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Deterministic mean field games with control on the
acceleration

Yves Achdou * Paola Mannuccif
Claudio Marchi ¥ Nicoletta Tchou®

December 2, 2019

Abstract

In the present work, we study deterministic mean field games (MFGs) with finite
time horizon in which the dynamics of a generic agent is controlled by the acceleration.
They are described by a system of PDEs coupling a continuity equation for the density
of the distribution of states (forward in time) and a Hamilton-Jacobi (HJ) equation
for the optimal value of a representative agent (backward in time).

The state variable is the pair (z,v) € RY x RY where z stands for the position and
v stands for the velocity. The dynamics is often referred to as the double integrator. In
this case, the Hamiltonian of the system is neither strictly convex nor coercive, hence
the available results on MFGs cannot be applied. Moreover, we will assume that the
Hamiltonian is unbounded w.r.t. the velocity variable v. We prove the existence of a
weak solution of the MFG system via a vanishing viscosity method and we characterize
the distribution of states as the image of the initial distribution by the flow associated
with the optimal control.

Keywords: Mean field games, first order Hamilton-Jacobi equations, double integrator,
non-coercive Hamiltonian.
2010 AMS Subject classification: 35F50, 35Q91, 49K20, 491.25.

1 Introduction

The theory of mean field games (MFGs for short) is more and more investigated since
the pioneering works [20, 21, 22] of Lasry and Lions: it aims at studying the asymptotic
behavior of differential games (Nash equilibria) as the number of agents tends to infinity.
In the present work, we study deterministic mean field games with finite time horizon in
which the dynamics of a generic agent is controlled by the acceleration. They are described
by a system of PDEs coupling a continuity equation for the density of the distribution of
states (forward in time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a
representative agent (backward in time). The state variable is the pair (z,v) € RY x RV
where = stands for the position and v stands for the velocity.
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The systems of PDEs are of the form

(1.1)

(i) —0wwu—v-Dyu+ H(x,v, Dyu) — F[m(t ](x,v) = in RN x (0,7T)
(i) Oym +v - Dym — divy(D,, H(x,v, Dyu)m) = in R2N % (0,7)
(i1i) m(z,v,0) = mo(z,v),u(z,v,T) = G[m(T)](x,v), on R2V

where T is a positive real number, u = u(z,v,t), m = m(z,v,t), (z,v) € R?N, t e (0,T)
and H is defined by

(1.2) H(z,v,p,) = max(—ap, — l(z,v, a)).
aeRN
We take F' and G strongly regularizing and we assume that the running cost has the form
l(z,v,a) = l(z,0) + 3|a]® + 3|v|?, where (z,v) — I(z,v) is a bounded and C2-bounded
function.
Formally, systems of this form arise when the dynamics of the generic player is
described by a double integrator:

Y0 < o sl
n(s) = afs), se (t,T),
(1.3) &) =

n(t) v,

and when the control law belongs to the space of the measurable functions with values in
R and is chosen in order to minimize the cost
(1.4)

Jp = Ji(&m, j (3 ya(s)) + Flm(s)](£(s), n(s))ds + Gm(T)](E(T), n(T)).

To summarize, the main features of this model are:

1. The control « is only involved in the dynamics of the second component of the state
variable, see (1.3).

2. The running cost has the form

(1.5 U&m,a) =UEm) + Slal? + 3lal”

where (£,7) — [(£,7) is a bounded C? function, thus the former is unbounded w.r.t.
the variable 1. Note that |n|? stands for a kinetic energy, whereas the term |a|? is a
penalty for large accelerations. Note also that the results of the present paper hold
for a fairly large class of generalizations of (1.5).

3. Setting f(&,n,«) = (n,«), the Hamiltonian associated to the control problem of a
generic player is

H(&,T],p) = anelﬂaé}l\(,{_p : f(é.vn’ OZ) - l(&vna OZ)} =—pz-N+ H(f»ﬁ,pv)a

where p = (pg,py) and H is defined in (1.2). The Hamilton H is neither strictly
convex nor coercive with respect to p = (py, py). Hence the available results on the
regularity of the value function u of the associated optimal control problem ([9], [14],
[10]) and on the existence of a solution of the MFG system ([10]) cannot be applied.



We recently learnt that a similar type of mean field games has been studied in [8], inde-
pendently, at the same time, and with different techniques. To the best of our knowledge,
these systems have not been investigated elsewhere.

The main result of the present work is the existence of a solution of (2.1) and a
characterization of the distribution of states as the image of the initial distribution by
the optimal flow associated with the Hamilton-Jacobi equation. In order to establish the
representation formula for m, we use some ideas introduced by P-L Lions in his lectures
at College de France (2012) (see [24, 10]), some results proved in [12, 11], and Ambrosio’s
superposition principle [2]. Indeed, the lack of coercivity of H makes it impossible to
directly apply the arguments of [10, Sect. 4.1], in particular a contraction property of the
flow associated to the dynamics (see [10, Lemma 4.13]).

A similar approach was recently proposed for a class of non-coercive MFG when the
generic player has some "forbidden direction", see ([25]), more precisely when, in the two
dimensional case, the dynamics is of the form: 2} = i, 25 = h(z1)as and h(x1) may
vanish.

In a near future, we plan to tackle mean field games with control on the acceleration
and with constraints (for MFGs with state constraints we refer to [1, 5, 6, 7]).

The paper is organized as follows. In Section 2, we list our assumptions, give the
definition of (weak) solution to system (2.1) and state the existence result for the latter. In
Section 3, we obtain some regularity properties for the solution u of the Hamilton-Jacobi
equation (2.1)-(i) with m fixed. These properties, combined with the uniqueness of the
optimal trajectories of the associated control problem, will be crucial for proving the main
theorem. In Section 4, we study the continuity equation (2.1)-(ii). An important ingredient
is the vanishing viscosity method that is used to characterize its solution. Finally, Section 5
is devoted to the proof of the main Theorem 2.1.

2 Assumptions and main results

We consider the running cost I(z, v, ) of the form I(z,v,a) = I(z,v) + 1[a* + S|v]%.

Then system (1.1) can be written

(2.1)
(i) —du—v-Dyu+ 3|Dyul? — 3[v|? = (z,v) — F[m](z,v) =0,  in R?N x (0,7),
(1) oym + v - Dym — divy(Dyum) = 0, in R2N x (0,7),
(i1i) m(z,v,0) = mo(x,v), u(z,v,T) = Gm(T)](z,v), on RV,

where H(x,v,p,) = %|pv|2 — %|v|2 —l(z,v).

Let P; and P, denote the spaces of Borel probability measures on R?V with re-
spectively finite first and second order moments, endowed with the Monge-Kantorovich
distances di, respectively d.

Let C2(R?*V) denote the space of twice differentiable functions with continuous and
bounded derivatives up to order two. It is endowed with the norm
[flc2 = sup(averen [|f (2, 0)] + [Df(x,0)| + | D> f(x,v)]].

Hereafter, we shall make the following hypotheses:

Assumptions (H)
(H1) The functions F' and G are real-valued continuous functions defined on P; x R*V

(H2) The function [ is a real-valued C? function defined on R?Y



(H3) The map m ~— F[m](-,-) is Lipschitz continuous from P; to C?(R?Y); moreover,
there exists C' > || 2 such that

[E[m]C; )2, and [|Glm](, )2 <C, Vme P
(H4) the initial distribution mg : R?¥ — R* has a compactly supported density (still
named myg, with a slight abuse of notation) mg € C°(R2Y), for some § € (0,1).
Definition 2.1. The pair (u,m) is a solution of system (2.1) if:

1) u e Wll’oo(]R2N x [0,T]), m € C([0,T];P1(R?N)) and for all t € [0,T], m(t) is

ocC
absolutely continuous with respect to Lebesque measure on R*N. Let m(-,-,t) denote

the density of m(t). The function (x,v,t) — m(x,v,t) is bounded.
2) equation (2.1)-(1) is satisfied by u in the viscosity sense
3) equation (2.1)-(ii) is satisfied by m in the sense of distributions.
We can now state the main result of this paper:
Theorem 2.1. Under the assumptions (H) :
1. System (2.1) has a solution (u,m) in the sense of Definition 2.1,
2. m is the image of mg by the flow
02) f )= #(0) =
V'(s) = —Dyu(x(s),v(s), s), v(0) = v.

