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Abstract. In this paper, we present a novel descriptor for human action
recognition, called Motion of Oriented Magnitudes Patterns (MOMP),
which considers the relationships between the local gradient distribu-
tions of neighboring patches coming from successive frames in video. The
proposed descriptor also characterizes the information changing across
different orientations, is therefore very discriminative and robust. The
major advantages of MOMP are its very fast computation time and sim-
ple implementation. Subsequently, our features are combined with an
effective coding scheme VLAD (Vector of locally aggregated descriptors)
in the feature representation step, and a SVM (Support Vector Machine)
classifier in order to better represent and classify the actions. By exper-
imenting on several common benchmarks, we obtain the state-of-the-art
results on the KTH dataset as well as the performance comparable to
the literature on the UCF Sport dataset.

1 Introduction

In the recent years, human action recognition (HAR) has become one of the most
popular topics in the computer vision domain due to its variety of applications,
such as human-computer interaction, human activities analysis, surveillance sys-
tems, and so on. The goal of HAR is to identify the actions in a video sequence
with different challenges such as cluttering, occlusion and change of lighting
conditions.

More recently, a new approach based on deep learning model, especially
Convolutional Neural Networks (ConvNets) architecture [1][2][3][4] has achieved
great success. The architecture can learn a hierarchy of features by building
high-level features from low-level ones, thereby automating the process of fea-
ture construction. Very recently, Tran et al [4] proposed spatiotemporal Con-
volutional 3D (C3D) learning features using deep 3-dimensional convolutional
networks (3D ConvNets). The features achieved outstanding performance on
benchmarks such as Sport1M, UCF101 and ASLAN. However, those ConvNets-
based systems require a large data set and high costly computation. Therefore,
until now, the approach based on hand-crafted features [5],[6],[7],[8],[9],[10] still
occupy its important position in computer vision due to its comprehensibility
and efficiency.
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Histogram of Oriented Gradients (HOG) and Histogram of Optical Flow
(HOF) were successfully used for action recognition [6]. To characterize local
motion and appearance, the authors compute histograms of spatial gradient
and optical flow accumulated in space-time neighborhoods of detected interest
points. Klaser et al [11] proposed the HOG3D descriptor as an extension of the
popular SIFT descriptor [12] to video sequences. These descriptors represented
both shape and motion information of actions in videos. Space Time Interest
Points (STIPs) [5] extracted HOG and HOF at each interesting point calculated
by 3D-Harris detector. The best performance in trajectory-based pipeline was
held by Motion Boundary Histogram (MBH) [13], which horizontal and vertical
components of optical flow were separately computed.

Recently, Wolf et al in [14] proposed the Local Trinary Patterns (LTP) for
action recognition. This descriptor combined the effective description properties
of Local Binary Patterns (LBP) with the appearance invariance and adaptability
of patch matching based methods. Also, Kliper-Gross et al in [15] analyze the
relationship of consecutive frames by considering at each pixel over the video
the changing between different frames. In those methods, for each pixel, the
gray value is used directly to determine the relationships between the frames.

Different from above approaches, in this paper, we propose a novel descriptor
called Motion of Oriented Magnitudes Patterns (MOMP). This descriptor con-
siders the relationship between the local gradient distributions in neighboring
patches coming from successive frames in video and characterizes the informa-
tion changing across different orientations. The major advantages of MOMP are
its fast computation time and simple implementation. We also associate the ex-
tracted features to VLAD (Vector of Locally Aggregated Descriptors) and SVM
classifier in order to better represent and classify the actions. The VLAD cod-
ing scheme [16] has tremendous successes in large scale image retrieval due to
its efficiency of compact representation. This encoding perspective increases the
amount of information without increasing the visual vocabulary size, therefore
does not accelerate the clustering speed or reduces memory. Experiment results
on two datasets prove the efficiency of our system.

The remainder of this paper is organized as follows. Section 2 concerns to
the proposed method. Section 3 presents experimental results, and conclusions
are given in Section 4.

2 Proposed Method

This section presents in detail our Motion of Oriented Magnitudes Patterns
(MOMP) descriptor. Its construction is inspired by gradient-based features and
self-similarity technique. In experiments, our descriptor shows fast computation
time and simple implementation.

