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In the present work, we study deterministic mean field games (MFGs) with finite time horizon in which the dynamics of a generic agent is controlled by the acceleration. They are described by a system of PDEs coupling a continuity equation for the density of the distribution of states (forward in time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a representative agent (backward in time).

The state variable is the pair px, vq P R N ˆRN where x stands for the position and v stands for the velocity. The dynamics is often referred to as the double integrator. In this case, the Hamiltonian of the system is neither strictly convex nor coercive, hence the available results on MFGs cannot be applied. Moreover, we will assume that the Hamiltonian is unbounded w.r.t. the velocity variable v. We prove the existence of a weak solution of the MFG system via a vanishing viscosity method and we characterize the distribution of states as the image of the initial distribution by the flow associated with the optimal control.

Introduction

The theory of mean field games (MFGs for short) is more and more investigated since the pioneering works [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] of Lasry and Lions: it aims at studying the asymptotic behaviour of differential games (Nash equilibria) as the number of agents tends to infinity. In the present work, we study deterministic mean field games with finite time horizon in which the dynamics of a generic agent is controlled by the acceleration. They are described by a system of PDEs coupling a continuity equation for the density of the distribution of states (forward in time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a representative agent (backward in time). The state variable is the pair px, vq P R N ˆRN where x stands for the position and v stands for the velocity.

The systems of PDEs are of the form (1.1)

$ & % piq ´Bt u ´v ¨Dx u `Hpx, v, D v uq ´F rmptqspx, vq " 0 in R 2N ˆp0, T q piiq B t m `v ¨Dx m ´div v pD pv Hpx, v, D v uqmq " 0 in R 2N ˆp0, T q piiiq mpx, v, 0q " m 0 px, vq, upx, v, T q " GrmpT qspx, vq , on R 2N

where T is a positive real number, u " upx, v, tq, m " mpx, v, tq, px, vq P R 2N , t P p0, T q and H is defined by

(1.2) Hpx, v, p v q " max αPR N p´αp v ´lpx, v, αqq.
We take F and G strongly regularizing and we assume that the running cost has the form lpx, v, αq " lpx, vq `1 2 |α| 2 `1 2 |v| 2 , where px, vq Þ Ñ lpx, vq is a bounded and C 2 -bounded function.

Formally, systems of this form arise when the dynamics of the generic player is described by a double integrator:

(1.3) $ ' ' & ' ' %
ξ 1 psq " ηpsq, s P pt, T q, η 1 psq " αpsq, s P pt, T q, ξptq " x, ηptq " v, and when the control law belongs to the space of the measurable functions with values in R N and is chosen in order to minimize the cost (1.4) J t :" J t pξ, η, αq " ż T t lpξpsq, ηpsq, αpsqq `F rmpsqspξpsq, ηpsqqds `GrmpT qspξpT q, ηpT qq.

To summarize, the main features of this model are:

1. The control α is only involved in the dynamics of the second component of the state variable, see (1.3).

2. The running cost has the form (1.5) lpξ, η, αq " lpξ, ηq

`1 2 |η| 2 `1 2 |α| 2 ,
where pξ, ηq Þ Ñ lpξ, ηq is a bounded C 2 function, thus the former is unbounded w.r.t. the variable η. Note that |η| 2 stands for a kinetic energy, whereas the term |α| 2 is a penalty for large accelerations. Note also that the results of the present paper hold for a fairly large class of generalizations of (1.5).

3. Setting f pξ, η, αq " pη, αq, the Hamiltonian associated to the control problem of a generic player is Hpξ, η, pq " max αPR N t´p ¨f pξ, η, αq ´lpξ, η, αqu " ´px ¨η `Hpξ, η, p v q, where p " pp x , p v q and H is defined in (1.2). The Hamilton H is neither strictly convex nor coercive with respect to p " pp x , p v q. Hence the available results on the regularity of the value function u of the associated optimal control problem ( [START_REF] Cannarsa | Semi-Concave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF], [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF], [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]) and on the existence of a solution of the MFG system ( [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]) cannot be applied.

We recently learnt that a similar type of mean field games has been studied in [START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF], independently, at the same time, and with different techniques. To the best of our knowledge, these systems have not been investigated elsewhere.

The main results of the present work are the existence of a solution of (2.1) and a characterization of the distribution of states m. In order to establish the representation formula for m, we use some ideas introduced by P-L Lions in his lectures at Collège de France (2012) (see [START_REF] Lions | [END_REF][START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]), some results proved in [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF][START_REF] Cardaliaguet | Long time average of first order mean field games and weak KAM theory[END_REF], and the superposition principle [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 8.2.1]. These methods rely on optimal control theory, in particular on optimal synthesis results. In our setting, the lack of coercivity of H makes it impossible to directly apply the arguments of [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Sect. 4.1], in particular a contraction property of the flow associated to the dynamics (see [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Lemma 4.13]). However, the superposition principle and suitable optimal synthesis results will be used to characterize m as the image of the initial distribution by the optimal flow associated with the Hamilton-Jacobi equation. By standard techniques for monotone operators (see Lasry and Lions [START_REF] Lasry | Mean field games[END_REF]), we also obtain the uniqueness of the solution under classical assumptions.

The superposition principle has already been used in a different approach, for instance in the articles of Cardaliaguet [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF], Cardaliaguet, Mészáros and Santambrogio [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF] and Orrieri, Porretta and Savaré [START_REF] Orrieri | A variational approach to the mean field planning problem[END_REF]. In these works, the authors tackle the MFG systems of the first order using a variational approach based on two optimization problems in duality, under suitable assumptions. Then, using the superposition principle, they are able to describe the solution to the continuity equation arising in the optimality conditions of the latter optimization problem by means of a measure on the space of continuous paths. This measure is concentrated on the set of minimizing curves for the optimal control problem underlying the Hamilton-Jacobi equation.

A similar approach to the one of the present paper was recently proposed for a class of non-coercive MFG when the generic player has some "forbidden direction" (see [START_REF] Mannucci | Non-coercive first order Mean Field Games[END_REF]), more precisely when, in the two dimensional case, the dynamics is of the form: x 1 1 " α 1 , x 1 2 " hpx 1 qα 2 and hpx 1 q may vanish.

In a near future, we plan to tackle mean field games with control on the acceleration and with constraints (for MFGs with state constraints we refer to [START_REF] Achdou | Partial differential equation models in macroeconomics, Fill's[END_REF][START_REF] Cannarsa | Existence and uniqueness for Mean Field Games with state constraints[END_REF][START_REF] Cannarsa | C 1,1 -smoothness of constrained solutions in the calculus of variations with application to mean field games[END_REF][START_REF] Cannarsa | Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system[END_REF]).

The paper is organized as follows. In Section 2, we list our assumptions, give the definition of (weak) solution to system (2.1) and state the existence and uniqueness results for the latter. In Section 3, we obtain some regularity properties for the solution u of the Hamilton-Jacobi equation (2.1)-(i) with m fixed. These properties, combined with the uniqueness of the optimal trajectories of the associated control problem, will be crucial for proving the main theorem. In Section 4, we study the continuity equation (2.1)-(ii). An important ingredient is the vanishing viscosity method that is used to characterize its solution. Finally, Section 5 is devoted to the proofs of the main Theorem 2.1 on the existence of a solution and of Proposition 2.1 on its uniqueness. In the Appendix, following a suggestion of the referee, we establish the existence and the uniqueness of the solution to the corresponding second order MFG system as a byproduct of the estimates needed for the vanishing viscosity limit.

Assumptions and main results

We consider the running cost lpx, v, αq of the form lpx, v, αq " lpx, vq `1 2 |α| 2 `1 2 |v| 2 . Then system (1.1) can be written (2.1) Let C 2 pR 2N q denote the space of twice differentiable functions with continuous and bounded derivatives up to order two. It is endowed with the norm }f } C 2 :" sup px,vqPR 2N r|f px, vq| `|Df px, vq| `|D 2 f px, vq|s.

$ & % piq ´Bt u ´v ¨Dx u `1 2 |D v u| 2 ´1 2 |v| 2 ´lpx, vq ´F rmspx, vq " 0, in R 2N ˆp0, T q, piiq B t m `v ¨Dx m ´div v pD v u mq " 0, in R 2N ˆp0, T q, piiiq mpx, v, 0q " m 0 px, vq, upx, v, T q " GrmpT qspx, vq, on R 2N , which corresponds to Hpx, v, p v q " 1 2 |p v | 2 ´1
Hereafter, we shall make the following hypotheses: (H3) The map m Þ Ñ F rmsp¨, ¨q is Lipschitz continuous from P 1 to C 2 pR 2N q; moreover, there exists C ą 0 such that C ě }l} C 2 and }F rmsp¨, ¨q} C 2 `}Grmsp¨, ¨q} C 2 ď C, @m P P 1 (H4) the initial distribution m 0 , defined on R 2N , has a compactly supported density (still named m 0 , with a slight abuse of notation) m 0 P C 0,δ pR 2N q for some δ P p0, 1q. 

Assumptions (H) ( 
(2.3) ż R 2N pF rm 1 s ´F rm 2 sqdpm 1 ´m2 q ą 0 and ż R 2N
pGrm 1 s ´Grm 2 sqdpm 1 ´m2 q ě 0 for every m 1 , m 2 P P 1 pR 2N q, m 1 ‰ m 2 , the solution found in Theorem 2.1 is unique.

