks, hence
the contents of Fig. 4 is fairly natural. For instance, for small sizes, it is not
uncommon to have so-called cuts of RAM of 32 bytes, that is 5-bit addresses
and data out on 8 bits. This is the equivalent of a memory with no address
and size 8x2°=2% i.e., with 256 data (single bit) outputted.

A similar situation is encountered for Look-up-Tables (LUTS) or Block
RAMs (BRAMs) in FPGAs, which can have multiple form factors. See the
example depicted in Fig. 5 of a 4-LUT (memory of 4 input bits and 1 output
bit) which is equivalent to two 3-LUT.

2 To be accurate, there is thus 2° =1 input, which is consequently constant.
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Fig. 4. Transformation of 0-bit address (challenge) with 2"-bit unique output data (response)
into equivalent i-bit challenges with (2"7*)-bit responses, for i€ {0,1,2} and for n=8

Table 1. Tradeoff between challenges (addresses) and response number of bits per input for
an SRAM-PUF

Number of inputs|Number of outputs
1=2° 2"

2= 21 2n7 1

4= 22 2n—2

2" 1=2°

A B c D

E— Kl
o EN—
E— Il
m—— KN
B Kl
— E— KR
LUT-Mask s o

- m -
| R K
E— Kl
B El—
E— N
- L —
o o —
E— I
m— EN—

Fig. 5. Architecture of a 4-LUT, equivalent to two 3-LUTS (diagram courtesy of Altera [5])
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Repeating to trade numerous challenges for short responses. Let us model an
arbiter-PUF [19] by a module with an input of n bits and a single-bit response,
which can be seen as a word on 1 (=2°) bit. The challenge is seen as an integer
¢ comprised between 0 and 2" —1 and the response r is seen as an integer

comprised between 0 and 1. Challenges drive conditional switches (7 {S:), and
responses are produced by an arbiter, as fair as possible, e.g., using an RS-latch:
Q

. —> S Q
arbiter — = <— 1
> - o1 5@

The figure 6 for i€{0,1,2} shows how to turn this mono-bit response PUF
into an equivalent PUF with challenges on (n—i) bits and responses on 2° bits.
Notice that this figure represents a sequential protocol, where the same n-bit
arbiter-PUF is called 2! times in a row. The resulting quantitative tradeoff
is given in Tab. 2.

(==t

v
~oro |l

——oo |t

Table 2. Tradeoff between challenges (addresses) and response number of bits per input for
an arbiter-PUF

Number of inputs|Number of outputs
2" 1=2°
A 2=2!
2n? 4=2%
1=2° 2"

Summary of the duality between response number of bits and the number of
challenges. For both SRAM-PUF and arbiter-PUF, the trade-off between
the number of bits in the challenge and in the response are linked with the
following conservation rule:

’ #challenge x #response =volume =2". ‘

The constant 2™ is an intrinsic property of the PUF. It stays unchanged as
its “aspect ratio” is changing in terms of number of bits of inputs (challenges)
traded for number of bits of output (responses). This highlights that the
constant 2" can be referred to as the volume (or the surface) of the PUF.
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Fig. 6. Transformation of n-bit challenge with 1-bit response into equivalent (n —7)-bit
challenges with 2°-bit responses, for i €{0,1,2}

The same equation can be seen additively, as:

’ log, (#challenge)+log, (#response) = #challenge bits+#response bits=n.

The figure 7 summarizes this law, which takes into account behaviors of Tab. 1
and 2.
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Fig. 7. Hlustration of the duality between number of bits in challenges and in responses

3.2 List of metrics (security requirements)

The definition and the explanation of security requirements for PUF5s are given
here-after:

— Steadiness®: it is a measurement of stability of PUF responses in time.
This metric can be seen as a safety requirement. However, PUFs with
unsteady responses could be prone to prediction attacks (if the response
is very biased) or to related keys attacks.

— Randomness: it assesses how unpredictable are PUF responses when
considering a collection of response bits under all the possible challenges.
The obtained intra-PUF' bitstring shall be, ideally, unpredictable. Such
security requirement attests of the PUF unclonability.

