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UNIQUE ERGODICITY FOR INFINITE AREA
TRANSLATION SURFACES

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. We consider infinite staircase translation surfaces with
varying step sizes. We show that for typical step sizes, up to scal-
ing, the translation flow has a unique invariant, non-atomic, er-
godic Radon measure in almost every direction.

1. Introduction

One of the most fundamental results in the theory of (compact)
translation surfaces is the theorem of Kerchoff, Masur and Smillie which
states that the geodesic flow on any compact translation surface is
uniquely ergodic in almost every direction [KeMaSm]. The importance
of this result is such that there are several articles explaining the proofs
[Ar, GoLa, Mo] as well as [MaTa]. Since the result holds for all trans-
lation surfaces, it holds for translation surfaces arising from billiards in
rational polygons.

In the past decade there has been intensive study of translation
surface and polygonal billiards with infinite area. In particular, re-
search has concentrated on trying to understand if the ergodicity con-
clusion of the Kerchoff, Masur, Smillie theorem holds. There are ex-
amples of infinite billiard tables/translation surfaces which are not er-
godic in almost every direction with respect to the natural invariant
area measure [FrUl, FrHu], and others which are ergodic in almost
every direction with respect to the natural invariant area measure
[HoHuWe, HuWe, MSTr2, RaTr] (see also [FrUl1] for some partial re-
sults in this direction); some of these examples are shown in Figure 1.
There is a special class of (compact) translation surfaces called Veech
surfaces, on a (compact) Veech surface each minimal direction is in
fact uniquely ergodic [Ve1][Ve2]; and thus one might think that they
are natural candidates for unique ergodicity in infinite area as well.
This is not the case, it turns out that for the only known Veech exam-
ple of an infinite area translation surface, the translation flow has many
ergodic invariant Radon measures in almost every direction [HoHuWe].

The project leading to this publication has received funding from Excel-
lence Initiative of Aix-Marseille University - A*MIDEX and Excellence Labora-
tory Archimedes LabEx (ANR-11-LABX-0033), French "Investissements d’Avenir"
programmes.
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Figure 1. Periodic translation surfaces formed by iden-
tifying opposite sides. The first two are ergodic in almost
every direction [HoHuWe, RaTr], while for the third the
set of ergodic directions has measure 0 [FrUl].

Hooper has classified the invariant measures of the translation flow in
many direction for certain other examples [Ho].

Our main result is that there are many infinite area translation sur-
faces for which the area measure is the unique (up to scaling) invariant
ergodic Radon measure for the translation flow in almost every direc-
tion. We present our result in the specific setting of infinite staircases
(Theorem 2). In fact our proof shows that the generic staircase satis-
fies this unique ergodicity result. The strategy of the proof is based on
the approximation techniques first developed for polygonal billiards in
[KaZe] to prove topological transitivity, and then in [KeMaSm, Vo] to
prove ergodicity of generic billiards. Here we refine these techniques to
prove a kind of unique ergodicity rather than just ergodicity. We re-
mark that unique ergodicity has been observed for non-compact trans-
lation surfaces of finite area by Hooper [Ho], however in this case we
have classical finite measure unique ergodicity.

2. Definitions and main results

2.1. Ergodic theory. Let T be a measurable map on a measurable
space (Ω,B), and suppose µ is a σ-finite measure on (Ω,B) s.t. µ(Ω) =
∞. We say that µ is invariant, if µ(T−1(E)) = µ(E) for all E ∈ B.
We say that µ is ergodic, if for every set E ∈ B such that T−1(E) = E
either µ(E) = 0 or µ(Ω \ E) = 0.

Suppose Ω0 is a locally compact second countable metric space with
Borel σ-algebra B0. Let Cc(Ω0) := {f : Ω0 → R : f continuous with
compact support}. A regular Borel measure µ on Ω0 is called a Radon
measure, if µ(C) <∞ for every compact set C ⊂ Ω0,

We will need to deal with Borel maps T which are only defined on a
subset Ω ⊂ Ω0 with Ω ∈ B0.

Let B := {E ∩ Ω : E ∈ B0}. A measure µ on (Ω,B) is called locally
finite, if µ0(E) := µ(E ∩ Ω) is a Radon measure on (Ω0,B0).

Note that the null measure will never be considered.
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2.2. Staircases. A staircase translation surface or simply a staircase
is a translation surface obtained by gluing an enumerated, ordered, col-
lection of same size rectangles, say 2 by 1, all of whose sides are parallel
to the coordinate axes in the following way. We place a rectangle in
the plane with the center of the rectangle at the origin, label it as the
0th rectangle. The bottom of the first rectangle will intersect the top
of the 0th rectangle with length of intersection w0 ∈ (0, 1). Choosing
a sequence w := {wi ∈ (0, 1) : i ∈ Z}, we continue this procedure
inductively to produce a staircase like collection of rectangles. Then
we identify opposite sides of the staircase to form a translation surface
which we will call Sw (see Figure 2). Note that corners of the rectangles
give rise to conical points. Every such corner, considered as a point on
the staircase surface, is a conical point with angle 6π.

The set of all staircases is then coded by the set (0, 1)Z. We consider
the product topology on this space, its closure is [0, 1]Z, a Baire space.
In the proof we will also consider parameters w ∈ [0, 1]Z. In the case
wn = 0 for some n, after removing the singular points Sw is not con-
nected. These non-connected staircases will play a very important role
in the proof.