The optimal control problem

In this section, we tackle the optimal control problem related to equation (2.1)-(i) with a fixed m P Cpr0, T s; P 1 pR 2N qq. To simplify the notation, we introduce the functions (3.1) ℓpx, v, tq :" lpx, vq `F rmptqspx, vq and gpx, vq :" GrmpT qspx, vq, which, from the set assumptions pHq, satisfy

(3.2) }ℓp¨, ¨, tq} C 2 , }ℓpx, v, ¨q} C , }g} C 2 ď C @t P r0, T s, px, vq P R 2N .
With the new notation, the optimal control problem to be solved by a representative agent whose state at time t is px, vq is to find the control law α in order to minimize

(3.3) J t pξ, η, αq " ż T t " |α| 2 2 `|η| 2 2
`ℓpξpsq, ηpsq, sq  ds `gpξpT q, ηpT qq, by following the trajectory (1.3). Then the Cauchy problem given by (2.1)-(i) and its terminal condition becomes (3.4)

" ´Bt u ´v ¨Dx u `1 2 |D v u| 2 ´1 2 |v| 2 ´ℓpx, v, tq " 0 in R 2N ˆp0, T q, upx, v, T q " gpx, vq on R 2N . From (3.
3), it is obvious that the control α must be chosen in L 2 pt, T ; R N q. Therefore, we can introduce the value function as follows: " pξ, η, αq : ˇˇˇp ξ, ηq P ACprt, T s; R 2N q, α P L 2 pt, T ; R N q, pξ, η, αq satisfy (1.3) and ξptq " x, ηptq " v * . Lemma 3.1. i) (Existence of an optimal control.) For every px, v, tq P R N ˆRN p0, T q, there exists an optimal control α ˚for upx, v, tq.

ii) (Concatenation.) Let pξ ˚, η ˚q be an optimal trajectory for upx, v, tq corresponding to the control law α ˚. For r P pt, T q, let p ξ˚, η˚q be an optimal trajectory for upξ ˚prq, η ˚prq, rq with control α˚. Then the concatenation of α ˚and α˚a t time r is optimal for upx, v, tq and, moreover, Proof. (i): let tα n u n be a sequence of minimizing control laws and pξ n , η n q be the solution of (1.3) corresponding to α n . Then, the boundedness of ℓ and the definition of J t ensure that }α n } L 2 pt,T ;R N q are uniformly bounded. Then, possibly after extracting a subsequence, α n á α ˚in L 2 pt, T ; R N q, η n Ñ η ˚in Cprt, T s; R N q and ξ n Ñ ξ ˚in C 1 prt, T s; R N q. The lower semi-continuity of J t yields that α ˚is optimal. Points (ii), (iii) and (iv) are obtained by arguing exactly as in [29, Proposition 5.1] (points (1), ( 2) and (4) respectively), see also [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]. Proof. For any px, vq, py, wq and λ P r0, 1s, consider x λ :" λx`p1´λqy, v λ :" λv`p1´λqw.

upx
✷
Let α be an optimal control for upx λ , v λ , tq; hence, the associated trajectory is

(3.12) x λ psq " x λ `vλ ps ´tq `ż s t ż θ t αpτ q dτ dθ, v λ psq " v λ `ż s t αpτ q dτ and upx λ , v λ , tq " ż T t 1 2 |αpsq| 2 `1 2 |v λ psq| 2 `ℓpx λ psq, v λ psq, sqds `gpx λ pT q, v λ pT qq.
Let pxpsq, vpsqq be the trajectory starting at px, vq at time t with control α and pypsq, wpsqq the trajectory starting at py, wq at time t still with control α.

We have to estimate

λupx, v, tq `p1 ´λqupy, w, tq ´upx λ , v λ , tq ď ż T t 1 2 λ|vpsq| 2 `p1 ´λq 1 2 |wpsq| 2 ´1 2 |v λ psq| 2 ds `ż T t
λℓpxpsq, vpsq, sq `p1 ´λqℓpypsq, wpsq, sq ´ℓpx λ psq, v λ psq, sqds `λgpxpT q, vpT qq `p1 ´λqgpypT q, wpT qq ´gpx λ pT q, v λ pT qq.

Since

(3.13) vpsq " v `ż s t αpτ q dτ, wpsq " w `ż s t αpτ q dτ, v λ psq " λv `p1 ´λqw `ż s t αpτ q dτ, we get

λ 1 2 |vpsq| 2 `p1 ´λq 1 2 |wpsq| 2 ´1 2 |v λ psq| 2
"pλv `p1 ´λqw ´λv ´p1 ´λqwq

ż s t αpτ q dτ `λ |v| 2 2 `p1 ´λq |w| 2 2 ´1 2 |λv `p1 ´λqw| 2 " 1 2 λp1 ´λq|v| 2 `1 2 λp1 ´λq|w| 2 ´λp1 ´λqv ¨w " 1 2 λp1 ´λq|v ´w| 2 . (3.14) Hence (3.15) ż T t 1 2 λ|vpsq| 2 `p1 ´λq 1 2 |wpsq| 2 ´1 2 |v λ psq| 2 ds " 1 2 λp1 ´λq|v ´w| 2 pT ´tq.
Now, we have to estimate the terms λℓpxpsq, vpsq, sq`p1´λqℓpypsq, wpsq, sq´ℓpx λ psq, v λ psq, sq and λgpxpT q, vpT qq `p1 ´λqgpypT q, wpT qq ´gpx λ pT q, v λ pT qq. We write the algebra for the second term, since the treatment of the first term is similar. The Taylor expansion of g centered at px λ pT q, v λ pT qq gives (3.16) gpxpT q, vpT qq " gpx λ pT q, v λ pT qq `Dgpx λ pT q, v λ pT qqpxpT q ´xλ pT q, vpT q ´vλ pT qq `R1 , where R 1 is the remaining term in the expansion, namely (3.17) R 1 " 1 2 pxpT q ´xλ pT q, vpT q ´vλ pT qqD 2 gpξ 1 , η 1 qpxpT q ´xλ pT q, vpT q ´vλ pT qq T , for suitable ξ 1 , η 1 . From (3.12) and (3.13), we get

(3.18)
xpsq ´xλ psq " p1 ´λqppx ´yq `pv ´wqps ´tqq, vpsq ´vλ psq " p1 ´λqpv ´wq, ypsq ´xλ psq " λppy ´xq `pw ´vqps ´tqq, wpsq ´vλ psq " λpw ´vq, hence the error term can be written as

(3.19) R 1 " 1 2 p1´λq 2 px´y`pv´wqpT ´tq, v´wqD 2 gpξ 1 , η 1 qpx´y`pv´wqpT ´tq, v´wq T .
Similarly gpypT q, wpT qq " gpx λ pT q, v λ pT qq `Dgpx λ pT q, v λ pT qqpypT q ´xλ pT q, wpT q ´vλ pT qq `R2 , where R 2 " 1 2 pypT q ´xλ pT q, wpT q ´vλ pT qqD 2 gpξ 2 , η 2 qpypT q ´xλ pT q, wpT q ´vλ pT qq T " 1 2 λ 2 py ´x `pw ´vqpT ´tq, w ´vqD 2 gpξ 2 , η 2 qpy ´x `pw ´vqpT ´tq, w ´vq T .

At this point, taking into account that from (3.18), λDgpx λ pT q, v λ pT qqpxpT q ´xλ pT q, vpT q ´vλ pT qq `p1 ´λqDgpx λ pT q, v λ pT qqpypT q ´xλ pT q, wpT q ´vλ pT qq "Dgpx λ pT q, v λ pT qqpλpxpT q ´xλ pT qq `p1 ´λqpypT q ´xλ pT qq, λpvpT q ´vλ pT qq `p1 ´λqpwpT q ´vλ pT qqq "0,

we obtain that (3.21) λgpxpT q, vpT qq `p1 ´λqgpypT q, wpT qq ´gpx λ pT q, v λ pT qq " λR 1 `p1 ´λqR 2 ď p1 ´λqλC T }D 2 g} 8 p|x ´y| 2 `|v ´w| 2 q.

Hence from (3.15), (3.20), (3.21) we get λupx, v, tq `p1 ´λqupy, w, tq ´upx λ , v λ , tq

ď λp1 ´λq 2 |v ´w| 2 pT ´tq `CT p1 ´λqλ `}D 2 g} 8 `}D 2 ℓ} 8 ˘`|x ´y| 2 `|v ´w| 2 ˘.
We obtain that u is semi-concave in px, vq with a linear modulus of semi-concavity. ✷

Pontryagin's maximum principle yields the following necessary optimality conditions: Proposition 3.2 (Necessary conditions for optimality). Let px ˚, v ˚, α ˚q be optimal for upx, v, tq in (3.5). There exists an arc p " pp x , p v q P ACprt, T s; R N ˆRN q, hereafter called the costate, such that 1. pα ˚, x ˚, v ˚, pq satisfies the adjoint equations: for a.e. s P rt, T s,

p 1 x " D x ℓpx ˚, v ˚, sq, (3.22) p 1 v " ´px `v˚`D v ℓpx ˚, v ˚, sq, (3.23)
the transversality condition (3.24) ppT q " ´Dgpx ˚pT q, v ˚pT qq, together with the maximum condition: for almost all s P rt, T s,

(3.25) max α p x ¨v˚`p v ¨α ´|α| 2 2 ´|v ˚|2 2 " p x ¨v˚`p v ¨α˚´| α ˚|2 2 ´|v ˚|2 2 .
2. The optimal control α ˚is given by

(3.26) α ˚" p v , a.e in rt, T s.
3. The triple px ˚, v ˚, pq satisfies the system of differential equations: for a.e. s P rt, T s

x 1 " v, (3.27) v 1 " p v , (3.28) p 1
x " D x ℓpx, v, sq, (3.29)

p 1 v " ´px `v `Dv ℓpx, v, sq, (3.30)
with the mixed boundary conditions x ˚ptq " x, v ˚ptq " v, ppT q " ´Dgpx ˚pT q, v ˚pT qq.

Proof. 1. Hypothesis (3.2) ensures that our control problem satisfies the assumption [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Hypothesis 22.16], so we can invoke [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorem 22.17] on the maximum principle for problems with unbounded control. Moreover, since there is no constraint on the state variable at T , the same arguments as in [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Corollary 22.3] ensure that the necessary conditions hold in normal form.

