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Deterministic mean field games with control on the

acceleration

Yves Achdou ∗, Paola Mannucci†,

Claudio Marchi ‡, Nicoletta Tchou§

December 2, 2019

Abstract

In the present work, we study deterministic mean field games (MFGs) with finite
time horizon in which the dynamics of a generic agent is controlled by the acceleration.
They are described by a system of PDEs coupling a continuity equation for the density
of the distribution of states (forward in time) and a Hamilton-Jacobi (HJ) equation
for the optimal value of a representative agent (backward in time).

The state variable is the pair px, vq P R
N ˆR

N where x stands for the position and
v stands for the velocity. The dynamics is often referred to as the double integrator. In
this case, the Hamiltonian of the system is neither strictly convex nor coercive, hence
the available results on MFGs cannot be applied. Moreover, we will assume that the
Hamiltonian is unbounded w.r.t. the velocity variable v. We prove the existence of a
weak solution of the MFG system via a vanishing viscosity method and we characterize
the distribution of states as the image of the initial distribution by the flow associated
with the optimal control.

Keywords: Mean field games, first order Hamilton-Jacobi equations, double integrator,
non-coercive Hamiltonian.
2010 AMS Subject classification: 35F50, 35Q91, 49K20, 49L25.

1 Introduction

The theory of mean field games (MFGs for short) is more and more investigated since
the pioneering works [20, 21, 22] of Lasry and Lions: it aims at studying the asymptotic
behavior of differential games (Nash equilibria) as the number of agents tends to infinity.
In the present work, we study deterministic mean field games with finite time horizon in
which the dynamics of a generic agent is controlled by the acceleration. They are described
by a system of PDEs coupling a continuity equation for the density of the distribution of
states (forward in time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a
representative agent (backward in time). The state variable is the pair px, vq P R

N ˆ R
N

where x stands for the position and v stands for the velocity.
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The systems of PDEs are of the form
(1.1)

$

&

%

piq ´Btu ´ v ¨Dxu`Hpx, v,Dvuq ´ F rmptqspx, vq “ 0 in R2N ˆ p0, T q
piiq Btm` v ¨Dxm´ divvpDpvHpx, v,Dvuqmq “ 0 in R

2N ˆ p0, T q
piiiq mpx, v, 0q “ m0px, vq, upx, v, T q “ GrmpT qspx, vq , on R

2N

where T is a positive real number, u “ upx, v, tq, m “ mpx, v, tq, px, vq P R
2N , t P p0, T q

and H is defined by

(1.2) Hpx, v, pvq “ max
αPRN

p´αpv ´ lpx, v, αqq.

We take F and G strongly regularizing and we assume that the running cost has the form
lpx, v, αq “ lpx, vq ` 1

2
|α|2 ` 1

2
|v|2, where px, vq ÞÑ lpx, vq is a bounded and C2-bounded

function.
Formally, systems of this form arise when the dynamics of the generic player is

described by a double integrator:

(1.3)

$

’

’

&

’

’

%

ξ1psq “ ηpsq, s P pt, T q,
η1psq “ αpsq, s P pt, T q,
ξptq “ x,

ηptq “ v,

and when the control law belongs to the space of the measurable functions with values in
R

N and is chosen in order to minimize the cost
(1.4)

Jt :“ Jtpξ, η, αq “
ż T

t

lpξpsq, ηpsq, αpsqq ` F rmpsqspξpsq, ηpsqqds `GrmpT qspξpT q, ηpT qq.

To summarize, the main features of this model are:

1. The control α is only involved in the dynamics of the second component of the state
variable, see (1.3).

2. The running cost has the form

(1.5) lpξ, η, αq “ lpξ, ηq ` 1

2
|η|2 ` 1

2
|α|2,

where pξ, ηq ÞÑ lpξ, ηq is a bounded C2 function, thus the former is unbounded w.r.t.
the variable η. Note that |η|2 stands for a kinetic energy, whereas the term |α|2 is a
penalty for large accelerations. Note also that the results of the present paper hold
for a fairly large class of generalizations of (1.5).

3. Setting fpξ, η, αq “ pη, αq, the Hamiltonian associated to the control problem of a
generic player is

Hpξ, η, pq “ max
αPRN

t´p ¨ fpξ, η, αq ´ lpξ, η, αqu “ ´px ¨ η `Hpξ, η, pvq,

where p “ ppx, pvq and H is defined in (1.2). The Hamilton H is neither strictly
convex nor coercive with respect to p “ ppx, pvq. Hence the available results on the
regularity of the value function u of the associated optimal control problem ([9], [14],
[10]) and on the existence of a solution of the MFG system ([10]) cannot be applied.
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We recently learnt that a similar type of mean field games has been studied in [8], inde-
pendently, at the same time, and with different techniques. To the best of our knowledge,
these systems have not been investigated elsewhere.

The main result of the present work is the existence of a solution of (2.1) and a
characterization of the distribution of states as the image of the initial distribution by
the optimal flow associated with the Hamilton-Jacobi equation. In order to establish the
representation formula for m, we use some ideas introduced by P-L Lions in his lectures
at Collège de France (2012) (see [24, 10]), some results proved in [12, 11], and Ambrosio’s
superposition principle [2]. Indeed, the lack of coercivity of H makes it impossible to
directly apply the arguments of [10, Sect. 4.1], in particular a contraction property of the
flow associated to the dynamics (see [10, Lemma 4.13]).

A similar approach was recently proposed for a class of non-coercive MFG when the
generic player has some "forbidden direction", see ([25]), more precisely when, in the two
dimensional case, the dynamics is of the form: x1

1 “ α1, x1
2 “ hpx1qα2 and hpx1q may

vanish.
In a near future, we plan to tackle mean field games with control on the acceleration

and with constraints (for MFGs with state constraints we refer to [1, 5, 6, 7]).
The paper is organized as follows. In Section 2, we list our assumptions, give the

definition of (weak) solution to system (2.1) and state the existence result for the latter. In
Section 3, we obtain some regularity properties for the solution u of the Hamilton-Jacobi
equation (2.1)-(i) with m fixed. These properties, combined with the uniqueness of the
optimal trajectories of the associated control problem, will be crucial for proving the main
theorem. In Section 4, we study the continuity equation (2.1)-(ii). An important ingredient
is the vanishing viscosity method that is used to characterize its solution. Finally, Section 5
is devoted to the proof of the main Theorem 2.1.

2 Assumptions and main results

We consider the running cost lpx, v, αq of the form lpx, v, αq “ lpx, vq ` 1
2
|α|2 ` 1

2
|v|2.

Then system (1.1) can be written
(2.1)
$

&

%

piq ´Btu´ v ¨ Dxu` 1
2
|Dvu|2 ´ 1

2
|v|2 ´ lpx, vq ´ F rmspx, vq “ 0, in R

2N ˆ p0, T q,
piiq Btm` v ¨ Dxm´ divvpDvumq “ 0, in R

2N ˆ p0, T q,
piiiq mpx, v, 0q “ m0px, vq, upx, v, T q “ GrmpT qspx, vq, on R

2N ,

where Hpx, v, pvq “ 1
2

|pv|2 ´ 1
2

|v|2 ´ lpx, vq.
Let P1 and P2 denote the spaces of Borel probability measures on R

2N with re-
spectively finite first and second order moments, endowed with the Monge-Kantorovich
distances d1, respectively d2.

Let C2pR2N q denote the space of twice differentiable functions with continuous and
bounded derivatives up to order two. It is endowed with the norm
}f}C2 :“ suppx,vqPR2N r|fpx, vq| ` |Dfpx, vq| ` |D2fpx, vq|s.

Hereafter, we shall make the following hypotheses:

Assumptions (H)

(H1) The functions F and G are real-valued continuous functions defined on P1 ˆ R
2N

(H2) The function l is a real-valued C2 function defined on R
2N
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(H3) The map m ÞÑ F rmsp¨, ¨q is Lipschitz continuous from P1 to C2pR2N q; moreover,
there exists C ě }l}C2 such that

}F rmsp¨, ¨q}C2 , and }Grmsp¨, ¨q}C2 ď C, @m P P1

(H4) the initial distribution m0 : R
2N Ñ R

` has a compactly supported density (still
named m0, with a slight abuse of notation) m0 P CδpR2N q, for some δ P p0, 1q.

Definition 2.1. The pair pu,mq is a solution of system (2.1) if:

1) u P W
1,8
loc pR2N ˆ r0, T sq, m P Cpr0, T s; P1pR2N qq and for all t P r0, T s, mptq is

absolutely continuous with respect to Lebesgue measure on R
2N . Let mp¨, ¨, tq denote

the density of mptq. The function px, v, tq ÞÑ mpx, v, tq is bounded.

2) equation (2.1)-(i) is satisfied by u in the viscosity sense

3) equation (2.1)-(ii) is satisfied by m in the sense of distributions.

We can now state the main result of this paper:

Theorem 2.1. Under the assumptions pHq :

1. System (2.1) has a solution pu,mq in the sense of Definition 2.1,

2. m is the image of m0 by the flow

(2.2)

"

x1psq “ vpsq, xp0q “ x,

v1psq “ ´Dvupxpsq, vpsq, sq, vp0q “ v.

