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a = φ i w i x i + b (1) 
where x i are input to the neuron, the w i are the weights, b is the bias, φ is the activation function, and a is the unit's activation.

For simplicity but without loss of generality, we consider an elemental MLP with only 3 layers:

The 1st Layer (Input Layer) is composed of M neurons with no connection to each other. The activation-input relation in this layer is the intact transit of input and bias: In practical use, the M neurons are playing a role of dispatching M features (x

(in) 1,i . . . x (in)
M,i ) of the ith sample x i , i ∈ [1, . . . , N ] respectively to the next layer. The 2nd Layer (Hidden Layer) has K neurons each processes M activation of Input Layer as input:

- → a (h) 1 . . . - → a (h) N =        1 . . . 1 φ - → w (h) 1 - → a (in) 1 . . . φ - → w (h) 1 - → a (in) N . . . φ - → w (h) K - → a (in) 1 . . . φ - → w (h) K - → a (in) N        (3) 
where we choose sigmoid function φ (z) = 1 1+e -z as activation function in Hidden Layer.

The 3rd Layer (Output Layer) possesses C neurons, where C is the number of classes. The activation of the cth neuron represents the predicted conditional probability that the ith input sample belongs to class c:

- → a (out) 1 . . . - → a (out) N =            φ - → w (out) 1 - → a (h) 1 . . . φ - → w (out) 1 - → a (h) N . . . φ - → w (out) c - → a (h) 1 . . . φ - → w (out) c - → a (h) N . . . φ - → w (out) C - → a (h) 1 . . . φ - → w (out) C - → a (h) N            (4) 
where a

(out) c,i = φ - → w (out) c - → a (h) i + b c = P (y i = c | x i ) , i ∈ [1, . . . , N ] , c ∈ [1, . . . , C] and φ (z) = 1 1+e -z .

Multi-Label MLP and Sigmoid Cross-Entropy loss

Multi-Label MLP is able to make prediction for Multi-Label Classification, where the sample x i can belong to more than one class. If x i belonging to a certain class doesn't influence the decision for another class (i.e. P ( 

y i = c | x i ) , c ∈ [1 . . . C] are independent
L (w) = C c=1 n i=1 a (out) c,i P (yi=c|xi) 1 -a (out) c,i 1-P (yi=c|xi) (5) 
In practice, the equivalent approach of minimizing Sigmoid Cross-Entropy Loss J(w) makes calculation convenient:

J(w) = - C c=1 n i=1 P (y i = c | x i ) log a (out) c,i + (1 -P (y i = c | x i )) log 1 -a (out) c,i (6) 

Training MLP via Backpropagation

In order to update the weights through Backpropagation, we fisrt apply forward propagation to generate the activation of the output layer through (2),(3), and (4) with initial weight values. We then use gradient descent to update the weights in each layer:

∂J(w) ∂w (out) c,k = a (out) c,i -P (y i = c | x i ) a (h) k,i (7) ∂J(w) ∂w (h) k,m = a (out) c,i 
-

P (y i = c | x i ) w (out) c,k a (h) k,i 1 -a (h) k,i a (in) m,i (8) 
w (out) c,k = w (out) c,k -η ∂J(w) ∂w (out) c,k (9) 
w (h) k,m = w (h) k,m -η ∂J(w) w (h) k,m (10) 
Where η is the learning rate. The derivation of Equation ( 7) and (8) is detailed in Appendix.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are composed of multiple Convolutional Layer / Pooling Layer pair followed by Fully Connection Layer at the end [START_REF] Zhang | Derivation of Backpropagation in Convolutional Neural Network (CNN)[END_REF][START_REF] Bouvrie | Notes on convolutional neural networks[END_REF]. We exhibit below a basic CNN with a single Convolutional Layer / Pooling Layer pair with a Fully Connection Layer.

Convolution Layer

Convolution Layer can be imagined as a variant of Hidden Layer in which the inner product of the weight and the input is replaced by convolution:

A cout = φ X * W (conv) cout + b (conv) cout (11) A cout (i, j) = φ m1-1 k1=0 m2-1 k2=0 X(i -k 1 , j -k 2 )W (conv) cout (k 1 , k 2 ) + b (conv) cout ( 12 
)
where

X ∈ R n1×n2 is the input matrix, W (conv) cout ∈ R m1×m2 , c out ∈ {1, . . . , C out } is the kernel matrix for the c out th channel, b (conv) cout
is the bias for the c out th channel, and φ (z) = 1 1+e -z . We consider the zero-padded edges are not added to the original input matrix X, i.e. the kernel cannot exceed the boundary of input during the convolution which leads i ∈ {m 1 , . . . , n 1 } , j ∈ {m 2 , . . . , n 2 }.