2. The maximum condition (3.25) implies that D x ℓpx ˚pτ q, v ˚pτ q, τ q dτ, p v psq " ´Dv gpx ˚pT q, v ˚pT qq ´ż T s D v ℓpx ˚pτ q, v ˚pτ q, τ q `v˚p τ q ´px pτ q dτ. (3.33). To this end, we observe that equations (3.28) and (3.30) entail pv ˚q2 pτ q ´v˚p τ q " ´px pτ q `Dv ℓpx ˚pτ q, v ˚pτ q, τ q where, by (3.31) and (H2), the right hand side is bounded uniformly in x and v, τ P rt, T s. Moreover,

D α ˆpx ¨v˚`p v ¨α ´|α| 2 2 ´|v ˚|2 2 ´f px ˚, v ˚q˙α "α ˚" 0
• pv ˚qptq " v

• by (3.28), (3.24) and the regularity of g, pv ˚q1 pT q is bounded uniformly in x and v.

Hence, using the method of variation of constants for the above ordinary differential equation with assigned the values of v ˚ptq and of pv ˚q1 pT q, we get the estimate for v ˚and for α ˚. Integrating v ˚, we get the estimate for x ˚.

Proof of point 4. The relations (3.31) and the C 1 -regularity of x ˚, v ˚and p imply that, actually, p P C 2 . Therefore, (3.32) gives the C 2 -regularity of α ˚and, finally, (2.2) Corollary 3.2 that follows implies that the optimal trajectories for upx, v, tq do not bifurcate at any time r ą t. Corollary 3.2. Under Hypothesis (3.2), let px ˚, v ˚q be an optimal trajectory for upx, v, tq. For every t ă r ă T , there are no other optimal trajectories for upx ˚prq, v ˚prq, rq other than px ˚, v ˚q restricted to rr, T s.

yields the C 2 -regularity of x ˚, v ˚. Further regularity of x ˚, v ˚,
Proof. 1. Let r P pt, T q and py ˚, w ˚q be an optimal trajectory for upx ˚prq, v ˚prq, rq. Lemma 3.1 ensures that pz ˚, ν ˚q, the concatenation of px ˚, v ˚q with py ˚, w ˚q at r is an optimal trajectory for upx, v, tq. Let p :" pp x , p v q, q :" pq x , q v q be the costates corresponding respectively to px ˚, v ˚q and to pz ˚, ν ˚q. Both px ˚, v ˚, pq and pz ˚, ν ˚, qq satisfy (3.27) -(3.30) on rt, T s. Now, Corollary 3.1 shows that px ˚, v ˚q and pz ˚, ν ˚q are of class C 1 . Since x ˚" z ˚, v ˚" ν ˚on rt, rs, we choose τ such that t ă τ ă r. From (3.28), we get p v pτ q " q v pτ q.

Moreover, from (3.28) and (3.30), we also get that p x pτ q " q x pτ q.

Therefore, both px ˚, v ˚, pq and pz ˚, ν ˚, qq are solutions to the same Cauchy problem on rt, T s with the first order differential system (3.27)- (3.30) and Cauchy data at τ . The regularity assumptions on ℓ, g and Cauchy-Lipschitz Theorem guarantee the uniqueness of the solution. Thus x ˚" z ˚, v ˚" ν ˚on rτ, T s, from which we obtain the desired identities x ˚" y ˚and v ˚" w ˚on rr, T s. ✷ Definition 3.2. For any px, v, tq P R 2N ˆr0, T s, let Upx, v, tq denote the set of optimal controls for the value function upx, v, tq defined in (3.5).

Remark 3.2. Lemma 3.1-(i) and Remark

3.1 ensure that H ‰ Upx, v, tq Ă C 1 prt, T s; R N q.
Lemma 3.4. The following properties hold:

1. The function upx, ¨, tq is differentiable at v if and only if the set tαptq : α P Upx, v, tqu is a singleton. Moreover D v upx, v, tq " ´αptq.

2.

In particular, if Upx, v, tq is a singleton, then, calling pxpsq, vpsqq the optimal trajectory associated to the singleton Upx, v, tq, D v upxpsq, vpsq, sq exists for any s P rt, T s. `gpxpT q `h1 `h2 pT ´tq, vpT q `h2 q ´gpxpT q, vpT qq "

If

ż T t 1 2 h 2 2
`h2 ¨vpsq `ℓpxpsq `h1 `h2 ps ´tq, vpsq `h2 , sq ´ℓpxpsq, vpsq, sq ds `gpxpT q `h1 `h2 pT ´tq, vpT q `h2 q ´gpxpT q, vpT qq.

The arbitrariness of the sign of the components of ph 1 , h 2 q and the differentiability of u w.r.t. v yields where the last two equalities are due to (3.30), (3.26) and the terminal condition for p. This uniquely determines the value of αp¨q at time t.

D v upx, v,
Conversely we prove that, if all αp¨q P Upx, v, tq take the same value αptq at t, then D v upx, v, tq exists. Fix x and t. From the semi-concavity of upx, ¨, tq, the differentiability of upx, ¨, tq at v will follow from the fact that D v upx, v, tq is a singleton (see [START_REF] Cannarsa | Semi-Concave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]Proposition 3.3.4]). Recall that the set of reachable gradients of upx, ¨, tq is defined by Hence from Ascoli-Arzelà Theorem, we deduce that, after extracting a subsequence, α n uniformly converge to some α P Cprt, T s; R N q. In particular, calling px n p¨q, v n p¨qq the trajectory associated to α n starting from px, v n q:

D v upx, v, tq " $ ' & ' % χ P R N : Dpv n q nPN with ˇˇˇˇˇˇl im nÑ8 v n " v, upx, ¨, tq is differentiable at v n , lim nÑ8 D v upx, v n ,
x n psq " x `vn ps ´tq `ż s t ż θ t α n pτ qdτ dθ, and v n psq " v n `ż s t α n pτ qdτ.

we get:

x n psq Ñ xpsq " x `vps ´tq `ż s t ż θ t αpτ qdτ dθ, uniformly in rt, T s, v n psq Ñ vpsq " v `ż s t αpτ qdτ uniformly in rt, T s.
Moreover, by classical arguments of stability, α is optimal, i.e. α P Upx, v, tq. The uniform convergence of the α n yields in particular that α n ptq Ñ αptq where αptq is uniquely determined by assumption. By (3.35) and (3.36), we get that χ n Ñ χ " αptq. This implies that D v upx, v, tq is a singleton, then D v upx, v, tq exists. Going back to the first part of the proof, we see that D v upx, v, tq " ´αptq.

2. If Upx, v, tq " tαp¨qu, then for any s P rt, T s, αpsq is uniquely determined. Indeed, if there exists β P Upxpsq, vpsq, sq, then the concatenation γ of α and β (see Lemma 3.1) is also optimal, i.e. γ P Upx, v, tq " tαp¨qu. Then from point 1 with t " s at pxpsq, vpsqq, we deduce that D v upxpsq, vpsq, sq exists.

3.

From point 1, we know that for any αp¨q P Upx, v, tq, αptq is unique and coincides with ´Dv upx, v, tq. Hence, relation (3.26) ensures p v ptq " ´Dv upx, v, tq. On the other hand, note that, since D x upx, v, tq exists, we get from (3.34) that

D x upx, v, tq " ż T t D x ℓpxpsq, vpsq, sqds `Dx gpxpT q, vpT qq " ż T t p 1
x psqds `Dx gpxpT q, vpT qq " ´px ptq;

thus, p x ptq and p v ptq are both uniquely determined. Hence (3.27)-(3.30) is a system of differential equations with initial conditions xptq, vptq, p x ptq and p v ptq which admits a unique solution pxp¨q, vp¨q, p x p¨q, p v p¨qq by Cauchy-Lipschitz theorem, and pxp¨q, vp¨qq is the unique optimal trajectory starting from px, vq, associated to the unique optimal control law αp¨q " p v p¨q. ✷ Lemma 3.5 (optimal synthesis). Consider ξ P R N and η P R N .

1. Let x P C 1 prt, T s; R N q, v P ACprt, T s; R N q be such that Here, convpAq stands for the convex hull of a set A while D x,v,t upy h , w h , s h q stands for the reachable gradient at py h , w h , s h q with respect to the variables x, v and t (see [4, 

(
h,i , χ h,i x , χ h,i v , χ h,i t q i"1,...,2N `2 such that λ h,i ě 0, ř 2N `2 i"1 λ h,i " 1, pχ h,i x , χ h,i v , χ h,i t q P D x,v,t upy h , w h , s h q and pχ h x , χ h v , χ h t q " ř 2N `2 i"1 λ h,i pχ h,i
x , χ h,i v , χ h,i t q. We claim that, for any i " 1, . . . , 2N `2, there holds

lim hÑ0 χ h,i v " D v upxpsq, vpsq, sq.
Indeed, let χ i v be any cluster point of tχ h,i v u h . After a diagonal extraction, there exist px n , v n , t n q such that u is differentiable at px n , v n , t n q, px n , v n , t n q Ñ pxpsq, vpsq, sq and D v upx n , v n , t n q Ñ χ i v as n Ñ 8. By [12, Lemma 4.6] (applied to z n p¨q :" upx n , ¨, t n q), we have

χ i v " lim n D v upx n , v n , t n q P D `zpvpsqq
where zp¨q :" upxpsq, ¨, sq. On the other hand, assumption (3.39) ensures that z is differentiable at vpsq; hence, by [11, Proposition 3.1.5-(c)], we get χ i v " D v upxpsq, vpsq, sq and our claim is proved. In particular, we deduce that χ h v converge to D v upxpsq, vpsq, sq as h Ñ 0. On the other hand, since u is a viscosity solution to equation (3.4) and pχ h,i x , χ h,i v , χ h,i t q P D x,v,t upy h , w h , s h q, we obtain that for all i P 1, . . . , 2N `2,

´χh,i t `1 2 ˇˇχ h,i v ˇˇ2 ´1 2 |w h | 2 ´wh ¨χh,i x " ℓpy h , w h , s h q.
Therefore, Therefore, the control law αpsq " v 1 psq " ´Dv upxpsq, vpsq, sq is optimal. This achieves the proof of the first statement.