3 The optimal control problem

In this section, we tackle the optimal control problem related to equation (2.1)-(i) with a
fixed m P Cpr0, T s; P1pR2N qq. To alleviate the notations, we introduce the functions

(3.1) ℓpx, v, tq :“ lpx, vq ` F rmptqspx, vq and gpx, vq :“ GrmpT qspx, vq,

which, from the set assumptions pHq, satisfy

(3.2) }ℓp¨, ¨, tq}C2 , }ℓpx, v, ¨q}C , }g}C2 ď C @t P r0, T s, px, vq P R
2N .

With the new notation, the optimal control problem to be solved by a representative agent
whose state at time t is px, vq is to find the control law α in order to minimize

(3.3) Jtpξ, η, αq “
ż T

t

„ |α|2
2

` |v|2
2

` ℓpξpsq, ηpsq, sq


ds ` gpξpT q, ηpT qq,

by following the trajectory (1.3). Then the Cauchy problem given by (2.1)-(i) and its
terminal condition becomes

(3.4)

"

´Btu ´ v ¨ Dxu` 1
2
|Dvu|2 ´ 1

2
|v|2 ´ ℓpx, v, tq “ 0 in R

N ˆ R
N ˆ p0, T q,

upx, v, T q “ gpx, vq in R
N ˆ R

N .

From (3.3), it is obvious that the control α must be chosen in L2pt, T ;RN q. Therefore, we
can introduce the value function as follows:
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Definition 3.1. The value function for the cost Jt defined in (3.3) with dynamics (1.3) is

(3.5) upx, v, tq :“ inf tJtpξ, η, αq : pξ, η, αq P Apx, v, tqu

where

(3.6) Apx, v, tq“
"

pξ, η, αq :

ˇ

ˇ

ˇ

ˇ

pξ, ηq P ACprt, T s;R2N q, α P L2pt, T ;RN q,
pξ, η, αq satisfy (1.3) and ξptq “ x, ηptq “ v

*

.

Lemma 3.1. i) (Existence of an optimal control.) For every px, v, tq P R
N ˆ R

N ˆ
p0, T q, there exists an optimal control α˚ for upx, v, tq.

ii) (Concatenation.) Let pξ˚, η˚q be an optimal trajectory for upx, v, tq corresponding
to the control law α˚. For r P pt, T q, let pξ̃˚, η̃˚q be an optimal trajectory for
upξ˚prq, η˚prq, rq with control α̃˚. Then the concatenation of α˚ and α̃˚ at time
r is optimal for upx, v, tq and, moreover,

upx, v, tq “ upξ˚prq, η˚prq, rq `
ż r

t

„ |α˚|2
2

` |η˚|2
2

` ℓpξ˚psq, η˚psq, sq


ds.

iii) Under the same assumption as in point (ii), the control α˚
|rr,T s is optimal for

upξ˚prq, η˚prq, rq.

iv) (Dynamic Programming Principle.) The Dynamic Programming Principle holds,
namely

upx, v, tq “ min
pξ,η,αqPApx,v,tq

"

upξprq, ηprq, rq `
ż r

t

|αpsq|2
2

` |ηpsq|2
2

` ℓpξpsq, ηpsq, sq ds
*

.

Proof. (i): let tαnun be a sequence of minimizing control laws and pξn, ηnq be the solution
of (1.3) corresponding to αn. Then, the boundedness of ℓ and the definition of Jt ensure
that }αn}L2pt,T ;RN q are uniformly bounded. Then, possibly after extracting a subsequence,

αn á α˚ in L2pt, T ;RN q, ηn Ñ η˚ in Cprt, T s;RN q and ξn Ñ ξ˚ in C1prt, T s;RN q. The
lower semi-continuity of Jt yields that α˚ is optimal.

Points (ii), (iii) and (iv) are obtained by arguing exactly as in [25, Proposition 5.1]
(points (1), (2) and (4) respectively), see also [10]. ✷

Lemma 3.2. The value function u has the following properties:

1. upx, v, tq is Lipschitz continuous with respect to the variable x. Moreover upx, v, tq
is Lipschitz continuous with respect to the variable v, locally in v, with a Lipschitz
constant bounded by Cp1 ` |v|q.

2. upx, v, tq is Lipschitz continuous with respect to the time variable t, locally in v with
a Lipschitz constant bounded by Cp1 ` |v|2q.

The constant C depends only on the constants in assumptions pHq.

Proof. 1. Fix t P r0, T q. Let α be an optimal control law for upx, v, tq i.e.,

(3.7) upx, v, tq “
ż T

t

1

2
|αpsq|2 ` 1

2
|vpsq|2 ` ℓpxpsq, vpsq, sq ds ` gpxpT q, vpT qq,
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where pxp¨q, vp¨qq obeys to the dynamics (1.3).

We consider the path pyp¨q, wp¨qq starting from py,wq, with control αp¨q. Hence, we
obtain

ypsq “ y ` wps ´ tq `
ż s

t

ż θ

t

αpτq dτdθ “ y ´ x` xpsq ` pw ´ vqps ´ tq,

wpsq “ w `
ż s

t

αpτq dτ “ w ´ v ` vpsq.

Note that

(3.8) vpsq ´ wpsq “ v ´ w, xpsq ´ ypsq “ x´ y ` pv ´ wqps ´ tq.

The definition of the value function (3.1) and relation (3.7) imply

upy,w, tq ď
ż T

t

1

2
|αpsq|2 ` 1

2
|wpsq|2 ` ℓpypsq, wpsq, sq ds ` gpypT q, wpT qq

ď upx, v, tq ´
ż T

t

1

2
|vpsq|2 ´ ℓpxpsq, vpsq, sq ds ´ gpxpT q, vpT qq

`
ż T

t

1

2
|wpsq|2 ` ℓpypsq, wpsq, sq ds ` gpypT q, wpT qq

ď upx, v, tq ` Lℓp|xpsq ´ ypsq| ` |vpsq ´wpsq|q

`Lgp|xpT q ´ ypT q| ` |vpT q ´ wpT q|q `
ż T

t

1

2
p|wpsq|2 ´ |vpsq|2qds,

where Lℓ and Lg denote respectively the Lipschitz constants of ℓ and g w.r.t px, vq.
Hence, by (3.8),

ż T

t

1

2
p|wpsq|2 ´ |vpsq|2qds “

ż T

t

1

2
|w ´ v||wpsq ` vpsq|ds ď

|w ´ v|
ż T

t

|w ` v ` 2

ż s

t

αpτqdτ |ds ď C|w ´ v|p|w ` v| ` p1 ` |v|qq,

where the last inequality comes from (3.33) of Corollary 3.1 below. Hence we obtain

upy,w, tq ď upx, v, tq `C|x´ y| `Kpv,wq|v ´ w|,(3.9)

where Kpv,wq “ Cp|w ` v| ` 1 ` |v|q. Reverting the roles of px, vq and py,wq, we
get the first result.

2. We fix px, vq. >From the concatenation property of optimal trajectories established
in Lemma 3.1, if α is optimal for upx, v, tq and pxpsq, vpsqq is the associated optimal
trajectory, then

upx, v, tq “ upxpsq, vpsq, sq `
ż s

t

1

2
|αprq|2 ` 1

2
|vprq|2 ` ℓpxprq, vprq, rq dr

for any s P rt, T s. Then

|upx, v, tq ´ upx, v, sq| ď |upx, v, tq ´ upxpsq, vpsq, sq| ` |upxpsq, vpsq, sq ´ upx, v, sq|

ď
ż s

t

1

2
|αprq|2 ` 1

2
|vprq|2 ` |ℓpxprq, vprq, rq| dr ` L|xpsq ´ x| ` Lpvq|vpsq ´ v|,
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where the last two terms come from the Lipschitz continuity of u w.r.t. px, vq: L is
the Lipschitz constant of u with respect to x and Lpvq is a local Lipschitz constant
of u with respect to v.

>From (1.3) and the bound (3.33) in Corollary 3.1 below, we get the bounds for
xpsq, vpsq and α, i.e. |vpsq ´ v| ` |xpsq ´ x| ď Cp1 ` |v|q|s ´ t|, hence

(3.10) |upx, v, tq ´ upx, v, sq| ď Cp1 ` |v|2q|s´ t|,

which ends the proof.
✷

Remark 3.1. Taking α ” 0 in (1.3), we get ηpsq “ v and ξpsq “ x`vps´ tq; then, thanks
to the boundedness of ℓ in (3.2), the value function verifies:

(3.11) C ď upx, v, tq ď Cp1 ` |v|2q,

and, by Lemma 3.2, it is also continuous. Hence, using the DPP in Lemma 3.1-(iv) and
Proposition 3.1 below, the value function is the unique viscosity solution of (3.4) in the
class of functions verifying (3.11).

Proposition 3.1. There exists a viscosity solution u of (3.4) s.t. DC P R, C ď upx, v, tq ď
Cp|v|2 ` 1q and it is unique in this class of functions.