Pooling Layer

Subsampling is performed in pooling layer, where the average value (meanpooling) or the max value (max-pooling) is calculated in each sub-region. Here we use nonoverlapping mean-pooling as an example:

S cout (i, j) = 1 p 1 p 2 p1 k1=1 p2 k2=1 A cout (p 1 i -k 1 , p 2 j -k 2 ) (13) 
where p 1 ,p 2 are pooling size in each dimension, i = m 1 +i ∈ m 1 + 1, . . . , m 1 + n1 p1 and j = m 1 + j ∈ m 2 + 1, . . . , m 2 + n2 p2 .

Fully Connection Layer

Fully Connetion Layer is similar to the output layer which contains neuron-like processing units. Additionally, Fully Connetion Layer vectorizes and concatenates the output of pooling layer.

z = Z {S cout } cout=1,...,Cout (14) 
{S cout } cout=1,...,Cout = Z -1 (z) (15) 
Equation ( 14) denotes the process of vectorizing the output of each channel by column scan and concatenates them to form a whole string. Equation (15) represents the reverse process, where z ∈ R Cout(n1/p1)(n2/p2)×1 . The whole string is then input into the activation function for predicting class labels.

- → ŷ =         ŷ1 . . . ŷc . . . ŷC         = φ W (f ) z + - → b (16) 
where

ŷc = P (y = c | X), C is the number of classes, W (f ) ∈ R C×Cout(n1/p1)(n2/p2) , - → b ∈ R C×1 , and φ (z) = 1 1+e -z .

Backpropagation in CNNs

We choose Cross-Entropy as the Loss Function in this note, since it outperforms Squared Error Loss for some circumstances [START_REF] Huang | Large-scale Learning with SVM and Convolutional for Generic Object Categorization[END_REF]. The Cross-Entropy Loss J is specified as below:

J = - C c=1 P (y = c | X) log (ŷ c ) (17) 
We still begin with performing forward propagation to generate -→ ŷ with initial value of weight and bias in Convolution Layer and Fully Connection Layer. Then we resort to gradient descent to update the weights and bias from Fully Connection Layer to Convolution Layer:

∂J ∂W (f ) c,j = -(1 -ŷc ) z j (18) ∂J ∂b (f ) c = -(1 -ŷc ) (19) ∂J ∂W (conv) cout (k 1 , k 2 ) = n1 i=1 n2 j=1 α * X rot180 (20) ∂J ∂b (conv) cout = n1 i=1 n2 j=1 α (i, j) (21) 
W (f ) c,j = W (f ) c,j -η ∂J ∂W (f ) c,j (22) 
b (f ) c = b (f ) c -η ∂J ∂b (f ) c (23) 
W (conv) cout (k 1 , k 2 ) = W (conv) cout (k 1 , k 2 ) -η ∂J ∂W (conv) cout (k 1 , k 2 ) (24) b (conv) cout = b (conv) cout -η ∂J ∂b (conv) cout (25) 
The derivation of Equation ( 18),( 19),(20), and (21) can be refer to Appendix for the details.

Recurrent Neural Network

Different from a feedforward network (MLP as an example) dealing with independent and identically distributed data, Recurrent Neural Network (RNN) processes input data in a certain order and dependent of each other. Base on such purpose, RNN is designed to has input layer/hidden layers/output layer unit at each time instance with connection between hidden layers in the same level at two adjacent time instances [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF][START_REF] Salehinejad | Recent advances in recurrent neural networks[END_REF].

Structure of a Single Layer RNN

We consider a single layer RNN in which only one hidden layer locates at each time instance. The hidden layer activation at time instance τ is the function of -→ x τ the input data at the time instance τ and -→ h τ -1 the hidden layer activation at time instance τ -1:

- → h τ = φ h W T hh - → h τ -1 + W T xh - → x τ + - → b h (26) 
where φ h (•) is the activation fucntion of the hidden layer and -→ b h is the bias vector.

Output layer pre-activation at instance τ is calculated from weighting matrix from hidden layer to output layer W hy , hidden layer activation -→ h τ (X), and the bias at output layer -→ b y as

- → ŷ τ = φ y W T hy - → h τ + - → b y (27) 
where φ y (•) is the activation fucntion of the output layer which is the softmax function usde in this note, and -→ ŷ τ = [ŷ τ 1 , . . . , ŷτ c , . . . , ŷτ C ] is the predicted probability distribution at instance τ .

