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Abstract

The oriented (2-edge-coloured, respectively) chromatic number χo(G) (χ2(G), respectively) of an
undirected graph G is defined as the maximum oriented (2-edge-coloured, respectively) chromatic
number of an orientation (signature, respectively) of G. Although the difference between χo(G)
and χ2(G) can be arbitrarily large, there are, however, contexts in which these two parameters are
quite comparable.

We here compare the behaviour of these two parameters in the context of (square) grids.
While a series of works has been dedicated to the oriented chromatic number of grids, we are
not aware of any work dedicated to their 2-edge-coloured chromatic number. We investigate this
throughout this paper. We show that the maximum 2-edge-coloured chromatic number of a grid
lies between 8 and 11. We also focus on 2-row grids and 3-row grids, and exhibit bounds on their
2-edge-coloured chromatic number, some of which are tight. Although our results indicate that the
oriented chromatic number and the 2-edge-coloured chromatic number of grids are close in general,
they also show that these parameters may differ, even for easy instances.
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1. Introduction

Colouring problems are among the most important problems of graph theory, as they can model
many real-life problems under a graph-theoretical formalism. In its most common sense, a colouring
of an undirected graph G refers to a proper vertex-colouring, which is a colouring of V (G) such
that every two adjacent vertices of G get assigned distinct colours. Many variants of this definition
have been introduced and studied in the literature, including variants dedicated to modified kinds
of graphs, which are of interest in this paper.

Namely, our investigations are related to two kinds of modified graphs, called oriented graphs
and 2-edge-coloured graphs. An oriented graph

−→
G is a directed graph obtained from an undirected

simple graph G by orienting every edge uv either from u to v (resulting in an arc −→uv) or conversely
(resulting in an arc −→vu). We sometimes also call

−→
G an orientation of G. Now, from G, we can

also get a 2-edge-coloured graph (G, σ) by assigning a sign σ(uv), being either − (negative) or +
(positive), to every edge uv of G. We call (G, σ) a signature of G. In the literature, 2-edge-coloured
graphs are sometimes also called signified graphs, from which we here borrow the terminology above.

One of the most judicious ways for extending the notion of proper vertex-colouring to oriented
graphs and 2-edge-coloured graphs is through the notion of graph homomorphisms. That is, a
proper k-vertex-colouring φ of an undirected graph G can be regarded as a homomorphism from G
to Kk (the complete graph on k vertices), i.e., a mapping φ : V (G)→ V (Kk) preserving the edges
(i.e., for every edge uv of G, we have that φ(u)φ(v) is an edge of Kk). Quite similarly, we can
define an oriented homomorphism as a vertex-mapping (from an oriented graph to another one)
preserving not only the arcs but also the arc directions, and a 2-edge-coloured homomorphism as a
vertex-mapping (from a 2-edge-coloured graph to another one) preserving not only the edges but
also the edge signs. From this, an oriented colouring φ of an oriented graph can be defined as a
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vertex-colouring such that, for any two arcs −−→u1v1 and −−→u2v2, if φ(u1) = φ(v2) then φ(v1) 6= φ(u2).
Analogously, a 2-edge-coloured colouring φ of a 2-edge-coloured graph has the property that, for
any two edges u1v1 and u2v2 with different signs, if φ(u1) = φ(v1) then φ(u2) 6= φ(v2).

Given a graph and a particular colouring variant, the main objective is usually to find a colouring
of the graph that minimizes the number of colours. For an undirected graph G, the least number
of colours in a proper vertex-colouring is called the chromatic number of G, commonly denoted by
χ(G). From the homomorphism point of view, χ(G) can also be defined as the smallest k such that
G admits a homomorphism to Kk. Concerning the aforementioned colouring variants for oriented
graphs and 2-edge-coloured graphs, the associated chromatic parameters are called the oriented
chromatic number and 2-edge-coloured chromatic number, respectively, and are denoted by χo(

−→
G)

and χ2((G, σ)), respectively (where
−→
G is an oriented graph, and (G, σ) is a 2-edge-coloured graph).

The parameters χo and χ2 can also be derived for undirected graphs: for an undirected graph
G, χo(G) is defined as the maximum value of χo for an orientation of G, while χ2(G) is defined
as the maximum value of χ2 for a signature of G. In other words, χo(G) and χ2(G) indicate
whether G is the underlying graph of oriented or 2-edge-coloured graphs needing many colours to
be coloured. For more details on these two chromatic parameters, we refer the interested reader
to the recent survey [7] by Sopena dedicated to the oriented chromatic number, and to the Ph.D.
thesis [6] of Sen, which is dedicated, in particular, to both the oriented chromatic number and the
2-edge-coloured chromatic number.

Our investigations in this paper are motivated by the general relation between χo(G) and
χ2(G) for a given undirected graph G. Intuitively, one could expect these two parameters to be
close somehow, as oriented graphs and 2-edge-coloured graphs are rather alike notions: in both
an orientation and a signature of G, every edge has one of two possible “states” (being oriented in
one way or the other, or being positive or negative). From a more local point of view, though, an
oriented edge and a 2-edge-coloured edge are perceived differently by their two ends. In light of
these two facts, it thus appears legitimate to wonder whether oriented graphs and 2-edge-coloured
graphs have comparable behaviours (in general, or in particular cases). This aspect was notably
investigated by Sen in his Ph.D. thesis [6].

In general, it has to be known that, for a given undirected graph G, the difference between
χo(G) and χ2(G) can be arbitrarily large, as noted by Bensmail, Duffy and Sen in [1]. A natural
arising question is thus whether this behaviour is systematic or can be observed for a restricted
number of graph classes only. Towards this question, we here focus on the class of (square) grids,
where the grid G(n,m) with n rows and m columns is defined as the undirected graph being the
Cartesian product of the path with order n and the path with order m. While, to the best of our
knowledge, no studies dedicated to the 2-edge-coloured chromatic number of grids were led, a series
of works, namely [2, 4, 8], can be found in the literature on the oriented chromatic number of these
graphs. In brief words, these works have (1) pointed out that the maximum oriented chromatic
number of a grid lies between 8 and 11, and have (2) established the exact oriented chromatic
number of grids with at most four rows. More details on these results will be given throughout
this paper as they connect to our investigations.

We must also report that some upper bounds on the 2-edge-coloured chromatic number of grids
can be derived from more general results. In particular, Nešetřil and Raspaud proved in [5] that
every undirected graph G with acyclic chromatic number k has 2-edge-coloured chromatic number
at most k · 2k−1; since grids were shown to have acyclic chromatic number at most 3 (see [3]), this
implies that grids have 2-edge-coloured chromatic number at most 12.

We thus initiate the study of the 2-edge-coloured chromatic number of grids as such, our main
objective being to investigate how close the oriented chromatic number and the 2-edge-coloured
chromatic number of these graphs are. Before presenting our results, we first introduce, in Section 2,
some definitions and terminology that are used throughout this paper. We then start, in Section 3,
by providing a general constant upper bound on the 2-edge-coloured chromatic number of grids.
Namely, we prove that χ2(G(n,m)) ≤ 11 holds for every n,m ≥ 1, which improves the upper
bound of 12 mentioned above. We then get, in Sections 4 and 5, first lower bounds on the 2-
edge-coloured chromatic number of grids by focusing on 2-edge-coloured grids with at most three
rows. In particular, we point out that some 2-edge-coloured 3-row grids cannot be coloured with
less than 7 colours. We also provide refined bounds on the 2-edge-coloured chromatic number of
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Figure 1: The 2-edge-coloured graph A11. Black (gray, respectively) edges are positive (negative, respectively) edges.