3 The optimal control problem

In this section, we tackle the optimal control problem related to equation (2.1)-(i) with a
fixed m € C ([0, T]; P1(R?Y)). To alleviate the notations, we introduce the functions

(1) favt) =l 0) + @)@ e) and  g(e,0) = G, v),
which, from the set assumptions (H), satisfy
(32) 1G5 Dl [0, ) ey lgle> <€ Ve [0,T], (z,0) € R,

With the new notation, the optimal control problem to be solved by a representative agent
whose state at time ¢ is (x,v) is to find the control law « in order to minimize

1 e n00.9)|
$).1().)] ds + g(€(T).0(D).

B3 aena = | |55

t

by following the trajectory (1.3). Then the Cauchy problem given by (2.1)-(i) and its
terminal condition becomes

(3.4) —0wu — v+ Dyu+ 3|Dyul®> = S|v|? — l(z,v,t) =0 in RY x RN x (0,7),

' u(z,v,T) = g(z,v) in RV x RV,

From (3.3), it is obvious that the control a must be chosen in L2(¢, T; R™V). Therefore, we
can introduce the value function as follows:



Definition 3.1. The value function for the cost J; defined in (3.3) with dynamics (1.3) is

(3.5) u(x,v,t) :==1inf {J({,n, ) = (§,1,a) € A(z,v,t)}

where

(3.6) A(ﬂfav7t)_{(§7n,a): ‘ (€m) € AC([t, TER™), a € L*(t, T; RY), }

(&,m, ) satisfy (1.3) and E(t) = z,n(t) = v

Lemma 3.1. i) (Existence of an optimal control.) For every (x,v,t) € RNV x RV x
(0,T), there exists an optimal control o for u(xz,v,t).

it) (Concatenation.) Let (£*,n*) be an optimal trajectory for u(zx,v,t) corresponding
to the control law o*. For r € (t,T), let (€*,7*) be an optimal trajectory for
w(&*(r),n*(r),r) with control &*. Then the concatenation of a* and &* at time
r is optimal for u(xz,v,t) and, moreover,

[ * [

2 2

u(w,v,t) = u(€*(r),n*(r),r) + L [ + E(é*(s),n*(s),s)} ds.

i1i) Under the same assumption as in point (ii), the control oz‘*[r ] 18 optimal for
w(€*(r),n*(r),r).

i) (Dynamic Programming Principle.) The Dynamic Programming Principle holds,
namely

. "GP, )P
u(z,v,t) = (§,n,al)leli¢{l(x,v,t) {u({(r),n(r),r) + L 5 T 5 T 0(&(s),m(s), s) ds} .
Proof. (i): let {a,}, be a sequence of minimizing control laws and (&, 7,) be the solution
of (1.3) corresponding to ;. Then, the boundedness of ¢ and the definition of .J; ensure
that [y 12¢ 7ry) are uniformly bounded. Then, possibly after extracting a subsequence,
an — o in L2(t, T;RN), 0, — n* in C([t,T];RY) and &, — &* in C*([t,T];RY). The
lower semi-continuity of J; yields that o™ is optimal.

Points (ii), (iii) and (iv) are obtained by arguing exactly as in [25, Proposition 5.1]
(points (1), (2) and (4) respectively), see also [10]. O

Lemma 3.2. The value function u has the following properties:

1. u(z,v,t) is Lipschitz continuous with respect to the variable x. Moreover u(x,v,t)
is Lipschitz continuous with respect to the variable v, locally in v, with a Lipschitz
constant bounded by C(1 + |v]).

2. u(z,v,t) is Lipschitz continuous with respect to the time variable t, locally in v with
a Lipschitz constant bounded by C (1 + |v]?).

The constant C depends only on the constants in assumptions (H).

Proof. 1. Fix t € [0,T). Let « be an optimal control law for u(z,v,t) i.e.,

1 2 1 2
(3.7) u(z,v,t) = L 5\04(3)\ + §|v(s)\ +U(x(s),v(s),s)ds + g(z(T),v(T)),



where (z(-),v(-)) obeys to the dynamics (1.3).

We consider the path (y(-),w(-)) starting from (y,w), with control a(-). Hence, we
obtain

y(s) = y+w(s—t)+ f f a(r)drdd =y —x + z(s) + (w —v)(s — 1),
w(s) = w+fa(r)d7:w—v+v(s).

Note that

(3.8) v(s) —w(s) =v—w, z(s)—y(s) =z —y+ (v—w)(s —1).

The definition of the value function (3.1) and relation (3.7) imply

Tl 2 1 2
upwst) < [ Gl + 5l + fas) ws).s) ds + g(o(T). w(T))
T

<l t) = | )R~ as),o(s),9) ds - gla (), u(T))

T 1 '
+ ft Sl + Ly(s), w(s), s) ds + g(y(T), w(T))
< @, v, t) + Li(le(s) = y(s)] + [o(s) —w(s)])

+Ly(J2(T) — y(T)] + [v(T) — w(T)]) + L

g 1 2 2 d
3 w(s)[” = u(s)|)ds,

where Ly and L, denote respectively the Lipschitz constants of £ and g w.r.t (z,v).
Hence, by (3.8),

1 1
|| 300G = o) )ds = | Flw = vlluts) + os)ids <
t t
T s
jw o] f w+ v+ 2j a(r)drlds < Clw — vl(jw + ] + (1 + [v])),
t t
where the last inequality comes from (3.33) of Corollary 3.1 below. Hence we obtain

(3.9) u(y,w,t) < u(z,v,t) + Cle —y| + K(v,w)|v —w|,

where K(v,w) = C(Jw + v| + 1 + |v]). Reverting the roles of (z,v) and (y,w), we
get the first result.

. We fix (z,v). >From the concatenation property of optimal trajectories established
in Lemma 3.1, if « is optimal for u(z,v,t) and (z(s),v(s)) is the associated optimal
trajectory, then

u(z,v,t) = u(z(s),v(s),s) + f: %\a(r)|2 + %|v(r)|2 + l(x(r),v(r),r)dr

for any s € [t,T]. Then
lu(z,v,t) — u(z, v, s)| < |u(z,v,t) —u(xz(s),v(s),s)| + |u(z(s),v(s),s) — u(z,v,s)|

< [ 3100 + ) + ealr), o)1) dr + Lia() =l + Lol — ol



where the last two terms come from the Lipschitz continuity of u w.r.t. (z,v): L is
the Lipschitz constant of u with respect to x and L(v) is a local Lipschitz constant
of w with respect to v.

>From (1.3) and the bound (3.33) in Corollary 3.1 below, we get the bounds for
z(s), v(s) and «a, i.e. |v(s) —v| + |z(s) —z| < C(1 + |v|)|s — t|, hence
(310) |U($,’U,t) —u(m,v,s)| < C(1+ |U|2)|S_t|7

which ends the proof.
(]

Remark 3.1. Taking a =0 in (1.3), we get n(s) = v and &(s) = x+v(s—t); then, thanks
to the boundedness of ¢ in (3.2), the value function verifies:

(3.11) C < u(z,v,t) < O+ |v]?),

and, by Lemma 3.2, it is also continuous. Hence, using the DPP in Lemma 3.1-(iv) and
Proposition 3.1 below, the value function is the unique viscosity solution of (3.4) in the
class of functions verifying (3.11).

Proposition 3.1. There ezists a viscosity solution u of (3.4) s.t. 3C e R, C < u(z,v,t) <
C(|v|? + 1) and it is unique in this class of functions.