Fix a direction θ and consider the translation flow ψθt = ψω,θt on the
surface Sw. It will be convenient to use the section of this flow defined
by intersecting Sω with the collections of lines y = n where n ∈ Z,
we identify this section with the set X := Z × [0, 2). Note that in Sω
the points 0 and 2 are identified, thus each set {n} × [0, 2) ⊂ X is
a circle. After the identification, the set X does not depend on the
parameter ω, but sometimes we need to emphasize the nature of this
sets as phase spaces for dynamical systems, we will then write Xω. Let
XN = Xω,N ⊂ Xω denote the set XN := {−N + 1, . . . , N} × [0, 2).
Likewise, the sets do not depend on the direction θ chosen, when needed
for clarity we write Xθ or Xω,θ.

Let T θ = T ω,θ be the first return map of the flow ψθt to the section
X. Note that T θ preserves the length measure µ, and that this measure
is an infinite measure.
Proposition 1. For any ω such that lim infi→±∞wi = 0, (T ω,θ, X, µ)
is a conservative system for all θ.

This proposition is closely related to results in [Tr, MS, MSTr1,
MSTr2]. We still provide a proof for completeness (§4.1). We remark
that the set of ω satisfying this condition is a Gδ set.
Theorem 2. There is a dense Gδ subset G of [0, 1]Z and a dense Gδ

set of full measure of directions Θ, such that for each w ∈ G, we have
w ∈ (0, 1)Z and, up to scaling, µ is the unique T θ-invariant, non-
atomic, ergodic Radon measure, for every θ ∈ Θ.

It follows that, up to scaling, the area measure is the unique ψθt -
invariant ergodic Radon measure, for every θ ∈ Θ.
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Figure 2. The staircase, opposite sides are identified.
The section X consists of the dashed lines in the middle
of the rectangles.

2.3. Comparison to other definitions of unique ergodicity. In
his survey article [Sa] Sarig defines two notions of unique ergodicity in
the infinite measure setting which are stronger than the one we prove.

A point x ∈ Ω is called generic for µ if for all continuous f, g with
compact support such that g ≥ 0 and

∫
g dµ > 0 we have∑`

k=0 f
(
T k(x)

)∑`
k=0 g

(
T k(x)

) → ∫
Ω
f(y) dµ(y)∫

Ω
g(y) dµ(y)

.

Sarig calls a map T uniquely ergodic if (1) up to scaling, T admits a
unique Radon invariant measure not supported on a single orbit; and
(2) every point is generic for this measure.

This strong version of unique ergodicity does not hold in either of
our settings. In fact, in [MSTr1] we showed that the existence of non-
recurrent points, this result holds in all the settings we consider here,
thus (2) can not hold.

Sarig calls a map T uniquely ergodic in the broad sense if (1) up
to scaling, T admits a unique Radon ergodic invariant measure not
supported on a single orbit; and (2) every non-exceptional non-periodic
point is generic for this measure (see [Sa]).

Here a point x is called (forward) exceptional for a map T if the
measure

∑
n>0 δTn(x) is locally finite, where δy denote the point mass

at y.
We do not know if the proof of Theorem 2 can be strengthened to

show unique ergodicity in the broad sense.

3. Proof of the staircase result

Proof of Theorem 2. Throughout the proof we will occasionally
confound the parameter ω with the staircase Sω.
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The strategy of the proof is as follows: we choose a dense set {Sωi} of
staircases which satisfy the goal dynamical property of unique ergodic-
ity in almost every direction on compact sets which exhaust the stair-
case. The parameter of these staircases will satisfy ω ∈ [0, 1)Z \ (0, 1)Z.
Then we will show that staircases which are sufficiently well approxi-
mated by this dense set will satisfy the goal dynamical property on the
whole phase space.

A staircase Sω is N-ringed if wN = w−N = 0 and wj 6∈ {0, 1} for all
|j| < N (the terminology ringed comes from the corresponding topolog-
ically more complicated definition for wind-tree configurations which
we used in [MSTr1, MSTr2, MSTr3]). We will consider the dynamics
on the set XN , i.e., inside the ring, the set X \XN plays no role in our
proof.

Let {ωi} be a dense set of parameters such that each Sωi is an Ni-
ringed configuration, with Ni increasing with i.

By [KeMaSm] the translation flow is uniquely ergodic (in the classi-
cal finite measure sense) in almost every direction inside the ring, and
thus the map T ωi,θ|XN is also uniquely ergodic in almost every direc-
tion. To transfer this finite area unique ergodicity to sufficiently well
approximable generic staircases, we suppose that δi are strictly positive
numbers and consider the dense Gδ set

G :=
∞⋂
m=1

∞⋃
i=m

Uδi(ωi)

where Uδ(ω) denotes the set of all parameters ω′ such that |ω′j−ωj| < δ
for 1 ≤ j ≤ 1/δ. Note that each such Uδ(ω) is open in the product
topology. We will show that the δi can be chosen in such a way that G ⊂
(0, 1)Z (i.e., the staircases in G are connected), and all the staircases in
G have a unique (up to scaling) Radon T θ-invariant ergodic measure for
all θ ∈ Θ, where Θ is a Gδ set of full measure that will be constructed
in the proof.