2-row grids and 3-row grids, our bounds for 2-row grids being sharp. Generalizing the proofs of our
lower bounds for 2-edge-coloured 3-row grids, we then show, in Section 6, that there exist 2-edge-
coloured grids with 2-edge-coloured chromatic number at least 8. We finally conclude this paper
by summarizing our results in Section 7, and by discussing how the oriented chromatic number
and 2-edge-coloured chromatic number of grids compare.

2. Definitions and terminology

Throughout this paper, we use σ to refer to the implicit signature function of any 2-edge-
coloured graph G. For every vertex v of G, we say that another vertex u is a −-neighbour (+-
neighbour, respectively) of v if uv is a negative (positive, respectively) edge. The −-degree (+-
degree, respectively) of v is its number of −-neighbours (+-neighbours, respectively)

Let A be a 2-edge-coloured graph. By an A-colouring of G, we refer to a homomorphism
from G to A. We also say that G is coloured by A. To stick to the colouring point of view, the
vertices of any colouring graph A are generally represented, in our proofs, by consecutive integers
0, . . . , |V (A)| − 1. A downside of this notation is that, to refer to an edge αβ of A, we sometimes
have to write it under the form {α, β} to avoid any ambiguity. In that spirit, we denote k-paths (i.e.,
paths of length k) of A under the form P = (α1, . . . , αk+1), where α1, . . . , αk+1 are the consecutive
vertices of P . Assuming the signs of the k edges of P are s1, . . . , sk, we sometimes say that P is
an s1 . . . sk-path. Similarly as for paths, we denote by (α1, . . . , αk, α1) any k-cycle (i.e., cycle of
length k). Any 2-edge-coloured path or cycle is said alternating if no two of its consecutive edges
have the same sign.

Some of our upper bounds in this paper are established from colourings by special 2-edge-
coloured graphs which we call 2-edge-coloured circulant graphs. The definition is as follows (see
Figure 2 (right) for an illustration). Let Kn be the complete graph with vertex set {0, . . . , n− 1},
and S ⊆ {1, . . . , n−1} be a set of integers. The 2-edge-coloured circulant graph C(n, S) (generated
by S) is the signature of Kn where the edge {i, (i + j) (mod n)} is positive for every j ∈ S and
i ∈ {0, . . . , n− 1}, while all other edges are negative.

3. A general upper bound

The only known upper bound on the oriented chromatic number of grids was exhibited by
Fertin, Raspaud and Roychowdhury, who proved in [4] that χo(G(n,m)) ≤ 11 holds for every
n,m ≥ 1. In this section, we prove that, for every grid G = G(n,m), we have χ2(G) ≤ 11 as well.
As mentioned in the introductory section, this improves a bound of 12 that can be derived from
general results on the 2-edge-coloured chromatic number.
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Vertex −-neighbours +-neighbours
0 1, 2, 4, 8, 10 3, 5, 6, 7, 9
1 0, 2, 3, 5, 8, 9 4, 6, 7, 10
2 0, 1, 3, 4, 7 5, 6, 8, 9, 10
3 1, 2, 4, 5, 7 0, 6, 8, 9, 10
4 0, 2, 3, 5, 6, 10 1, 7, 8, 9
5 1, 3, 4, 6, 9 0, 2, 7, 8, 10
6 4, 5, 7, 8 0, 1, 2, 3, 9, 10
7 2, 3, 6, 8, 9, 10 0, 1, 4, 5
8 0, 1, 6, 7 2, 3, 4, 5, 9, 10
9 1, 5, 7, 10 0, 2, 3, 4, 6, 8
10 0, 4, 7, 9 1, 2, 3, 5, 6, 8

Table 1: Adjacencies of A11.

We more precisely prove that every 2-edge-coloured grid admits an A11-colouring, where A11

is the signature of K11 depicted in Figure 1. To avoid any ambiguity, the −-neighbours and +-
neighbours of every vertex of A11 are listed in Table 1. A11 has properties that will prove to be of
interest to us, some of which are tedious to prove formally due to the lack of general symmetries
of A11. We point out some of these properties, that can easily be checked by hand using Table 1.

Observation 3.1. A11 has the following properties:

P1. Every vertex of A11 has −-degree (and +-degree) at least 4 and at most 6.

P2. For every two vertices u 6= v of A11, there exist ++-paths from u to v.

P3. For every two vertices u 6= v of A11, there exist −−-paths from u to v.

P4. For every two vertices u 6= v of A11, there exist +−-paths from u to v.

P5. For every two vertices u 6= v of A11, there exist −+-paths from u to v.

To ease the checking of Properties P2 to P5, we provide, in Table 2, the exhaustive list of
all ++-paths, −−-paths, +−-paths and −+-paths of A11. Due to the large number of cases to
consider, that table is postponed to the Appendix section, at the end of this paper.

We are now ready to prove our main result.

Theorem 3.2. Every 2-edge-coloured grid is A11-colourable. Therefore, for every n,m ≥ 1, we
have χ2(G(n,m)) ≤ 11.

Proof. Consider G any signature of G(n,m). We construct an A11-colouring φ of G in the following
way. First, we assign a colour by φ to every vertex of the first row, from the first-column vertex to
the last-column vertex. We then repeatedly do the following, row by row. Assuming all vertices of
the (i−1)th row have been assigned a colour by φ, we then extend the partial A11-colouring to the
vertices of the ith row, from the first-column vertex to the last-column vertex. Once this has been
performed for every row of G, we will end up with φ being an A11-colouring of the whole grid G.

Let us consider the consecutive vertices a1, . . . , an of the first row of G, where a1 (an, respec-
tively) is the first-column (last-column, respectively) vertex. We start by setting e.g. φ(a1) = 0.
We now claim that, assuming φ(ai−1) has been fixed (for some i ≥ 1), we can correctly extend
the partial A11-colouring to ai. When choosing φ(ai), we just need to make sure that the sign
of φ(ai−1)φ(ai) in A11 matches that of ai−1ai in G. Since all vertices of A11 have −-degree and
+-degree at least 4, recall Property P1 of Observation 3.1, we then have at least four colours that
can correctly be assigned to φ(ai). Repeating this argument for all successive vertices of the first
row, we end up with a correct A11-colouring of the first row of G.

Now assume all vertices a1, . . . , an of the (i−1)th row (for some i ≥ 1) of G have been assigned
a colour by φ, and consider the consecutive vertices b1, . . . , bn of the ith row (where, for every j,
aj , bj are the vertices of the jth column). Assume we want to colour the bi’s as going from b1 to bn.
When considering a vertex bi, we note that φ(bi) must be chosen in such a way that the signs of
φ(bi−1)φ(bi) and φ(bi)φ(ai) in A11 match that of bi−1bi and biai, respectively, in G. This implies
that we need to make sure that, in A11, there exist 2-edge-coloured 2-paths φ(bi−1)φ(bi)φ(ai)
whose signs match that of bi−1biai. According to Properties P1 to P5 of Observation 3.1, such
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paths always exist in A11, provided φ(bi−1) 6= φ(ai), or φ(bi−1) = φ(ai) but φ(bi−1)φ(bi) and
φ(bi)φ(ai) have the same sign. In other words, we must avoid the situation where φ(bi−1) = φ(ai)
when the signs of bi−1bi and biai are different. One problem is that, as noted in Table 2, there
are configurations of colours and signs where only one colour can be correctly chosen as φ(bi) (for
instance, when φ(bi−1) = 0, φ(ai) = 5 and bi−1bi and biai are both positive). This is an issue, as
this might lead to bi+1 being not correctly colourable (typically when the unique possible colour
for bi is that of ai+1, the edge bibi+1 is positive, and the edge bi+1ai+1 is negative).