Proof. We apply the comparison principle stated in [15] in order to prove the existence of
a solution of (2.1)(#) by Perron’s method. Testing (2.1)(:) with w(x,v,t) = C1(t = T) +
%|v|2 + Cj3 yields

1 1 1 1
—diu — v - Dyu + §|Dvu|2 - 5\?)\2 —l(z,v,t) = —C1 + C22§\v\2 - §|fu|2 — Uz, v,t).

If Cy =0, C3 < —||g]|o and —C; < |£||s, we have a subsolution. If Co = 1, C5 = |[|g]«
and —C; > |/{||x we have a supersolution. O

The following lemma deals with the semi-concavity of u(z,v,t) w.r.t. (z,v):

Lemma 3.3. Under Hypothesis (H), u(z,v,t) is semi-concave w.r.t. (x,v) with a linear
modulus of semi-concavity, which depends only on the constants in assumptions (H).

Proof. For any (z,v), (y,w) and X € [0, 1], consider ) := Ax+(1—N\)y, vy := Ao+ (1-N)w.
Let « be an optimal control for u(xy,vy,t); hence, the associated trajectory is

s 0 s
(3.12) zA(s) = zx +vr(s — 1) +£ L a(t)drdf, vy(s) = vy +£ a(r)dr

and

T

u(eroat) = [ glals)? + Sl + Lan(s)oa(s).s)ds + glan (), oa(T)).

t

Let (z(s),v(s)) be the trajectory starting at (z,v) at time ¢ with control o and
(y(s),w(s)) the trajectory starting at (y,w) at time ¢ still with control a.



We have to estimate

)\U(Z’7 v, t) + (1 - )\)U(y, w, t) - u(x)\, U, t)

T
gL %)\|v(s)\2 + (1 — A)%‘W(S)P - %|U/\<S)|2d8

T
+ L M(z(s),v(s),s) + (L = N)L(y(s),w(s),s) —l(zx(s),var(s),s)ds
+Ag(z(T), v(T)) + (1 = Ng(y(T), w(T)) — g(zx(T), vA(T)).

Since

(3.13) v(s) = v+f

t

S S S

a(t)dr, va(s) = )\v—i-(l—)\)w—kft a(r)dr,

a(r)dr, w(s) = w—l—f

we get
(3.14)
/\%|U(S)|2 L (1— )\)%|w(s)|2 - %m(s)l2

° [o]? wl* 1 2
=M+ 1-Nw—-Iv—-(1-Nw) | alr)dr + )\T +(1— )\)T - §|)\v + (1 = MNw|
t
1 1 1
=M1 - Mo + A= Mwf* =M1 =N -w = A=V = w2

Hence
T
(3.15) L %)\|v(s)\2 (- A)%\w@)ﬁ _ %|UA<S)|2ds - %)\(1 — N)v— wA(T — 1),

Now, we have to estimate the terms M(z(s),v(s), s)+(1=A)(y(s), w(s), s)—L(zr(s),vA(s), s)
and Ag(x(T),v(T)) + (1 = Ng(y(T),w(T)) — g(zx(T),vA(T)). We write the algebra for
the second term, since the treatment of the first term is similar. The Taylor expansion of
g centered at (x\(T'),vr(T)) gives
(3.16)
o(x(T), v(T)) = { i(ZA(T)yvA(T)) + Dg(zx(T), va(1))(@(T) — 2x(T),v(T) — va(T))
1
where R; is the error term in the expansion, namely
1
(3.17) Ri = 5(2(T) —an(T),o(T) — ox(T))D?*g(&1,m)(@(T) — ax(T), v(T) — vA(T))",

for suitable &1, 7.
>From (3.12) and (3.13), we get

x((s))—xxgs; = El—igg(az—y))—i-(v—w)(s—t)),

v(s)—uva(s) = (1—XN)(v—w),

(3.18) y(s) —als) = Al(y— )+ (w—v)(s — 1)),
w(s) —ua(s) = AMw—v),

hence the error term can be written as

(3.19) Ry = %(1—/\)2($—y+(v—w)(T—t),v—w)ng(fl,nl)($—y+(v—w)(T—t),v—w)T.

8



Similarly

9W(T), w(T)) = g(xx(T),vA(T)) + Dg(xx(T), va(T))(y(T) — 2A(T), w(T) — vA(T)) + R,

where
Ry Z%(y(T) — a2\ (1), w(T) — vA(T))D?*g(&2,m2) (Y(T) — 2A(T),w(T) — va(T))"
=%)\2(y C ot (w— o) (T —£),w — 0)D2g(Ea,m) (y — 7 + (w — )(T — 1), w — 07

At this point, taking into account that from (3.18),

ADg(xA(T), oA(T))(2(T) — 2A(T),v(T) — va(T))
+ (1 = A)Dg(@A(T), va(T))(y(T) — 2 (T), w(T) — vA(T))
(3.20) =Dg(zx(T), vA(T))(AN(@(T) — zA(T))
+ (1 =NW(T) = 2x(T)), Av(T) = vaA(T)) + (1 = N (w(T') — vA(T)))

we obtain that

Ag(z(T),v(T)) + (1 = Ng(y(T), w(T)) — g(zx(T), vA(T))
ARy + (1 — )\)RQ

(3.21) =
< (1= NACH| D?g|o(jz — y]? + v — w]?).

Hence from (3.15), (3.20), (3.21) we get

)\u(ﬂj‘, v, t) + (1 - )\)u(y, w, t) - U($)\, V), t)

A1 =X
<- ( . ) (v —w)2(T —t) + Cr(1 — X)X (HD29H00 + HD2€!\oo) (jo — Y2+ v — w‘z) '
We obtain that u is semi-concave in (x,v) with a linear modulus of semi-concavity. O

Pontryagin’s maximum principle yields the following necessary optimality condi-
tions:

Proposition 3.2 (Necessary conditions for optimality). Let (z*,v*, a™*) be optimal for u(x,v,t)
n (3.5). There exists an arc p = (pz,py) € AC([t, T|; RN x RN), hereafter called the
costate, such that

1. (a*,x*,v*, p) satisfies the adjoint equations: for a.e. s € [t,T],
(3.22) Py = Dol(z™, 0%, s),
(3.23) Pl = —px + 0" + Dyl(z*, 0%, s),

the transversality condition

(3.24) p(T) = =Dg(a*(T),v*(T)),

together with the mazimum condition: for almost all s € [t, T,

2 *|2
(3.25) moz}xpm-v*_|_pv.a_ﬂ_|v| *+pv,a*_|a

*|2 |U*|2
2 9~ P 2 2




2. The optimal control o™ is given by
(3.26) a* = py, a.ein[t,T].

3. The triple (x*,v*,p) satisfies the system of differential equations: for a.e. s € [t,T]

(3.27) ¥ =w,

(3.28) v = po,

(3.29) Py = Dyl(z,v,5),

(3.30) pl, = —pz + v+ Dyl(z,v,s),

with the mized boundary conditions x*(t) = z, v*(t) = v, p(T') = —Dg(z*(T),v*(T)).

Proof. 1. Hypothesis (3.2) ensures that our control problem satisfies the assumption [14,
Hypothesis 22.16], so we can invoke [14, Theorem 22.17] on the maximum principle for
problems with unbounded control. Moreover, since there is no constraint on the state
variable at T, the same arguments as in [14, Corollary 22.3] ensure that the necessary
conditions hold in normal form.

2. The maximum condition (3.25) implies that

D, <p:c'?f* +tpy v — /= — —— —f(a:*,v*)) =0 forae. selt,T]
a=a*

from which we get (3.26).
3. Conditions (3.27) — (3.28) follow directly from (1.3) and (3.26). Conditions (3.29)
and (3.30) coincide with (3.22), (3.23). O

Corollary 3.1 (Feedback control and regularity). Let (z*,v*, a*) be optimal for u(z,v,t)
and p = (pz,py) be the related costate as in Proposition 3.2. Then:

1. The costate p is uniquely expressed in terms of x*,v* for every s € [t,T] by
(3.31)

T
pa(s) = —Dag(a™ (), v*(T)) — f Dot(a* (r), o* (v), ) dr,
“r
puls) = ~Duga® (1)0*(T) = | Dlla” (7). (7).7) +0°(7) = pa(r) .
2. The optimal control o is a feedback control (i.e., a function of x*,v*), uniquely
expressed in terms of x*,v* for a.e. s€ [t,T] by
(3.32) a®(s) = pu(s).