The first requirement on δi is that 1/δi > Ni, thus all configurations
in Uδi(ωi) will be close to the part of ωi inside the ring.

For each N ∈ N let

{h+N
j : XN → R}j≥1

be a countable collection of continuous, strictly positive functions which
are dense with respect to the sup norm in the set of all continuous
non-negative functions. We choose an enumeration {h+

n }n≥1 of the set
HN0 := ∪n≥1,N≥N0{h+N

n }. We can think of each h+
n as a function with

compact support defined on X. In our proofs we will identify the space
X with X × {θ} and thus can think of h+

n as defined on X × {θ}.
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By construction, each of the collections HN0 is dense with respect
to the sup norm in the set of all continuous compactly supported non-
negative functions on X. Hence this collection is also dense in the set
of all continuous non-negative functions on X.

We consider a second collection of continuous, positive functions.
For each N ∈ N let

{hNn : XN → R}n≥1

be a countable collection of continuous, positive functions which are
dense with respect to the sup norm in the set of all continuous non-
negative functions, satisfying the following additional assumption. Let
Y := {Yi} be an enumeration of compact intervals in X which have
rational endpoints. We assume that the collection {hNn } satisfies that
for each Yi ∈ Y such that Yi ⊂ XN and ε > 0 we can find a hNj
taking values in [0, 1] and intervals Y 1

i ∈ Y and Y 2
i ∈ Y satisfying

Y 1
i ⊂ Yi ⊂ Y 2

i ⊂ XN such that the function hNj is identically equal
to one on Y 1

i and identically equal to zero on (Y 2
i )c and the total

length of Y 2
i \ Y 1

i is at most ε. We choose an enumeration {hj}j≥1

of the set ∪j,N{hNj }. Again we think of each hj as a function with
compact support defined onX. By construction, this collection is dense
with respect to the sup norm in the set of all continuous non-negative
functions on X.

Fix a surface Sω, a direction θ ∈ S1, a point z ∈ X, and (j, n) ∈ N2.
Consider the Hopf average

Hω,θ
j,n,`(z) :=

∑`
k=0 hj

(
(T ω,θ)k(z)

)∑`
k=0 h

+
n

(
(T ω,θ)k(z)

) .
Our strategy is to study unique ergodicity via Hopf averages. We

start with the ringed configuration ωi. We consider the Hopf averages
of a finite subcollection of the {hj, h+

n } and the times `i where these
averages almost converge. We will show that for a small perturbation
Sω of Sωi , for many directions, for each point z either the forward or
the backward orbit segment of length `i stays close enough to a good
orbit on Sωi to control the Hopf averages on Sω. Since for a dense
Gδ this behavior happens on infinitely many scales, we can conclude
that the forward or the backward Hopf average converges to the ratio
of the integrals with respect to Lebesgue measure. Then we apply the
following criterion for unique ergodicity.

Remember that µ is the length measure on X.
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Lemma 3. Fix ω ∈ (0, 1)Z, θ ∈ S1. Suppose that there exists an in-
creasing sequence `k tending to infinity such that for each z ∈ X either

lim
k→∞

Hω,θ
j,n,`k

(z) =

∫
X
hj(y) dµ(y)∫

X
h+
n (y) dµ(y)

∀(j, n) ∈ N2 or

lim
k→∞

Hω,θ
j,n,−`k(z) =

∫
X
hj(y) dµ(y)∫

X
h+
n (y) dµ(y)

∀(j, n) ∈ N2,

then, up to scaling, there exists at most one conservative, T ω,θ-invariant,
non-atomic, ergodic, Radon measure; if it exists it is the measure µ.

Proof. Suppose thatm is a conservative, T ω,θ-invariant, ergodic Radon
measure. Thus there is an N0 such that m(XN) > 0 for all N ≥ N0.
All the functions h+

n will be chosen from HN0 . Fix n, by assumption,
h+
n is strictly positive on some XN , so we have

∫
X
h+
n (y) dµ(y) > 0 and∫

X
h+
n (y) dm(y) > 0. By the Hopf ergodic theorem, for every j ∈ N

and m-a.e. z ∈ X we have

lim
`→∞

Hω,θ
j,n,`(z) = lim

`→∞
Hωi,θ
j,n,−`(z) =

∫
X
hj(y) dm(y)∫

X
h+
n (y) dm(y)

.

But by the assumptions of this lemma, this number must coincide with∫
X hj(y) dµ(y)∫
X h+

n (y) dµ(y)
. Thus for each j ∈ N we have

(1)
∫
X

hj(y) dm(y) = C

∫
X

hj(y) dµ(y)

with

C =

∫
X
h+
n (y) dm(y)∫

X
h+
n (y) dµ(y)

.

Consider any compact interval Y := {k} × Ŷ ⊂ X. We apply the
triangle inequality.

|m(Y )− Cµ(Y )| <(2) ∣∣m(Y )−
∫
X

hj(y) dm(y)
∣∣+∣∣ ∫

X

hj(y) dm(y)− C
∫
X

hj(y) dµ(y)
∣∣+∣∣C ∫

X

hj(y) dµ(y)− Cµ(Y )
∣∣

=: I + II + III.