2.1 MOMP - Motion of oriented magnitudes patterns descriptor

The key idea of our descriptor is to characterize actions by the relationship
between the local gradient distributions of neighboring patches coming from
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consecutive frames in a video. The proposed algorithm can be considered as an
extension of our previous work, Patterns of Oriented Edge Magnitudes (POEM),
which is very successfully used for face recognition [17],[18]. In this work, we en-
code the motion changing across different orientations of different frames. To
extract the features we carry out three steps: (1) the gradient of each frame
is computed and quantized; (2) for each pixel, the magnitudes of its neighbors
are accumulated and assigned to it; (3) the features are encoded based on the
sum of squared differences (SSD) of gradient magnitudes of the triplet of frames.

(1) Gradient computation and orientation quantization:
In this step, we compute gradient and orientation quantization of each frame

in the video using Haar features. As result of this step, each pixel in the video is
represented by two elements: (1) gradient magnitude determining how quickly
the image changes over the considered pixel, and (2) gradient orientation deter-
mining the direction of this changing. Consider a frame F , let ϕ(p) and m(p)
be the orientation and magnitude of the image gradient at pixel p within F .
The gradient orientation of each pixel is evenly discretized over 0−π (unsigned)
or 0 − 2 × π (signed). To reduce the loss in quantization stage, we apply soft
assignment technique. Therefore, a pixel feature is encoded as a d-dimensional
vector with only at most two non-null elements (each pixel falls into at most two
nearest bins regarding its gradient orientation):

m(p) = [m1 (p) ,m2 (p) , ...,md (p)] (1)

where d is the number of discretized orientations.
(2) Magnitude accumulation over local patches:
The second step is to incorporate gradient information from neighboring

pixels by computing a local histogram of gradient orientations over all cell pixels.
Vote weights can either be the gradient magnitude itself, or some function of
the magnitude. More precisely, we individually compute the convolution of the
magnitude map m (result of step 1) and a Gaussian mask G on each orientation:

G(x, y) =
1

(2πσ2)e−(x2+y2)/2σ2 (2)

where σ is standard deviation. At pixel p, the feature is now represented by a
d-dimension vector v(p):

v(p) = [v1 (p) , v2 (p) , ..., vd (p)] (3)

where

vi(p) =
∑
pj∈C

gj∗mi(pj) (4)

with C is a cell centered on p, gj is the j-th element of Gaussian filters. It is
clearly seen that v(p) conveys the oriented and magnitude information of not
only the center pixel p but also its neighbors. In this way, we incorporate the
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richer information to a pixel.

(3) Encoding:
At the final step of feature extraction, the features obtained at the second

step are encoded using the LTP-based self-similarity within more extended im-
age regions, called blocks, coming from previous, current and next frames, as
illustrated in Figure 1.

Fig. 1. The illustration of MOMP feature extraction

Ei(p) is calculated for all pixels of the frame. We use a threshold of T ,

Ei(p) =

 1 if SSD1− SSD2 > T
0 if |SSD1− SSD2| ≤ T
−1 if SSD1− SSD2 < −T

(5)

where SSD1 and SSD2 are calculated as following, with d is the number of
discretized orientations:

SSD1 =
d∑
j=1

[
vj(p)p∈Ci,t−1

− vj(p)p∈Ci,t

]2
(6)

SSD2 =

d∑
j=1

[
vj(p)p∈Ci,t+1

− vj(p)p∈Ci,t

]2
(7)

Considering n neighbor cells surrounding the pixel p(x, y, t) within the block
in the current frame t, we obtain a n-trit string Ei(p) (i varies from 1 to n)
denoted by E(p). We divided the entire frame into w × h patches of equal size
where the histograms of the n-digit trinary strings are computed with respect to
the positive part (equal 1) and the negative part (equal -1). The histograms of
these two parts are then concatenated to generate a 2n+1-bin vector. Therefore,
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the length of MOMP descriptor, namely D, is 2n+1.

We analyze here the differences between the MOMP and LTP [14]:

– Both LTP and MOMP use three bits. However, LTP compares SSD of a cell
at the current frame with its neighboring ones (at other positions) in the
past or the future frames; while MOMP computes SSD between three cells
at the same position in three successive frames (Figure 1).

– LTP calculates SSD based on gray intensity, wheras gradient-based values
are used in MOMP. In this way, the information characterized is more robust
to illumination change.