Backpropagation Through Time (BPTT) and Exploding / Vanishing Gradients problem

The Loss function J for RNN is the sum of all the loss functions at each time instance. Here we choose Cross-Entropy as the Loss Function:

J = T τ =1 J (τ ) = T τ =1 - C c=1 y c,τ log (ŷ c,τ ) (28) 
As W hh is include in the hidden layer activation at each time instance, we need to apply Backpropagation Through Time (BPTT) to RNN which will expand the partial derivative in the time demension when we calculate gradient descent to update the weights:

∂J (τ ) ∂W hh = ∂J (τ ) ∂ - → ŷ τ ∂ - → ŷ τ ∂ - → h τ τ t=1 ∂ - → h τ ∂ - → h t ∂ - → h t ∂W hh (29) = ∂J (τ ) ∂ - → ŷ τ ∂ - → ŷ τ ∂ - → h τ τ t=1 τ i=t+1 ∂ - → h i ∂ - → h i-1 ∂ - → h t ∂W hh = ∂J (τ ) ∂ - → ŷ τ ∂ - → ŷ τ ∂ - → h τ τ t=1 τ i=t+1 W hh ∂ - → h t ∂W hh τ i=t+1 W hh will lead ∂J (τ )
∂W hh to trend towards positive infinity when |W hh | > 1 and τ -t is large. Conversely, ∂J (τ ) ∂W hh will trend towards zero when |W hh | < 1 and τ -t is large. The former is called Exploding Gradients problem and the other is called Vanishing Gradients problem.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [START_REF] Chung | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[END_REF] The calculation of gates are specified below, where σ denotes sigmoid function:

- → i τ = σ ( - → z i τ ) = σ W xi - → x τ + W hi - → h τ -1 + - → b i (30) - → f τ = σ ( - → z f τ ) = σ W xf - → x τ + W hf - → h τ -1 + - → b f (31) - → o τ = σ ( - → z o τ ) = σ W xo - → x τ + W ho - → h τ -1 + - → b o (32)
The Feed-Forward operation of LSTM:

- → a τ = σ ( - → z a τ ) = tanh W xa - → x τ + W hi - → h τ -1 + - → b a (33) - → C τ = - → a τ - → i τ ⊕ - → C τ -1 - → f τ (34) - → h τ = tanh - → C τ - → o τ (35)
After the feed-forward operation is performed with initial value of weight and bias, the backpropagation is conducted to update weight and bias by minimizing the loss which we use the sum of squared of the errors (SSE) loss as an example:

J = T τ =1 J (τ ) = T τ =1 1 2 - → y τ - - → h τ 2 (36)
The calculation of the partial derivatives of loss function regarding

W xa ,W xi ,W xf ,W xo , - → b a are detailed below. The partial derivatives of loss function regarding W hf , W xo , W ho , W hi , - → b i , - → b f , - → b o
have the very similar structure and are not specified here.

∂J ∂W xa =                                W hen τ = T : = ∂J (T ) ∂ - → C T ∂ - → C T ∂ - → a T ∂ - → a T Wxa = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → i T 1 -tanh 2 ( - → z a T ) - → x T W hen τ < T : = ∂J (T ) ∂ - → C τ ∂ - → C τ ∂ - → a τ ∂ - → a τ Wxa + . . . + ∂J (τ ) ∂ - → C τ ∂ - → C τ ∂ - → a τ ∂ - → a τ Wxa = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → f T . . . - → f τ +1 - → i τ 1 -tanh 2 ( - → z a τ ) - → x τ + . . . + - → h τ -- → y τ 1 -tanh 2 - → C τ - → o τ - → i τ 1 -tanh 2 ( - → z a τ ) - → x τ (37) 
∂J ∂W xi =                                W hen τ = T : = ∂J (T ) ∂ - → C T ∂ - → C T ∂ - → i T ∂ - → i T Wxi = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → a T 1 -tanh 2 ( - → z i T ) - → x T W hen τ < T : = ∂J (T ) ∂ - → C τ ∂ - → C τ ∂ - → i τ ∂ - → i τ Wxi + . . . + ∂J (τ ) ∂ - → C τ ∂ - → C τ ∂ - → i τ ∂ - → i τ Wxi = - → h T - -→ y T 1 -tanh 2 - → C T - → o T - → f T . . . - → f τ +1 - → o τ - → a τ 1 -tanh 2 ( - → z i τ ) - → x τ + . . . + - → h τ -- → y τ 1 -tanh 2 - → C τ - → o τ - → a τ 1 -tanh 2 ( - → z i τ ) - → x τ (38) ∂J ∂W xf =                                W hen τ = T : = ∂J (T ) ∂ - → C T ∂ - → C T ∂ - → f T ∂ - → f T W xf = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → C T -1 1 -tanh 2 ( - → z f T ) - → x T W hen τ < T : = ∂J (T ) ∂ - → C τ ∂ - → C τ ∂ - → f τ ∂ - → f τ W xf + . . . + ∂J (τ ) ∂ - → C τ ∂ - → C τ ∂ - → f τ ∂ - → f τ W xf = - → h T - -→ y T 1 -tanh 2 - → C T - → o T - → f T . . . - → f τ +1 - → o τ - → C τ -1 1 -tanh 2 ( - → z f τ ) - → x τ + . . . + - → h τ -- → y τ 1 -tanh 2 - → C τ - → o τ - → C τ -1 1 -tanh 2 ( - → z f τ ) - → x τ (39) ∂J ∂W xo = ∂J (τ ) ∂ - → h τ ∂ - → h τ ∂ - → o τ ∂ - → o τ W xo (40) = - → h T - -→ y T tanh - → C τ 1 -tanh 2 ( - → z o τ ) - → x τ ∂J ∂b a =                                W hen τ = T : = ∂J (T ) ∂ - → C T ∂ - → C T ∂ - → a T ∂ - → a T ba = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → i T 1 -tanh 2 ( - → z a T ) W hen τ < T : = ∂J (T ) ∂ - → C τ ∂ - → C τ ∂ - → a τ ∂ - → a τ Wxa + . . . + ∂J (τ ) ∂ - → C τ ∂ - → C τ ∂ - → a τ ∂ - → a τ Wxa = - → h T -- → y T 1 -tanh 2 - → C T - → o T - → f T . . . - → f τ +1 - → i τ 1 -tanh 2 ( - → z a τ ) + . . . + - → h τ -- → y τ 1 -tanh 2 - → C τ - → o τ - → i τ 1 -tanh 2 ( - → z a τ ) (41) 
4 Appendix