3. The optimal trajectory (z*,v*) and the optimal control o* are of class Ct. In par-
ticular the equalities (3.26) — (3.32) do hold for every s € [t,T]. Moreover

[v*ller + [eller < CQ+ o)),

3.33
(3:33) ¥l < ol +C(1+ Jol).

4. Assume that, for some k € N, D,l(z,v,s), Dyl(x,v,s) are of class C*. Then
(z*,v*), p and o are of class CF+1.
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Proof. Point 1 is an immediate consequence of (3.29) — (3.30) together with the endpoint
condition p(T) = —Dg(z*(T)). Point 2 follows then directly from (3.26).

3. Since z*,v* are continuous, the continuity of a* follows from (3.31) and (3.32).
Then (1.3) implies that z*,v* € C!. Relations (3.31) and (3.32) imply, respectively, that
p and o are of class C'. The bounds (3.33) are obtained from the fact that

1. (v*)"(r) — v*(7) is bounded uniformly in = and v, 7 € [t,T]
2. (v*)(t) = v
3. (v*)(T) is bounded uniformly in z and v.

4. The relations (3.31) and the C'-regularity of 2*,v* and p imply that, actually, p € C2.
Therefore, (3.32) gives the C2-regularity of o* and, finally, (2.2) yields the C?-regularity
of ™, v*. Further regularity of z*, v*, a* and p follows by a standard bootstrap inductive
argument. O

Remark 3.2. Taking advantage of Corollary 3.1-(3), we will always consider the repre-
sentation of the optimal control o which belongs to C'.

Corollary 3.2 that follows implies that the optimal trajectories for u(z,v,t) do not
bifurcate at any time r > t.

Corollary 3.2. Under Hypothesis (3.2), let (x*,v*) be an optimal trajectory for u(z,v,t).
For every t < r < T, there are no other optimal trajectories for u(z*(r),v*(r),r) other
than (x*,v*) restricted to [r,T].

Proof. 1. Let r € (t,T) and (y*,w*) be an optimal trajectory for w(z*(r),v*(r),r).
Lemma 3.1 ensures that (z*,v*), the concatenation of (x*,v*) with (y*,w*) at r is an
optimal trajectory for u(z,v,t). Let p := (ps,pv),q := (¢z, q») be the costates correspond-
ing respectively to (z*,v*) and to (z*,v*). Both (z*,v*,p) and (2*,v*, q) satisfy (3.27) —
(3.30) on [t,T]. Now, Corollary 3.1 shows that (z*,v*) and (2*, v*) are of class C''. Since
x* = 2* v* = v* on [t,r], we choose T such that t < 7 < r. >From (3.28), we get

Po(T) = qu(T).
Moreover, from (3.28) and (3.30), we also get that
pa(T) = ¢u(7).

Therefore, both (z*,v*,p) and (z*,v*,q) are solutions to the same Cauchy problem on
[t,T] with the first order differential system (3.27)-(3.30) and Cauchy data at 7. The
regularity assumptions on ¢, g and Cauchy-Lipschitz Theorem guarantee the uniqueness of
the solution. Thus z* = z*, v* = v* on [¢,T], from which we obtain the desired identities
z* = y* and v* = w* on [r,T]. O

Definition 3.2. For any (z,v,t) € R*N x [0,T], let U(x,v,t) denote the set of optimal
controls for the value function u(x,v,t) defined in (3.5).

Remark 3.3. Lemma 3.1-(i) and Remark 3.2 ensure that & # U(z,v,t) < C([t, T]; RY).

Lemma 3.4. The following properties hold:
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1. The function u(z,-,t) is differentiable at v if and only if the set {a(t) : o € U(x,v,t)}
is a singleton. Moreover Dyu(x,v,t) = —a(t).

2. In particular, if U(z,v,t) is a singleton, then, calling (x(s),v(s)) the optimal trajec-
tory associated to the singleton U(x,v,t), Dyu(z(s),v(s),s) exists for any s € [t,T].

3. If u(-,-,t) is differentiable at (z,v), then U(x,v,t) is a singleton.

Proof. 1. We prove that if Dyu(z,v,t) exists, then all a(-) € U(z,v,t) take the same value
a(t) at t and Dyu(z,v,t) = —a(t). If a() € U(x,v,t), calling (z(-),v(-)) the corresponding
optimal trajectory, then

T
i v,t) = | Sl + 5 + as), (). 5) ds + g(a(T), (7)),

and (z(:),v(-)) and «a(-) satisfy the necessary conditions for optimality proved in Proposi-
tion 3.2. Take h = (hy, ha) € R?Y and consider the solution (y(-),w(-)) of (1.3) with initial
condition (y(t),w(t)) = (z + h1,v + hy) and control «, namely

y(s) = z4+hi+(v+h)(s—t)+ ff T)drdf = z(s) 4+ hi + ha(s — 1),

S

w(s) = v+hy+ L a(T)dT = v(s) + ha.

Hence,
(3.34)
u(z + hi,v + ha,t) —u(x,v,t

[ 0t = SR + 6 09.) — (o) w65, ) s

+9(y(T) w(T)) —g(l’(T)a’U(T))

- j 1|v( ) + ho|? — —|v( ? + €(x(s) + hy + ha(s —t),v(s) + ha, s) — £(z(s),v(s),s) ds
+g( (T) + h1 + h2( = t),0(T) + h) — g((T),v(T))

= j —h2 + hy - v(s) + £(x(s) + hy + ha(s — t),v(s) + ha,s) — £(z(s),v(s), s) ds

oo T) s+ Ao — )00 + ) — (o)D)

IN

(
)

The differentiability of u w.r.t. v yields

T T
Dyu(z,v,t) = J v(s)ds + J D l(z(s),v(s),s)(s —t) + Dyl(z(s),v(s),s)ds

£ D,g(@(T), o(T)(T — 1) + Dugla(T), v(T)).
By (3.29) and (3.24), we obtain
T T T
{7 Dat(a(s), v(s), s)(s — t)ds = L D()(s — t)ds = po(T)(T — 1) — L pa(s)ds

T

— ~DaglelD) N = 1)~ | pals)ds

t
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Hence
T
Dyu(z,v,t) = L (v(s) — pz(8) + Dyl(x(s),v(s),s))ds + Dyg(x(T),v(T))

T
L P, (5)ds + Dyg(x(T), v(T))
= Tpu(t) = —a(t),

where the last two inequalities are due to (3.30),(3.26) and the terminal condition for p.
This uniquely determines the value of «(-) at time ¢.

Conversely we prove that, if all a(-) € U(x,v,t) take the same value a(t) at ¢, then
Dyu(z,v,t) exists. Fix  and ¢t. From the semi-concavity of u(z,-,t), the differentiability
of u(x,-,t) at v will follow from the fact that D u(z,v,t) is a singleton (see [9, Proposition
3.3.4]). Recall that the set of reachable gradients of u(z,-,t) is defined by

lim v, = v
n=—0o0 n bl

Di¥u(z,v,t) = { x € RY : 3(vp)nen with|  wu(z,-,t) is differentiable at v,
lin%ODvu(x,vn,t) = X.
n—

Take x € DX¥u(z,v,t). By definition of D}u(x,v,t) there exist sequences {v,}, {xn =
Dyu(x,vy,t)} such that

(3.35) v, > v and X, — X.