Because of such configurations, we cannot just colour the bi’s one after another, as we may fall
into a dead end. What we do instead, is computing and memorizing the possible colours for bi by
all possible correct partial A11-colourings of the previous vertices b1, . . . , bi−1. More formally, for
each vertex bi, we consider the function ψ(bi) being the set of colours such that for each α ∈ ψ(bi),
there is an extension of φ to b1, . . . , bi where φ(bi) = α. What we prove below is that |ψ(bn)| > 0,
which implies that φ can correctly be extended to all bi’s, thus to the whole row.

We first consider ψ(b1). The possible colours for φ(b1) are those such that the sign of φ(a1)φ(b1)
in A11 matches that of a1b1. This implies that ψ(b1) is highly dependent of φ(a1). For instance,
if φ(a1) = 0 and a1b1 is positive, then ψ(b1) is the set of all +-neighbours of vertex 0 in A11.
If φ(a1) = 0 and a1b1 is negative, then ψ(b1) is the set of all −-neighbours of vertex 0 in A11.
And so on. In other words, ψ(b1) ∈ L1, where L1 is the union, over all vertices of A11, of the
−-neighbourhoods and +-neighbourhoods; thus, L1 can be extracted directly from Table 1.

Claim 3.3. ψ(b1) = L, where L ∈ L1 := {{0, 1, 2, 3, 9, 10}, {0, 1, 3, 4, 7}, {0, 1, 4, 5}, {0, 1, 6, 7},
{0, 2, 3, 4, 6, 8}, {0, 2, 3, 5, 6, 10}, {0, 2, 3, 5, 8, 9}, {0, 2, 7, 8, 10}, {0, 4, 7, 9}, {0, 6, 8, 9, 10}, {1, 2, 3, 5, 6, 8},
{1, 2, 4, 5, 7}, {1, 2, 4, 8, 10}, {1, 3, 4, 6, 9}, {1, 5, 7, 10}, {1, 7, 8, 9}, {2, 3, 4, 5, 9, 10}, {2, 3, 6, 8, 9, 10},
{3, 5, 6, 7, 9}, {4, 5, 7, 8}, {4, 6, 7, 10}, {5, 6, 8, 9, 10}}.

One way for making sure that a bad configuration (as described earlier) does not occur, is to
have all ψ(bi)’s having sufficiently many elements (i.e., at least three). This is already the case for
ψ(b1) by Claim 3.3, as ψ(b1) ∈ L1.

Observation 3.4. For every set L ∈ L1, we have |L| ≥ 3. Consequently, |ψ(b1)| ≥ 3.

We now consider ψ(b2). Note that ψ(b2) depends on ψ(b1) (which itself depends on φ(a1)), on
the signs of b1b2 and b2a2, and on φ(a2). Taking all these elements into consideration, and playing
with Table 2, from a tedious checking it can be checked that the following holds true:

Claim 3.5. ψ(b2) = L, where either:

• L ∈ L2 := {{0, 1, 2, 3, 9}, {0, 1, 2, 3, 10}, {0, 1, 2, 9, 10}, {0, 1, 3, 9, 10}, {0, 1, 4}, {0, 1, 5},
{0, 1, 6}, {0, 1, 7}, {0, 2, 3, 4, 6}, {0, 2, 3, 4, 8}, {0, 2, 3, 5, 6}, {0, 2, 3, 5, 8}, {0, 2, 3, 5, 9}, {0, 2, 3, 5, 10},
{0, 2, 3, 6, 8}, {0, 2, 3, 6, 10}, {0, 2, 3, 8, 9}, {0, 2, 3, 9, 10}, {0, 2, 4, 6, 8}, {0, 2, 5, 6, 10}, {0, 2, 5, 8, 9},
{0, 2, 7, 8}, {0, 2, 7, 10}, {0, 2, 8, 10}, {0, 3, 4, 6, 8}, {0, 3, 5, 6, 10}, {0, 3, 5, 8, 9}, {0, 4, 5}, {0, 4, 7},
{0, 4, 9}, {0, 6, 7}, {0, 6, 8, 9}, {0, 6, 8, 10}, {0, 6, 9, 10}, {0, 7, 8, 10}, {0, 7, 9}, {0, 8, 9, 10}, {1, 2, 3, 5, 6},
{1, 2, 3, 5, 8}, {1, 2, 3, 6, 8}, {1, 2, 3, 9, 10}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 10}, {1, 2, 5, 6, 8},
{1, 2, 8, 10}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 9}, {1, 3, 5, 6, 8}, {1, 3, 6, 9}, {1, 4, 5}, {1, 4, 6, 9},
{1, 4, 8, 10}, {1, 5, 7}, {1, 5, 10}, {1, 6, 7}, {1, 7, 8}, {1, 7, 9}, {1, 7, 10}, {1, 8, 9}, {2, 3, 4, 5, 9},
{2, 3, 4, 5, 10}, {2, 3, 4, 6, 8}, {2, 3, 4, 9, 10}, {2, 3, 5, 6, 8}, {2, 3, 5, 6, 10}, {2, 3, 5, 8, 9}, {2, 3, 5, 9, 10},
{2, 3, 6, 8, 9}, {2, 3, 6, 8, 10}, {2, 3, 6, 9, 10}, {2, 3, 8, 9, 10}, {2, 4, 5, 9, 10}, {2, 4, 8, 10}, {2, 7, 8, 10},
{3, 4, 5, 9, 10}, {3, 4, 6, 9}, {3, 5, 6, 7}, {3, 5, 6, 9}, {3, 5, 7, 9}, {3, 6, 7, 9}, {4, 5, 7}, {4, 5, 8},
{4, 6, 7}, {4, 6, 10}, {4, 7, 8}, {4, 7, 9}, {4, 7, 10}, {5, 6, 7, 9}, {5, 6, 8, 9}, {5, 6, 8, 10}, {5, 6, 9, 10},
{5, 7, 8}, {5, 7, 10}, {5, 8, 9, 10}, {6, 7, 10}, {6, 8, 9, 10}, {7, 8, 9}}, or

• L is a superset of some set L′ ∈ L1 ∪ L2.

As an illustration, assume that ψ(b1) = {0, 1, 4} and that φ(a2) = 0. If b1b2 and b2a2 are
both positive, then, looking at Table 1, we see that 0 ∈ ψ(b1) implies {3, 5, 6, 7, 9} ⊆ ψ(b2), which
makes ψ(b2) be a superset of {3, 5, 6, 7, 9} ∈ L1. If b1b2 is positive while b2a2 is negative, then
1 ∈ ψ(b1) implies {4, 10} ∈ ψ(b2) while 4 ∈ ψ(b1) implies {1, 8} ∈ ψ(b2); in total, we thus have
ψ(b2) = {1, 4, 8, 10} ∈ L2.
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Figure 2: A 2-edge-coloured 4-colouring of a signature of G(2, 2) (left), a 2-edge-coloured 5-colouring of a signature
of G(2, 3) (middle), and the 2-edge-coloured circulant graph C(5, {1}) (right). Black (gray, respectively) edges are
positive (negative, respectively) edges.

To fully prove that Claim 3.5 holds, the same reasoning must be performed for every combi-
nation of ψ(b1), φ(a2), σ(b1b2), σ(b2a2), which is quite tedious due to the non-symmetric structure
of A11. For this reason, we provide in the online file http://jbensmai.fr/code/signed-grids/
A11-L2.txt an exhaustive list of all cases.

Observation 3.6. For every set L ∈ L2, we have |L| ≥ 3. Consequently, |ψ(b2)| ≥ 3.