Proof. We apply the comparison principle stated in [15] in order to prove the existence of
a solution of (2.1)piq by Perron’s method. Testing (2.1)piq with wpx, v, tq “ C1pt ´ T q `
C2

2
|v|2 ` C3 yields

´Btu´ v ¨ Dxu` 1

2
|Dvu|2 ´ 1

2
|v|2 ´ ℓpx, v, tq “ ´C1 ` C2

2

1

2
|v|2 ´ 1

2
|v|2 ´ ℓpx, v, tq.

If C2 “ 0, C3 ď ´}g}8 and ´C1 ď }ℓ}8, we have a subsolution. If C2 “ 1, C3 ě }g}8

and ´C1 ě }ℓ}8 we have a supersolution. ✷

The following lemma deals with the semi-concavity of upx, v, tq w.r.t. px, vq:

Lemma 3.3. Under Hypothesis pHq, upx, v, tq is semi-concave w.r.t. px, vq with a linear
modulus of semi-concavity, which depends only on the constants in assumptions pHq.

Proof. For any px, vq, py,wq and λ P r0, 1s, consider xλ :“ λx`p1´λqy, vλ :“ λv`p1´λqw.
Let α be an optimal control for upxλ, vλ, tq; hence, the associated trajectory is

(3.12) xλpsq “ xλ ` vλps´ tq `
ż s

t

ż θ

t

αpτq dτdθ, vλpsq “ vλ `
ż s

t

αpτq dτ

and

upxλ, vλ, tq “
ż T

t

1

2
|αpsq|2 ` 1

2
|vλpsq|2 ` ℓpxλpsq, vλpsq, sqds ` gpxλpT q, vλpT qq.

Let pxpsq, vpsqq be the trajectory starting at px, vq at time t with control α and
pypsq, wpsqq the trajectory starting at py,wq at time t still with control α.
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We have to estimate

λupx, v, tq ` p1 ´ λqupy,w, tq ´ upxλ, vλ, tq

ď
ż T

t

1

2
λ|vpsq|2 ` p1 ´ λq1

2
|wpsq|2 ´ 1

2
|vλpsq|2ds

`
ż T

t

λℓpxpsq, vpsq, sq ` p1 ´ λqℓpypsq, wpsq, sq ´ ℓpxλpsq, vλpsq, sqds

` λgpxpT q, vpT qq ` p1 ´ λqgpypT q, wpT qq ´ gpxλpT q, vλpT qq.

Since

(3.13) vpsq “ v`
ż s

t

αpτq dτ, wpsq “ w`
ż s

t

αpτq dτ, vλpsq “ λv` p1 ´λqw`
ż s

t

αpτq dτ,

we get

λ
1

2
|vpsq|2 ` p1 ´ λq1

2
|wpsq|2 ´ 1

2
|vλpsq|2

“pλv ` p1 ´ λqw ´ λv ´ p1 ´ λqwq
ż s

t

αpτq dτ ` λ
|v|2
2

` p1 ´ λq |w|2
2

´ 1

2
|λv ` p1 ´ λqw|2

“1

2
λp1 ´ λq|v|2 ` 1

2
λp1 ´ λq|w|2 ´ λp1 ´ λqv ¨ w “ 1

2
λp1 ´ λq|v ´ w|2.

(3.14)

Hence

(3.15)

ż T

t

1

2
λ|vpsq|2 ` p1 ´ λq1

2
|wpsq|2 ´ 1

2
|vλpsq|2ds “ 1

2
λp1 ´ λq|v ´ w|2pT ´ tq.

Now, we have to estimate the terms λℓpxpsq, vpsq, sq`p1´λqℓpypsq, wpsq, sq´ℓpxλpsq, vλpsq, sq
and λgpxpT q, vpT qq ` p1 ´ λqgpypT q, wpT qq ´ gpxλpT q, vλpT qq. We write the algebra for
the second term, since the treatment of the first term is similar. The Taylor expansion of
g centered at pxλpT q, vλpT qq gives
(3.16)

gpxpT q, vpT qq “
"

gpxλpT q, vλpT qq `DgpxλpT q, vλpT qqpxpT q ´ xλpT q, vpT q ´ vλpT qq
`R1,

where R1 is the error term in the expansion, namely

(3.17) R1 “ 1

2
pxpT q ´ xλpT q, vpT q ´ vλpT qqD2gpξ1, η1qpxpT q ´ xλpT q, vpT q ´ vλpT qqT ,

for suitable ξ1, η1.
>From (3.12) and (3.13), we get

(3.18)

xpsq ´ xλpsq “ p1 ´ λqppx ´ yq ` pv ´ wqps ´ tqq,
vpsq ´ vλpsq “ p1 ´ λqpv ´ wq,
ypsq ´ xλpsq “ λppy ´ xq ` pw ´ vqps ´ tqq,
wpsq ´ vλpsq “ λpw ´ vq,

hence the error term can be written as

(3.19) R1 “ 1

2
p1´λq2px´y`pv´wqpT´tq, v´wqD2gpξ1, η1qpx´y`pv´wqpT´tq, v´wqT .
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Similarly

gpypT q, wpT qq “ gpxλpT q, vλpT qq `DgpxλpT q, vλpT qqpypT q ´ xλpT q, wpT q ´ vλpT qq `R2,

where

R2 “1

2
pypT q ´ xλpT q, wpT q ´ vλpT qqD2gpξ2, η2qpypT q ´ xλpT q, wpT q ´ vλpT qqT

“1

2
λ2py ´ x` pw ´ vqpT ´ tq, w ´ vqD2gpξ2, η2qpy ´ x` pw ´ vqpT ´ tq, w ´ vqT .

At this point, taking into account that from (3.18),

λDgpxλpT q, vλpT qqpxpT q ´ xλpT q, vpT q ´ vλpT qq
` p1 ´ λqDgpxλpT q, vλpT qqpypT q ´ xλpT q, wpT q ´ vλpT qq

“DgpxλpT q, vλpT qqpλpxpT q ´ xλpT qq
` p1 ´ λqpypT q ´ xλpT qq, λpvpT q ´ vλpT qq ` p1 ´ λqpwpT q ´ vλpT qqq

“0,

(3.20)

we obtain that

(3.21)
λgpxpT q, vpT qq ` p1 ´ λqgpypT q, wpT qq ´ gpxλpT q, vλpT qq

“ λR1 ` p1 ´ λqR2

ď p1 ´ λqλCT }D2g}8p|x ´ y|2 ` |v ´ w|2q.

Hence from (3.15), (3.20), (3.21) we get

λupx, v, tq ` p1 ´ λqupy,w, tq ´ upxλ, vλ, tq

ďλp1 ´ λq
2

pv ´ wq2pT ´ tq ` CT p1 ´ λqλ
`

}D2g}8 ` }D2ℓ}8

˘ `

|x´ y|2 ` |v ´ w|2
˘

.

We obtain that u is semi-concave in px, vq with a linear modulus of semi-concavity. ✷

Pontryagin’s maximum principle yields the following necessary optimality condi-
tions:

Proposition 3.2 (Necessary conditions for optimality). Let px˚, v˚, α˚q be optimal for upx, v, tq
in (3.5). There exists an arc p “ ppx, pvq P ACprt, T s;RN ˆ R

N q, hereafter called the
costate, such that

1. pα˚, x˚, v˚, pq satisfies the adjoint equations: for a.e. s P rt, T s,

p1
x “ Dxℓpx˚, v˚, sq,(3.22)

p1
v “ ´px ` v˚ `Dvℓpx˚, v˚, sq,(3.23)

the transversality condition

(3.24) ppT q “ ´Dgpx˚pT q, v˚pT qq,

together with the maximum condition: for almost all s P rt, T s,

(3.25) max
α

px ¨ v˚ ` pv ¨ α ´ |α|2
2

´ |v˚|2
2

“ px ¨ v˚ ` pv ¨ α˚ ´ |α˚|2
2

´ |v˚|2
2

.
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2. The optimal control α˚ is given by

(3.26) α˚ “ pv, a.e in rt, T s.

3. The triple px˚, v˚, pq satisfies the system of differential equations: for a.e. s P rt, T s

x1 “ v,(3.27)

v1 “ pv,(3.28)

p1
x “ Dxℓpx, v, sq,(3.29)

p1
v “ ´px ` v `Dvℓpx, v, sq,(3.30)

with the mixed boundary conditions x˚ptq “ x, v˚ptq “ v, ppT q “ ´Dgpx˚pT q, v˚pT qq.

Proof. 1. Hypothesis (3.2) ensures that our control problem satisfies the assumption [14,
Hypothesis 22.16], so we can invoke [14, Theorem 22.17] on the maximum principle for
problems with unbounded control. Moreover, since there is no constraint on the state
variable at T , the same arguments as in [14, Corollary 22.3] ensure that the necessary
conditions hold in normal form.