Equation (1) tells us that II = 0.
By the assumptions on the collection {hj} for each n > 0 there is a

hjn taking values in [0, 1] with intervals Y 1
n ⊂ Y ⊂ Y 2

n such that hjn = 1
on Y 1

n , hjn = 0 on (Y 2
n )c and µ(Y 2

n \ Y 1
n ) < min(ε/C, 1/n). Thus for

each jn we have III < ε. We can assume without loss of generality
that Y 1

n ⊂ Y 1
n+1 and Y 2

n ⊃ Y 2
n+1 for all n ≥ 1.
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But ∪n≥1Y
1
n = ∩n≥1Y

2
n = Y , so ∩n≥1 (Y 2

n \ Y 1
n ) = ∂Y . Since ∂Y

consists of 2 points only and m is non-atomic, we have m(∂Y ) = 0,
thus lim

n→∞
m (Y 2

n \ Y 1
n ) = 0. Thus for n large enough, we have and

m(Y 2
n \ Y 1

n ) < ε and thus I < ε. Combining the above facts yields
|m(Y ) − Cµ(Y )| < 2ε, since ε > 0 and Y are arbitrary we conclude
that m = Cµ. �

Notice that in the above lemma, the only rigidity we proved is with
respect to conservative ergodic measures. But, the only T ω,θ-invariant
ergodic measure on X which are not conservative, are measures sup-
ported on a single, bi-infinite non-periodic orbit of T ω,θ. Such a measure
is not a Radon measure if the bi-infinite orbit is dense because every
neighborhood is visited an infinite number of times.

Proposition 4. If the assumptions of Lemma 3 are verified, then up
to scaling, the length measure µ is the unique T ω,θ-invariant, ergodic
Radon measure.

Proof. Fix a point z and an open set U with compact support. Choose
a function hj in our family whose support is a subset of U . Fix an h+

n .
Then by Lemma 3 for k large enough either Hω,θ

j,n,`k
(z) or Hω,θ

j,n,−`k(z) is
strictly positive; in particular the bi-infinite orbit of z has visited the
set U . �

Thus for our proof we need to construct a set of directions Θ and
show that for every ω ∈ G the convergence suppositions of the Lemma
hold for θ ∈ Θ, and all (j, n) ∈ N2.

Recall that the surfaces Sωi areNi ringed. Let Ji ∈ N be the maximal
J ∈ N such that for all 1 ≤ j ≤ J the support of hj is contained in
XNi , i.e., inside the the ring of Sωi . Let Ji := {1, . . . , Ji}2. Notice that
Ji+1 ≥ Ji and that limi→∞ Ji =∞.

For each i let Ai be the set of directions for which the map T ω
i,θ

is uniquely ergodic when restricted to XNi . By [KeMaSm] the set Ai
is of full measure. We additionally assume that Ai does not contain
a saddle connection direction, this removes an at most countable set
from the set of uniquely ergodic directions. Let γi > 0 be a sequence
tending to 0 and fix i. We apply the Corollary 8 of the appendix on
the uniform convergence of Hopf averages to any ωi, θ ∈ Ai, (j, n) ∈ Ji
to conclude that there is an ̂̀which depends on i, θ, j, n such that

(3)
∣∣∣Hωi,θ

j,n,`(z)−
∫
X
hj(y) dµ(y)∫

X
h+
n (y) dµ(y)

∣∣∣ < γi

for all ` ≥ ̂̀and all z ∈ XNi (except those z whose orbit hits a singular
point before time `). Choose ̂̀ sufficiently large so that (3) holds for
all (j, n) ∈ Ji; note that ̂̀depends only on θ ∈ Ai and i.



UNIQUE ERGODICITY FOR INFINITE AREA TRANSLATION SURFACES 9

Next we uniformize this estimate to a large set of directions. We
choose `i ≥ Ni and sets Bi ⊂ Ai ⊂ S1 so that λ(Bc

i ) < γi and ̂̀(i, θ) ≤ `i
for all θ ∈ Bi. Consider the finite set of saddle connections of length
at most 2`i, and a small open neighborhood of this set. By choosing
the open set very small and modifying Bi we can additionally assume
that it does not intersect this neighborhood.

Now we would like to extend these estimates to the neighborhood
Uδi(ωi) for a sufficiently small strictly positive δi. We will impose vari-
ous conditions on δi in an incremental way. The first requirement is

A0 δi < min{ωij : −ni < j < ni}.
This requirement ensures that for all ω ∈ Uδi(ωi) we have ωj > 0 for
all −ni < j < ni which will ensure that the tables in the dense Gδ set
G are connected.

We will explicitly state the next three requirements, A1 - A3 for
forward orbits, the analogous requirements are also assumed for back-
ward orbits, but will not be stated explicitly. Our goal is now to define
a small neighborhood Ci of Bi, and then a large open subset Di of Ci,
and for each θ ∈ Di to define a map ζ+ = ζ+(ωi, ω, θ) defined on a large
subset of XNi (for ω) onto XNi (for ωi) which is close to the identity,
and a map ζ− satisfying similar conditions. The + maps will control
the future behavior of orbits, the − map will control the past. In one
of our first articles on the Ehrenfest model where we studied ergodic-
ity [MSTr2] it was sufficient to use the identity map for the maps ζ±.
In our article on infinite ergodic index [MSTr3] we we have defined a
related map, but the form of the map considered in that article is not
adapted to the study of unique ergodicity.

··

···

···

··

Figure 3. The set Σωi,θ,Ni .