– MOMP encodes the information over different orientations, therefore conveys
richer information about the video sequence.

2.2 Feature representation - Vector of locally aggregated descriptors
(VLAD)

VLAD [16] shows great popularity in action recognition from video data due
to its simplicity and good performance. It models video as collections of local
spatio-temporal patches. A spatio-temporal patch is represented by a feature
vector. VLAD employs only the nearest neighbor visual word in dictionary to
aggregate each descriptor feature. In this paper, we also apply the model for
feature representation thanks to its advantages:

– When applying VLAD, we can use a the small number of visual words k. For
instance, for human action recognition, many work obtained the good results
with the value of k ranging from k=16 to k=256 ([16][19][20]). This means
that, for big datasets, the computation cost is much lower than standard bag
of words technique with k increasing up to thousands.

– VLAD can be considered a simplified version of the Fisher Vector [21] and it
is computationally more efficient. For our method, we utilize L2-normalize
over feature vectors represented by VLAD.

2.3 Classification - Support Vector Machines (SVM) classifier

After the feature representation step, each video is described by a k × D-
dimension feature where k, D respectively are number of visual words in VLAD
and the length of each descriptor vector. These vectors are then used as input
of a SVM classifier which is widely used for action recognition. We use the SVM
classifier with RBF -kernel and the publicly available LIBSVM library [22] (the
parameters will be detailed in Section 4.1).

3 Experiment results

3.1 Experimental Setup

Experiments were conducted on two datasets: KTH [23] and UCF Sport [24].
The KTH dataset includes 599 video sequences for six action classes: boxing,
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hand clapping, hand waving, jogging, running and walking. The videos are per-
formed in four different scenarios (indoors, outdoors, outdoors with scale change
and outdoors with different clothes) with slight camera motion and a simple
background. Figure 2(a) illustrates the example frames from KTH dataset. We
follow to the protocol of [23]: the actions of 16 persons are used as training and
the actions of 9 remaining people are used for testing. We evaluate the perfor-
mance of a multi-class classifier and report degree of average accuracy over all
categories. With respect to this dataset, the first 200 frames in each video are
used to extract the descriptors.

Fig. 2. Example frames from video sequences of KTH (a) and UCF (b) datasets

UCF Sport dataset contains ten categories from 150 video sequences of differ-
ent sporting action that reveals a large intra-class variability due to a wide scope
scenes and viewpoints. There are different actions: diving, golf swing, kicking,
lifting, riding, running, skateboarding, swing bench, swing side-angle and walk-
ing, as illustrated in Figure 2(b). Following the standard setting [11], Leave-one-
out cross-validation (LOOCV) is performed on this database. LOOCV selects a
video sequence for testing set and the remaining videos as the training set, and
the overall accuracy is obtained by averaging the accuracy of all iterations. In
our experiments, every frame are down-sampled by factor of 0.5.

Parameter settings: Parameters in our experiments:

– Descriptor parameters : we choose number of orientation d = 5 to compute
gradient and orientation quantization. Gaussian filter with kernel size 5× 5
and the standard deviation σ = 1. Cell size for SSD computation r = 3; n = 8
is number of neighboring cells in each block and threshold T = r × r × τ2
(where r × r cell size, τ : the threshold per pixel, ranging from 5 to 7). We
select 16 × 16 patches (w=16, h=16) to calculate histogram at Step 3 in
Section 2.1. As a result, a descriptor is a 512-dimension vector (D=512).

– VLAD parameters: the extracted descriptors are clustered using K-means
(k = 24 clusters). The length of the feature vector representing a video is
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therefore a 12288-dimension vector. We utilize L2-norm over feature vectors
represented by VLAD.

– SVM parameters: in this case of multi-class classification, we implement a
one-vs-all non-linear SVM with radial basis function (RBF) kernel: C = 4,
γ = 0.5.

3.2 Experimental Results on KTH dataset

Table 1 shows the confusion matrix containing the detailed confusion between
action classes. It can be noted that the confusion happens mainly between ”run-
ning” and ”jogging” classes due to their similarity of local space-time events.
Also, there is a slight misclassification of ”hand clapping” and ”hand waving”.
While the best performance belongs to ”walking” category with 99.4% accuracy,
”running” class is identified to the lowest recognition rate (86.7%). Moreover,
two distinguished groups - hand actions (i.e. boxing, hand-clapping and hand-
waving) and leg actions (i.e. jogging, running and walking) - are completely
separated, this proves the efficiency of our proposal.