2. The maximum condition (3.25) implies that

Dα

ˆ

px ¨ v˚ ` pv ¨ α ´ |α|2
2

´ |v˚|2
2

´ fpx˚, v˚q
˙

α“α˚

“ 0 for a.e. s P rt, T s

from which we get (3.26).
3. Conditions (3.27) – (3.28) follow directly from (1.3) and (3.26). Conditions (3.29)

and (3.30) coincide with (3.22), (3.23). ✷

Corollary 3.1 (Feedback control and regularity). Let px˚, v˚, α˚q be optimal for upx, v, tq
and p “ ppx, pvq be the related costate as in Proposition 3.2. Then:

1. The costate p is uniquely expressed in terms of x˚, v˚ for every s P rt, T s by
(3.31)

$

’

’

&

’

’

%

pxpsq “ ´Dxgpx˚pT q, v˚pT qq ´
ż T

s

Dxℓpx˚pτq, v˚pτq, τq dτ,

pvpsq “ ´Dvgpx˚pT q, v˚pT qq ´
ż T

s

Dvℓpx˚pτq, v˚pτq, τq ` v˚pτq ´ pxpτq dτ.

2. The optimal control α˚ is a feedback control (i.e., a function of x˚, v˚), uniquely
expressed in terms of x˚, v˚ for a.e. s P rt, T s by

(3.32) α˚psq “ pvpsq.

3. The optimal trajectory px˚, v˚q and the optimal control α˚ are of class C1. In par-
ticular the equalities (3.26) – (3.32) do hold for every s P rt, T s. Moreover

(3.33)
}v˚}C1 ` }α˚}C1 ď Cp1 ` |v|q,

}x˚}C1 ď |x| ` Cp1 ` |v|q.

4. Assume that, for some k P N, Dxℓpx, v, sq, Dvℓpx, v, sq are of class Ck. Then
px˚, v˚q, p and α˚ are of class Ck`1.
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Proof. Point 1 is an immediate consequence of (3.29) – (3.30) together with the endpoint
condition ppT q “ ´Dgpx˚pT qq. Point 2 follows then directly from (3.26).

3. Since x˚, v˚ are continuous, the continuity of α˚ follows from (3.31) and (3.32).
Then (1.3) implies that x˚, v˚ P C1. Relations (3.31) and (3.32) imply, respectively, that
p and α˚ are of class C1. The bounds (3.33) are obtained from the fact that

1. pv˚q2pτq ´ v˚pτq is bounded uniformly in x and v, τ P rt, T s

2. pv˚qptq “ v

3. pv˚q1pT q is bounded uniformly in x and v.

4. The relations (3.31) and the C1-regularity of x˚, v˚ and p imply that, actually, p P C2.
Therefore, (3.32) gives the C2-regularity of α˚ and, finally, (2.2) yields the C2-regularity
of x˚, v˚. Further regularity of x˚, v˚, α˚ and p follows by a standard bootstrap inductive
argument. ✷

Remark 3.2. Taking advantage of Corollary 3.1-(3), we will always consider the repre-
sentation of the optimal control α˚ which belongs to C1.

Corollary 3.2 that follows implies that the optimal trajectories for upx, v, tq do not
bifurcate at any time r ą t.

Corollary 3.2. Under Hypothesis (3.2), let px˚, v˚q be an optimal trajectory for upx, v, tq.
For every t ă r ă T , there are no other optimal trajectories for upx˚prq, v˚prq, rq other
than px˚, v˚q restricted to rr, T s.

Proof. 1. Let r P pt, T q and py˚, w˚q be an optimal trajectory for upx˚prq, v˚prq, rq.
Lemma 3.1 ensures that pz˚, ν˚q, the concatenation of px˚, v˚q with py˚, w˚q at r is an
optimal trajectory for upx, v, tq. Let p :“ ppx, pvq, q :“ pqx, qvq be the costates correspond-
ing respectively to px˚, v˚q and to pz˚, ν˚q. Both px˚, v˚, pq and pz˚, ν˚, qq satisfy (3.27) –
(3.30) on rt, T s. Now, Corollary 3.1 shows that px˚, v˚q and pz˚, ν˚q are of class C1. Since
x˚ “ z˚, v˚ “ ν˚ on rt, rs, we choose τ such that t ă τ ă r. >From (3.28), we get

pvpτq “ qvpτq.

Moreover, from (3.28) and (3.30), we also get that

pxpτq “ qxpτq.

Therefore, both px˚, v˚, pq and pz˚, ν˚, qq are solutions to the same Cauchy problem on
rt, T s with the first order differential system (3.27)-(3.30) and Cauchy data at τ . The
regularity assumptions on ℓ, g and Cauchy-Lipschitz Theorem guarantee the uniqueness of
the solution. Thus x˚ “ z˚, v˚ “ ν˚ on rt, T s, from which we obtain the desired identities
x˚ “ y˚ and v˚ “ w˚ on rr, T s. ✷

Definition 3.2. For any px, v, tq P R
2N ˆ r0, T s, let Upx, v, tq denote the set of optimal

controls for the value function upx, v, tq defined in (3.5).

Remark 3.3. Lemma 3.1-(i) and Remark 3.2 ensure that H ‰ Upx, v, tq Ă C1prt, T s;RN q.

Lemma 3.4. The following properties hold:
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1. The function upx, ¨, tq is differentiable at v if and only if the set tαptq : α P Upx, v, tqu
is a singleton. Moreover Dvupx, v, tq “ ´αptq.

2. In particular, if Upx, v, tq is a singleton, then, calling pxpsq, vpsqq the optimal trajec-
tory associated to the singleton Upx, v, tq, Dvupxpsq, vpsq, sq exists for any s P rt, T s.

3. If up¨, ¨, tq is differentiable at px, vq, then Upx, v, tq is a singleton.

Proof. 1. We prove that if Dvupx, v, tq exists, then all αp¨q P Upx, v, tq take the same value
αptq at t and Dvupx, v, tq “ ´αptq. If αp¨q P Upx, v, tq, calling pxp¨q, vp¨qq the corresponding
optimal trajectory, then

upx, v, tq “
ż T

t

1

2
|αpsq|2 ` 1

2
|vpsq|2 ` ℓpxpsq, vpsq, sq ds ` gpxpT q, vpT qq,

and pxp¨q, vp¨qq and αp¨q satisfy the necessary conditions for optimality proved in Proposi-
tion 3.2. Take h “ ph1, h2q P R

2N and consider the solution pyp¨q, wp¨qq of (1.3) with initial
condition pyptq, wptqq “ px` h1, v ` h2q and control α, namely

ypsq “ x` h1 ` pv ` h2qps ´ tq `
ż s

t

ż θ

t

αpτqdτdθ “ xpsq ` h1 ` h2ps´ tq,

wpsq “ v ` h2 `
ż s

t

αpτqdτ “ vpsq ` h2.

Hence,
(3.34)

upx ` h1, v ` h2, tq ´ upx, v, tq

ď
ż T

t

1

2
|wpsq|2 ´ 1

2
|vpsq|2 ` ℓpypsq, wpsq, sq ´ ℓpxpsq, vpsq, sq ds

`gpypT q, wpT qq ´ gpxpT q, vpT qq

“
ż T

t

1

2
|vpsq ` h2|2 ´ 1

2
|vpsq|2 ` ℓpxpsq ` h1 ` h2ps´ tq, vpsq ` h2, sq ´ ℓpxpsq, vpsq, sq ds

`gpxpT q ` h1 ` h2pT ´ tq, vpT q ` h2q ´ gpxpT q, vpT qq

“
ż T

t

1

2
h2

2 ` h2 ¨ vpsq ` ℓpxpsq ` h1 ` h2ps´ tq, vpsq ` h2, sq ´ ℓpxpsq, vpsq, sq ds
`gpxpT q ` h1 ` h2pT ´ tq, vpT q ` h2q ´ gpxpT q, vpT qq.

The differentiability of u w.r.t. v yields

Dvupx, v, tq “
ż T

t

vpsqds `
ż T

t

Dxℓpxpsq, vpsq, sqps ´ tq `Dvℓpxpsq, vpsq, sq ds
`DxgpxpT q, vpT qqpT ´ tq `DvgpxpT q, vpT qq.

By (3.29) and (3.24), we obtain

şT

t
Dxℓpxpsq, vpsq, sqps ´ tqds “

ż T

t

p1
xpsqps´ tqds “ pxpT qpT ´ tq ´

ż T

t

pxpsqds

“ ´DxgpxpT q, vpT qqpT ´ tq ´
ż T

t

pxpsqds.
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Hence

Dvupx, v, tq “
ż T

t

pvpsq ´ pxpsq `Dvℓpxpsq, vpsq, sqqds `DvgpxpT q, vpT qq

“
ż T

t

p1
vpsqds`DvgpxpT q, vpT qq

“ ´pvptq “ ´αptq,

where the last two inequalities are due to (3.30),(3.26) and the terminal condition for p.
This uniquely determines the value of αp¨q at time t.

Conversely we prove that, if all αp¨q P Upx, v, tq take the same value αptq at t, then
Dvupx, v, tq exists. Fix x and t. From the semi-concavity of upx, ¨, tq, the differentiability
of upx, ¨, tq at v will follow from the fact that D˚

vupx, v, tq is a singleton (see [9, Proposition
3.3.4]). Recall that the set of reachable gradients of upx, ¨, tq is defined by

D˚
vupx, v, tq “

$

’

&

’

%

χ P R
N : DpvnqnPN with

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim
nÑ8

vn “ v,

upx, ¨, tq is differentiable at vn,

lim
nÑ8

Dvupx, vn, tq “ χ.

,

/

.

/

-

.