Consider «,, € U(x,vy,t); by the other part of the statement (already proven), we know
that

(3.36) —apn(t) = Dyu(z, v, t) = Xn-
>From estimate (3.33) in Corollary 3.1, we see that
(3.37) ol o < C(1 + |uy]) < C, for any n.

Hence from Ascoli-Arzela Theorem, we deduce that, after extracting a subsequence, v,
uniformly converge to some o € C([t,T];RY). In particular, calling (z,(-),vn(-)) the
trajectory associated to «,, starting from (z,v,):

Tn(s) =z +v,(s—1t) + LS J:) an(T)drdf, and wv,(s) = v, + Ls an (T)drT.

we get:

s 0
zn(s) = z(s) =z +v(s—1t)+ f f a(7)drdf, uniformly in [t,T],
t Ji
S
Un(s) = v(s) =v+ f a(7)dr uniformly in [¢,T7.
t
Moreover, by classical arguments of stability, « is optimal, i.e. « € U(z,v,t). The uniform
convergence of the «,, yields in particular that a,(t) — «(t) where a(t) is uniquely de-
termined by assumption. By (3.35) and (3.36), we get that x, — x = a(t). This implies
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that D¥u(z,v,t) is a singleton, then D,u(x,v,t) exists. Going back to the first part of the
proof, we see that Dyu(x,v,t) = —a(t).

2. IfU(x,v,t) = {a(-)}, then for any s € [t,T], a(s) is uniquely determined. Indeed,
if there exists 5 € U(x(s),v(s), s), then the concatenation v of o and /5 (see Lemma 3.1)
is also optimal, i.e. v €U (x,v,t) = {a(:)}.
Then from point 1 with ¢ = s at (z(s),v(s)), we deduce that D,u(x(s),v(s),s) exists.

3. From point 1, we know that for any «(-) € U(z,v,t), a(t) is unique and coincides
with —Dyu(x,v,t). Hence, relation (3.26) ensures p,(t) = —Dyu(x,v,t). On the other
hand, note that, since D,u(x,v,t) exists, we get from (3.34) that

T
Dyu(z,v,t) = LDxﬁ(m(s),v(s),s)ds+ng(x(T),v(T))
T

_ L P,(8)ds + Dag(a(T), v(T)) = —pa(t);

thus, p,(t) and p,(t) are both uniquely determined. Hence (3.27)-(3.30) is a system of
differential equations with initial conditions x(t),v(t), p.(t) and p,(¢t) which admits a
unique solution (z(-), v(+), pz(+), py(+)) by Cauchy-Lipschitz theorem, and (z(-),v(-)) is the
unique optimal trajectory starting from (x,v), associated to the unique optimal control
law () = py(-). O
Lemma 3.5 (optimal synthesis). Consider £ € RN and n e RY.

1. Let e CY([t, T|;RY), ve AC([t, T];RY) be such that
(3.38) x(t) =&, and o(t) =mn,

and for almost every s € (t,T),

(3.39) u(z(s), -, s) is differentiable at v(s),
and

z'(s) = w(s),
(340) V'(s) = —Dyu(x(s),v(s),s),

where u is the solution of (3.4). Under these assumptions, the control law a(s) =
V'(s) = —Dyu(x(s),v(s),s) is optimal for u(§,n,t).

2. Ifu(-,-,t) is differentiable at (§,n), then problem (3.38), (3.40) has a unique solution
corresponding to the optimal trajectory.

Proof. We adapt the arguments of [10, Lemma 4.11]. Fix (t,£,7) € (0,T) x R?V. Let
z e CH[t,T);RYN), v e AC([0,T];RY) be as in the statement. Note that, from (3.40), v
is Lipschitz continuous. Therefore, from Lemma 3.2, the function s — u(x(s),v(s),s) is
Lipschitz continuous as well. Hence, for almost every s € [t, T,

1. (3.39) and (3.40) hold,

2. the function u(x(-),v(:),-) admits a derivative at s.
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Lebourg’s Theorem for Lipschitz functions (see [13, Thm 2.3.7] and [13, Thm 2.5.1])
ensures that, for any positive and sufficiently small number h, there exists (yp,wp, Sp)
in the open line segment ((z(s),v(s),s), (z(s + h),v(s + h),s + h)) and (x?,x" x}) €
conv (D3, ;u(yn, wr, sp)) such that

(3.41)

u(z(s+h),v(s+h),s+h)—u(z(s), z(s),s) = x*(x(s+h)—z(s))+x" (v(s+h)—v(s))+ X h.

Here, conv(A) stands for the convex hull of a set A, and D}, ,u(yn, wn, sp) stands for the
reachable gradient at (yp,wp, sp) with respect to the three variables z, v and t.

By Carathéodory’s theorem, see [9, Thm A.1.6], there exist (A7, %, x™, X?’i)i:17...,2N+2
such that )‘h’i = 07 2?514-2 )‘h’i = 17 (X:fnl’ir Xﬁ’ia Xim) € D;,U,tu(yhv Wh, Sh) and (Xg}vLa XZ? X?) =
SN2 N (hit yhit X, Note that, by [9, Prop 3.3.4-(a)], for all i = 1,...,2N + 2,
converges to Dyu(z(s),v(s),s) as h — 0; hence, X", also converges to D,u(x(s),v(s), s),
as h — 0.

On the other hand, since u is a viscosity solution to equation (3.4) and (x™?, x"?, X? Z) €
Dy yu(Yn, Wh, sp), we obtain that for all i € 1,...,2N + 2,

hi 1
i ? _l’__
Xt 9 X

hyi

2 1 .
v o 5 ‘wh|2 — Wp - X;M = e(yhvwhash)'

Therefore, X% + wy, - X = %Z?i\flm L ‘Xﬁ’i‘z —1 \wp|* = £(yn, wh, sp) converges to
3| Dou(z(s),v(s), 5)|> = glu(s)]> = £(z(s), v(s), ) as h — 0.
Then dividing (3.41) by h and letting A tend to 0, we get that

d
o= (u(a(),0(5), )

=Dyu(z(s), v(s), s) - v'(s) + % | Dyua(s), v(s), s)|* - %IU(S)I2 — L(x(s),v(s), )-

Recalling (3.40), we get

d 1 1
= (la(9),0(5),5)) = =5 [Dyu(a(s), o(s), )12 = 310(s)F = tla(s), v(s), ).

or in equivalent manner,

d 1 1

/ 2
T lw(s),0(),)) = =5 [ 6)f = 5l0(s) P — £a(s), 0(s), ),

which holds for almost every s. Integrating this equality on [¢t,T] and taking into account
the terminal condition in (3.4), we obtain

T

u(x,v,t) = L

Therefore, the control law a(s) = v/'(s) = —Dyu(x(s),v(s),s) is optimal. This achieves
the proof of the first statement.

SV + o) + £as), o(s), 5)ds + g(a(T)).

The second statement is a direct consequence of Lemma 3.4. O
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4 The continuity equation

In this section, our aim is to study equation (2.1)-(ii), and more precisely the well-
posedness of

(1) { oym + v - Dym — divy(m Dyu) = 0, in R2N x (0,7),

m(x,v,O) = mO(x>U)7 in R2N7
where u is a solution to problem (3.4), which we rewrite here for the sake of clarity

—0wu— v - Dyu+ 3| Dyul® = |v|? — (2, v) = F[m(t)](z,v), in RY x RN x (0,7),
u(z,v,T) = G[m(T)](z,v), on RV,

and 7 is fixed and belongs to C([0, T]; Py (R2Y)).

Remark 4.1. Note that u is the value function of the optimal control problem (3.5) with
Ji and ¢ respectively given by (3.8) and (3.1).