The exact same process can then be performed for ψ(b3) (except that, here, ψ(b3) depends on
ψ(b2), φ(a3), σ(b2b3), σ(b3a3)). We here get:

Claim 3.7. ψ(b3) = L, where either:

• L ∈ L3 := {{0, 1, 2, 10}, {0, 1, 3, 9}, {0, 1, 9, 10}, {0, 2, 4, 8}, {0, 2, 5, 8}, {0, 2, 5, 10}, {0, 2, 6, 10},
{0, 2, 8, 9}, {0, 3, 4, 6}, {0, 3, 5, 6}, {0, 3, 5, 9}, {0, 4, 6, 8}, {0, 5, 6, 10}, {0, 5, 8, 9}, {0, 7, 8},
{0, 7, 10}, {1, 2, 5, 8}, {1, 2, 6, 8}, {1, 3, 5, 6}, {1, 3, 9, 10}, {1, 4, 6}, {1, 4, 8}, {1, 4, 9}, {1, 4, 10},
{1, 5, 6, 8}, {2, 4, 5, 10}, {2, 4, 9, 10}, {2, 6, 8, 10}, {2, 8, 9, 10}, {3, 4, 5, 9}, {3, 4, 6, 8}, {3, 5, 6, 10},
{3, 5, 8, 9}, {3, 6, 8, 9}, {3, 6, 9, 10}, {4, 5, 9, 10}, {5, 6, 7}, {5, 7, 9}, {6, 7, 9}, {7, 8, 10}}, or

• L is a superset of some set L′ ∈ L1 ∪ L2 ∪ L3.

Again, we provide the external online file http://jbensmai.fr/code/signed-grids/A11-L3.
txt, which contains a full analysis of all cases.

Observation 3.8. For every set L ∈ L3, we have |L| ≥ 3. Consequently, |ψ(b3)| ≥ 3.

We are now done, because applying the same deduction process onto ψ(b4) gives that ψ(b4) (and
thus each of ψ(b5), . . . , ψ(bn)) must be a superset of a set in L1 ∪ L2 ∪ L3. Again, the exhaustive
process is described in details online at http://jbensmai.fr/code/signed-grids/A11-L4.txt.

Claim 3.9. For every i = 4, . . . , n, we have ψ(bi) = L, where L is a superset of some set L′ ∈
L1 ∪ L2 ∪ L3.

In particular, ψ(bi) is thus defined for every bi. Consequently, there is a way to extend φ to an
A11-colouring so that φ(bn) ∈ ψ(bn), thus to the whole row by the definition of ψ. Repeating this
colouring process row by row, we end up with φ being an A11-colouring of G.

4. 2-edge-coloured grids with two rows

The oriented chromatic number of 2-row grids was fully determined by Fertin, Raspaud and
Roychowdhury in [4], who proved that χo(G(2, n)) = 6 for every n ≥ 4, while G(2, 2) and G(2, 3)
have oriented chromatic number 4 and 5, respectively. We here completely determine the 2-edge-
coloured chromatic number of 2-row grids by mainly showing that χ2(G(2, n)) ≤ 5 for every n ≥ 3.
Hence, for this type of grids, the 2-edge-coloured chromatic number is always smaller than the
oriented chromatic number.

We start off by noting that G(2, 2), which is the cycle of length 4, admits a signature for which
each of the vertices must be coloured with a unique colour in any 2-edge-coloured colouring.
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Figure 3: Examples of the 2-edge-coloured 3-paths of C(5, {1}) claimed in the proof of Observation 4.4, for (u, v) =
(0, 1) (top), and (u, v) = (0, 2) (bottom). Black (gray, respectively) edges are positive (negative, respectively) edges.

Proposition 4.1. We have χ2(G(2, 2)) = 4.

Proof. Consider the signature of G(2, 2) depicted in Figure 2 (left). In this 2-edge-coloured graph,
every two non-adjacent vertices are joined by an alternating 2-path. Since, for every such alter-
nating 2-path, the two end-vertices must receive distinct colours by any 2-edge-coloured colouring,
we get that this signature of G(2, 2) cannot be coloured with less than |V (G(2, 2))| colours.

SinceG(2, 2) is a subgraph ofG(2, n) for every n ≥ 2, by Proposition 4.1 we get that χ2(G(2, n)) ≥
4 for every n ≥ 2. In the following, we prove that, actually, χ2(G(2, n)) ≥ 5 holds for every n ≥ 3.

Proposition 4.2. We have χ2(G(2, 3)) ≥ 5.

Proof. To be convinced of this statement, consider the signature of G(2, 3) depicted in Figure 2
(middle), and assume, for contradiction, that it admits a 2-edge-coloured 4-colouring φ. We note
that the vertices a1, a2, b1, b2 form exactly the signature of G(2, 2) described in the proof of Propo-
sition 4.1. As explained earlier, these four vertices must be assigned different colours by φ. Assume
φ(a1) = 0, φ(a2) = 1, φ(b1) = 2 and φ(b2) = 3 without loss of generality. Now, because a3 is
adjacent to a2, and a3 is joined by alternating 2-paths to both a1 and b2, clearly we must have
φ(a3) = 2. But now, b3 cannot be assigned any of colours 1, 2 or 3 for the same reasons, while it
cannot be assigned colour 0 since a1b1 and a3b3 have different signs and φ(a3) = φ(b1) = 2. So b3
cannot be assigned a colour by φ, contradicting our initial hypothesis.

Again, since G(2, 3) is a subgraph of G(2, n) for every n ≥ 3, Proposition 4.2 implies that
χ2(G(2, n)) ≥ 5 holds for every n ≥ 3. Actually, it turns out that five colours are sufficient to
colour any signature of any 2-row grid.

Proposition 4.3. For every n ≥ 1, we have χ2(G(2, n)) ≤ 5.

Proof. We actually show that every signature of G(2, n), where n ≥ 1, can be coloured by the
2-edge-coloured circulant graph C(5, {1}) (see Figure 2 (right)). To that aim, let us first point out
the following property of C(5, {1}).

Observation 4.4. For every two distinct vertices u, v of C(5, {1}), and for every set {s1, s2, s3}
of {−,+}3, there exists a 3-path uw1w2v in C(5, {1}) such that σ(uw1) = s1, σ(w1w2) = s2,
σ(w2v) = s3.

Proof. Due to the signature-preserving automorphisms of C(5, {1}), we may restrict our attention
to the cases (u, v) = (0, 1) and (u, v) = (0, 2). Furthermore, only six of the sets among {−,+}3
have to be considered. To see that the claim holds, refer to Figure 3, which gathers examples of
the claimed twelve 3-paths of C(5, {1}).

Back to the proof of Proposition 4.3, we now describe how to get a colouring φ by C(5, {1}) of
any signature G of G(2, n) with n ≥ 1. Let us denote by a1, . . . , an and b1, . . . , bn the consecutive
vertices of the first and second rows of G, respectively, where ai, bi are the vertices of the ith
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column for every i = 1, . . . , n. As a first step, we colour a1 and b1. For this purpose, we choose an
edge {α, β} of C(5, {1}) having sign σ(a1b1) and set φ(a1) = α and φ(b1) = β.

To complete the colouring by C(5, {1}), it now suffices to repeatedly apply the following proce-
dure. Assuming vertices ai−1 and bi−1 have been coloured in the previous step, we extend φ to ai
and bi. Let s1, s2, s3 be the signs of ai−1ai, aibi, bibi−1, respectively. According to Observation 4.4
(applied to u = φ(ai−1), v = φ(bi−1) and s1, s2, s3), there exists a 3-path (φ(ai−1), α, β, φ(bi−1)) in
C(5, {1}) whose edges have sign s1, s2, s3, respectively. By hence setting φ(ai) = α and φ(bi) = β,
we get an extension of φ to ai and bi.

From all the previous results, we end up with the following characterization of the 2-edge-
coloured chromatic number of 2-row grids.

Theorem 4.5. We have:

• χ2(G(2, 2)) = 4,

• χ2(G(2, n)) = 5 for every n ≥ 3.