Take χ P D˚
vupx, v, tq. By definition of D˚

vupx, v, tq there exist sequences tvnu, tχn “
Dvupx, vn, tqu such that

(3.35) vn Ñ v and χn Ñ χ.

Consider αn P Upx, vn, tq; by the other part of the statement (already proven), we know
that

(3.36) ´αnptq “ Dvupx, vn, tq “ χn.

>From estimate (3.33) in Corollary 3.1, we see that

(3.37) }α1
n}8 ď Cp1 ` |vn|q ď C, for any n.

Hence from Ascoli-Arzelà Theorem, we deduce that, after extracting a subsequence, αn

uniformly converge to some α P Cprt, T s;RN q. In particular, calling pxnp¨q, vnp¨qq the
trajectory associated to αn starting from px, vnq:

xnpsq “ x` vnps´ tq `
ż s

t

ż θ

t

αnpτqdτdθ, and vnpsq “ vn `
ż s

t

αnpτqdτ.

we get:

xnpsq Ñ xpsq “ x ` vps ´ tq `
ż s

t

ż θ

t

αpτqdτdθ, uniformly in rt, T s,

vnpsq Ñ vpsq “ v `
ż s

t

αpτqdτ uniformly in rt, T s.

Moreover, by classical arguments of stability, α is optimal, i.e. α P Upx, v, tq. The uniform
convergence of the αn yields in particular that αnptq Ñ αptq where αptq is uniquely de-
termined by assumption. By (3.35) and (3.36), we get that χn Ñ χ “ αptq. This implies
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that D˚
vupx, v, tq is a singleton, then Dvupx, v, tq exists. Going back to the first part of the

proof, we see that Dvupx, v, tq “ ´αptq.
2. If Upx, v, tq “ tαp¨qu, then for any s P rt, T s, αpsq is uniquely determined. Indeed,

if there exists β P Upxpsq, vpsq, sq, then the concatenation γ of α and β (see Lemma 3.1)
is also optimal, i.e. γ P Upx, v, tq “ tαp¨qu.
Then from point 1 with t “ s at pxpsq, vpsqq, we deduce that Dvupxpsq, vpsq, sq exists.

3. From point 1, we know that for any αp¨q P Upx, v, tq, αptq is unique and coincides
with ´Dvupx, v, tq. Hence, relation (3.26) ensures pvptq “ ´Dvupx, v, tq. On the other
hand, note that, since Dxupx, v, tq exists, we get from (3.34) that

Dxupx, v, tq “
ż T

t

Dxℓpxpsq, vpsq, sqds `DxgpxpT q, vpT qq

“
ż T

t

p1
xpsqds`DxgpxpT q, vpT qq “ ´pxptq;

thus, pxptq and pvptq are both uniquely determined. Hence (3.27)-(3.30) is a system of
differential equations with initial conditions xptq, vptq, pxptq and pvptq which admits a
unique solution pxp¨q, vp¨q, pxp¨q, pvp¨qq by Cauchy-Lipschitz theorem, and pxp¨q, vp¨qq is the
unique optimal trajectory starting from px, vq, associated to the unique optimal control
law αp¨q “ pvp¨q. ✷

Lemma 3.5 (optimal synthesis). Consider ξ P R
N and η P R

N .

1. Let x P C1prt, T s;RN q, v P ACprt, T s;RN q be such that

(3.38) xptq “ ξ, and vptq “ η,

and for almost every s P pt, T q,

(3.39) upxpsq, ¨, sq is differentiable at vpsq,

and

(3.40)
x1psq “ vpsq,
v1psq “ ´Dvupxpsq, vpsq, sq,

where u is the solution of (3.4). Under these assumptions, the control law αpsq “
v1psq “ ´Dvupxpsq, vpsq, sq is optimal for upξ, η, tq.

2. If up¨, ¨, tq is differentiable at pξ, ηq, then problem (3.38), (3.40) has a unique solution
corresponding to the optimal trajectory.

Proof. We adapt the arguments of [10, Lemma 4.11]. Fix pt, ξ, ηq P p0, T q ˆ R
2N . Let

x P C1prt, T s;RN q, v P ACpr0, T s;RN q be as in the statement. Note that, from (3.40), v
is Lipschitz continuous. Therefore, from Lemma 3.2, the function s ÞÑ upxpsq, vpsq, sq is
Lipschitz continuous as well. Hence, for almost every s P rt, T s,

1. (3.39) and (3.40) hold,

2. the function upxp¨q, vp¨q, ¨q admits a derivative at s.
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Lebourg’s Theorem for Lipschitz functions (see [13, Thm 2.3.7] and [13, Thm 2.5.1])
ensures that, for any positive and sufficiently small number h, there exists pyh, wh, shq
in the open line segment ppxpsq, vpsq, sq, pxps ` hq, vps ` hq, s ` hqq and pχh

x, χ
h
v , χ

h
t q P

conv
`

D˚
x,v,tupyh, wh, shq

˘

such that
(3.41)
upxps`hq, vps`hq, s`hq´upxpsq, xpsq, sq “ χh

x ¨pxps`hq´xpsqq`χh
v ¨pvps`hq´vpsqq`χh

t h.

Here, convpAq stands for the convex hull of a set A, and D˚
x,v,tupyh, wh, shq stands for the

reachable gradient at pyh, wh, shq with respect to the three variables x, v and t.

By Carathéodory’s theorem, see [9, Thm A.1.6], there exist pλh,i, χh,i
x , χh,i

v , χ
h,i
t qi“1,...,2N`2

such that λh,i ě 0,
ř2N`2

i“1 λh,i “ 1, pχh,i
x , χh,i

v , χ
h,i
t q P D˚

x,v,tupyh, wh, shq and pχh
x, χ

h
v , χ

h
t q “

ř2N`2
i“1 λh,ipχh,i

x , χh,i
x , χ

h,i
t q. Note that, by [9, Prop 3.3.4-(a)], for all i “ 1, . . . , 2N ` 2, χh,i

v

converges to Dvupxpsq, vpsq, sq as h Ñ 0; hence, χh
v , also converges to Dvupxpsq, vpsq, sq,

as h Ñ 0.
On the other hand, since u is a viscosity solution to equation (3.4) and pχh,i

x , χh,i
v , χ

h,i
t q P

D˚
x,v,tupyh, wh, shq, we obtain that for all i P 1, . . . , 2N ` 2,

´χh,i
t ` 1

2

ˇ

ˇ

ˇ
χh,i

v

ˇ

ˇ

ˇ

2

´ 1

2
|wh|2 ´ wh ¨ χh,i

x “ ℓpyh, wh, shq.

Therefore, χh
t ` wh ¨ χh

x “ 1
2

ř2N`2
i“1 λh,i

ˇ

ˇχh,i
v

ˇ

ˇ

2 ´ 1
2

|wh|2 ´ ℓpyh, wh, shq converges to
1
2
|Dvupxpsq, vpsq, sq|2 ´ 1

2
|vpsq|2 ´ ℓpxpsq, vpsq, sq as h Ñ 0.

Then dividing (3.41) by h and letting h tend to 0, we get that

d

ds
pupxpsq, vpsq, sqq

“Dvupxpsq, vpsq, sq ¨ v1psq ` 1

2
|Dvupxpsq, vpsq, sq|2 ´ 1

2
|vpsq|2 ´ ℓpxpsq, vpsq, sq.

Recalling (3.40), we get

d

ds
pupxpsq, vpsq, sqq “ ´1

2
|Dvupxpsq, vpsq, sq|2 ´ 1

2
|vpsq|2 ´ ℓpxpsq, vpsq, sq.

or in equivalent manner,

d

ds
pupxpsq, vpsq, sqq “ ´1

2

ˇ

ˇv1psq
ˇ

ˇ

2 ´ 1

2
|vpsq|2 ´ ℓpxpsq, vpsq, sq,

which holds for almost every s. Integrating this equality on rt, T s and taking into account
the terminal condition in (3.4), we obtain

upx, v, tq “
ż T

t

1

2
|v1psq|2 ` 1

2
|vpsq|2 ` ℓpxpsq, vpsq, sqds ` gpxpT qq.

Therefore, the control law αpsq “ v1psq “ ´Dvupxpsq, vpsq, sq is optimal. This achieves
the proof of the first statement.

The second statement is a direct consequence of Lemma 3.4. ✷
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4 The continuity equation

In this section, our aim is to study equation (2.1)-(ii), and more precisely the well-
posedness of

(4.1)

"

Btm` v ¨ Dxm´ divvpmDvuq “ 0, in R
2N ˆ p0, T q,

mpx, v, 0q “ m0px, vq, in R
2N ,

where u is a solution to problem (3.4), which we rewrite here for the sake of clarity

"

´Btu´ v ¨Dxu ` 1
2

|Dvu|2 ´ 1
2
|v|2 ´ lpx, vq “ F rmptqspx, vq, in R

N ˆ R
N ˆ p0, T q,

upx, v, T q “ GrmpT qspx, vq, on R
2N ,

and m is fixed and belongs to Cpr0, T s; P1pR2N qq.

Remark 4.1. Note that u is the value function of the optimal control problem (3.5) with
Jt and ℓ respectively given by (3.3) and (3.1).