It is worth to observe that the differential equation in (4.1) can also be written
oym — divg ,(mb) =0,

with b := (—v, Dyu). In the present framework, the semi-concavity proved in Lemma 3.3
does not imply that the flow ®(z,¢,s) given by Lemma 3.5 has a Lipschitz continuous
inverse, by contrast with [10, Lemma 4.13]. Moreover, the drift b is only locally bounded;
this lack of regularity makes it impossible to apply the standard results for drifts which
are Lipschitz continuous (uniqueness, existence and representation formula of m as the
push-forward of mg through the characteristic flow; e.g., see [2, Proposition 8.1.8]). We
shall overcome this difficulty by applying Ambrosio’s superposition principle [2, Theorem
8.2.1]. The latter yields a representation formula of m as the push-forward of some measure
on C([0, T]; R?Y) through the evaluation map e; defined by e;() = ~(t) for all continuous
function v with value in R?V. In the following theorem, we state existence, uniqueness,
and some regularity results for (4.1):

Theorem 4.1. Under assumptions (H), for any m € C([0,T]; PL(R*Y)), there is a unique
m e C2([0,T); PL(R2)) A L*(0, T; Po(R2N)) which solves problem (4.1) in the sense of
Definition 2.1.

Moreover m(t,-) satisfies: for any for ¢ € Co(R*Y), for any t € [0,T],

(4.2) d(x,v) m(z,v,t)dedv = f ¢ (Van(t)) mo(z,v) dzdo,

R2N R2N
where, for a.e. (z,v) e R*N, 75, is the solution to (2.2).

The proof of Theorem 4.1 is given in the next two subsections which are devoted
respectively to existence (see Proposition 4.1) and to uniqueness and the representation
formula (see Proposition 4.2).
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4.1 Existence of the solution

We wish to establish the existence of a solution to the continuity equation via a vanishing
viscosity method applied to the whole MFG system in which the viscous terms involve
Laplace operators with respect to both z and v. This is reminiscent of [11, Appendix]| (see
also [10, Section 4.4]). In this way, D,u is replaced by D,u?, which is regular by standard
regularity theory for parabolic equations; this implies the regularity of the solution of the
Fokker-Planck equation (see [12]). Note also that D,u may be unbounded; we shall over-
come this issue by taking advantage of estimates similar to those in Lemma 3.2. Indeed,
these estimates will allow us to apply classical results for the existence and uniqueness of
the solution.

Proposition 4.1. Under assumptions (H), for any m € C([0,T]; P1(R?N)), problem (4.1)

has a solution m in the sense of Definition 2.1. Moreover m € C%([O,T];Pl (R2M)) n
L*(0,T; Po(R?N)).

We consider the solution (u?, m?) to the following problem

(4.3)
(i) —du— oAz pu—v-Dyu+ 3|Dyul> — |v|? —(z,v) = F[m](z,v), inR* x(0,7),
(it) oym — oAy ym — divy(mDyu) — v - Dym = 0, in R2YN x (0,7),
(Z“) m(:n,v,O) = mO(x>U)7 u($7’U>T) = G[m(T)]($v’U)a on RV,

Recall that equation (4.3)-(ii) has a standard probabilistic interpretation (see rela-
tion (4.8) below). Our aim is to find a solution to problem (4.1) by letting o tend to 0%.
To this end, some estimates are needed.
Note that equation (4.3)-(ii) can be written in the compact form

(4.4) orm? — oAy ym° — divy ,(m7b7) = 0, with b7 := (—v, D,u?).

We start by establishing the well-posedness of system (4.3) and that the functions
u? are Lipschitz continuous and semi-concave uniformly in o.

Lemma 4.1. Under the same assumptions as in Proposition 4.1, there exists a unique
classical solution u° to equation (4.3)-(i) with the terminal condition contained in (4.3)-
(iii). Moreover, there exists a constant C' > 0 which depends only on the constants in
assumptions (H), in particular it is independent of o < 1, such that

(@) |u”(z,0,t)] < C(1+ [vf?),
(b) [D2uln < C, Dy’ (2,0, 8)] < C(L+ o)), 0w (@, 0,8)] < C(1+ [v]?),
(¢) DI u”<C,

where wau is the Hessian of u with respect to both x and v.

Proof. Following the same arguments of Proposition 3.1 (based on the comparison princi-
ple by Da Lio and Ley [15]), one can easily prove the existence of a viscosity solution to
equation (4.3)-(i) with terminal condition as in (4.3)-(iii) and satisfying inequality (a).
Furthermore, still by the results in [15], this solution is unique among the functions with
this growth at infinity. Hence, estimate (a) is proved.

Let us now prove that this viscosity solution u” is a classical solution. To this end,
let us assume for a moment that u? satisfies estimates (b) and (¢). We see that u is a
viscosity subsolution of

Ot — oAy — v - Dyu < C(1 4+ |v]?).
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Moreover, from estimate (c), we see that at any point (z,v,t), either u? is twice differen-
tiable with respect to  and v, or there does exist a smooth function that touches u? from
below. This and estimate (b) imply that u” is a viscosity supersolution of

Oy — oAy — v - Dyu = —C(1+ |v]?).

for some positive constant C'. From [18], w is also a distributional subsolution (respectively
supersolution) of the same linear inequalities. Therefore, both d;u” — oA, ,u” — v - Dyu’
and —1|Dyu? 2 + 3v[? + l(z,v) + F[m](z,v) are in L. On the other hand, from (b) and
(c), Alexandrov’s theorem implies that u? is twice differentiable with respect to x and v
almost everywhere, so the equation

1 1
ou’ — oAy yu’ —v - Dyu’ = —§\Dvu0\2 + 5\@\2 + {(z,v,t),

(where ¢ and g are defined in (3.1)), holds almost everywhere, and in the sense of distri-
butions since both the left and right hand sides are in L{5,.

Hence classical results on the regularity of weak solutions (including bootstrap) can be
applied and yield that w is a classical solution.

Let us now prove the estimates (b) and (c¢), by using similar arguments to those

contained in the proofs of Lemma 3.2. They use a representation formula of u arising
from a stochastic optimal control problem (see, for example, [15, 4, 10]).
Let (22, F, (F:),P) be a complete filtered probability space, the filtration (F;) supporting
a standard 2N-dimensional Brownian motion Bs = (B, s, By s). Let A; be the set of RN-
valued (F;)-progressively measurable processes and let E be the expectation with respect
to the probability measure P. The unique solution of (4.3)-(i) which satisfies point (a) can
be written as:

u(xz,v,t) = inf E ( LT {%|a(s)|2 + %|V(s)|2 + E(X(s),V(s),s)] ds + g(X(T),V(T) )

ac Ay
where the controlled process (X (-), V(+)) satisfies
X(t)==z, V() =,
almost surely and is governed by the stochastic differential equations

{ dX =V(s)ds ++/20dB, s,

(45) dV = a(s)ds + +/20dB, ;.

Thus, almost surely,
(4.6)

X(s) = z4uv(s—t)+ L f o(7) drdf + \/%L <f dBw> do + \/%L dB,.,
V(s) = v+ L aft)dr + \/%L dB, .

To prove (b), we can exactly use the same arguments as for Lemma 3.2, replacing the
paths (x(s),v(s)) and (y(s),w(s)) by the processes (X(s),V (s)) and (Y (s),W(s)), and
noting that, from (4.6), we get similar equalities as in (3.8).

Note that, for any o, we get from (a) that any e-optimal control o for u?(z,v,t) satisfies

E (LT |a°(s)|2ds> < C(1+ ),
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hence, we get the same estimates as (3.9) and (3.10), namely estimate (b). An analytic
proof of (b) is also possible, see [23, Chapter XI].

In order to prove (c), we can follow the same procedure as in the proof of Lemma
3.3, noting that:
i) equalities (3.14) and (3.18) are still true for the stochastic processes,
ii) if we fix s € [t, T], using a Taylor expansion of g as in (3.16), we get
9(X(s),V(s)) = g(Xx(s), Va(s)) + Dg(Xx(s), Va(s))(X(s) — Xa(s), V(s) = Va(s))
1
+5(X(s) = Xi(s), V(s) — VA($)D?g(&,m) (X (s) = Xa(s), V(s) = Va(s))T,

where £ = X (s) +01(X(s) — Xx(s)), n = V(s) +02(V(s) — Vi(s)) for suitable 6; and 03 in
[0,1]. For a similar proof, see [4]. 0

Lemma 4.2. Under the same assumptions as in Proposition 4.1, there exists a unique
classical solution m? to equation (4.3)-(ii) with initial condition as in (4.3)-(iii). More-
over, m® > 0.