5. 2-edge-coloured grids with three rows

The investigations on the oriented chromatic number of 3-row grids were initiated by Fertin,
Raspaud and Roychowdhury who proved, in [4], that χo(G(3, 3)), χo(G(3, 4)), χo(G(3, 5)) = 6,
while χo(G(3, n)) ∈ {6, 7} for every n ≥ 6. Later on, Szepietowski and Targan completely de-
termined, in [8], the values of χo(G(3, n)) for every n ≥ 6 by proving that χo(G(3, 6)) = 6 while
χo(G(3, n)) = 7 for every n ≥ 7.

Before presenting our results on 2-edge-coloured 3-row grids, we first introduce some definitions
and terminology that are used throughout this section.

Whenever dealing with a (2-edge-coloured) 3-row grid G = G(3, n), we assume that its vertices
are labelled by a1, . . . , an, b1, . . . , bn and c1, . . . , cn, where the ai’s are the consecutive vertices of
the first row, the bi’s are the consecutive vertices of the second row, and the ci’s are the consecutive
vertices of the third row. This labelling is such that, for every i = 1, . . . , n, the vertices of the ith
column are ai, bi, ci (see Figure 4 (left) for an illustration).

Let A be a 2-edge-coloured graph, and assume now that G is a 2-edge-coloured 3-row grid. In
the sequel, we will mainly A-colour G by extending a partial A-colouring φ from column to column,
starting from the first column. When doing so, for each column i we get a set of possible triplets
of colours, which are 3-element sets (α, β, γ) ∈ {0, 1, . . . , |V (A)| − 1}3 such that, when extending φ
to the ith column, we can correctly set φ(ai) = α, φ(bi) = β and φ(ci) = γ. Note that every triplet
(α, β, γ) verifies β 6= α, γ.

When extending φ to the ith column of G, the possible colours for ai, bi, ci, i.e., the possible
triplets (αi, βi, γi) of colours that can be assigned to this column, are highly dependent of the triplet
(αi−1, βi−1, γi−1) of colours assigned to the (i − 1)th column. Also, assuming φ(ai−1) = αi−1,
φ(bi−1) = βi−1, φ(ci−1) = γi−1, the possible triplets (αi, βi, γi) depend on the set of five edges
{ai−1ai, bi−1bi, ci−1ci, aibi, bici} which form a 2-edge-coloured subgraph that we call a 2-comb.
Formally, a 2-comb refers to a graph obtained from a path uw1w2w3v of length 4 by joining w2 to
a new pendant vertex w. Under that labelling, we say that the 2-comb joins u,w, v and call w1w2w3

the spine of the 2-comb. We note that any 2-edge-coloured 3-row grid can be obtained, starting
from a 2-edge-coloured 2-path a1b1c1, by repeatedly joining aibici (being the original path a1b1c1,
or the spine of the lastly-added 2-comb) via a new 2-edge-coloured 2-comb with spine ai+1bi+1ci+1.

Back to our context, the possible triplets (αi, βi, γi) for the ith column of G are precisely those
3-element sets such that A has a 2-comb joining αi−1, βi−1, γi−1, with spine αiβiγi, and whose
edge signs are precisely the signs, in G, of the 2-comb with spine aibici joining ai−1bi−1ci−1.

5.1. Lower bounds
We start off by investigating general lower bounds on the 2-edge-coloured chromatic number of

3-row grids. To begin, note that for some signatures of G(3, 3) at least six colours are needed.

Proposition 5.1. We have χ2(G(3, 3)) ≥ 6.
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Figure 4: A 2-edge-coloured 6-colouring of a signature of G(3, 3) (left), and the 2-edge-coloured circulant graph
C(9, {2, 4}) (right). Black (gray, respectively) edges are positive (negative, respectively) edges.

Proof. Let G be the signature of G(3, 3) depicted in Figure 4 (left), and assume, for contradiction,
that there is a signature A of K5 such that G admits an A-colouring φ.

We note that every two vertices in {a2, b1, b3, c2} are joined by an alternating 2-path. For this
reason, all colours φ(a1), φ(a2), φ(b1), φ(b3), φ(c2) must be different. As in Figure 4 (left), let us
assume, without loss of generality, that φ(b2) = 0, φ(a2) = 1, φ(b3) = 2, φ(c2) = 3 and φ(b1) = 4.
This reveals that, in A, edges {0, 1} and {0, 4} are positive, while {0, 2} and {0, 3} are negative.

Now consider c3. Since b2 and c3 are joined by an alternating 2-path, we have either φ(c3) = 1
or φ(c3) = 4. At this point of the proof, we may assume that φ(c3) = 1. This reveals that, in A,
edge {1, 2} is negative while {1, 3} is positive. Now consider c1. Since c1 is joined by an alternating
2-path to both b2 and c3, we must have φ(c1) = 2. Hence, edges {2, 3} and {2, 4} are negative in A.
For similar reasons, vertex a1 must receive colour 2 or 3 by φ. Actually, we cannot have φ(a1) = 2
since edge {1, 2} was shown to be negative in A. So, we have φ(a1) = 3.

We finally note that a3 cannot be coloured with either of colours 0, 1, 2 due to some edges or
alternating 2-paths of G. Furthermore, we cannot have φ(a3) = 3 since edge {2, 3} is negative
in A, or φ(a3) = 4 since edge {2, 4} is negative in A. Hence a3 cannot be assigned a valid colour
by φ, a contradiction.

It turns out that some 2-edge-coloured 3-row grids need at least seven colours to be coloured.
To verify this, it suffices to exhibit, for every signature A of K6, a 2-edge-coloured 3-row grid GA

that cannot be A-coloured. Once we have such a grid GA for every A, it then suffices to consider
a large 2-edge-coloured 3-row grid G that contains all GA’s; there is then no signature of K6 that
can colour G, meaning that G has 2-edge-coloured chromatic number at least 7.

Let A be a fixed signature of K6. Designing such a 2-edge-coloured 3-row grid GA is tedious
because we have to prove that there is no way to A-colour it. For that reasons, we made use of a
computer, through the following approach. We start off from GA being the 2-path a1b1c1 signed
in some way, and we consider L1 the set of triplets (α1, β1, γ1) of colours that can be assigned to
a1, b1, c1 in an A-colouring. If this set L1 is empty, then A cannot colour GA, and we are done.
Otherwise, we make GA one column larger by joining a1, b1, c1 by a 2-comb with spine a2, b2, c2. For
a signature of the resulting five new edges (a1a2, b1b2, c1c2, a2b2, b2c2), we would like to find a bad
signature, i.e., a signature such that, by all A-colourings of GA, the set L2 of triplets (α2, β2, γ2) of
colours that can be assigned to a2, b2, c2 is as small as possible. We note that, for a fixed signature
of the 2-comb, computing L2 can be done easily from L1, by just consider every (α1, β1, γ1) ∈ L1,
and checking, in A, what are the 2-combs with spine α2β2γ2 joining α1, β1, γ1 which have their
signature matching that of the 2-comb in G. Then we can try out all possible signatures of the
2-comb in G, and find one that minimizes the size of L2. The same principle can be applied
again and again iteratively, adding new 2-combs (with spine aibici joining ai−1, bi−1, ci−1) to G
and computing the resulting sets L3,L4, . . . Hopefully, at some point a set Li with Li = ∅ will be
reached, meaning that a non-A-colourable 2-edge-coloured 3-row grid has been obtained.
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It turns out that, for every fixed signature A of K6, this strategy does result in a 2-edge-
coloured 3-row grid GA that cannot be A-coloured. We give a certificate of this in the online file
http://jbensmai.fr/code/signed-grids/G3n-lower-bound.txt, which describes, for every A,
the signature of a candidate as GA, and the resulting sets Li. The number of non-equivalent
signatures of K6 is 78, as two signatures A1, A2 of K6 are isomorphic as soon as the set of positive
edges of A1 induce a graph isomorphic to that induced by the set of positive edges of A2, and two
signatures A1, A2 of A are equivalent as soon as the set of positive edges of A1 induce a graph
isomorphic to that induced by the set of negative edges of A2 (just invert all edge signs). Since
the number of non-isomorphic graphs on 6 vertices is 156, this gives that only 78 non-equivalent
signatures of K6 exist. A remarkable fact is that, for every signature A of K6, a claimed grid GA

we construct always has at most six columns. Thus, without trying to optimize further, an upper
bound on the parameter n0 in the next result is 78× 6.