It is worth to observe that the differential equation in (4.1) can also be written

Btm´ divx,vpmbq “ 0,

with b :“ p´v,Dvuq. In the present framework, the semi-concavity proved in Lemma 3.3
does not imply that the flow Φpx, t, sq given by Lemma 3.5 has a Lipschitz continuous
inverse, by contrast with [10, Lemma 4.13]. Moreover, the drift b is only locally bounded;
this lack of regularity makes it impossible to apply the standard results for drifts which
are Lipschitz continuous (uniqueness, existence and representation formula of m as the
push-forward of m0 through the characteristic flow; e.g., see [2, Proposition 8.1.8]). We
shall overcome this difficulty by applying Ambrosio’s superposition principle [2, Theorem
8.2.1]. The latter yields a representation formula of m as the push-forward of some measure
on Cpr0, T s;R2N q through the evaluation map et defined by etpγq “ γptq for all continuous
function γ with value in R

2N . In the following theorem, we state existence, uniqueness,
and some regularity results for (4.1):

Theorem 4.1. Under assumptions (H), for any m P Cpr0, T s; P1pR2N qq, there is a unique

m P C 1
2 pr0, T s; P1pR2N qq X L8p0, T ; P2pR2N qq which solves problem (4.1) in the sense of

Definition 2.1.
Moreover mpt, ¨q satisfies: for any for φ P C0pR2N q, for any t P r0, T s,

(4.2)

ż

R2N

φpx, vqmpx, v, tqdxdv “
ż

R2N

φ
`

γx,vptq
˘

m0px, vq dxdv,

where, for a.e. px, vq P R
2N , γx,v is the solution to (2.2).

The proof of Theorem 4.1 is given in the next two subsections which are devoted
respectively to existence (see Proposition 4.1) and to uniqueness and the representation
formula (see Proposition 4.2).
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4.1 Existence of the solution

We wish to establish the existence of a solution to the continuity equation via a vanishing
viscosity method applied to the whole MFG system in which the viscous terms involve
Laplace operators with respect to both x and v. This is reminiscent of [11, Appendix] (see
also [10, Section 4.4]). In this way, Dvu is replaced by Dvu

σ, which is regular by standard
regularity theory for parabolic equations; this implies the regularity of the solution of the
Fokker-Planck equation (see [12]). Note also that Dvu may be unbounded; we shall over-
come this issue by taking advantage of estimates similar to those in Lemma 3.2. Indeed,
these estimates will allow us to apply classical results for the existence and uniqueness of
the solution.

Proposition 4.1. Under assumptions pHq, for any m P Cpr0, T s; P1pR2N qq, problem (4.1)

has a solution m in the sense of Definition 2.1. Moreover m P C
1
2 pr0, T s; P1pR2N qq X

L8p0, T ; P2pR2N qq.
We consider the solution puσ,mσq to the following problem

(4.3)
$

&

%

piq ´ Btu´ σ∆x,vu´ v ¨Dxu ` 1
2

|Dvu|2 ´ 1
2
|v|2 ´ lpx, vq “ F rmspx, vq, in R

2N ˆ p0, T q,
piiq Btm´ σ∆x,vm´ divvpmDvuq ´ v ¨Dxm “ 0, in R

2N ˆ p0, T q,
piiiq mpx, v, 0q “ m0px, vq, upx, v, T q “ GrmpT qspx, vq, on R

2N .

Recall that equation (4.3)-(ii) has a standard probabilistic interpretation (see rela-
tion (4.8) below). Our aim is to find a solution to problem (4.1) by letting σ tend to 0`.
To this end, some estimates are needed.
Note that equation (4.3)-(ii) can be written in the compact form

(4.4) Btm
σ ´ σ∆x,vm

σ ´ divx,vpmσbσq “ 0, with bσ :“ p´v,Dvu
σq.

We start by establishing the well-posedness of system (4.3) and that the functions
uσ are Lipschitz continuous and semi-concave uniformly in σ.

Lemma 4.1. Under the same assumptions as in Proposition 4.1, there exists a unique
classical solution uσ to equation (4.3)-(i) with the terminal condition contained in (4.3)-
(iii). Moreover, there exists a constant C ą 0 which depends only on the constants in
assumptions pHq, in particular it is independent of σ ď 1, such that

paq |uσpx, v, tq| ď Cp1 ` |v|2q,
pbq }Dxu

σ}8 ď C, |Dvu
σpx, v, tq| ď Cp1 ` |v|q, |Btu

σpx, v, tq| ď Cp1 ` |v|2q,
pcq D2

x,vu
σ ď C,

where D2
x,vu is the Hessian of u with respect to both x and v.

Proof. Following the same arguments of Proposition 3.1 (based on the comparison princi-
ple by Da Lio and Ley [15]), one can easily prove the existence of a viscosity solution to
equation (4.3)-(i) with terminal condition as in (4.3)-(iii) and satisfying inequality paq.
Furthermore, still by the results in [15], this solution is unique among the functions with
this growth at infinity. Hence, estimate paq is proved.

Let us now prove that this viscosity solution uσ is a classical solution. To this end,
let us assume for a moment that uσ satisfies estimates pbq and pcq. We see that u is a
viscosity subsolution of

Btu´ σ∆x,vu´ v ¨Dxu ď Cp1 ` |v|2q.
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Moreover, from estimate pcq, we see that at any point px, v, tq, either uσ is twice differen-
tiable with respect to x and v, or there does exist a smooth function that touches uσ from
below. This and estimate pbq imply that uσ is a viscosity supersolution of

Btu ´ σ∆x,vu´ v ¨ Dxu ě ´Cp1 ` |v|2q.

for some positive constant C. From [18], u is also a distributional subsolution (respectively
supersolution) of the same linear inequalities. Therefore, both Btu

σ ´ σ∆x,vu
σ ´ v ¨Dxu

σ

and ´1
2
|Dvu

σ|2 ` 1
2
|v|2 ` lpx, vq `F rmspx, vq are in L8

loc. On the other hand, from pbq and
pcq, Alexandrov’s theorem implies that uσ is twice differentiable with respect to x and v

almost everywhere, so the equation

Btu
σ ´ σ∆x,vu

σ ´ v ¨ Dxu
σ “ ´1

2
|Dvu

σ|2 ` 1

2
|v|2 ` ℓpx, v, tq,

(where ℓ and g are defined in (3.1)), holds almost everywhere, and in the sense of distri-
butions since both the left and right hand sides are in L8

loc.
Hence classical results on the regularity of weak solutions (including bootstrap) can be
applied and yield that u is a classical solution.

Let us now prove the estimates pbq and pcq, by using similar arguments to those
contained in the proofs of Lemma 3.2. They use a representation formula of u arising
from a stochastic optimal control problem (see, for example, [15, 4, 10]).
Let pΩ,F , pFtq,Pq be a complete filtered probability space, the filtration pFtq supporting
a standard 2N -dimensional Brownian motion Bs “ pBx,s, Bv,sq. Let At be the set of RN -
valued pFtq-progressively measurable processes and let E be the expectation with respect
to the probability measure P. The unique solution of (4.3)-(i) which satisfies point (a) can
be written as:

uσpx, v, tq “ inf
αPAt

E

ˆ

ż T

t

„

1

2
|αpsq|2 ` 1

2
|V psq|2 ` ℓpXpsq, V psq, sq



ds` gpXpT q, V pT q
˙

where the controlled process pXp¨q, V p¨qq satisfies

Xptq “ x, V ptq “ v,

almost surely and is governed by the stochastic differential equations

(4.5)

"

dX “ V psqds `
?

2σdBx,s,

dV “ αpsqds `
?

2σdBv,s.

Thus, almost surely,
(4.6)
$

’

’

&

’

’

%

Xpsq “ x` vps´ tq `
ż s

t

ż θ

t

αpτq dτdθ `
?

2σ

ż s

t

ˆ
ż θ

t

dBv,τ

˙

dθ `
?

2σ

ż s

t

dBx,τ ,

V psq “ v `
ż s

t

αpτq dτ `
?

2σ

ż s

t

dBv,τ .

To prove pbq, we can exactly use the same arguments as for Lemma 3.2, replacing the
paths pxpsq, vpsqq and pypsq, wpsqq by the processes pXpsq, V psqq and pY psq,W psqq, and
noting that, from (4.6), we get similar equalities as in (3.8).
Note that, for any σ, we get from paq that any ǫ-optimal control ασ for uσpx, v, tq satisfies

E

ˆ
ż T

t

|ασpsq|2ds
˙

ď Cp1 ` |v|2q,
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hence, we get the same estimates as (3.9) and (3.10), namely estimate pbq. An analytic
proof of pbq is also possible, see [23, Chapter XI].