χ h t `wh ¨χh x " 1 2 ř 2N `2 i"1 λ h,i ˇˇχ h,i v ˇˇ2 ´1 2 |w h | 2 ´ℓpy h , w h , s h q converges to 1 2 |D v upxpsq,
The second statement is a direct consequence of Lemma 3.4. ✷

The continuity equation

In this section, our aim is to study equation (2.1)-(ii), and more precisely the wellposedness of (4.1)

" B t m `v ¨Dx m ´div v pm D v uq " 0, in R 2N ˆp0, T q, mpx, v, 0q " m 0 px, vq, on R 2N ,
where u is the value function associated to the cost J t in (3.3); for the sake of clarity, let us recall from Proposition 3.1 that u is the unique viscosity solution fulfilling (3.11) to the problem Moreover mpt, ¨q satisfies: for any for φ P C 0 b pR 2N q, for any t P r0, T s,

" ´Bt u ´v ¨Dx u `1 2 |D v u| 2 ´1 2 |v| 2 ´lpx, vq " F rmptqspx, vq, in R 2N ˆp0, T q, upx, v, T q " GrmpT qspx, vq, on R 2N ,
(4.2) ż R 2N φpx, vq mpx, v, tqdxdv " ż R 2N φ `γx,v ptq ˘m0 px, vq dxdv,
where, for a.e. px, vq P R 2N , γ x,v is the solution to (2.2).

The proof of Theorem 4.1 is given in the next two subsections which are devoted respectively to existence (see Proposition 4.1) and to uniqueness and the representation formula (see Proposition 4.2).

Existence of the solution

We wish to establish the existence of a solution to the continuity equation via a vanishing viscosity method applied to the whole MFG system in which the viscous terms involve Laplace operators with respect to both x and v. This is reminiscent of [START_REF] Cardaliaguet | Long time average of first order mean field games and weak KAM theory[END_REF]Appendix] (see also [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Section 4.4]). In this way, D v u is replaced by D v u σ , which is regular by standard regularity theory for parabolic equations; this implies the regularity of the solution of the Fokker-Planck equation (see [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF]). Note also that D v u may be unbounded; we shall overcome this issue by taking advantage of estimates similar to those in Lemma 3.2. Indeed, these estimates will allow us to apply classical results for the existence and uniqueness of the solution. We consider the solution pu σ , m σ q to the following problem

(4.3) $ & % piq ´Bt u ´σ∆ x,v u ´v ¨Dx u `1 2 |D v u| 2 ´1 2 |v| 2 ´lpx, vq " F rmspx, vq, in R 2N ˆp0, T q, piiq B t m ´σ∆ x,v m ´div v pmD v uq ´v ¨Dx m " 0, in R 2N ˆp0, T q, piiiq mpx, v, 0q " m 0 px, vq, upx, v, T q " GrmpT qspx, vq, on R 2N .
Recall that equation (4.3)-(ii) has a standard probabilistic interpretation (see relation (4.8) below). Our aim is to find a solution to problem (4.1) by letting σ tend to 0 `.

To this end, some estimates are needed. Note that equation (4.3)-(ii) can be written in the compact form (4.4) B t m ´σ∆ x,v m ´div x,v pmb σ q " 0, with b σ :" p´v, D v uq.

We start by establishing the well-posedness of system (4.3) and that the functions u σ are Lipschitz continuous and semi-concave uniformly in σ. 3)-(iii) and satisfying inequality paq. Furthermore, still by the results in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF], this solution is unique among the functions with this growth at infinity. Hence, estimate paq is proved.

paq |u σ px, v, tq| ď Cp1 `|v| 2 q, pbq }D x u σ } 8 ď C, |D v u σ px, v, tq| ď Cp1 `|v|q, |B t u σ px, v, tq| ď Cp1 `|v| 2 q, pcq D 2 x,v u σ ď C,
Let us now prove that this viscosity solution u σ is a classical solution. To this end, let us assume for a moment that u σ satisfies estimates pbq and pcq. We see that u is a viscosity subsolution of

´Bt u ´σ∆ x,v u ´v ¨Dx u ď Cp1 `|v| 2 q.
Moreover, from estimate pcq, we see that at any point px, v, tq, either u σ is twice differentiable with respect to x and v, or there does exist a smooth function that touches u σ from below. This and estimate pbq imply that u σ is a viscosity supersolution of

´Bt u ´σ∆ x,v u ´v ¨Dx u ě ´Cp1 `|v| 2 q.
for some positive constant C. From [START_REF] Ishii | On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions Funkcial[END_REF], u is also a distributional subsolution (respectively supersolution) of the same linear inequalities. Therefore, both ´Bt u σ ´σ∆ x,v u σ ´v ¨Dx u σ and ´1 2 |D v u σ | 2 `1 2 |v| 2 `lpx, vq `F rmspx, vq are in L 8 loc . On the other hand, from pbq and pcq, Alexandrov's theorem implies that u σ is twice differentiable with respect to x and v almost everywhere, so the equation

´Bt u σ ´σ∆ x,v u σ ´v ¨Dx u σ " ´1 2 |D v u σ | 2 `1 2 |v| 2 `ℓpx, v, tq,
(where ℓ and g are defined in (3.1)), holds almost everywhere, and in the sense of distributions since both the left and right hand sides are in L 8 loc . Hence classical results on the regularity of weak solutions (including bootstrap) can be applied and yield that u is a classical solution.

Let us now prove the estimates pbq and pcq, by using similar arguments to those contained in the proofs of Lemma 3.2. They use a representation formula of u arising from a stochastic optimal control problem (see, for example, [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF][START_REF] Buckdahn | Lipschitz continuity and semiconcavity properties of the value function of a stochastic control problem[END_REF][START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]). Let pΩ, F, pF t q, Pq be a complete filtered probability space, the filtration pF t q supporting a standard 2N -dimensional Brownian motion B s " pB x,s , B v,s q. Let A t be the set of R Nvalued pF t q-progressively measurable processes and let E be the expectation with respect to the probability measure P. The unique solution of (4.3)-(i) which satisfies point (a) can be written as:

u σ px, v, tq " inf αPAt E ˆż T t " 1 2 |αpsq| 2 `1 2
|V psq| 2 `ℓpXpsq, V psq, sq  ds `gpXpT q, V pT qq ẇhere the controlled process pXp¨q, V p¨qq satisfies

Xptq " x, V ptq " v,
almost surely and is governed by the stochastic differential equations (

" dX " V psqds `?2σdB x,s , dV " αpsqds `?2σdB v,s .

Thus, almost surely, (

$ ' ' & ' ' % Xpsq " x `vps ´tq `ż s t ż θ t αpτ q dτ dθ `?2σ ż s t ˆż θ t dB v,τ ˙dθ `?2σ ż s t dB x,τ , V psq " v `ż s t αpτ q dτ `?2σ ż s t dB v,τ . 4.6) 
To prove pbq, we can exactly use the same arguments as for Lemma 3.2, replacing the paths pxpsq, vpsqq and pypsq, wpsqq by the processes pXpsq, V psqq and pY psq, W psqq, and noting that, from (4.6), we get similar equalities as in (3.8). Note that, for any σ, we get from paq that any ǫ-optimal control α σ for u σ px, v, tq satisfies

E ˆż T t |α σ psq| 2 ds ˙ď Cp1 `|v| 2 q,
hence, we get the same estimates as (3.9) and (3.10), namely estimate pbq. An analytic proof of pbq is also possible, see [START_REF] Lieberman | Second order parabolic differential equations[END_REF]Chapter XI].

In order to prove pcq, we can follow the same procedure as in the proof of Lemma 3.3, noting that: i) equalities (3.14) and (3.18) are still true for the stochastic processes, ii) if we fix s P rt, T s, using a Taylor expansion of g as in (3.16), we get gpXpsq, V psqq " gpX λ psq, V λ psqq `DgpX λ psq, V λ psqqpXpsq ´Xλ psq, V psq ´Vλ psqq `1 2 pXpsq ´Xλ psq, V psq ´Vλ psqqD 2 gpξ, ηqpXpsq ´Xλ psq, V psq ´Vλ psqq T , where ξ " Xpsq `θ1 pXpsq ´Xλ psqq, η " V psq `θ2 pV psq ´Vλ psqq for suitable θ 1 and θ 2 in r0, 1s. For a similar proof, see [START_REF] Buckdahn | Lipschitz continuity and semiconcavity properties of the value function of a stochastic control problem[END_REF]. ✷ Lemma 4.2. Under the same assumptions as in Proposition 4.1, there exists a unique classical solution m σ to problem (4.3)-(ii), -(iii) with a sub-exponential growth in px, vq. Moreover, m σ ą 0.