— Uniqueness: it estimates how different are any two pairs of different PUFs.
This inter-PUF metric is required to quantify in which respect the fab is
unable to generate clones of PUFs.

— Unpredictability: it estimates how hard it is to predict the responses of
an (n+1)™ PUF knowing all previous n instances. This metric relates to
randomness, but is more pragmatic as it involves machine learning or ad
hoc tests.

— Unclonability: this metric makes sure no easy exploitable bias exist in
the PUF architecture, by design. The goal of this security requirement is
to validate for the absence of trap or backdoor in the PUF rationale.

3 Notice that steadiness is a word reserved for stability of a given PUF response
corresponding to a fixed challenge. The synonymous terms reliability, reproducibility and
stability are not preferred. In particular, “reliability” is discarded as it would make some
confusion regarding the metric related to the yield in the CMOS manufacturing processes.
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Impact of input and output bits duality on the PUF metrics. As shown in
Sec. 3.1, the same metric can be used to measure the randomness with re-
spect to challenges (aka diffuseness) and with respect to response bits (aka
unpredictability ). Therefore, trading bits of challenge for bits of response, or
vice-versa, does not affect the properties of the PUF. We say that the trans-
formation of PUF form-factor change is iso-metric, i.e., it does not modify its
randomness metric. Thus, the transformation is safe, and can be applied at
the convenience of the user without compromising the randomness of the PUF.
We say that randomness consists in computing entropy “in the C-B plane”.

4 Tests and evaluations

The security requirements defined in Sec. 3 have some value only provided
one has a means to attest that a device indeed implements them. There are
two methods to do so: test and evaluation.

In testing philosophy, an automatic procedure is launched to check each and
any security requirement. This allows for fast and reproducing checking. How-
ever, subtle issues (e.g., corner cases, weak vulnerabilities, problems not covered
by the test suite, etc.) could inadvertently pass successfully through the test.

This explains why testing is complemented by the evaluation philosophy.
Evaluation is conducted by an expert, who attempts to think out-of-the-box in
a view to derive attacks. This expert defines a couple of attack paths, performs
a quotation (i.e., scores which reflect the cost of the attacks) for them, selects
and realizes the attack of lowest quotation.

4.1 'Well established tests

The tests base themselves on a metric. For the tests to be consistent even in
heterogeneous conditions, the metric must be generic. The idea is that the
metric must suit to a variety of PUFs.

Entropy is a metric which can compare data of various nature. The
output of discussions at standardization committee meetings is to use this
very same metric for different security requirements. The method is termed
“multiple data, one same metric”. This enables consistency within metrics,
and simplifies the test of security requirements. Notice that the entropy for the
steadiness is simply H2(BER) = —BERIlog, BER — (1 —BER)log,(1 —BER),
where BER is the bit error rate. The BER is laying between 0 and 1, and its
value can be interpreted as follows:

— when 0<BER < 1/2, the bit is most of the time correct;
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— when 1/2 < BER < 1, the bit is most of the time incorrect — it behaves
the same as if the bit is actually inverted, with BER, corresponding to the
previous case (0<BER < 1/2);

— when BER =1/2, the PUF is actually a perfect TRNG (True Random
Number Generator).

Therefore, in practice, it is assumed that 0 < BER < 1/2. As the function
p+> Ha(p) is strictly increasing on interval [0,1/2[, it is equivalent to minimize
the entropy H2(BER) and to minimize the BER itself.

Remark 1. Notice that metrics different from entropy might be misleading.
For instance, measuring the randomness by average Hamming distances can
hide some weaknesses in terms of security level. For instance, as a motivating
example, let us consider the following 8-bit responses to three challenges:

— RI1: (10101100)s

— R2: (01101100),
— R3: (10100011),

Those responses are balanced (bitstrings with as many Os as 1s). But their
Hamming distances (dg) are not balanced, since:

— du(R1, R2) =2,
— du(R2, R3) =6,
— dy(R3, R1) =4.

However, the average Hamming distance is (2+6+4)/3 =4, which might
give a false confidence that responses to different challenges are “independent”
(random).

Only one security requirement cannot be tested, namely physical unclonability.