In order to prove pcq, we can follow the same procedure as in the proof of Lemma
3.3, noting that:
i) equalities (3.14) and (3.18) are still true for the stochastic processes,
ii) if we fix s P rt, T s, using a Taylor expansion of g as in (3.16), we get

gpXpsq, V psqq “ gpXλpsq, Vλpsqq `DgpXλpsq, VλpsqqpXpsq ´Xλpsq, V psq ´ Vλpsqq

`1

2
pXpsq ´Xλpsq, V psq ´ VλpsqqD2gpξ, ηqpXpsq ´Xλpsq, V psq ´ VλpsqqT ,

where ξ “ Xpsq ` θ1pXpsq ´Xλpsqq, η “ V psq ` θ2pV psq ´ Vλpsqq for suitable θ1 and θ2 in
r0, 1s. For a similar proof, see [4]. ✷

Lemma 4.2. Under the same assumptions as in Proposition 4.1, there exists a unique
classical solution mσ to equation (4.3)-(ii) with initial condition as in (4.3)-(iii). More-
over, mσ ą 0.

Proof. By Lemma 4.1, the problem for mσ can be written

Btm´ σ∆x,vm´ bσ ¨ Dxvm´ p∆vu
σqm “ 0, mp0q “ m0,

where bσ has been introduced in (4.4) and from the estimates contained in Lemma 4.1,
|bσ| ď Cp1 ` |v|q and ∆vu

σ ď C. Using this and the results contained in [17], we get the
existence and uniqueness of a classical solution mσ of (4.3)-(ii) with initial condition as
in (4.3)-(iii). >From the assumptions on m0 and Harnack inequality (see for example [19,
Theorem 2.1, p.13]) we get that mσp¨, tq ą 0 for t ą 0. ✷

Let us now prove some properties of the functions mσ which will play a crucial role
in the proofs of Proposition 4.1 and of Theorem 2.1.

Lemma 4.3. Under the same assumptions of Proposition 4.1, there exists a constant
K ą 0 which depends only on the constants in assumptions pHq and on m0, in particular
it is independent of σ ď 1, such that:

1. }mσ}8 ď K,

2. d1pmσpt1q,mσpt2qq ď Kpt2 ´ t1q1{2, @t1 ď t2 P r0, T s,
3.

ż

R2N

p|x|2 ` |v|2q dmσptqpx, vq ď K

ˆ
ż

R2N

p|x|2 ` |v|2q dm0px, vq ` 1

˙

, @t P r0, T s.

Proof. Point 1. In order to prove this L8 estimate, we argue as in [11, Theorem 5.1]. We
note that

divvpmσDvu
σq “ Dvm

σ ¨Dvu
σ `mσp∆vu

σq ď Dvm
σ ¨Dvu

σ ` Cmσ,

because of the semi-concavity of u established in Lemma 4.1 and the positivity of mσ.
Therefore, from assumption pH2q, the function mσ satisfies

Btm
σ ´ σ∆mσ ´ vDxm

σ ´Dvu
σ ¨Dvm

σ ´ Cmσ ď 0, mσpx, v, 0q ď C.
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Then, using w “ CeCt as a supersolution (recall that C is independent of σ), we
obtain that }mσ}8 ď CeCT , using the comparison principle proved [15].

To prove Points 2 and 3 as in the proof of [10, Lemma 3.4 and 3.5], it is convenient
to introduce the stochastic differential equation

(4.7) dYt “ bσpYt, tqdt `
?

2σdBt, Y0 “ Z0,

where Yt “ pXt, Vtq, bσpx, v, tq “ p´v,Dvu
σpx, v, tqq, Bt is a standard 2N -dimensional

Brownian motion, and LpZ0q “ m0. By standard arguments, setting

(4.8) mσptq :“ LpYtq,

we know that mσptq is absolutely continuous with respect to Lebesgue measure, and
that if mσp¨, ¨, tq is the density of mσptq, then mσ is the weak solution to (4.3)-(ii) with
mσ|t“0 “ m0 (from Ito’s Theorem, since bσ has at most linear growth with respect to
px, vq, Proposition 3.6 Chapter 5 [16], p.303, and the book [3]). Here again, we have used
the estimate on |Dvu

σ| given in Lemma 4.1.

Point 3: Noting that
ż

R2N

p|x|2 ` |v|2qdmσptqpx, vq “ Ep|Yt|2q,

the desired estimate can be obtained by applying Estimate 3.17 of Problem 3.15, p.
306, (the solutions are at p. 389) of [16] with m “ 1.

Point 2: For t2 ě t1, it is well known that

d1pmσpt1q,mσpt2qq ď Ep|Yt1 ´ Yt2 |q.

Recall also that for a suitable constant C,

|bσpYτ , τq| ď Cp|Vτ | ` 1q.

The latter two observations imply that

Ep|Yt1 ´ Yt2 |q ď E

ˆ
ż t2

t1

|bσpYτ , τq|dτ `
?

2σ|Bt2 ´Bt1 |
˙

ď E

ˆ

C

ż t2

t1

p|Vτ | ` 1q|dτ `
?

2σ|Bt2 ´Bt1 |
˙

ď C

ˆ

E

ˆ
ż t2

t1

p|Vτ |2 ` 1q|dτ
˙˙

1
2 ?

t2 ´ t1 `
?

2σ
?
t2 ´ t1

ď C

ˆ

E

ˆ

max
rt1,t2s

|Yτ |2
˙

` 1

˙ 1
2

pt2 ´ t1q `
?

2σ
?
t2 ´ t1.

where we have used estimate [16, (3.17) p. 306].

✷

Proof of Proposition 4.1. The arguments are similar to those in the proof of [11, Theorem
5.1] (see also [10, Theorem 4.20]). Lemma 4.1 imply that possibly after the extraction
of a subsequence, uσ locally uniformly converges to some function u, which is Lipschitz
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continuous with respect to x, locally Lipschitz continuous with respect to v, and Duσ Ñ
Du a.e. (because of the semi-concavity estimate of Lemma 4.1 and [9, Theorem 3.3.3]).
By standard stability result for viscosity solutions, the function u is a viscosity solution of
(3.4).

On the other hand, the function mσ satisfies the estimates stated in Lemma 4.3:

1. from point 3, mσptq is bounded in P2pR2N q uniformly in σ P r0, 1s and t P r0, T s

2. from points 2 and 3 , mσ is bounded in C1{2pr0, T s; P1pR2N qq uniformly with respect
to σ P r0, 1s.

Recalling that the subsets of P1pR2N q whose elements have uniformly bounded second
moment are relatively compact in P1pR2N q, see for example [10, Lemma 5.7], we can apply
Ascoli-Arzelà theorem: we may extract a sequence (still called σ for simplicity) such that
σ Ñ 0` and mσ converges to some m P C1{2pr0, T s; P1pR2N qq in the Cpr0, T s; P1pR2N qq
topology. Moreover, from point 1 in Lemma 4.3 and Banach-Alaoglu theorem, m belongs
to L8

locpp0, T q ˆ R
2N q and the sequence mσ converges to m in L8

locpp0, T q ˆ R
2N q-weak-˚.

Therefore, by passing to the limit, we immediately obtain that m|t“0 “ m0, }m}8 ď K

and that d1pmpt1q,mpt2qq ď Kpt2 ´ t1q1{2, @t1 ď t2 P r0, T s.
Let us prove that for all t P r0, T s,

(4.9)

ż

R2N

p|x|2 ` |v|2q dmptqpx, vq ď K

ˆ
ż

R2N

|p|x|2 ` |v|2q dm0px, vq ` 1

˙

.

For that, let us consider the increasing sequence of functions defined on R`: φnpρq “
1 ^ ppn` 1 ´ ρq _ 0q. We know from point 3 in Lemma 4.3, that for all t P r0, T s,
(4.10)

ż

R2N

p|x|2 ` |v|2qφnp|x|2 ` |v|2qmσpx, v, tqdxdv ď K

ˆ
ż

R2N

|p|x|2 ` |v|2q dm0px, vq ` 1

˙

.

For a fixed n, we can pass to the limit in (4.10) thanks to the L8
locpp0, T q ˆ R

2N q-weak-˚
convergence established above. We obtain:
(4.11)

ż

R2N

p|x|2 ` |v|2qφnp|x|2 ` |v|2qmpx, v, tqdxdv ď K

ˆ
ż

R2N

|p|x|2 ` |v|2q dm0px, vq ` 1

˙

.

We then pass to the limit as n Ñ `8 thanks to Beppo-Levi monotone convergence
theorem, and obtain (4.9).
Finally, mσ is a solution to (4.3)-(ii),

ż T

0

ż

R2N

mσ p´Btψ ´ σ∆ψ `Dvψ ¨Dvu
σ ´ vDxψq dxdv dt “ 0

for any ψ P C8
0 pp0, T q ˆ R

2N q. Letting σ Ñ 0`, we conclude from the L8
loc-weak-˚

convergence of mσ and the convergence Duσ Ñ Du a.e. that the function m solves (4.1)
in the sense of Definition 2.1. ✷

Remark 4.2. Note that we have just proven that all the estimates on uσ contained in
Lemma 4.1 hold for u. These estimates have also been obtained directly in the proof of
Lemma 3.2. Similarly, all the estimates on mσ contained in Lemma 4.3 hold for m.
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4.2 Uniqueness of the solution

We now deal with uniqueness for (4.1).

Proposition 4.2. Under assumptions pHq, the function m found in Proposition 4.1 is the
unique solution to problem (4.1) in the sense of Definition 2.1 such that

m P C 1
2 pr0, T s; P1pR2N qq X L8p0, T ; P2pR2N qq.