Proof. By Lemma 4.1, the problem for m σ can be written

B t m ´σ∆ x,v m ´bσ ¨Dxv m ´p∆ v u σ q m " 0, mp0q " m 0 ,
where b σ has been introduced in (4.4) and from the estimates contained in Lemma 4.1, |b σ | ď Cp1 `|v|q and ∆ v u σ ď C. Using this and the results contained in [START_REF] Ikeda | The Cauchy problem of linear parabolic equations with discontinuous and unbounded coefficients[END_REF], we get the existence and uniqueness of a classical solution m σ of (4.3)-(ii) with initial condition as in (4.3)-(iii). From the assumptions on m 0 and Harnack inequality (see for example [23, Theorem 2.1, p.13]) we get that m σ p¨, tq ą 0 for t ą 0. ✷

Let us now prove some properties of the functions m σ which will play a crucial role in the proofs of Proposition 4.1 and of Theorem 2.1. Lemma 4.3. Under the same assumptions of Proposition 4.1, there exists a constant K ą 0 which depends only on the constants in assumptions pHq and on m 0 , in particular it is independent of σ ď 1, such that:

1. }m σ } 8 ď K, 2. d 1 pm σ pt 1 q, m σ pt 2 qq ď Kpt 2 ´t1 q 1{2 , @t 1 ď t 2 P r0, T s, 3. ż R 2N p|x| 2 `|v| 2 q dm σ ptqpx, vq ď K ˆżR 2N p|x| 2 `|v| 2 q dm 0 px, vq `1˙, @t P r0, T s.
Proof. Point 1. In order to prove this L 8 estimate, we argue as in [START_REF] Cardaliaguet | Long time average of first order mean field games and weak KAM theory[END_REF]Theorem 5.1]. We note that

div v pm σ D v u σ q " D v m σ ¨Dv u σ `mσ p∆ v u σ q ď D v m σ ¨Dv u σ `Cm σ ,
because of the semi-concavity of u established in Lemma 4.1 and the positivity of m σ . Therefore, from assumption pH2q, the function m σ satisfies

B t m σ ´σ∆ x,v m σ ´v ¨Dx m σ ´Dv u σ ¨Dv m σ ´Cm σ ď 0, m σ px, v, 0q ď C.
Then, using w " Ce Ct as a supersolution (recall that C is independent of σ), we obtain that }m σ } 8 ď Ce CT , using the comparison principle proved in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF]Theorem 2.1].

To prove Points 2 and 3 as in the proof of [12, Lemma 3.4 and 3.5], it is convenient to introduce the stochastic differential equation

(4.7) dY t " b σ pY t , tqdt `?2σdB t , Y 0 " Z 0 , where Y t " pX t , V t q, b σ px, v, tq " p´v, D v u σ px, v, tqq, B t is a standard 2N -dimensional
Brownian motion, and LpZ 0 q " m 0 . By standard arguments, setting (4.8) m σ ptq :" LpY t q, we know that m σ ptq is absolutely continuous with respect to Lebesgue measure, and that if m σ p¨, ¨, tq is the density of m σ ptq, then m σ is the weak solution to (4.3)-(ii) with m σ | t"0 " m 0 (from Ito's Theorem, since b σ has at most linear growth with respect to px, vq, Proposition 3.6 Chapter 5 [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], p.303, and the book [START_REF] Bogachev | Fokker-Planck-Kolmogorov equations[END_REF]). Here again, we have used the estimate on

|D v u σ | given in Lemma 4.1. Point 3: Noting that ż R 2N p|x| 2 `|v| 2 qdm σ ptqpx, vq " Ep|Y t | 2 q,
the desired estimate can be obtained by applying Estimate 3.17 of Problem 3.15, p. 306, (the solutions are at p. 389) of [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] with m " 1.

Point 2: For t 2 ě t 1 , it is well known that

d 1 pm σ pt 1 q, m σ pt 2 qq ď Ep|Y t 1 ´Yt 2 |q.
Recall also that for a suitable constant C,

|b σ pY τ , τ q| ď Cp|V τ | `1q.
The latter two observations imply that

Ep|Y t 1 ´Yt 2 |q ď E ˆż t 2 t 1 |b σ pY τ , τ q|dτ `?2σ|B t 2 ´Bt 1 | ď E ˆC ż t 2 t 1 p|V τ | `1q|dτ `?2σ|B t 2 ´Bt 1 | ď C ˆE ˆż t 2 t 1 p|V τ | 2 `1q|dτ ˙˙1 2 ? t 2 ´t1 `?2σ ? t 2 ´t1 ď C ˆE ˆmax rt 1 ,t 2 s |Y τ | 2 ˙`1 ˙1 2 pt 2 ´t1 q `?2σ ? t 2 ´t1 .
where we have used estimate [20, (3.17 By standard stability result for viscosity solutions, the function u is a viscosity solution of (3.4).

On the other hand, the function m σ satisfies the estimates stated in Lemma 4.3:

1. from point 3, m σ ptq is bounded in P 2 pR 2N q uniformly in σ P r0, 1s and t P r0, T s 2. from points 2 and 3 , m σ is bounded in C 1{2 pr0, T s; P 1 pR 2N qq uniformly with respect to σ P r0, 1s.

Recalling that the subsets of P 1 pR 2N q whose elements have uniformly bounded second moment are relatively compact in P 1 pR 2N q, see for example [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Lemma 5.7], we can apply Ascoli-Arzelà theorem: we may extract a sequence (still indexed by σ for simplicity) such that σ Ñ 0 `and m σ converges to some m P C 1{2 pr0, T s; P 1 pR 2N qq in the Cpr0, T s; P 1 pR 2N qq topology. Moreover, from point 1 in Lemma 4.3 and Banach-Alaoglu theorem, m belongs to L 8 loc pp0, T q ˆR2N q and the sequence m σ converges to m in L 8 loc pp0, T q ˆR2N q-weak-˚.

Therefore, by passing to the limit, we immediately obtain that m| t"0 " m 0 , }m} 8 ď K and that d 1 pmpt 1 q, mpt 2 qq ď Kpt 2 ´t1 q 1{2 , @t 1 ď t 2 P r0, T s.

Let us prove that for all t P r0, T s,

(4.9) ż R 2N p|x| 2 `|v| 2 q dmptqpx, vq ď K ˆżR 2N p|x| 2 `|v| 2 q dm 0 px, vq `1˙.
For that, let us consider the increasing sequence of functions defined on R `: φ n pρq " 1 ^ppn `1 ´ρq _ 0q. We know from point 3 in Lemma 4.3, that for all t P r0, T s, (4.10) ż

R 2N p|x| 2 `|v| 2 qφ n p|x| 2 `|v| 2 qm σ px, v, tqdxdv ď K ˆżR 2N p|x| 2 `|v| 2 q dm 0 px, vq `1˙.
For a fixed n, we can pass to the limit in (4.10) thanks to the L 8 loc pp0, T q ˆR2N q-weak-c onvergence established above. We obtain: (4.11) ż

R 2N p|x| 2 `|v| 2 qφ n p|x| 2 `|v| 2 qmpx, v, tqdxdv ď K ˆżR 2N |p|x| 2 `|v| 2 q dm 0 px, vq `1˙.
We then pass to the limit as n Ñ `8 thanks to Beppo Levi monotone convergence theorem, and obtain (4.9). Finally, m σ is a solution to (4.3)-(ii),

ż T 0 ż R 2N
m σ p´B t ψ ´σ∆ x,v ψ `Dv ψ ¨Dv u σ ´v ¨Dx ψq dxdv dt " 0 for any ψ P C 8 c pp0, T q ˆR2N q. Applying the dominated convergence theorem, we infer 

D v ψ ¨Dv u σ Ñ D v ψ ¨Dv u in L 1 as σ Ñ 0 `because D v u σ

Uniqueness of the solution

We now deal with uniqueness for (4.1). , namely Γ T " Cpr0, T s; R 2N q. For any t P r0, T s, we introduce the evaluation map: e t : R 2N ˆΓT Ñ R 2N , e t px, v, γq :" γptq. Hereafter, when we write "for a.e." without specifying the measure, we intend "with respect to the Lebesgue measure". Let m P C 1{2 pr0, T s; P 1 pR 2N qq X L 8 pp0, T q; P 2 pR 2N qq be a solution of problem (4.1) in the sense of Definition 2.1. Recall the notation bpx, v, tq " p´v, D v upx, v, tqq. The estimate (8.1.20) in chapter 8 of [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] is fulfilled: indeed,

ż T 0 ż R 2N |bpx, v, tq| 2 dmptqpx, vq ď C ż T 0 ż R 2N |v| 2 dmptqpx, vq `C ż T 0 ż R 2N |D v upx, v, tq| 2 dmptqpx, vq ď C,
where the last inequality comes from the estimates on D v u and m in Remark 4.2 (recall that mptq is a probability measure). Therefore, the assumptions of the superposition principle are fulfilled (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 8.2.1] and also [2, pag. 182]). The latter and the disintegration theorem (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 5.3.1]) entail that there exist a probability measure η on R 2N ˆΓT and for m 0 -almost every px, vq P R 2N , a probability measure on η x,v on Γ T , such that i) e t #η " m t , i.e., for every bounded and continuous real valued function ψ defined on R 2N , for every t P r0, T s,

ż R 2N ψpx, vqdm t px, vq " ż R 2N ˆΓT ψpζptqqdηpx, v, ζq.
In particular, e 0 #η " m 0 .

ii)

η " ż R 2N η x,v dm 0 px, vq,
i.e. for every bounded Borel function f :

R 2N ˆΓT Ñ R, ż R 2N ˆΓT f px, v, ζqdηpx, v, ζq " ż R 2N ˆżΓ T f px, v, ζqdη x,v pζq ˙dm 0 px, vq.
iii) For m 0 -almost every px, vq P R 2N , the support of η x,v is contained in the set (4.13) $ & % ζ P AC `r0, T s; R 2N ˘: ζptq " pξptq, ηptqq : ˇˇˇˇˇξ p0q " x, ηp0q " v, ξ 1 ptq " ηptq, η 1 ptq " ´Dv upξptq, ηptq, tq.

, .

-.

