Cutoff for random lifts of weighted graphs - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2022

Cutoff for random lifts of weighted graphs

Résumé

We prove a cutoff for the random walk on random n-lifts of finite weighted graphs, even when the random walk on the base graph G of the lift is not reversible. The mixing time is w.h.p. t mix = h −1 log n, where h is a constant associated to G, namely the entropy of its universal cover. Moreover, this mixing time is the smallest possible among all n-lifts of G. In the particular case where the base graph is a vertex with d/2 loops, d even, we obtain a cutoff for a d-regular random graph (as did Lubetzky and Sly in [26] with a slightly different distribution on d-regular graphs, but the mixing time is the same).
Fichier principal
Vignette du fichier
CutoffLifts_arxivversion.pdf (421.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02265116 , version 1 (08-08-2019)

Identifiants

Citer

Guillaume Conchon--Kerjan. Cutoff for random lifts of weighted graphs. Annals of Probability, 2022, 50 (1), pp.304--338. ⟨10.1214/21-aop1534⟩. ⟨hal-02265116⟩
75 Consultations
115 Téléchargements

Altmetric

Partager

More