Moreover, m satisfies:
(4.12)
ż

R2N

φpx, vqmpx, v, tqdxdv “
ż

R2N

φpγx,vptqqm0px, vq dxdv, @φ P C0pR2N q, @t P r0, T s,

where, for a.e. px, vq P R
2N , γx,v is the solution to (2.2).

Proof of Proposition 4.2. The proof is similar to that of [12, Proposition A.1], which relies
on Ambrosio’s superposition principle. Let ΓT denote the set of continuous curves in
R

2N , namely ΓT “ Cpr0, T s;R2N q. For any t P r0, T s, we introduce the evaluation map:
et : ΓT Ñ R

2N , etpγq :“ γptq. Hereafter, when we write “for a.e.” without specifying the
measure, we intend “with respect to the Lebesgue measure”.

Let m P C1{2pr0, T s; P1pR2N qq XL8p0, T ; P2pR2N qq be a solution of problem (4.1) in
the sense of Definition 2.1. Recall the notation bpx, v, tq “ p´v,Dvupx, v, tqq. The estimate
(8.1.20) in chapter 8 of [2] is fulfilled: indeed,

ż T

0

ż

R2N

|bpx, v, tq|2dmptqpx, vq ď

C

ż T

0

ż

R2N

|v|2dmptqpx, vq ` C

ż T

0

ż

R2N

|Dvupx, v, tq|2dmptqpx, vq ď C,

where the last inequality comes from the estimates onDvu andm in Remark 4.2 (recall that
mptq is a probability measure). Therefore, the assumptions of Ambrosio’s superposition
principle are fulfilled (see [2, Theorem 8.2.1] and also [2, pag. 182]). The latter and
the disintegration theorem (see [2, Theorem 5.3.1]) entail that there exist a probability
measure η on R

2N ˆ ΓT and for m0-almost every px, vq P R
2N , a probability measure on

ηx,v on ΓT , such that

i) et#η “ mt, i.e., for every bounded and continuous real valued function ψ defined on
R

2N , for every t P r0, T s,
ż

R2N

ψpx, vqdmtpx, vq “
ż

R2N ˆΓT

ψpζptqqdηpx, v, ζq.

In particular, e0#η “ m0.

ii)

η “
ż

R2N

ηx,v dm0px, vq,

i.e. for every bounded Borel function f : R2N ˆ ΓT Ñ R,

ż

R2N ˆΓT

fpx, v, ζqdηpx, v, ζq “
ż

R2N

ˆ
ż

ΓT

fpx, v, ζqdηx,vpζq
˙

dm0px, vq.
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iii) For m0-almost every px, vq P R
2N , the support of ηx,v is contained in the set

(4.13)
$

&

%

ζ P AC
`

r0, T s;R2N
˘

: ζptq “ pξptq, ηptqq :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ξp0q “ x, ηp0q “ v,

ξ1ptq “ ηptq,
η1ptq “ ´Dvupξptq, ηptq, tq.

,

.

-

.

Recall that in the present case, m0 is absolutely continuous (from assumption pH4q);
hence, since for all t P r0, T s, up¨, ¨, tq is Lipschitz continuous, the optimal synthesis in
Lemma 3.5 ensures that for a.e. px, vq P R

2N , (3.38)-(3.40) (with t “ 0 in the present
context) has a unique solution γx,v, because it is the optimal trajectory for the control

problem mentioned in Remark 4.1. Therefore, for a.e. px, vq P R
2N , the set in (4.13)

is a singleton, or in equivalent manner, ηx,v coincides with δγx,v
. In conclusion, for any

function φ P C0pR2N q,
ż

R2N

ψpx, vqmpx, v, tqdxdv “
ż

ΓT

ψpetpζqqdηpx, v, ζq

“
ż

R2N

ˆ
ż

ΓT

ψpetpζqqdηx,vpζq
˙

dm0px, vq

“
ż

R2N

ψpetpγx,vqqdm0px, vq

“
ż

R2N

ψpγx,vptqqm0px, vqdxdv.

This shows that m is uniquely defined as the image of m0 by the flow of (2.2). ✷

Proof of Theorem 4.1. Existence of m comes from Proposition 4.1, uniqueness and the
representation formula come from Proposition 4.2. ✷

5 Proof of the main Theorem

Proof of Theorem 2.1. For point 1, we argue as in the proof of [10, Theorem 4.1]. Con-
sider the set C :“ tm P Cpr0, T s; P1pR2N qq | mp0q “ m0u endowed with the norm
of Cpr0, T s; P1pR2N qq and observe that it is a closed and convex subset of Cpr0, T s; P1pR2N qq.
We also introduce a map T as follows: to any m P C, we associate the solution u to prob-
lem (3.4) with m “ m and to this u we associate the solution µ “: T pmq to problem (4.1)
which, by Proposition 4.1 belongs to C. Hence, T maps C into itself. We claim that the
map T has the following properties:

(a) T is a continuous map with respect to the norm of Cpr0, T s; P1pR2N qq

(b) T is a compact map.

Assume for the moment that these properties are true. In this case, Schauder fixed point
Theorem ensures the existence of a fixed point for T , namely a solution to system (2.1).
Therefore it remains to prove properties paq and pbq.

Let us now prove paq. Let pmnqn be a sequence in C such that mn Ñ m in the
Cpr0, T s; P1pR2N qq topology. We want to prove that T pmnq Ñ T pmq in Cpr0, T s; P1pR2N qq.
We observe that hypothesis pH3q ensures that the functions px, v, tq ÞÑ F rmnptqspx, vq
and px, vq ÞÑ GrmnpT qspx, vq converge locally uniformly to the map px, v, tq ÞÑ F rmptqspx, vq
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and respectively px, vq ÞÑ GrmpT qspx, vq. Moreover, Lemma 3.2 entails that the solu-
tions un to problem (3.4) withm “ mn are locally uniformly bounded and locally uniformly
Lipschitz continuous. Therefore, by standard stability results for viscosity solutions, the
sequence punqn converges locally uniformly to viscosity the solution u to problem (3.4)
with m “ m. Moreover, from Lemma 3.3, the functions un are uniformly semi-concave;
hence, by [9, Theorem 3.3.3], Dun converge a.e. to Du.

By Proposition 4.1 and Remark 4.2, the function T pmnq verifies the bounds in
Lemma 4.3 with a constant K independent of n. Hence, the sequence pT pmnqqn is
uniformly bounded in Cpr0, T s; P1pR2N qq (by Lemma 4.3-(3) and Remark 4.2, and be-
cause the subsets of P1pR2N q whose elements have uniformly bounded second moment
are relatively compact in P1pR2N q, and uniformly Hölder continuous in time with val-
ues in P1pR2N q (by Lemma 4.3-(2) and Remark 4.2). Therefore, by Ascoli-Arzelà and
Banach-Alaoglu theorems, there exists a subsequence pT pmnk

qqk which converges to some
µ P Cpr0, T s; P1pR2N qq in the Cpr0, T s; P1pR2N qq-topology and in the L8

locpp0, T q ˆ R
2N q-

weak-˚ topology. As in Remark 4.2, µ verifies the bounds in Lemma 4.3 and µp0q “ m0.
Observe that T pmnk

q solves problem (4.1) with u replaced by unk
,

ż T

0

ż

R2N

T pmnk
q p´Btψ `Dvψ ¨Dvunk

´ v ¨Dxψq dxdv dt “ 0,

for any ψ P C8
0 pp0, T q ˆ R

2N q. Passing to the limit as k Ñ 8, we get that µ is a
solution to (4.1). By the uniqueness result established in Proposition 4.2, we deduce that
µ “ T pmq, and that the whole sequence pT pmnqqn converges to T pmq.

Let us now prove pbq; since C is closed, it is enough to prove that T pCq is a precompact
subset of Cpr0, T s; P1pR2N qq. Let pµnqn be a sequence in T pCq with µn “ T pmnq for
some mn P C; we wish to prove that, possibly for a subsequence, µn converges to some µ
in the Cpr0, T s; P1pR2N qq-topology as n Ñ 8.

By Remark 4.2, the functions T pmnq satisfy the estimates in Lemma 4.3 with the
same constant K. Since the subsets of P1pR2N q whose elements have uniformly bounded
second moment are relatively compact in P1pR2N q), Lemma 4.3-(3) ensures that the se-
quence pT pmnqqn is uniformly bounded. Moreover, Lemma 4.3-(2) yields that the sequence
pT pmnqqn is uniformly bounded in C1{2pr0, T s; P1pR2N qq and L8p0, T ; P2pR2N qq By argu-
ing as in the proof of Proposition 4.1, we obtain that, possibly for a subsequence (still
denoted by T pmnq), T pmnq converges to some µ in the Cpr0, T s; P1pR2N qq-topology.

2. Theorem 4.1 ensures that, if pu,mq is a solution of (2.1), for any function ψ P
C0pR2N q,

(5.1)

ż

R2N

ψpx, vqmpx, v, tqdxdv “
ż

R2N

ψpγx,vptqqm0px, vq dxdv

where γx,v is the solution of (2.2) (uniquely defined for a.e. px, vq P R
2N ). ✷
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