Proof. By Lemma 4.1, the problem for m? can be written
orm — oAy ym — b7 - Dyym — (Ayu®)m =0, m(0) = my,

where b7 has been introduced in (4.4) and from the estimates contained in Lemma 4.1,
[b7] < C(1 + |v|) and A,u? < C. Using this and the results contained in [17], we get the
existence and uniqueness of a classical solution m? of (4.3)-(ii) with initial condition as
in (4.3)-(iii). >From the assumptions on mg and Harnack inequality (see for example [19,
Theorem 2.1, p.13]) we get that m?(-,¢) > 0 for ¢ > 0. 0

Let us now prove some properties of the functions m? which will play a crucial role
in the proofs of Proposition 4.1 and of Theorem 2.1.

Lemma 4.3. Under the same assumptions of Proposition 4.1, there exists a constant
K > 0 which depends only on the constants in assumptions (H) and on my, in particular
it is independent of o < 1, such that:

1. |m? | < K,
2. dl(ma(tl),m"(tg)) < K(tg — t1)1/2, Vi1 < tg € [O,T],

3. JRQN(L’EP + [v?) dm? () (z,v) < K (jRZN(|$|2 + [v]?) dmg(z, v) + 1) , vt e [0,T].

Proof. Point 1. In order to prove this L* estimate, we argue as in [11, Theorem 5.1]. We
note that

divy(m? Dyu®) = Dym? - Dyu® + m? (Ayu?) < Dym? - Dyu® + Cm?,

because of the semi-concavity of u established in Lemma 4.1 and the positivity of m?.
Therefore, from assumption (H2), the function m? satisfies

orm® — o Am?® —vD,m® — Dyu® - Dym° — Cm? <0, m?(z,v,0) < C.
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Then, using w = Ce®! as a supersolution (recall that C' is independent of o), we
obtain that ||m? . < Ce®T, using the comparison principle proved [15].

To prove Points 2 and 3 as in the proof of [10, Lemma 3.4 and 3.5], it is convenient
to introduce the stochastic differential equation

(4.7) dY; = b7 (Yy,t)dt +20dB,, Yy = Z,

where V; = (X, V}), b9 (x,v,t) = (—v, Dyu’(x,v,t)), By is a standard 2N-dimensional
Brownian motion, and £(Zy) = mg. By standard arguments, setting

(4.8) mo(t) == L(Y}),

we know that m?(t) is absolutely continuous with respect to Lebesgue measure, and
that if m?(-,-,t) is the density of m?(t), then m? is the weak solution to (4.3)-(ii) with
m7li—g = mo (from Ito’s Theorem, since b” has at most linear growth with respect to
(x,v), Proposition 3.6 Chapter 5 [16], p.303, and the book [3]). Here again, we have used
the estimate on |D,u’]| given in Lemma 4.1.

Point 3: Noting that
(J2? + [v*)dm? () (z, v) = E(|V[?),

R2N

the desired estimate can be obtained by applying Estimate 3.17 of Problem 3.15, p.
306, (the solutions are at p. 389) of [16] with m = 1.

Point 2: For t9 > tq, it is well known that
dy(m?(t1), m?(t2)) < E(|Yy, — Y3, ).
Recall also that for a suitable constant C,
b7 (Y-, 7)| < C(|V7| + 1).

The latter two observations imply that

to
E(Yi - Yul) < E(f b7 (¥, 7)\dr + V201B,, —Bt1|)
t

1

to
< E(Cf (V2| + Dldr + V20| B, —Bt1\>
t

1

< 0<E(f2<|vT|2+1>|dT))%m+mm

1

1
< C <E (max |YT|2> + 1) ’ (tg — tl) 4+ V204/ty — 1.

[t1,t2]

where we have used estimate [16, (3.17) p. 306].

(]
Proof of Proposition 4.1. The arguments are similar to those in the proof of [11, Theorem
5.1] (see also [10, Theorem 4.20]). Lemma 4.1 imply that possibly after the extraction

of a subsequence, u? locally uniformly converges to some function u, which is Lipschitz
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continuous with respect to x, locally Lipschitz continuous with respect to v, and Du® —
Du a.e. (because of the semi-concavity estimate of Lemma 4.1 and [9, Theorem 3.3.3]).
By standard stability result for viscosity solutions, the function u is a viscosity solution of
(3.4).

On the other hand, the function m? satisfies the estimates stated in Lemma 4.3:

1. from point 3, m?(t) is bounded in Py(R?") uniformly in o € [0,1] and ¢ € [0, 7]

2. from points 2 and 3 , m? is bounded in CV/2([0, T]; P (R*)) uniformly with respect
to o €[0,1].

Recalling that the subsets of P;(R?Y) whose elements have uniformly bounded second
moment are relatively compact in Py (RzN ), see for example [10, Lemma 5.7], we can apply
Ascoli-Arzela theorem: we may extract a sequence (still called o for simplicity) such that
o — 0% and m? converges to some m € CY2([0,T]; Py (R?*N)) in the C([0,T7]; P1(R?N))
topology. Moreover, from point 1 in Lemma 4.3 and Banach-Alaoglu theorem, m belongs
to L2.((0,T) x R2Y) and the sequence m? converges to m in L ((0,T) x R2)-weak-x.
Therefore, by passing to the limit, we immediately obtain that m|,—g = my, [|m[e < K
and that dy(m(t1), m(ts)) < K(ty — t1)/2, Vt; < ta € [0,T].

Let us prove that for all ¢ € [0,T7],

(4.9) jRQN(\xF + [v]?) dm(t)(z,v) < K (ijN (|| + [v]?) dmo(z,v) + 1) )

For that, let us consider the increasing sequence of functions defined on Ry: ¢,(p) =
1A((n+1-p)v0). We know from point 3 in Lemma 4.3, that for all ¢ € [0, 7],
(4.10)
(Jl? + [0l (2| + [0[*)m? (2, v, t)dxdv < K <J |(Jz* + [v]*) dmo (=, v) + 1) :
R2N R2N
For a fixed n, we can pass to the limit in (4.10) thanks to the L.((0,T) x R*V)-weak-x

loc
convergence established above. We obtain:
(4.11)

J (22 + 1022l + [o2)mie, v, )dedv < K (f (2 + [0]2) dmo (2, 0) + 1) .
R2N R2N

We then pass to the limit as n — 400 thanks to Beppo-Levi monotone convergence
theorem, and obtain (4.9).

Finally, m? is a solution to (4.3)-(ii),

T
f m® (—0yp — o A + Dyip - Dyu® —vDyth) dedvdt = 0
0 R2N

for any v € C§P((0,7) x R?N). Letting ¢ — 0T, we conclude from the L{° -weak-*
convergence of m? and the convergence Du® — Du a.e. that the function m solves (4.1)

in the sense of Definition 2.1. O

Remark 4.2. Note that we have just proven that all the estimates on u® contained in
Lemma 4.1 hold for u. These estimates have also been obtained directly in the proof of
Lemma 3.2. Similarly, all the estimates on m? contained in Lemma 4.3 hold for m.
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4.2 Uniqueness of the solution

We now deal with uniqueness for (4.1).

Proposition 4.2. Under assumptions (H), the function m found in Proposition 4.1 is the
unique solution to problem (4.1) in the sense of Definition 2.1 such that

m e O3 ([0, T]; PL(R2V)) A L% (0, T; Po(R2V)).

Moreover, m satisfies:

(4.12)

d(z,v) m(z, v, t)dedv = ¢(Fz (1)) mo(z,v) dzdv, VYo e CO(RQN), vt e [0,T7,

R2N R2N
where, for a.e. (z,v) € R*N, 7, is the solution to (2.2).