Derivation of Equations

Derivation of Equation (7): Using the chain rule, the partial derivative of loss with respect to the weight in output layer can be calculated as:

∂J(w) ∂w (out) c,k = ∂J(w) ∂a (out) c,i ∂a (out) c,i ∂w (out) c,k (42) 
= - P (y i = c | x i ) a (out) c,i - (1 -P (y i = c | x i )) 1 -a (out) c,i ∂φ z (out) c,i ∂z (out) c,i ∂z (out) c,i ∂w (out) c,k = - P (y i = c | x i ) a (out) c,i - (1 -P (y i = c | x i )) 1 -a (out) c,i a (out) c,i 1 -a (out) c,i a (h) k,i = a (out) c,i -P (y i = c | x i ) a (h) k,i
where z

(out) c,i = a (h) 1,i w (out) c,1 + . . . + a (h) k,i w (out) c,k + . . . + a (h) K,i w (out) c,K . Derivation of Equation (8): ∂J(w) ∂w (h) k,m = ∂J(w) ∂a (out) c,i ∂a (out) c,i ∂a (h) k,i ∂a (h) k,i ∂w (h) k,m (43) 
= - P (y i = c | x i ) a (out) c,i - (1 -P (y i = c | x i )) 1 -a (out) c,i a (out) c,i 1 -a (out) c,i w (out) c,k a (h) 
k,i 1 -a (h) k,i a (in) m,i = a (out) c,i -P (y i = c | x i ) w (out) c,k a (h) k,i 1 -a (h) k,i a (in) m,i
Derivation of Equation (18): where X rot180 denotes rotating X 180 degrees. α = ∂J ∂Ac out (i,j) A cout (i, j) and ∂J ∂Ac out (i,j) can be obtained by devectorizing and upsampling ∂J ∂z . Equation (47), (48), (49) provides the solving process to get analytical solution of ∂J ∂Ac out (i,j) . ( i/p 1 j/p 2 ) A cout (i, j)

∂J ∂W (f ) c,j = ∂J ∂ ŷc ∂ ŷc ∂W (f ) c,j (44) 

  is a RNN architecture designed to overcome Exploding / Vanishing Gradients problem. LSTM is introduce 3 gates (Input gate i τ , Forget gate f τ , Output gate o τ ) to suppress -→ a τ the input activation at the time instance τ , -→ C τ -1 the cell state at the time instance τ -1, -→ C τ the cell state at the time instance τ respectively:

1 -α

 1 ŷc ) z j = -(1 -ŷc ) z j Derivation of Equation (19): i -k 1 , j -k 2 )W (conv) cout (k 1 , k 2 ) + b cout (i, j) A cout (i, j) (1 -A cout (i, j)) X(i -k 1 , j -k 2 ) (i, j) X rot180 (k 1 -i, k 2 -j)

  cout (i, j) = p 1 p 2 ∂J ∂S cout ( i/p 1 j/p 2 )