To define ζ+ for a direction θ ∈ Bi which has no saddle connection
shorter than 2`i, we develop the argumentation when θ ∈ S1 is in
the interior of the first quadrant, and leave to the reader to derive
the corresponding formulas for θ in the other quadrants. Consider the
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··

···

···

·· ·· · ·

·

··

·· ·

·

·

· ·

·

·

····

Figure 4. Partition of XNi into sets of continuity of (T ω
i,θ)`i .

finite collection of points

Σωi,θ,Ni :=
{

(k, j − 1/2 tan(θ)) : j ∈ {ωik−1, 2− ωik, 2}
}
∩XNi

(see Figure 3). Σωi,θ,Ni consists of the points inside the ring for which
the trajectory hits a singularity before hitting the next cross-section.

All the points in Σωi,θ,Ni are distinct except for the pair of points
{Ni} × {2− 1/2 tan(θ)} and {Ni} × {2− ωiNi − 1/2 tan(θ)} which are
the same point since ωiNi = 0, as well as the pair of points {−Ni +
1} × {2− 1/2 tan(θ)} and {−Ni + 1} × {2− ωi−Ni − 1/2 tan(θ)} which
are the same point since ωi−Ni = 0. We call such a point z a blocking
point. Here, and at the discussion below, it’s worth to recall that for
each integer k, {k} × [0, 2) is a circle and we will always consider the
coordinates of the circle modulo 2.

Consider the collection of points

Σ̂ωi,θ,Ni := {(T ωi,θ)−jz : j ∈ {0, 1, . . . , `i} and z ∈ Σωi,θ,Ni}.

Any point in this set corresponds to a unique j ∈ {0, . . . , `i} and a
unique z ∈ Σωi,θ,Ni . This set partitions XNi into a finite number of
open intervals, {Iω

i,θ
j }, such that on each of these intervals the forward

map (T ω
i,θ)`i is continuous (see Figure 4). This partition can be defined

more generally than for θ ∈ Bi, it makes sense as soon as as there are no
saddle connections of length at most 2`i. Thus for θ ∈ Bi and a small
enough neighborhood U(θ), each interval Iω

i,θ′

j varies continuously with
respect to θ′ ∈ U(θ). Moreover we assume that each Bi avoids a small
fixed neighborhood of the (finite) collection of saddle connections of
length at most 2`i in XNi .

Let ηi(θ) > 0 be the minimum of the lengths of the intervals Iω
i,θ′

j .
Let

Ci :=
⋃
θ∈Bi

U(θ).
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By assumption the set Ci avoids a small neighborhood of the collection
of saddle connections of length at most 2`i in XNi .

We naturally extend the definition of the function ηi(·), originally
defined on Bi, to the larger set Ci, it is a continuous function of θ.
We additionally suppose that U(θ) is sufficiently small so that η(θ′) >

ηi(θ)/2 for all θ′ ∈ U(θ). In particular all the intervals Iω
′,θ′

j maintain
positive length. By construction Ci is an open set containing Bi, thus
λ(Cc

i ) < γi. Furthermore, starting with (3), by continuity in θ we can
suppose that for all θ ∈ Ci we have

(4)
∣∣∣Hωi,θ

j,n,`(z)−
∫
X
hj(y) dµ(y)∫

X
h+
n (y) dµ(y)

∣∣∣ < 2γi.

for all ` ≥ ̂̀and all z ∈ XNi (except those z whose orbit hits a singular
point before time `).

We can do the same for backward orbits, we will choose `i to work
for forward and backward orbits. We will denote by Ci the open set of
directions satisfying both the forward and backward conditions.

For ηi > 0 consider the open set

Di := {θ ∈ Ci : ηi(θ) > ηi}.
Since the function ηi(θ) is strictly positive for every θ ∈ Ci, we

can choose a small number ηi > 0 such that the normalized Lebesgue
measure of the set Di is at least 1− γi. So for all θ ∈ Di the lengths of
all the intervals {Iω

i,θ
j } are at least ηi > 0.

··

···

···

·· ·· · ·

·

··

·· ·

·

·

· ·

·

·

····

·
·
·

···

Figure 5. The partition changes continuously, the
blocking points bifurcate.

Now we consider a configuration ω, not necessarily ringed, but close
to a ringed configuration. Assume now that θ ∈ Di and note that the
point (T ω,θ)−j(z) varies continuously with respect to ω close to ωi, for
any z which is not a blocking point for ωi.

If w is very close to wi such that ω±Ni 6= 0, then each of the two block-
ing points, {Ni}× {2− 1/2 tan(θ)} and {−Ni + 1}× {2− 1/2 tan(θ)},
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bifurcates into a pair of points for Sω. The bifurcated points create
two new intervals Ĩω,θ+ = {Ni} × (2− ωNi − 1/2 tan(θ), 2− 1/2 tan(θ))

and Ĩω,θ− = {−Ni + 1} × (2− 1/2 tan(θ), 2 + ω−Ni − 1/2 tan(θ)) in the
partition induced by the set Σw,θ (see Figure 5).