Theorem 5.2. There exists a n0 such that for every n ≥ n0, we have χ2(G(3, n)) ≥ 7.

5.2. Upper bounds
As in the previous section, we here systematically colour any 2-edge-coloured grid from column

to column (as going from the first column to the last column), by essentially extending triplets
of colours from 2-comb to 2-comb (i.e., colouring the first-column vertices first, then the second-
column vertices, and so on), as they are attached to each other

Our upper bounds on the 2-edge-coloured chromatic number of 3-row grids rely on the existence
of 2-edge-coloured circulant graphs with properties analogous to that described in the statement
of Observation 4.4. More precisely, we are here interested in 2-edge-coloured circulant graphs that
make the following proposition applicable.

Proposition 5.3. Suppose we have a 2-edge-coloured graph A such that, for every three distinct
vertices u, v, w of A, and for every set {s1, s2, s3, s4, s5} of {−,+}5, there exists, in A, a 2-comb with
spine w1w2w3 joining u,w, v such that σ(uw1) = s1, σ(ww2) = s2, σ(vw3) = s3, σ(w1w2) = s4,
σ(w2w3) = s5. Then every signature of G(3, n) is A-colourable.

Proof. We prove by induction on n, the number of columns, that every signature G of G(3, n) can
be A-coloured, provided A has the desired property. In case n = 1, we note that G is actually
a 2-edge-coloured path on two edges. Since, by our assumptions, A has both positive edges and
negative edges, and has positive edges adjacent to negative edges, it is easy to see that a1, b1, c1
can be coloured.

Assume now that the claim is true for every n up to value i−1 and consider the case n = i. By
the induction hypothesis, there exists an A-colouring φ of the i−1 first columns of G, which form a
signature of G(3, n−1). We now extend φ the ith column, i.e., to the vertices ai, bi, ci. To that aim,
consider the 2-edge-coloured 2-comb C of G joining ai−1, bi−1, ci−1 with spine aibici. According to
the initial assumption on A, no matter what the triplet (φ(ai−1), φ(bi−1), φ(ci−1)) is, and no matter
what the signs of the edges of C are, we can find, in A, a 2-comb joining φ(ai−1), φ(bi−1), φ(ci−1),
and with the same edge signs as C. Denote its spine by αiβiγi. Then we can simply extend φ to
ai, bi, ci by setting φ(ai) = αi, φ(bi) = βi, φ(ci) = γi.

Hence, by showing that a 2-edge-coloured graph A with small order has the property described
in Proposition 5.3, we immediately get that every 2-edge-coloured 3-row grid is A-colourable,
thus that its 2-edge-coloured chromatic number is at most |V (A)|. Using a computer, we have
determined that the smallest 2-edge-coloured circulant graphs having that property have order 10.

Proposition 5.4. The smallest 2-edge-coloured circulant graphs C(n, S) having the property de-
scribed in Proposition 5.3 have n = 10. An example of a such graph is C(10, {2, 4}).

From Propositions 5.3 and 5.4, we thus directly get the following.

Theorem 5.5. For every n ≥ 1, we have χ2(G(3, n)) ≤ 10.

We now improve the upper bound in Theorem 5.5 down to 9, by showing that every 2-edge-
coloured 3-row grid can be coloured by the 2-edge-coloured circulant graph C(9, {2, 4}) (illustrated
in Figure 4 (right)). The colouring strategy we use is again the column-to-column one that we have
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used earlier. We however have to be more careful here, because, as indicated by Proposition 5.4,
there are situations where a colouring of the (i − 1)th column cannot be extended to a colouring
of the ith one, because C(9, {2, 4}) does not admit all possible kinds of 2-edge-coloured 2-combs.

Following Proposition 5.4, we know that C(9, {2, 4}) has bad triplets, namely triplets (α, β, γ)
of vertices such that C(9, {2, 4}) has no 2-comb, with a particular signature, joining α, β, γ. Hence,
when colouring a new column of a 2-edge-coloured 3-row grid, we should avoid assigning a bad
triplet as it might then be not possible to extend the partial colouring to the next column.

Using a computer program to enumerate all 3-element sets of colours (α, β, γ) and, for ev-
ery signature, all 2-edge-coloured 2-combs joining α, β, γ in C(9, {2, 4}), we came up with the
following characterization of the bad triplets of C(9, {2, 4}) (refer to http://jbensmai.fr/code/
signed-grids/C924-triplets.txt for an exhaustive list of the possible ways to extend a C(9, {2, 4})-
colouring from a column to the next column):

Observation 5.6. A triplet (α, β, γ) of C(9, {2, 4}) is bad if and only if:

• (β, γ) ∈ {(α+ 2, α+ 4), (α− 2, α− 4), (α+ 3, α+ 6), (α− 3, α− 6)}, or

• (β, α) ∈ {(γ + 2, γ + 4), (γ − 2, γ − 4), (γ + 3, γ + 6), (γ − 3, γ − 6)},

where the operations are understood modulo 9. In other words, (α, β, γ) is bad if and only if
(α, β, γ) ∈ {(0, 3, 6), (0, 4, 2), (0, 5, 7), (0, 6, 3), (1, 4, 7), (1, 5, 3), (1, 6, 8), (1, 7, 4), (2, 5, 8), (2, 6, 4),
(2, 7, 0), (2, 8, 5), (3, 0, 6), (3, 6, 0), (3, 7, 5), (3, 8, 1), (4, 0, 2), (4, 1, 7), (4, 7, 1), (4, 8, 6), (5, 0, 7),
(5, 1, 3), (5, 2, 8), (5, 8, 2), (6, 0, 3), (6, 1, 8), (6, 2, 4), (6, 3, 0), (7, 1, 4), (7, 2, 0), (7, 3, 5), (7, 4, 1),
(8, 2, 5), (8, 3, 1), (8, 4, 6), (8, 5, 2)}.

When colouring a column, we should as well avoid assigning a non-bad triplet (α, β, γ) of colours
such that, for a particular fixed signature, all 2-edge-coloured 2-combs with that signature, joining
α, β, γ in C(9, {2, 4}), have a bad spine, i.e., a spine α′β′γ′ such that (α′, β′, γ′) is bad. We call
such a triplet dangerous. Once again, the dangerous triplets of C(9, {2, 4}) can easily be generated
using a computer, and, hence, characterized (again, refer to the full list above for an exhaustive
checking of this result).