Recall that in the present case, m 0 is absolutely continuous (from assumption pH4q); hence, since for all t P r0, T s, up¨, ¨, tq is Lipschitz continuous, the optimal synthesis in Lemma 3.5 ensures that for a.e. px, vq P R 2N , (3.38)-(3.40) (with t " 0 in the present context) has a unique solution γ x,v , because it is the optimal trajectory for the cost J t . Therefore, for a.e. px, vq P R 2N , the set in (4.13) is a singleton, or in equivalent manner, η x,v coincides with δ γ x,v . In conclusion, for any function

ψ P C 0 b pR 2N q, ż R 2N ψpx, vq mpx, v, tqdxdv " ż R 2N ˆΓT ψpe t pζqqdηpx, v, ζq " ż R 2N ˆżΓ T ψpe t pζqqdη x,v pζq ˙dm 0 px, vq " ż R 2N ψpe t pγ x,v qqdm 0 px, vq " ż R 2N ψpγ x,v ptqqm 0 px, vqdxdv.
This shows that m is uniquely defined as the image of m 0 by the flow of ( We also introduce a map T as follows: to any m P C, we associate the solution u to problem (3.4) with m " m and to this u we associate the solution µ ": T pmq to problem (4.1) which, by Proposition 4.1 belongs to C. Hence, T maps C into itself. We claim that the map T has the following properties:

(a) T is a continuous map with respect to the norm of Cpr0, T s; P 1 pR 2N qq (b) T is a compact map.

Assume for the moment that these properties are true. In this case, Schauder fixed point Theorem ensures the existence of a fixed point for T , namely a solution to system (2.1). Therefore it remains to prove properties paq and pbq.

Let us now prove paq. Let pm n q n be a sequence in C such that m n Ñ m in the Cpr0, T s; P 1 pR 2N qq topology. We want to prove that T pm n q Ñ T pmq in Cpr0, T s; P 1 pR 2N qq. We observe that hypothesis pH3q ensures that the functions px, v, tq Þ Ñ F rm n ptqspx, vq and px, vq Þ Ñ Grm n pT qspx, vq converge locally uniformly to the map px, v, tq Þ Ñ F rmptqspx, vq and respectively px, vq Þ Ñ GrmpT qspx, vq. Moreover, Lemma 3.2 entails that the solutions u n to problem (3.4) with m " m n are locally uniformly bounded and locally uniformly Lipschitz continuous. Therefore, by standard stability results for viscosity solutions, the sequence pu n q n converges locally uniformly to viscosity the solution u to problem (3.4) with m " m. Moreover, from Lemma 3.3, the functions u n are uniformly semi-concave; hence, by [START_REF] Cannarsa | Semi-Concave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]Theorem 3.3.3], Du n converge a.e. to Du.

By Proposition 4.1 and Remark 4.1, the function T pm n q verifies the bounds in Lemma 4.3 with a constant K independent of n. Hence, the sequence pT pm n qq n is uniformly bounded in Cpr0, T s; P 1 pR 2N qq (by Lemma 4.3-(3) and Remark 4.1, and because the subsets of P 1 pR 2N q whose elements have uniformly bounded second moment are relatively compact in P 1 pR 2N q), and uniformly Hölder continuous in time with values in P 1 pR 2N q (by Lemma 4.3-(2) and Remark 4.1). Therefore, by Ascoli-Arzelà and Banach-Alaoglu theorems, there exists a subsequence pT pm n k qq k which converges to some µ P Cpr0, T s; P 1 pR 2N qq in the Cpr0, T s; P 1 pR 2N qq-topology and in the L 8 loc pp0, T q ˆR2N qweak-˚topology. As in Remark 4.1, µ verifies the bounds in Lemma 4.3 and µp0q " m 0 .

Observe that T pm n k q solves problem (4.1) with u replaced by u n k ,

ż T 0 ż R 2N
T pm n k q p´B t ψ `Dv ψ ¨Dv u n k ´v ¨Dx ψq dxdv dt " 0, for any ψ P C 8 c pp0, T q ˆR2N q. Passing to the limit as k Ñ 8, we get that µ is a solution to (4.1). By the uniqueness result established in Proposition 4.2, we deduce that µ " T pmq, and that the whole sequence pT pm n qq n converges to T pmq.

Let us now prove pbq; since C is closed, it is enough to prove that T pCq is a precompact subset of Cpr0, T s; P 1 pR 2N qq. Let pµ n q n be a sequence in T pCq with µ n " T pm n q for some m n P C; we wish to prove that, possibly for a subsequence, µ n converges to some µ in the Cpr0, T s; P 1 pR 2N qq-topology as n Ñ 8.

By Remark 4.1, the functions T pm n q satisfy the estimates in Lemma 4.3 with the same constant K. Since the subsets of P 1 pR 2N q whose elements have uniformly bounded second moment are relatively compact in P 1 pR 2N q, Lemma 4.3-(3) ensures that the sequence pT pm n qq n is uniformly bounded. Moreover, Lemma 4.3-(2) yields that the sequence pT pm n qq n is uniformly bounded in C 1{2 pr0, T s; P 1 pR 2N qq and L 8 p0, T ; P 2 pR 2N qq. By arguing as in the proof of Proposition 4.1, we obtain that, possibly for a subsequence (still denoted by T pm n q), T pm n q converges to some µ in the Cpr0, T s; P 1 pR 2N qq-topology.

2. Theorem 4.1 ensures that, if pu, mq is a solution of (2.1), for any function ψ P C 0 b pR 2N q, where γ x,v is the solution of (2.2) (uniquely defined for a.e. px, vq P R 2N ). ✷

Proof of Proposition 2.1. Let pu 1 , m 1 q and pu 2 , m 2 q be two solutions to system (2.1) in the sense of Definition 2.1. By Theorem 4.1, for i " 1, 2, the function m i satisfies (4.2) with γ x,v replaced by γ i x,v , which for a.e. px, vq is the solution to (2.2) with u replaced by u i . Moreover, let us recall from Lemma 3.2-(1) that the Lipschitz constant of u i has an at most linear growth in v. By Gronwall's Lemma we obtain that γ i x,v is bounded. Since m 0 has compact support, we deduce the function m i has compact support. In particular, we obtain that u :" u 1 ´u2 is an admissible test-function for the continuity equation satisfied by m i .

Taking advantage of the convexity of our Hamiltonian H and of the monotonicity of the couplings F and G, we can conclude the proof following the same arguments as in [START_REF] Lasry | Mean field games[END_REF]Theorem 2.5]. ✷

Appendix

Let us now consider the second order MFG system: for a positive number σ, (6.1) $ & % piq ´Bt u ´σ∆ x,v u ´v ¨Dx u `1 2 |D v u| 2 ´1 2 |v| 2 ´lpx, vq " F rmspx, vq, in R 2N ˆp0, T q, piiq B t m ´σ∆ x,v m ´div v pmD v uq ´v ¨Dx m " 0, in R 2N ˆp0, T q, piiiq mpx, v, 0q " m 0 px, vq, upx, v, T q " GrmpT qspx, vq, on R 2N .

We aim at proving the existence and uniqueness of a classical solution to system (6.1). We shall see that these results are byproducts of the estimates that we have already used above in the vanishing viscosity limit. More precisely, the properties obtained in Section 4 will play a crucial role in what follows.

Theorem 6.1. Under our standing assumptions, there exists a classical solution to problem (6.1). Moreover, if the coupling costs F and G satisfy (2.3), the solution is unique.

Proof. Our arguments are reminiscent of those used in the proof of [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]Theorem 3.1]. We introduce C :" m P C 0 pr0, T s; P 1 pR 2N qq : mp0q " m 0 ( which is a non-empty closed and convex subset of C 0 pr0, T s; P 1 pR 2N qq. We define a map T as follows: for any m P C, let u be the unique solution to (6.1)-piq and upx, v, T q " GrmpT qspx, vq found in Lemma 4.1; we set T pmq " µ where µ is the unique solution to (6.1)-piiq and mpx, v, 0q " m 0 px, vq found in Lemma 4.2. Lemma 4.3 ensures that T maps C into itself. By the same arguments as in the proof of Theorem 2.1, the map T is continuous with respect to the norm of Cpr0, T s; P 1 pR 2N qq and it is compact. Hence, Schauder fixed point theorem ensures the existence of a fixed point m for T . Let u denote the corresponding solution to (6.1)-piq and -piiiq. By Lemma 4.1 and Lemma 4.2 again, u and m are regular.

In conclusion, pu, mq is the desired solution to (6.1).

Let us now prove the uniqueness part of the statement. Let pu 1 , m 1 q and pu 2 , m 2 q be two solutions; set u " u 1 ´u2 . Our aim is to follow the arguments in the proof of Proposition 2.1. To this end, it is enough to prove that u is an admissible test-function for m 1 and m 2 . Indeed, for any R ą 1, let φ R be a cut-off function in R 2N defined by φ R px, vq :" φ 1 px{R, v{Rq where φ 1 is a C 2 function such that φ 1 " 1 in B where the second equality is due to equation (6.1)-piq. Since m ą 0 and m P L 8 pp0, T q; P 2 pR 2N qq (see Lemma 4.2 and Lemma 4.3), by the estimates on u i in Lemma 4.1, the dominated convergence theorem ensures that as R Ñ 8, the first two lines in right hand side of ( 6 where χ R is the characteristic function of B 2R zB R . Moreover, since m P L 8 pp0, T q; P 2 pR 2N qq, the right hand side in the last inequality belongs to L 1 independently of R. Therefore, again by the dominated convergence theorem, we get that as R Ñ 8 the last integral in (6.3) converges to 0. ✷

  H1) The functions F and G are real-valued continuous functions defined on P 1 ˆR2N (H2) The function l is a real-valued C 2 function defined on R 2N

Remark 3 . 1 .

 31 α ˚and p follows by a standard bootstrap inductive argument.✷ Taking advantage of Corollary 3.1-(3), we will always consider the representation of the optimal control α ˚which belongs to C 1 .

Proposition 4 . 1 . 1 2

 411 Under assumptions pHq, for any m P Cpr0, T s; P 1 pR 2N qq, problem (4.1) has a solution m in the sense of Definition 2.1. Moreover m P C pr0, T s; P 1 pR 2N qq X L 8 p0, T ; P 2 pR 2N qq.

Lemma 4 . 1 .