Then, if we consider the partition {Iw,θj } defined in a similar way as
the partition {Iω

i,θ
j }, we have at most 2(`i+1) new intervals {(T ω,θ)−j Ĩω,θ± :

j ∈ {0, . . . , `i}}. We call this collection of new intervals Iw,θ,Ni .
Let V ω,θ,Ni := ∪I∈Iw,θ,NiI be the union of all the intervals in the

collection {Iw,θj }. Since {Iω
i,θ

j } is in bijection with a subset of {Iω,θj }
(except for at most 2(`i + 1) new intervals) we can define an injective,
piecewise affine transformation ζ+ = ζ+,ωi,ω,n,θ from V ωi,θ,Ni to V ω,θ,Ni

that sends every Iω
i,θ

j affinely to the corresponding Iω,θj . Note that, for
ω sufficiently close to ωi, this piecewise affine transformation is close
to the identity.

The domain of ζ+ is V ωi,θ,Ni . For any interval Iw
i,θ

j the ζ+ map
could be extended by continuity from the inside to the boundary of
this interval. Let z be an extremity of this interval and let z′ by the
image of z obtained by the extension by continuity of ζ+ to z. The
point z′ is a boundary point of the interval ζ+(Iw

i,θ
j ) which is in the

collection Iω,θ,Ni . It is important to underline that the definition of the
map ζ+ guarantees that the time ` ≤ `i at which T ω,θ forward orbit
of z′ hits a singular point coincides with the time at which the T ωi,θ
forward orbit of z hits a singular point.

The map ζ+ is not defined on the set XNi \ V ωi,θ,Ni . In Figure 5
this set consists of all the boundary points described above which are
portrayed as dashed lines as well as the points in between the close blue
orbit segments which have bifurcated from a blocking orbit segment.
Except for the boundary points described above, the set XNi \ V ωi,θ,Ni

has no useful information for our proof.
Fix θ ∈ Di and suppose that ω is close enough to ωi so that the

bijection ζ+ is defined. Then we can define ηi(ω, θ) to be the infimum
length of all the intervals Iω,θj . For ω sufficiently close to ωi, for each
θ ∈ Ci, the function ηi(ω, θ) varies continuously with ω since the set
Ci does not contain any saddle connection directions of length at most
2`i. Let ηi(ω) := infθ∈Di ηi(ω, θ) ≥ 0. We have that ηi(ωi) = ηi(ω

i, θ0)

for some θ0 ∈ Di and thus ηi(ω) is locally a continuous function of ω.
By the definition of Di we have ηi(ωi) ≥ ηi, we require that
A1 δi is so small that ηi(ω) varies continuously with ω ∈ Uδi(ωi)

and ηi(ω) > ηi/2 for each ω ∈ Uδi(ωi).
We make the analogous assumption for the interval collections
arising from backward orbits and the analogous bijection ζ−

We require a further closeness condition on those orbits which we
can control.
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A2 We assume that δi > 0 is so small that for all ω ∈ Uδi(ωi), for
all z ∈ XNi for which ζ+ is defined, for all θ ∈ Di, we have∣∣Hω,θ

j,n,`i
(z)−Hωi,θ

j,n,`i
(ζ+(z))

∣∣ < γi.

Again we make the analogous assumption for ζ−.
In the proof we will only consider directions in Di, since we are

not able to control the Hopf averages in the complement. As already
mentioned, we also are not able to control the Hopf averages of the
forward orbits of points in XNi \ V ω,θ,Ni . Our main goal is to control
the backwards Hopf averages of such orbits.

A key point of the proof is that if θ ∈ Di, then for each z ∈ XNi

at least one of ζ+(z) or ζ−(z) is defined. To do this consider any
θ ∈ Di and the finite set Σ̂+ := Σ̂ωi,θ,Ni and the analogous set Σ̂−.
These two sets do not intersect, for if they did there would be a saddle
connection of length at most 2`i. Let ιi(θ) > 0 be the minimum of
the distances between pairs of points in these two collections and ιi :=
infθ∈Di ιi(θ). Since Ci avoids a neighborhood of the directions of the
saddle connections of length at most 2`i we have ιi > 0.

We define ιi(ω) in an analogous way.
A3 We assume that δi > 0 is so small that for each ω ∈ Uδi(ω

i)
ιi(ω) > ιi/2.

·

···

··· · ·

· · · ·
·
·

··· ·· ·

· · ·

Figure 6. Uncontrolled forward orbits do not intersect
uncontrolled backward orbits.

Fix i, by the triangle inequality, for any z ∈ XNi such that θ ∈ Di

and ζ+(z) is defined, we have∣∣∣Hω,θ
j,n,`i

(z)−
∫
X hj(y) dµ∫
X h+

n (y) dµ

∣∣∣ ≤ ∣∣∣Hω,θ
j,n,`i

(z)−Hωi,θ
j,n,`i

(ζ+(z))
∣∣∣

+
∣∣∣Hωi,θ

j,n,`i
(ζ+(z))−

∫
X hj(y) dµ∫
X h+

n (y) dµ

∣∣∣.
By A2, the first term is smaller than γi. Now we consider the second
term.
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By assumption θ ∈ Di and thus if the orbit of ζ+(z) does not hits a
singular point before time `, then (4) implies∣∣∣Hωi,θ

j,n,`i
(ζ+(z))−

∫
X
hj(y) dµ∫

X
h+
n (y) dµ

∣∣∣ < 2γi

for all 1 ≤ j ≤ i, and 1 ≤ n ≤ Ni. Combining with A2 we conclude∣∣∣Hω,θ
j,n,`i

(z)−
∫
X
hj(y) dµ∫

X
h+
n (y) dµ

∣∣∣ < 3γi

for all z where ζ+ is defined, with θ ∈ Di, for all (j, n) ∈ Ji, for all
ω ∈ Uδi(ωi) as long as the T ωi,θ forward orbit of ζ+(z) of length `i does
not hit a singular point. As already pointed out we can thus consider
points z ∈ XNi such that ζ+ is defined an the the T ω,θ forward orbit
of z of length `i does not hit a singular point.