Observation 5.7. A non-bad triplet (α, β, γ) of C(9, {2, 4}) is dangerous if and only if:

• (β, γ) ∈ {(α+2, α+5), (α− 2, α− 5), (α+2, α+6), (α− 2, α− 6), (α+3, α+5), (α− 3, α−
5), (α+ 4, α+ 6), (α− 4, α− 6)}, or

• (β, α) ∈ {(γ + 2, γ + 5), (γ − 2, γ − 5), (γ + 2, γ + 6), (γ − 2, γ − 6), (γ + 3, γ + 5), (γ − 3, γ −
5), (γ + 4, γ + 6), (γ − 4, γ − 6)},

where the operations are understood modulo 9. In other words, (α, β, γ) is dangerous if and only if
(α, β, γ) ∈ {(0, 3, 5), (0, 3, 7), (0, 4, 6), (0, 4, 7), (0, 5, 2), (0, 5, 3), (0, 6, 2), (0, 6, 4), (1, 4, 6), (1, 4, 8),
(1, 5, 7), (1, 5, 8), (1, 6, 3), (1, 6, 4), (1, 7, 3), (1, 7, 5), (2, 5, 0), (2, 5, 7), (2, 6, 0), (2, 6, 8), (2, 7, 4),
(2, 7, 5), (2, 8, 4), (2, 8, 6), (3, 0, 5), (3, 0, 7), (3, 6, 1), (3, 6, 8), (3, 7, 0), (3, 7, 1), (3, 8, 5), (3, 8, 6),
(4, 0, 6), (4, 0, 7), (4, 1, 6), (4, 1, 8), (4, 7, 0), (4, 7, 2), (4, 8, 1), (4, 8, 2), (5, 0, 2), (5, 0, 3), (5, 1, 7),
(5, 1, 8), (5, 2, 0), (5, 2, 7), (5, 8, 1), (5, 8, 3), (6, 0, 2), (6, 0, 4), (6, 1, 3), (6, 1, 4), (6, 2, 0), (6, 2, 8),
(6, 3, 1), (6, 3, 8), (7, 1, 3), (7, 1, 5), (7, 2, 4), (7, 2, 5), (7, 3, 0), (7, 3, 1), (7, 4, 0), (7, 4, 2), (8, 2, 4),
(8, 2, 6), (8, 3, 5), (8, 3, 6), (8, 4, 1), (8, 4, 2), (8, 5, 1), (8, 5, 3)}.

One should of course be cautious with non-bad and non-dangerous triplets (α, β, γ) of colours
such that, for some signature, all 2-edge-coloured 2-combs with that signature, joining α, β, γ in
C(9, {2, 4}), have a bad or dangerous spine. However, it can be checked that every non-bad and
non-dangerous triplet (α, β, γ) is good, in the sense that, in C(9, {2, 4}), for every signature there
is a 2-edge-coloured 2-comb with that signature, joining α, β, γ, and with a good spine, i.e., a spine
α′β′γ′ such that (α′, β′, γ′) is good. For certificates, see the online file http://jbensmai.fr/code/
signed-grids/C924-good-triplets.txt.

Observation 5.8. Every non-bad and non-dangerous triplet is good.

We are now ready to improve the bound in Theorem 5.5.
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Theorem 5.9. For every n ≥ 1, we have χ2(G(3, n)) ≤ 9.

Proof. We actually prove, by induction on n, that every signature G of G(3, n) can be coloured
by C(9, {2, 4}), implying the result. The colouring strategy we use is again the column-to-column
strategy that we have been using so far, but restricted to good triplets of colours. More precisely,
we show that the columns of G can be coloured one after another, in such a way that the triplets
of colours, assigned by the colouring φ, are all good.

As a base case, assume n = 1. In case a1b1 and b1c1 are both positive, we can set e.g. φ(a1) = 0,
φ(b1) = 4, φ(c1) = 0. If a1b1 and b1c1 are both negative, then we can here set e.g. φ(a1) = 0,
φ(b1) = 1, φ(c1) = 0. Finally, if, say, a1b1 is positive while b1c1 is negative, then we can set e.g.
φ(a1) = 0, φ(b1) = 2, φ(c1) = 1. In every case, we get that (φ(a1), φ(b1), φ(c1)) is a good triplet,
according to Observation 5.8, which concludes this case.

Assume now that the claim is true for every n up to some value i − 1, and consider the next
step n = i. By the induction hypothesis, we can colour the i− 1 first columns of G, as they form
a signature of G(3, n − 1), in such a way that all triplets of colours are good. Let φ be such a
colouring. We now extend φ to the ith column of G, namely to its vertices ai, bi, ci, in a good
way. To that aim, consider, in G, the 2-edge-coloured comb C joining ai−1, bi−1, ci−1 with spine
aibici. According to the definition of a good triplet, and because (φ(ai−1), φ(bi−1), φ(ci−1)) is good,
there has to be, in C(9, {2, 4}), a 2-edge-coloured comb with the same edge signs as C, joining
(φ(ai−1), φ(bi−1), φ(ci−1)), and with a good spine αiβiγi, i.e., (αi, βi, γi) is a good triplet. So we
can extend φ to ai, bi, ci by just setting φ(ai) = αi, φ(bi) = βi, φ(ci) = γi. This proves the inductive
step, and, hence, the claim.

6. 2-edge-coloured grids with more rows

In this section, we extend, to grids with more rows, the principles described in Section 5 for
verifying Theorem 5.2. From these, we deduce that there exist 2-edge-coloured 5-rows grids with
2-edge-coloured chromatic number at least 8.

Theorem 6.1. There exists a n0 such that for every n ≥ n0, we have χ2(G(5, n)) ≥ 8.

The existence of such a grid G = G(5, n) with χ2(G) ≥ 8 can be attested following the method
described at the end of Section 5.1. Namely, we consider every signature A of K7 (there are 522
such, recall the arguments given earlier), and our task is to construct a 2-edge-coloured grid GA

with at most five rows that cannot be A-coloured. If such a GA can be constructed for every A,
then a possible G will be any 2-edge-coloured 5-row grid containing all GA’s.

For each A, an example of a such GA can be constructed as follows. For some i ∈ {2, . . . , 4},
we start from GA being an i-path a1b1c1 . . . signed in a particular way, and we then compute L1

the set of the possible tuples (α1, β1, γ1, . . . ) of colours that can be assigned to a1, b1, c1, . . . in an
A-colouring of GA. If L1 = ∅, then we are done. Otherwise, we add a new column a2b2c2 . . . to GA

by adding the edges a1a2, b1b2, c1c2, . . . . We sign the resulting 2i− 1 new edges in such a way that
the set L2 of the possible tuples (α2, β2, γ2, . . . ) of colours that can be assigned to a2, b2, c2, . . . in
an A-colouring of GA is as small as possible. We repeat this process until hopefully reaching an Lk

that is empty, meaning that the 2-edge-coloured grid GA constructed so far cannot be A-coloured.
In the online file http://jbensmai.fr/code/signed-grids/lower-bound-8.txt, we prove

that such a GA does exist for every signature A of K7. More precisely, for each GA we describe
its signature, as well as the corresponding sets L1,L2, . . . (which can be deduced successively). In
most cases, we get that such GA’s with only three rows exist. In a few more cases, grids with four
rows must be considered. For a very particular signature of K7, we have to consider a grid with
five rows.

7. Conclusion

In this article, we have investigated the 2-edge-coloured chromatic number of grids, our main
goal being to compare how the oriented chromatic number and the 2-edge-coloured chromatic
number behave in these graphs. We have provided several bounds for both general grids and 2-
row or 3-row grids. In particular, we have shown that the maximum 2-edge-coloured chromatic
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number of a grid lies between 8 and 11. For 2-row grids, we managed to completely determine
their 2-edge-coloured chromatic number, while, for 3-row grids, we have obtained partial results.

Concerning the relation between the oriented chromatic number and the 2-edge-coloured chro-
matic number, our results show that these two parameters are, as expected, quite close for grids.
This is mainly established by the matching lower and upper bounds we know on the maximum
value of these parameters for grids.

Some disparities, though, are worth mentioning. For 2-row grids, while the oriented chromatic
number is 6 in general, the 2-edge-coloured chromatic number is 5 in general. We still do not
know whether 3-row grids with 2-edge-coloured chromatic number 8 exist, but, if this were to hold,
then that would be quite interesting as these grids have oriented chromatic number at most 7. In
that spirit, it could as well be interesting considering 4-row grids, which have oriented chromatic
number at most 7 according to [8].