 41 Under the same assumptions as in Proposition 4.1, there exists a unique classical solution u σ to problem (4.3)-(i), -(iii) with quadratic growth in px, vq. Moreover, there exists a constant C ą 0 which depends only on the constants in assumptions pHq, in particular it is independent of σ ď 1, such that

where D 2

 2 x,v u is the Hessian of u with respect to both x and v. Proof. Following the same arguments of Proposition 3.1 (based on the comparison principle by Da Lio and Ley [19, Theorem 2.1]), one can easily prove the existence of a viscosity solution to equation (4.3)-(i) with terminal condition as in (4.

  ) p. 306].✷Proof of Proposition 4.1. The arguments are similar to those in the proof of[START_REF] Cardaliaguet | Long time average of first order mean field games and weak KAM theory[END_REF] Theorem 5.1] (see also[START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] Theorem 4.20]). Lemma 4.1 implies that possibly after the extraction of a subsequence, u σ locally uniformly converges to some function u, which is Lipschitz continuous with respect to x, locally Lipschitz continuous with respect to v, and Du σ Ñ Du a.e. (because of the semi-concavity estimate ofLemma 4.1 and [11, Theorem 3.3.3]).

Remark 4 . 1 .

 41 are locally bounded (see Lemma 4.1), D v u σ Ñ D v u a.e. and ψ has a compact support. Letting σ Ñ 0 `, we conclude from the L 8 loc -weak-˚convergence of m σ and the convergence Du σ Ñ Du a.e. that the function m solves (4.1) in the sense of Definition 2.1.✷ Note that we have just proven that all the estimates on u σ contained in Lemma 4.1 hold for u. These estimates have also been obtained directly in the proof of Lemma 3.2. Similarly, all the estimates on m σ contained in Lemma 4.3 hold for m.

  mpx, v, tqdxdv " ż R 2N ψpγ x,v ptqqm 0 px, vq dxdv

  2 |v| 2 ´lpx, vq. Let P 1 and P 2 denote the spaces of Borel probability measures on R 2N with respectively finite first and second order moments, endowed with the Monge-Kantorovich distances d 1 , respectively d 2 .

  We can now state the main result of this paper:

	Theorem 2.1. Under the assumptions pHq: 1. System (2.1) has a solution pu, mq in the sense of Definition 2.1,
	2. m is the image of m 0 by the flow	
	(2.2)	"	x 1 psq " vpsq, v	xp0q " x,

Definition 2.1. The pair pu, mq is a solution of system (2.1) if: 1) u P W 1,8 loc pR 2N ˆr0, T sq, m P Cpr0, T s; P 1 pR 2N qq and for all t P r0, T s, mptq is absolutely continuous with respect to Lebesgue measure on R 2N . Let mp¨, ¨, tq denote the density of mptq. The function px, v, tq Þ Ñ mpx, v, tq is bounded. 2) equation (2.1)-(i) is satisfied by u in the viscosity sense 3) equation (2.1)-(ii) is satisfied by m in the sense of distributions. 1 psq " ´Dv upxpsq, vpsq, sq, vp0q " v. Proposition 2.1. Under the additional assumptions

  where L ℓ and L g denote respectively the Lipschitz constants of ℓ and g w.r.t. px, vq.

	Hence, by (3.8), The following lemma deals with the semi-concavity of upx, v, tq w.r.t. px, vq:
	ż T t	1 2	p|wpsq| 2 ´|vpsq| 2 qds "	ż T t	1 2	|w ´v| ¨|wpsq `vpsq|ds ď
	|w ´v|	ż T t	|w `v	`2 ż s t	αpτ qdτ |ds ď C|w ´v|p|w| `|v| `1q,
	Lemma 3.2. The value function u has the following properties: where the last inequality comes from (3.33) of Corollary 3.1 below. Hence we obtain
	1. (Lipschitz continuity in x and local Lipschitz continuity in v) there exists a positive (3.9) upy, w, tq ď upx, v, tq `C|x ´y| `Kpv, wq|v ´w|, constant C, depending only on the constants in assumptions pHq, such that where Kpv, wq " Cp|w| `|v| `1q. Reverting the roles of px, vq and py, wq, we get the first result. |upx, v, tq ´upx 1 , v, tq| ď C|x ´x1 | |upx, v, tq ´upx, v 1 , tq| ď Cp1 `|v| `|v 1 |q|v ´v1 | for every x, x 1 , v, v 1 P R N , t P r0, T s. 2. We fix px, vq. From the concatenation property of optimal trajectories established in Lemma 3.1, if α is optimal for upx, v, tq and pxpsq, vpsqq is the associated optimal trajectory, then 2. (Local Lipschitz continuity in t) there exists a positive constant C, depending only on the constants in assumptions pHq, such that |upx, v, tq ´upx, v, t 1 q| ď Cp1 `|v| 2 q|t ´t1 | upx, v, tq " upxpsq, vpsq, sq `ż s t 1 2 |αprq| 2 `1 2 |vprq| 2 `ℓpxprq, vprq, rq dr @x, v P R N , t, t 1 P r0, T s. Proof. for any s P rt, T s. Then 1. Fix t P r0, T q. Let α be an optimal control law for upx, v, tq i.e., (3.7) upx, v, tq " ż T t 1 2 |αpsq| 2 `1 2 |vpsq| 2 `ℓpxpsq, vpsq, sq ds `gpxpT q, vpT qq, |upx, v, tq ´upx, v, sq| ď |upx, v, tq ´upxpsq, vpsq, sq| `|upxpsq, vpsq, sq ´upx, v, sq| ď ż s t 1 2 |αprq| 2 `1 2 |vprq| 2 `|ℓpxprq, vprq, rq| dr `L|xpsq ´x| `Lpvq|vpsq ´v|,
	where pxp¨q, vp¨qq obeys to the dynamics (1.3). where the last two terms come from the Lipschitz continuity of u w.r.t. px, vq: L is the Lipschitz constant of u with respect to x and Lpvq is a local Lipschitz constant We consider the path pyp¨q, wp¨qq starting from py, wq, with control αp¨q. Hence, we obtain of u with respect to v.
	ypsq " y `wps ´tq From (1.3) and the bound (3.33) in Corollary 3.1 below, we get the bounds for xpsq, `ż s t ż θ t αpτ q dτ dθ " y ´x `xpsq `pw ´vqps ´tq, wpsq " w vpsq and α, i.e. |vpsq ´v| `|xpsq ´x| ď Cp1 `|v|q|s ´t|, hence `ż s t αpτ q dτ " w ´v `vpsq. (3.10) |upx, v, tq ´upx, v, sq| ď Cp1 `|v| 2 q|s ´t|,
	Note that which ends the proof.		
	(3.8) Proposition 3.1. The value function defined in (3.5) is the unique viscosity solution ✷ vpsq ´wpsq " v ´w, xpsq ´ypsq " x ´y `pv ´wqps ´tq. The definition of the value function (3.5) and relation (3.7) imply upy, w, tq ď ż T t 1 2 |αpsq| 2 `1 2 to (3.4) with an at most quadratic growth in px, vq. Moreover, there exists a positive constant C such that |wpsq| 2 `ℓpypsq, wpsq, sq ds `gpypT q, wpT qq ď upx, v, tq ´ż T t 1 2 (3.11) ´C ď upx, v, tq ď Cp1 `|v| 2 q @px, v, tq P R N ˆRN ˆr0, T s. |vpsq| 2 ´ℓpxpsq, vpsq, sq ds ´gpxpT q, vpT qq Proof. Let us first establish that the value function fulfills (3.11) and solves (3.4) in the
	`ż T t viscosity sense. Actually, taking α " 0 in (1.3), we get ηpsq " v and ξpsq " x `vps ´tq; 1 2 then, thanks to the boundedness of ℓ in (3.2), the value function verifies (3.11). Moreover, |wpsq| 2 `ℓpypsq, wpsq, sq ds `gpypT q, wpT qq ď upx, v, tq by Lemma 3.2, it is also continuous; hence, using the DPP in Lemma 3.1-(iv), it is also a `ż T t solution to (3.4). L ℓ p|xpsq ´ypsq| `|vpsq ´wpsq|q ds `Lg p|xpT q ´ypT q| `|vpT q ´wpT q|q `ż T t The uniqueness part of the statement is an immediate consequence of the comparison 1 2 p|wpsq| 2 ´|vpsq| 2 qds, principle stated in [19, Theorem 2.1]. ✷

Lemma 3.3. Under Hypothesis pHq, upx, v, tq is semi-concave w.r.t. px, vq with a linear modulus of semi-concavity, which depends only on the constants in assumptions pHq.

  2. The optimal control α ˚is a feedback control (i.e., a function of x ˚, v ˚), uniquely expressed in terms of x ˚, v ˚for a.e. s P rt, T s by (3.32) α ˚psq " p v psq. 3. The optimal trajectory px ˚, v ˚q and the optimal control α ˚are of class C 1 . In particular the equalities (3.26) -(3.32) do hold for every s P rt, T s. Moreover (3.33) }v ˚}C 1 `}α ˚}C 1 ď Cp1 `|v|q, }x ˚}C 1 ď |x| `Cp1 `|v|q. 4. Assume that, for some k P N, D x ℓpx, v, sq, D v ℓpx, v, sq are of class C k . Then px ˚, v ˚q, p and α ˚are of class C k`1 . Point 2 follows from (3.26). Proof of point 3. Since x ˚, v ˚are continuous by the definition of admissible trajectories in (3.6), the continuity of α ˚follows from (3.31) and (3.32). Then (1.3) implies v ˚P C 1 and also x ˚P C 1 . Relations (3.31), (3.32) (and the regularity of ℓ) imply, respectively, that p and α ˚are of class C 1 . By (3.28), we get that v ˚is C 2 . Let us now prove the bounds

Proof. Point 1 is obtained integrating (3.29)-(3.30) and taking into account the final time condition ppT q " ´Dgpx ˚pT q, v ˚pT qq.

  tq "

	ż T t	vpsqds	`ż T
			ż T t " ´Dx gpxpT q, vpT qqpT ´tq p 1 x psqps ´tqds " p x pT qpT ´tq ´ż T t p x psqds. ´ż T t p x psqds
	Hence		
		ż T	
	D v upx, v, tq "		

t D x ℓpxpsq, vpsq, sqps ´tq `Dv ℓpxpsq, vpsq, sq ds `Dx gpxpT q, vpT qqpT ´tq `Dv gpxpT q, vpT qq. By (3.29) and (3.24), we obtain ż T t D x ℓpxpsq, vpsq, sqps ´tqds " t pvpsq ´px psq `Dv ℓpxpsq, vpsq, sqqds `Dv gpxpT q, vpT qq " ż T t p 1

v psqds `Dv gpxpT q, vpT qq " ´pv ptq " ´αptq,

  Consider α n P Upx, v n , tq; by the other part of the statement (already proven), we know that(3.36) ´αn ptq " D v upx, v n , tq " χ n . Cp1 `|v n |q ď C, for any n.