4.2 Well established evaluations

Evaluation is required for those security requirements which cannot be tested,
because they cannot be decided based on measured data. This happens for
requirements which are “negative”™ this means that the security requires not
to verify a property.

This holds for instance for “unclonability”. One aspect of unclonability
could be termed “supervised” unclonability: the attacker manages to predict
responses from unseen challenges, after having seen enough responses from
known challenges. This metric, termed mathematical unclonability, can be
estimated as the entropy in the C-B space, hence can be turned into a test.

However, physical unclonability, consists in evaluating the difficulty of
fabricating a PUF that has the same CRPs as a specific PUF. This task can
only be achieved by a thorough qualitative analysis of the PUF design.
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4.3 Further tests and evaluations

The tests described in Sec. 4.1 and the evaluations described in Sec. 4.2 are nat-
ural. Still, some more “specialized” (if not bespoke) methods can be leveraged
for challenging more drastically the security requirements.

Regarding tests, entropy can also be characterized (instead of estimated) by
some testsuites (e.g., DieHard [16], NIST FIPS 140-2 [25], FIPS SP 800-90 [15],
FIPS SP 800-22 |22], BSI AIS31 [11], ISO/IEC 18031 [10] and companion
20543 project [11], etc.). This has been suggested already by several papers,
such as [21,7]. Still, it is important those tests adhere to the principle: multiple
data, one same testsuite

Still regarding tests, machine learning (ML) of challenge and response
pairs has been shown to be able to predict with good accuracy responses
from unseen challenges [21]. Thus, the general-purpose entropy metric can be
traded for crafted tools, e.g., using ML, or any taylored distinguisher. Still,
for consistency reasons, this analysis shall adhere to the principle: multiple
data, one same distinguisher. For the sake of clarification, the equivalent of
randomness when trading entropy for ML tools is referred to as unpredictability
(or alternatively: mathematical unclonability).

4.4 Conclusion on tests and evaluations

The current statu quo on tests and evaluations is recalled in Tab. 3.

The steadiness is evaluated by the entropy of BER, and shall be minimized.
The corresponding test would be to check for the balanced, that is situations
where BER ~ 1/2. However, for PUFs, the ideal situation is when BER &0,
therefore classical tests are ignored.

On the contrary, randomness and uniqueness can rely on tests since their
entropy metric shall be maximized. Regarding ML test, we expect that:

— high entropy goes hand in hand with passing of all tests and failure of ML
— low entropy goes hand in hand with failing of all tests and success of ML
— intermediate situations might exist, such as machine learning to succeed,
but still high entropy; though, in this case, one expects the entropy to be still
less than expected (e.g., 127 instead of 128 for a randomness on 128 bits).

Each metric is thus related to entropy. The entropy can be estimated, albeit
with limited precision, since a PUF can only be queried a finite number of
times. Therefore, it is reassuring to employ for PUF metrics estimations of
abstract random metrics, through stochastic models (see e.g., |23] for steadiness
and [24] for entropy metrics).
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Table 3. Current statu quo on relevant tests and evaluations for PUFs

Mathematical tests Rationale
Metric (with data) evaluation
Entropy ‘ Tests ‘ ML | (without data)

Steadiness Entropy in T dimension | NO | NO NO
Randomness Entropy in B-C plane YES | NO NO
Uniqueness Entropy in D dimension | YES | NO NO
Unpredictability NO NO | YES NO
Unclonability* NO NO | NO YES

T Unpredictability is also called mathematical unclonability
 Unclonability is also called physical unclonability

5 Conclusions

The standardization process on PUFs has allowed to clarify security require-
ments. For instance, diffuseness (variability in the dimension of the challenges)
and unpredictability (variability in the dimension of the response bits) are
related requirements, which both concern the randomness of one instance of
the PUF at one instant of time. Besides, diffuseness is not suitable for PUFs
without challenges, where the unpredictability is irrelevant for those PUFs with
only one bit of response. Our analysis has showed that a notion of randomness
can encompass both diffuseness and unpredictability, thereby solving the case.
Besides, we showed how randomness can be addressed both by a metric and
machine learning tools.
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