Appendix: Exhaustive list of the 2-paths of A11

Type of path Candidates
0+?+ 1 6, 7

0+?+ 2 5, 6, 9

0+?+ 3 6, 9

0+?+ 4 7, 9

0+?+ 5 7

0+?+ 6 3, 9

0+?+ 7 5

0+?+ 8 3, 5, 9

0+?+ 9 3, 6

0+?+ 10 3, 5, 6

1+?+ 2 6, 10

1+?+ 3 6, 10

1+?+ 4 7

1+?+ 5 7, 10

1+?+ 6 10

1+?+ 7 4

1+?+ 8 4, 10

1+?+ 9 4, 6

1+?+ 10 6

2+?+ 3 6, 8, 9, 10

2+?+ 4 8, 9

2+?+ 5 8, 10

2+?+ 6 9, 10

2+?+ 7 5

2+?+ 8 5, 9, 10

2+?+ 9 6, 8

2+?+ 10 5, 6, 8

3+?+ 4 8, 9

3+?+ 5 0, 8, 10

3+?+ 6 0, 9, 10

3+?+ 7 0

3+?+ 8 9, 10

3+?+ 9 0, 6, 8

3+?+ 10 6, 8

4+?+ 5 7, 8

4+?+ 6 1, 9

4+?+ 7 1

4+?+ 8 9

4+?+ 9 8

4+?+ 10 1, 8

5+?+ 6 0, 2, 10

5+?+ 7 0

5+?+ 8 2, 10

5+?+ 9 0, 2, 8

5+?+ 10 2, 8

6+?+ 7 0, 1

6+?+ 8 2, 3, 9, 10

6+?+ 9 0, 2, 3

6+?+ 10 1, 2, 3

7+?+ 8 4, 5

7+?+ 9 0, 4

7+?+ 10 1, 5

8+?+ 9 2, 3, 4

8+?+ 10 2, 3, 5

9+?+ 10 2, 3, 6, 8

Type of path Candidates
0−?− 1 2, 8

0−?− 2 1, 4

0−?− 3 1, 2, 4

0−?− 4 2, 10

0−?− 5 1, 4

0−?− 6 4, 8

0−?− 7 2, 8, 10

0−?− 8 1

0−?− 9 1, 10

0−?− 10 4

1−?− 2 0, 3

1−?− 3 2, 5

1−?− 4 0, 2, 3, 5

1−?− 5 3, 9

1−?− 6 5, 8

1−?− 7 2, 3, 8, 9

1−?− 8 0

1−?− 9 5

1−?− 10 0, 9

2−?− 3 1, 4, 7

2−?− 4 0, 3

2−?− 5 1, 3, 4

2−?− 6 4, 7

2−?− 7 3

2−?− 8 0, 1, 7

2−?− 9 1, 7

2−?− 10 0, 4, 7

3−?− 4 2, 5

3−?− 5 1, 4

3−?− 6 4, 5, 7

3−?− 7 2

3−?− 8 1, 7

3−?− 9 1, 5, 7

3−?− 10 4, 7

4−?− 5 3, 6

4−?− 6 5

4−?− 7 2, 3, 6, 10

4−?− 8 0, 6

4−?− 9 5, 10

4−?− 10 0

5−?− 6 4

5−?− 7 3, 6, 9

5−?− 8 1, 6

5−?− 9 1

5−?− 10 4, 9

6−?− 7 8

6−?− 8 7

6−?− 9 5, 7

6−?− 10 4, 7

7−?− 8 6

7−?− 9 10

7−?− 10 9

8−?− 9 1, 7

8−?− 10 0, 7

9−?− 10 7

Type of path Candidates
0+?− 1 3, 5, 9

0+?− 2 3, 7

0+?− 3 5, 7

0+?− 4 3, 5, 6

0+?− 5 3, 6, 9

0+?− 6 5, 7

0+?− 7 3, 6, 9

0+?− 8 6, 7

0+?− 9 5, 7

0+?− 10 7, 9

1+?− 2 4, 7

1+?− 3 4, 7

1+?− 4 6, 10

1+?− 5 4, 6

1+?− 6 4, 7

1+?− 7 6, 10

1+?− 8 6, 7

1+?− 9 7, 10

1+?− 10 4, 7

2+?− 3 5

2+?− 4 5, 6, 10

2+?− 5 6, 9

2+?− 6 5, 8

2+?− 7 6, 8, 9, 10

2+?− 8 6

2+?− 9 5, 10

2+?− 10 9

3+?− 4 0, 6, 10

3+?− 5 6, 9

3+?− 6 8

3+?− 7 6, 8, 9, 10

3+?− 8 0, 6

3+?− 9 10

3+?− 10 0, 9

4+?− 5 1, 9

4+?− 6 7, 8

4+?− 7 8, 9

4+?− 8 1, 7

4+?− 9 1, 7

4+?− 10 7, 9

5+?− 6 7, 8

5+?− 7 2, 8, 10

5+?− 8 0, 7

5+?− 9 7, 10

5+?− 10 0, 7

6+?− 7 2, 3, 9, 10

6+?− 8 0, 1

6+?− 9 1, 10

6+?− 10 0, 9

7+?− 8 0, 1

7+?− 9 1, 5

7+?− 10 0, 4

8+?− 9 5, 10

8+?− 10 4, 9

9+?− 10 0, 4

Type of path Candidates
0−?+ 1 4, 10

0−?+ 2 8, 10

0−?+ 3 8, 10

0−?+ 4 1, 8

0−?+ 5 2, 8, 10

0−?+ 6 1, 2, 10

0−?+ 7 1, 4

0−?+ 8 2, 4, 10

0−?+ 9 2, 4, 8

0−?+ 10 1, 2, 8

1−?+ 2 5, 8, 9

1−?+ 3 0, 8, 9

1−?+ 4 8, 9

1−?+ 5 0, 2, 8

1−?+ 6 0, 2, 3, 9

1−?+ 7 0, 5

1−?+ 8 2, 3, 5, 9

1−?+ 9 0, 2, 3, 8

1−?+ 10 2, 3, 5, 8

2−?+ 3 0

2−?+ 4 1, 7

2−?+ 5 0, 7

2−?+ 6 0, 1, 3

2−?+ 7 0, 1, 4

2−?+ 8 3, 4

2−?+ 9 0, 3, 4

2−?+ 10 1, 3

3−?+ 4 1, 7

3−?+ 5 2, 7

3−?+ 6 1, 2

3−?+ 7 1, 4, 5

3−?+ 8 2, 4, 5

3−?+ 9 2, 4

3−?+ 10 1, 2, 5

4−?+ 5 0, 2, 10

4−?+ 6 0, 2, 3, 10

4−?+ 7 0, 5

4−?+ 8 2, 3, 5, 10

4−?+ 9 0, 2, 3, 6

4−?+ 10 2, 3, 5, 6

5−?+ 6 1, 3, 9

5−?+ 7 1, 4

5−?+ 8 3, 4, 9

5−?+ 9 3, 4, 6

5−?+ 10 1, 3, 6

6−?+ 7 4, 5

6−?+ 8 4, 5

6−?+ 9 4, 8

6−?+ 10 5, 8

7−?+ 8 2, 3, 9, 10

7−?+ 9 2, 3, 6, 8

7−?+ 10 2, 3, 6, 8

8−?+ 9 0, 6

8−?+ 10 1, 6

9−?+ 10 1, 5

Table 2: Exhaustive list of the ++-paths, −−-paths, +−-paths and −+-paths of A11.
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