	From estimate (3.33) in Corollary 3.1, we see that
	(3.37)	}α 1 n } 8 ď
		,
		/
		.
		/
		-

tq " χ. . Take χ P D v upx, v, tq. By definition of D v upx, v, tq there exist sequences tv n u, tχ n " D v upx, v n , tqu such that (3.35) v n Ñ v and χ n Ñ χ.

  3.38) xptq " ξ, and vptq " η, where u is the solution of(3.4). Under these assumptions, the control law αpsq " v 1 psq " ´Dv upxpsq, vpsq, sq is optimal for upξ, η, tq.

	and for almost every s P pt, T q,
	(3.39)	upxpsq, ¨, sq is differentiable at vpsq,
	and	
	(3.40)	x 1 psq " vpsq, v 1 psq " ´Dv upxpsq, vpsq, sq,
	conv `Dx (3.41)	,v,t upy h , w h , s h q ˘such that	h x , χ h v , χ h t q P
	upxps`hq, vps`hq, s`hq´upxpsq, xpsq, sq " χ h x ¨pxps`hq´xpsqq`χ h v ¨pvps`hq´vpsqq`χ h t h.

2. If up¨, ¨, tq is differentiable at pξ, ηq, then problem

(3.38)

,

(3.40) 

has a unique solution corresponding to the optimal trajectory.

Proof. We adapt the arguments of

[START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] Lemma 4.11]

. Fix pt, ξ, ηq P p0, T q ˆR2N . Let x P C 1 prt, T s; R N q, v P ACpr0, T s; R N q be as in the statement. Note that, from (3.40), since |D v u| grows at most linearly in (see Lemma 3.2-(point 1)), Gronwall's Lemma ensures that vp¨q is bounded in pt, T q; consequently, again by (3.40) and Lemma 3.2-(point 1), vp¨q is Lipschitz continuous. Therefore, from Lemma 3.2, the function s Þ Ñ upxpsq, vpsq, sq is Lipschitz continuous as well. Hence, for almost every s P rt, T s, • (3.39) and (3.40) hold, • the function upxp¨q, vp¨q, ¨q admits a derivative at s. Fix such an s. Lebourg's Theorem for Lipschitz functions (see [17, Thm 2.3.7] and [17, Thm 2.5.1]) ensures that, for any sufficiently small number h, there exists py h , w h , s h q in the open line segment ppxpsq, vpsq, sq, pxps `hq, vps `hq, s `hqq and pχ

  vpsq, sq| 2 ´1 2 |vpsq| 2 ´ℓpxpsq, vpsq, sq as h Ñ 0.

	Then dividing (3.41) by h and letting h tend to 0, we get that
	d ds	pupxpsq, vpsq, sqq	
	"D v upxpsq, vpsq, sq ¨v1 psq	`1 2	|D v upxpsq, vpsq, sq| 2 ´1 2	|vpsq| 2 ´ℓpxpsq, vpsq, sq.
	Recalling (3.40), we get	
	d ds |D or in equivalent manner, pupxpsq, vpsq, sqq " ´1 2
		d ds	pupxpsq, vpsq, sqq " |vpsq| ż T ´1 2 ˇˇv 1 psq ˇˇ2 ´1 2 t 1 2 |v 1 psq| 2 `1 2 |vpsq|

v upxpsq, vpsq, sq| 2 ´1 2 |vpsq| 2 ´ℓpxpsq, vpsq, sq.

2 

´ℓpxpsq, vpsq, sq, which holds for almost every s. Integrating this equality on rt, T s and taking into account the terminal condition in (3.4), we obtain upx, v, tq " 2 `ℓpxpsq, vpsq, sqds `gpxpT q, vpT qq.

  and m is fixed and belongs to Cpr0, T s; P 1 pR 2N qq. It is worth to observe that the differential equation in (4.1) can also be written B t m ´div x,v pm bq " 0, with b :" p´v, D v uq. In the present framework, the properties of u (semi-concavity and local Lipschitz continuity) are not enough to ensure that the flow Φpx, t, sq given by Lemma 3.5 has a Lipschitz continuous inverse, by contrast with[START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] Lemma 4.13]. Moreover, the drift b is only locally bounded; this lack of regularity makes it impossible to apply the standard results for drifts which are Lipschitz continuous (uniqueness, existence and representation formula of m as the push-forward of m 0 through the characteristic flow; e.g., see[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] Proposition 8.1.8]). We shall overcome this difficulty by applying the superposition principle [2, Theorem 8.2.1]. The latter yields a representation formula of m as the push-forward of some measure on Cpr0, T s; R 2N q through the evaluation map e

t defined by e t pγq " γptq for all continuous function γ with value in R 2N . In the following theorem, we state existence, uniqueness, and some regularity results for (4.1): Theorem 4.1. Under assumptions (H), for any m P Cpr0, T s; P 1 pR 2N qq, there is a unique m P C 1 2 pr0, T s; P 1 pR 2N qq X L 8 pp0, T q; P 2 pR 2N qq which solves problem (4.1) in the sense of Definition 2.1.

  where, for a.e. px, vq P R 2N , γ x,v is the solution to (2.2). of Proposition 4.2. The proof is similar to that of[15, Proposition A.1], which relies on the superposition principle [2, Theorem 8.2.1]. Let Γ T denote the set of continuous curves in R 2N

	Proof			
	Proposition 4.2. Under assumptions pHq, the function m found in Proposition 4.1 is the unique solution to problem (4.1) in the sense of Definition 2.1 such that
	m P C Moreover, m satisfies: 1 2 pr0, T s; P 1 pR 2N qq X L 8 pp0, T q; P 2 pR 2N qq.	
	(4.12)			
	ż	ż			
	R 2N	φpx, vq mpx, v, tqdxdv "	R 2N	φpγ x,v ptqq m 0 px, vq dxdv,	@φ P C 0 b pR 2N q, @t P r0, T s,

  2.2). ✷ Proof of Theorem 4.1. Existence of m comes from Proposition 4.1, uniqueness and the representation formula come from Proposition 4.2.

✷ 5 Proof of the main results

Proof of Theorem 2.1. For point 1, we argue as in the proof of

[START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF] Theorem 4.1]

. Consider the set C :" tm P Cpr0, T s; P 1 pR 2N qq | mp0q " m 0 u endowed with the norm of Cpr0, T s; P 1 pR 2N qq and observe that it is a closed and convex subset of Cpr0, T s; P 1 pR 2N qq.

  [START_REF] Achdou | Partial differential equation models in macroeconomics, Fill's[END_REF] , φ 1 " 0 outside B 2 . Clearly, (6.2)D x,v φ R " 0 outside B 2R zB R , }D x,v φ R } 8 ď C{R and }∆ x,v φ R } 8 ď C{R 2 . 2N ˆr0,T s m r´φ R B t u ´σ∆ x,v pφ R uq `Dv u ¨Dv pφ R uq `v ¨Dx pφ R uqs dxdvdt `żR 2N mpx, v, T qφ R pGrm 1 pT qspx, vq ´Grm 2 pT qspx, vqq dxdv ´żR 2N m 0 φ R udxdv mφ R ˆ2v ¨Dx u `|D v u 2 | 2 ´|D v u 1 | 2 2 `F rm 1 s ´F rm 2 s `Dv u ¨Dv u ˙dxdvdt `żR 2N mpx, v, T qφ R pGrm 1 pT qspx, vq ´Grm 2 pT qspx, vqq dxdv ´żR 2N m 0 φ R udxdv `ij R 2N ˆr0,T s m p´σu∆ x,v φ R ´2σD x,v φ R ¨Dx,v uq dxdvdt `ij R 2Nˆr0,T s m puD v u ¨Dv φ R `uv ¨Dx φ R q dxdvdt (6.3)

	ij
	"
	R 2N ˆr0,T s

Using φ R u as test-function in (6.1)-piiq with pu, mq " pu i , m i q for i " 1 or i " 2, we get 0 " ij R

  ´|D v u 1 | 2 2 `|D v u 2 | 2 2 `F rm 1 s ´F rm 2 s `Dv u ¨Dv u  dxdvdt `żR 2N mpx, v, T q pGrm 1 pT qspx, vq ´Grm 2 pT qspx, vqq dxdv ´żR 2N m 0 udxdv;hence, it remains to prove that the last two lines in the right hand side of (6.3) converge to 0. Indeed, again by Lemmas 4.1, 4.2 and 4.3, and by our estimates (6.2), the dominated convergence theorem yieldsij R 2N ˆr0,T s m p´σu∆ x,v φ R ´2σD x,v φ R ¨Dx,v uq dxdvdt Ñ 0.Let us now address to the last integral in the right hand side of (6.3): the properties in (6.2) entail |m puD v u ¨Dv φ R `uv ¨Dx φ R q| ď Cmp1 `|v| 2 qχ R

		.3)
	converge to	
	ij	"
	m	2v ¨Dx u
	R 2N ˆr0,T s	
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