We make the analogous estimate on the past∣∣∣Hω,θ
j,n,−`i(z)−

∫
X
hj(y) dµ∫

X
h+
n (y) dµ

∣∣∣ < 3γi

for all z where ζ− is defined, with θ ∈ Di, for all (j, n) ∈ Ji, for all
g ∈ Uδi(ωi) as long as the backwards orbit of ζ−(z) of length `i is
defined.

Using A3, since λ(Di) > 1−2γi, the direction set Θ = ∩∞M=1∪∞i=MDi

has full measure. Fix ω ∈ G and θ ∈ Θ, then there is an infinite
sequence ik such that ω ∈ Uδik (ωik) and θ ∈ Θik for all k. Since
Jik → ∞ we can conclude that for all z ∈ X with θ ∈ Θ, for each
j ≥ 1, for each n ≥ 1 either

lim
k→∞

Hω,θ
j,n,`ik

(z) =

∫
X
hj(y) dµ∫

X
h+
n (y) dµ

.

or

lim
k→∞

Hω,θ
j,n,−`ik

(z) =

∫
X
hj(y) dµ∫

X
h+
n (y) dµ

.

Proposition 4 finishes the proof of the theorem. �

4. Appendix

4.1. Conservativity of (T ω,θ, X, µ). Let T = T ω,θ. An (almost in-
variant) box sequence is an increasing sequence (Yn) of open subsets of
X such that:

(1) X = ∪Yn
(2) each Yn is of finite measure
(3) limn→∞ µ (T (Yn) \ Yn) = 0.

Lemma 5 (Boxes lemma). If there is an almost invariant box sequence
then (T,X, µ) is conservative.



UNIQUE ERGODICITY FOR INFINITE AREA TRANSLATION SURFACES 15

Proof. Let (Yn) be a box sequence for T . Let U be a non-empty open
set. We want to show that U is non-wandering, i.e., that there is an i
such that T i(U) ∩ U 6= ∅.

Let Vn = U ∩ Yn. By the definition of a box sequence, we have that
U = ∪Vn. Thus, for some n0, Vn0 is non-empty. Let V = Vn0 and
n ≥ n0 large enough so µ(T (Yn) \ Yn) < µ(V ). Then we have V ⊂ Yn.

For each i ≥ 1, let Ani be the set of points in V who escape from Yn
at time i, namely

Ani = {x ∈ V : T i(x) 6∈ Yn and ∀0 ≤ k < i, T k(x) ∈ Yn}.

Let us suppose the sets T i(Ani ) are pairwise disjoint. Note that
∪iT i(Ani ) ⊂ T (Yn) \ Yn, then we have

µ

(⋃
i

Ani

)
≤ Σiµ (Ani ) = Σiµ

(
T i(Ani )

)
= µ

(⋃
i

T i(Ani )

)
≤ µ(T (Yn) \ Yn)) < µ(V ).

Thus the set F = V \ ∪iAni , which is the set of points in V whose
(positive) iterates always stay in Yn, is of positive measure. Given that
Yn is of finite measure, the Poincaré recurrence Theorem applied to
∪i≥0T

i(F ) implies that this set F is non-wandering. Thus V and U are
also non-wandering.

On the other hand if the sets T i(Ani ) are not pairwise disjoint, then
there exists i 6= j such that T i(Ani ) ∩ T j(Anj ) 6= ∅. Note that Ani , Anj ,
T i(Ani ) and T j(Anj ) have all non-empty interiors. Thus it follows that
T i−j(Ani ) ∩ Anj 6= ∅. But Ani and Anj are both subsets of V . Thus V
(and also U) is non-wandering. �

Proof. (Proposition 1) Consider a strictly increasing sequence in and
a strictly decreasing sequence jn such that wik → 0 and wjk → 0. Then
the sequence of sets Xn := {jk+1, . . . , ik}× [0, 2) is a sequence of boxes
for all θ. �

4.2. Cantor representation. Consider the mapping T : X × S1 →
X × S1, induced by the first return map to the cross section X of the
translation flow in the direction θ on a compacted connected trans-
lation surface. For each θ, the map T |X×{θ} is an interval exchange
transformation (up to the behavior on the endpoints of the intervals).
The following construction can be found in [GaKrTr]. Label the sets of
continuity of T by a finite enumerated alphabet A, these are connected
regions, with piecewise smooth boundary (one can even choose coordi-
nates so that they are polygonal regions [Ka]). Let X∞ be the set of
(x, θ) whose forward orbit does not hit a singularity (nor an endpoint
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of the cross section if the cross section does not start and end at a sin-
gular point), and for (x, θ) ∈ X∞ let i(x, θ) ∈ AN be the coding map
defined by i(x, θ)j = k ∈ A if and only if T j(x, θ) is in the kth element
of A. Let K := i(X∞) ⊂ AN. Let T̂ denote the shift map on K, then
by definition T̂ ◦ i = i ◦ T on X∞. Each point (x, θ) ∈ X × S1 \ X∞
has exactly two images in K. The main result of [GaKrTr] is that the
inverse i−1 : K → X × S1 satisfies that the set i−1(s) is in fact a single
point for any s ∈ i(X∞) except when s is a periodic point. If s is a
periodic point then i−1(s) is a periodic cylinder in X.