Proof of Proposition 4.2. The proof is similar to that of [12, Proposition A.1], which relies
on Ambrosio’s superposition principle. Let I'r denote the set of continuous curves in
R2Y namely I'r = C([0,T]; R?™). For any t € [0,T], we introduce the evaluation map:
er : Iy — R2N | e;(7) := y(t). Hereafter, when we write “for a.e.” without specifying the
measure, we intend “with respect to the Lebesgue measure”.

Let m e CV2([0, T]; PL(R*N)) A L®(0, T; Po(R?N)) be a solution of problem (4.1) in
the sense of Definition 2.1. Recall the notation b(z,v,t) = (—v, Dyu(z,v,t)). The estimate
(8.1.20) in chapter 8 of [2] is fulfilled: indeed,

[ [ pieamie <

CLT ijN lv[2dm/(t)(z,v) + CLT ijN |Dyu(z, v, t)[2dm(t)(z,v) < C,

where the last inequality comes from the estimates on D,u and m in Remark 4.2 (recall that
m(t) is a probability measure). Therefore, the assumptions of Ambrosio’s superposition
principle are fulfilled (see [2, Theorem 8.2.1] and also [2, pag. 182]). The latter and
the disintegration theorem (see [2, Theorem 5.3.1]) entail that there exist a probability
measure 7 on R?Y x I'r and for mg-almost every (x,v) € R?YN, a probability measure on
Ne,» o0 I'p, such that

i) et#n = my, i.e., for every bounded and continuous real valued function ¢ defined on
R2N . for every t € [0,T],

(e, v)dmy(z,v) = f B dn(z,v,C).

R2N R2N XFT

In particular, eg#n = mg.
ii)
n= f Nz dm0<x7 1)),
R2N

i.e. for every bounded Borel function f: R*Y x I'r — R,

[ sweomeeo-| ( f(33=U7C)d?7x,v(C)>dmo(%v)-
RQNXFT R2N I'r
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iii) For mp-almost every (z,v) € R2N the support of Nz,» is contained in the set
(4.13)

Ce AC ([0, T R*Y) : ¢(t) = (£(t),n(t)) :

Recall that in the present case, mg is absolutely continuous (from assumption (H4));
hence, since for all t € [0,T], u(-,-,t) is Lipschitz continuous, the optimal synthesis in
Lemma 3.5 ensures that for a.e. (z,v) € R?Y, (3.38)-(3.40) (with ¢ = 0 in the present
context) has a unique solution ¥, ,, because it is the optimal trajectory for the control
problem mentioned in Remark 4.1. Therefore, for a.e. (z,v) € R?Y| the set in (4.13)
is a singleton, or in equivalent manner, 7, , coincides with 57M. In conclusion, for any

function ¢ € Co(R?Y),

(o, v)m(z,v,Odede = | w(e(C))dn(z,v,0)
R2N FT
= [ ([ @) ) amoeo
R2N FT
= |, vt dmo(a.v)
= ﬁ YTz (t))mo(z, v)dzdv.
This shows that m is uniquely defined as the image of mg by the flow of (2.2). a

Proof of Theorem 4.1. Existence of m comes from Proposition 4.1, uniqueness and the
representation formula come from Proposition 4.2. O

5 Proof of the main Theorem

Proof of Theorem 2.1. For point 1, we argue as in the proof of [10, Theorem 4.1]. Con-
sider the set C := {m € C([0,T];P1(R?")) | m(0) = mo} endowed with the norm
of C([0,T]; P1 (R*Y)) and observe that it is a closed and convex subset of C([0, T']; Py (R?Y)).
We also introduce a map 7T as follows: to any m € C, we associate the solution u to prob-
lem (3.4) with M = m and to this u we associate the solution p =: 7 (m) to problem (4.1)
which, by Proposition 4.1 belongs to C. Hence, 7 maps C into itself. We claim that the
map 7 has the following properties:

(a) T is a continuous map with respect to the norm of C([0, T]; P; (R?V))
(b) T is a compact map.

Assume for the moment that these properties are true. In this case, Schauder fixed point
Theorem ensures the existence of a fixed point for 7, namely a solution to system (2.1).
Therefore it remains to prove properties (a) and (b).

Let us now prove (a). Let (my), be a sequence in C such that m, — m in the
C([0,T]; P1(R?M)) topology. We want to prove that T (m,) — T (m) in C([0, T]; P (R*Y)).
We observe that hypothesis (H3) ensures that the functions (z,v,t) — F[m,(t)](x,v)
and (x,v) — G[my(T')](z,v) converge locally uniformly to the map (z,v,t) — F[m(t)](z,v)
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and respectively (z,v) — G[m(T)](z,v). Moreover, Lemma 3.2 entails that the solu-
tions u, to problem (3.4) with @ = m,, are locally uniformly bounded and locally uniformly
Lipschitz continuous. Therefore, by standard stability results for viscosity solutions, the
sequence (uy,)n converges locally uniformly to viscosity the solution w to problem (3.4)
with @ = m. Moreover, from Lemma 3.3, the functions wu,, are uniformly semi-concave;
hence, by [9, Theorem 3.3.3], Du,, converge a.e. to Du.

By Proposition 4.1 and Remark 4.2, the function 7 (m,) verifies the bounds in
Lemma 4.3 with a constant K independent of n. Hence, the sequence (7 (my,))y is
uniformly bounded in C([0,T]; P1(R*")) (by Lemma 4.3-(3) and Remark 4.2, and be-
cause the subsets of P;(R?") whose elements have uniformly bounded second moment
are relatively compact in P;(R?"), and uniformly Hélder continuous in time with val-
ues in P;(R?Y) (by Lemma 4.3-(2) and Remark 4.2). Therefore, by Ascoli-Arzela and
Banach-Alaoglu theorems, there exists a subsequence (7 (my,, ))r which converges to some
we C([0,T];P1(R?Y)) in the C([0,T]; P1(R?Y))-topology and in the L ((0,T) x R?V)-
weak-# topology. As in Remark 4.2, u verifies the bounds in Lemma 4.3 and p(0) = my.

Observe that T (my, ) solves problem (4.1) with u replaced by uy,,,

T
j T (mun,) (=0 + Dytp - Dyuy, — v - Dytp) daxdv dt = 0,
0 R2N

for any ¢ € CF((0,T) x R2N). Passing to the limit as k — o0, we get that u is a
solution to (4.1). By the uniqueness result established in Proposition 4.2, we deduce that
w = T(m), and that the whole sequence (7 (my,)),, converges to T (m).

Let us now prove (b); since C is closed, it is enough to prove that 7 (C) is a precompact
subset of C([0,T]; P1(R?N)). Let (tn)n be a sequence in T(C) with p, = T(m,) for
some m,, € C; we wish to prove that, possibly for a subsequence, p,, converges to some p
in the C([0, T]; P1 (R?Y))-topology as n — oo.

By Remark 4.2, the functions 7 (m,,) satisfy the estimates in Lemma 4.3 with the
same constant K. Since the subsets of P;(R?") whose elements have uniformly bounded
second moment are relatively compact in P;(R?V)), Lemma 4.3-(3) ensures that the se-
quence (7 (my,))y is uniformly bounded. Moreover, Lemma 4.3-(2) yields that the sequence
(T (M) is uniformly bounded in CV2([0, T]; Py (R?N)) and L*(0,T; Po(R*)) By argu-
ing as in the proof of Proposition 4.1, we obtain that, possibly for a subsequence (still
denoted by T (my)), T (my) converges to some yu in the C([0,T]; Py (R%Y))-topology.

2. Theorem 4.1 ensures that, if (u,m) is a solution of (2.1), for any function v €
Cy (]R2N )7

(5.1) Y(x,v)m(z,v,t)dedy = YTy (t))mo(x, v) drdy

R2N R2N

where 7, , is the solution of (2.2) (uniquely defined for a.e. (z,v) € R2V). O
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