Table 1. Confusion matrix on KTH dataset

Box clap Wave Jog Run Walk

Boxing 97.3 2.7 0 0 0 0

clapping 2.7 91.9 5.4 0 0 0

Waving 0 0.8 99,2 0 0 0

Jogging 0 0 0 91.9 5.4 2.7

Running 0 0 0 10,6 86.7 2.7

Walking 0 0 0 0.6 0 99,4

Comparison to state-of-the-art: Several literatures on the KTH dataset are
revealed in Table 2. The average accuracy of our method is 94,4%. It can be
seen that our proposed method outperforms the almost considered algorithms
even some Convolutional Neuron Networks-based ones, except the Action Bank
in [25]. While our algorithm is simple to implementation and of low complexity,
Action Bank [25] requires a huge dataset in the training step.

3.3 Experimental Results on UCF Sport dataset

UCF Sport dataset is more challenging than the KTH dataset due to a wide
range of scenes and view points. Regarding to Table 3, diving-side, swing-bench
and swing-side obtain the best performances, 100%, 95% and 92% respectively.
We can see that the most of the errors are due to mixing up of the classes ”kick-
ing” and ”riding”.
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Table 2. Comparision of accuracy (%) on the KTH dataset

Algorithm Accuracy (%) Algorithm Accuracy (%)

Wang et al [8] 94.2 Kovashka et al [26] 94.53

Laptev et al [6] 91.8 Gross et al (MIP)[15] 93.0

Klaser et al [11] 91.4 Le et al [3] 93.9

Action Bank et al [25] 98.2 W. Taylor et al (Conv) [27] 90.0

Liu et al [28] 93.5 S.Ji et al (Conv) [1] 90.2

Lior Wolf et al [14] 90.1 MOMP 94.4

Table 3. Confusion matrix on UCF Sport dataset

Dive Golf Kick Lift Ride Run Skate SwBench SwSide Walk

Diving 1.0 0 0 0 0 0 0 0 0 0

Golf 0 0.78 0 0 0.05 0 0 0 0 0.17

Kicking 0 0 0.75 0 0.05 0.05 0 0 0 0.10

Lifting 0 0 0 0.83 0 0 0 0 0 0.17

Riding 0 0 0.25 0 0.67 0.08 0 0 0 0

Run-Side 0 0.08 0.23 0 0 0.61 0 0 0 0.08

SkateBoard 0 0.08 0 0 0 0 0.58 0.17 0 0.17

Swing-Bench 0 0 0.05 0 0 0 0 0.95 0 0

SideAngle 0 0 0 0 0 0 0 0.08 0.92 0

Walk-Front 0 0.045 0.045 0 0 0 0.045 0 0.045 0.82

Comparison to state-of-the-art: From Table 4, the overall accuracy we ob-
tain for this dataset is 80.0%. The results in the right side show the good perfor-
mance of our method on UCF Sport dataset when compared to recent methods
with the same experimental settings (those methods use similarly simple classi-
fier). Although not more effective than some methods like dense trajectories and
motion boundary descriptors (MBH) [8], the proposed framework is much more
simple and faster.

4 Conclusion

In this paper, we introduce novel features based on the relationships between
the local gradient distributions of neighboring patches coming from successive
frames in video. The descriptor is very efficient to compute and simple to im-
plement , thus can be suitable for real-time applications. This descriptor is then
combined with VLAD and SVM in order to better represent and classify the
actions. Experimental results show that our proposed framework obtains good
performance on some action benchmarks such as KTH and UCF Sport datasets.
In future, the proposed algorithm will be evaluated on other datasets or other
applications such as texture classification or face recognition.
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Table 4. Comparision of accuracy (%) on the UCF Sport

Description method Accuracy (%) Description method Accuracy (%)

Harris3D+HOG [9] 71.4 Kovashka et al [26] 87.27

Harris3D+HOF [9] 75.4 Dense+HOG/HOF [9] 81.6

Harris3D+HOG/HOF [9] 78.1 MBH+Dense traj. [8] 84.2

Gabor+HOG/HOF [29] 77.7 ConvNet (Le et al) [3] 86.5

Hessian+HOG/HOF [9] 79.3 MOMP 80.0
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