Finally let Kθ := i(X∞ ∩ (X × {θ})), this is the Cantor represen-
tation of T θ. Suppose that there are no saddle connections in the
direction θ, then there are no periodic points in this direction, and
thus i−1 : Kθ → R is a well defined continuous map and so we can
define the lift ĥ : Kθ → R of h ∈ C(X × {θ}) by ĥ(z) = h(i−1(z) and
conclude that ĥ ∈ C(Kθ).

4.3. Uniform convergence of Hopf averages. In Section 3 the first
return maps we consider, T ωi,θ|XNi are IETs, thus they are not con-
tinuous. Therefore we need to discuss in detail the notion of unique
ergodicity and its relation to uniform convergence of Hopf averages, as
well as how the convergence varies as we vary the angle on the trans-
lation surface. To do this we will use the Cantor representation of the
previous subsection, however we will use this representation for a single
direction. Thus we will use the notation Y for X × {θ} for a certain
direction θ, Y ∞ := X∞ ∩ Y and we will use Kθ and i : Y → Kθ as
above.

Lemma 6. An IET (T, Y ) without saddle connection is uniquely er-
godic if and only if it’s Cantor representation (T̂ , Kθ) is uniquely er-
godic

Proof. The only if direction is clear.
Consider any pair of T̂ invariant measures ν̂1, ν̂2. Using the coding

map i we pull back these two measures to a pair of invariant measures
ν1 and ν2 on Y . Since T is uniquely ergodic these measures satisfy
ν1 = ν2. Thus for any measurable set Ĉ ⊂ Kθ, setting C := i−1(Ĉ) we
have

ν1(C) = ν2(C).

If ν̂1 6= ν̂2 then there is a measurable set B̂ ⊂ Kθ such that ν̂1(B̂) 6=
ν̂2(B̂). Let B := i−1(B̂) and consider B∞ := B∩Y ∞ and B1 := B\B∞.
By construction the set B1 is at most countable since it is contained
in the orbits of the singular points of T . But if either ν1(B1) > 0 or
ν2(B1) > 0 then we have an atomic measure, which can not happen
since we have no saddle connection; thus ν1(B1) = ν2(B1) = 0 and
ν1(B) = ν1(B∞) and the same for ν2. But i|B∞ is a bijection to its
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image, thus by definition of the pull back measure we conclude that
ν̂1(B) = ν̂(B). �

We need the following result which we did not find in the literature,
it is well known if g ≡ 1, i.e., for Birkhoff averages.

Proposition 7. If T̂ : K → K is uniquely ergodic (in the finite mea-
sure sense) then for every f, g ∈ C(K) (with

∫
K
g dµ 6= 0)∑`

k=0 f
(
T̂ k(z)

)∑`
k=0 g

(
T̂ k(z)

)
converges uniformly to a constant.

The proof is essentially identical to the proof in the Birkhoff case
(see for example Theorem 6.19 in [Wa]).
Proof. From the Hopf ergodic theorem the constant must be equal to∫
K
f dµ/

∫
K
g dµ where µ is the unique invariant probability measure.

From the uniform converges of Birkhoff sums we can find an L0 > 0

such that for all ` ≥ L0 and all z ∈ K we have
∑`

k=0 g
(
T̂ k(z)

)
> 0 and

thus the Hopf sums are well defined. Suppose that the convergence is
not uniform for some f, g. Then there exists ε > 0 such that for all
L ≥ L0 there exists ` > L and there exists z` ∈ K with∣∣∣∣∣

∑`
k=0 f

(
T̂ k(z`)

)∑`
k=0 g

(
T̂ k(z`)

) − ∫K f dµ∫
K
g dµ

∣∣∣∣∣ ≥ ε.

Set µ` := 1
`

∑`−1
i=0 δT̂ iz` , then∑`

k=0 f
(
T̂ k(z`)

)∑`
k=0 g

(
T̂ k(z`)

) =

∫
K
f dµ`∫

K
g dµ`

and thus ∣∣∣∣
∫
K
f dµ`∫

K
g dµ`

−
∫
K
f dµ∫

K
g dµ

∣∣∣∣ ≥ ε.

Choose a convergent subsequence µ`k → µ∞, then µ∞ is an invariant
probability measure and∣∣∣∣

∫
K
f dµ∞∫

K
g dµ∞

−
∫
K
f dµ∫

K
g dµ

∣∣∣∣ ≥ ε.

Thus µ∞ 6= µ. �

Corollary 8. Suppose T : X → X is a uniquely ergodic IET. Then
for every f, g ∈ C(X) (with

∫
X
g dµ 6= 0)∑`

k=0 f
(
T k(z)

)∑`
k=0 g

(
T k(z)

)
converges uniformly to a constant.
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Proof. We consider the Cantor representation (T̂ , K) of (T,X). By
Lemma 6 it is uniquely ergodic. Thus we can lift f, g to f̂ , ĝ and apply
Proposition 7 to f̂ and ĝ. Projecting back to X yields the uniform
convergence of the Hopf averages of f and g. �
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