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Abstract

These notes aim at clarifying different strategies to perform linear
regression from given dataset. Methods like the weighted and ordi-
nary least squares, ridge regression or LASSO are proposed in the
literature. The present article is my understanding of these methods
which are, according to me, better unified in the Bayesian framework.
The formulas to address linear regression with these methods are de-
rived. The KIC for model selection is also derived in the end of the
document.
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1 Introduction

Let’s consider an input-output relationship of the form:

y =
∑

α∈A

aαψα(x) + ǫ (1)

where α = α1 . . . αd is a multi-dimensional index, A ⊂ N
d is a finite subset

of multi-indexes and ψα(x) is some function independent of xi if αi = 0,
and ǫ an error term. Given the sets of observations y = {yn}

N
n=1 and x =

{xn1, . . . , xnd}
N
n=1, the matrix form of (1) is,

y = Ψa + ǫ. (2)

The error vector ǫ accounts for i) possible stochastic error ǫs (e.g. measure-
ment noise, stochastic model noise), ii) sampling error ǫd (as (y,x) is just
one possible sample), and iii) truncation error ǫt (because Card(A) is finite).
We write ǫ = ǫs + ǫd + ǫt. We note that when one has to deal with y as the
response of a deterministic mathematical model, stochastic errors ǫs = 0.
Sampling error can be assessed with several samples (y,x). In practice, this
is hardly possible, and one can referred to the bootstrap technique to assess ǫd
[Efron and Tibshirani, 1993]. Both ǫd and ǫt are reducible by increasing the
number of observations N (and the diversity of the observations of course).

The first issue addressed in this short note is: how can we infer a =
{aα : α ∈ A}, given (y,x) and A? The second one is how to infer the best

subset A given (y,x)?. These issues are addressed in a Bayesian frame-
work which requires some assumptions about the error’s probability den-
sity function (called the likelihood function) and some information about
the unknown coefficients themselves (called prior belief). Having assumed
the likelihood is ǫ ∼ pǫ(ǫ), we can also write that

(
y −

∑

α∈A aαψα(x)
)
∼

pǫ
(
y −

∑

α∈A aαψα(x)
)
which is usually written: py|a,A = p(y|a,A) or

simply L(y|a,A) (the L standing for likelihood). The prior is denoted
pa|A = p(a|A).

The first issue is addressed by assessing the coefficient joint posterior
density function (pdf inferred from Bayes rule), namely

p(a|y,A) =
p(y|a,A)p(a|A)

p(y|A)
. (3)

Because (1) is linear w.r.t. the vector of coefficients a, straightforward calcu-
lations can be employed as opposed to more demanding approach like Markov
chains Monte Carlo. These straightforward calculations are derived in the
present document.
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The second issue can be addressed by evaluating the Bayesian Model
Evidence (BME) defined as:

p(y|A) =

∫

RP

p(y,a|A)da (4)

where P = Card(A) is the number of coefficients. Indeed, Eq.(4) repre-
sents how well the current model (a,A) explains (fits) the observed data y.
Finding the subset A that maximizes (4) provides the answer to the second
question.

2 Gaussian Likelihood

Let us assume that pǫ ∼ N (0,CM), this leads to the following Gaussian
likelihood:

p(y|a,A) = (2π)−N/2|CM |−1/2 exp

(

−
1

2
(y −Ψa)t C−1

M (y −Ψa)

)

(5)

where | · | stands for the determinant.

2.1 Uniform Prior & Maximum Likelihood Estimate

Let us assume further that the prior knowledge about the coefficient values is
a rectangular domain Ω = [l1, u1]×· · ·×[ld, ud]. This means that pa|A = cste if
a ∈ Ω, and zero elsewhere. As a consequence, the joint pdf of the coefficients
is,

p(a|y,A) ∝ p(y|a,A) ∝ exp

(

−
1

2
(y −Ψa)tC−1

M (y −Ψa)

)

,a ∈ Ω (6)

Analytical Solution: The term in the exponential in (6),

(y −Ψa)tC−1
M (y −Ψa) = ytC−1

M y
︸ ︷︷ ︸

cste/a

−ytC−1
M Ψa

︸ ︷︷ ︸

=atΨtC−1
M

y

−atΨtC−1
M y+atΨtC−1

M Ψa

the second underbrace true because CM is symmetric (and positive-definite)
by definition. So, we get

(y −Ψa)tC−1
M (y −Ψa) = atΨtC−1

M Ψa− 2atΨtC−1
M y + c

=
([

Ψ
tC−1

M Ψ
]1/2

a−
[
Ψ

tC−1
M Ψ

]−1/2
Ψ

tC−1
M y

)t ([
Ψ

tC−1
M Ψ

]1/2
a−

[
Ψ

tC−1
M Ψ

]−1/2
Ψ

tC−1
M y

)

+c
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Factorizing by
[
ΨtC−1

M Ψ
]1/2

in both parentheses yields,

(y −Ψa)tC−1
M (y −Ψa) =

(

a−
[
Ψ

tC−1
M Ψ

]−1
Ψ

tC−1
M y

)t
Ψ

tC−1
M Ψ

(

a−
[
Ψ

tC−1
M Ψ

]−1
Ψ

tC−1
M y

)

+C

Replacing this result in (6) yields,

p(a|y,A) = (2π)−P/2|C̃aa|
−1/2 exp

(

−
1

2
(a− ã)t C̃−1

aa (a− ã)

)

(7)

where
ã =

[
ΨtC−1

M Ψ
]−1

ΨtC−1
M y is called the Maximum Likelihood Estimate (MLE)

C̃aa =
[
ΨtC−1

M Ψ
]−1

is the covariance associated to a and P = Card(A) is
the number of coefficients.

N.B.: Because the coefficients have been constrained within a finite rectan-
gular domain Ω, and CM is assumed given, the posterior joint pdf should
be written p(a|y,A,CM) = N (ã, C̃aa) if ã ∈ Ω and p(a|y,A,CM) = 0
elsewhere.

2.2 Homoscedastic Gaussian Error & Ordinary Least

Squares

Assuming homoscedastic Gaussian error, that is, setting CM = σ2
ǫ IN where

IN stands for N ×N identity matrix, yields
p(a|y,A, σ2

ǫ ) = N (ã, C̃aa)
where
ã = [σ−2

ǫ ΨtINΨ]
−1
σ−2
ǫ Ψty = [ΨtΨ]

−1
Ψty which is the Ordinary Least-

Square estimator,
and C̃aa = σ2

ǫ [Ψ
tΨ]

−1
.

In practice σ2
ǫ is unknown, and because (5) becomes in this case,

p(y|a,A, σ2
ǫ ) = (2πσ2

ǫ )
−N/2 exp

(

−
1

2σ2
ǫ

(y −Ψa)t (y −Ψa)

)

(8)

⇔ −2 ln(p(y|ã,A, σ2
ǫ )) = c+N ln(σ2

ǫ ) +
(y −Ψã)t (y −Ψã)

σ2
ǫ

we can infer that its MLE σ̃2
ǫ is given by,

−2
d ln(p(y|ã,A, σ2

ǫ ))

dσ2
ǫ

∣
∣
∣
∣
σ2
ǫ=σ̃2

ǫ

= 0 =
N

σ̃2
ǫ

−
(y −Ψã)t (y −Ψã)

σ̃4
ǫ
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⇔ σ̃2
ǫ =

(y −Ψã)t (y −Ψã)

N

By noticing that (8) yields

p(σ2
ǫ |y, ã,A) = (2π)−N/2(σ−2

ǫ )N/2 exp

(

−
(y −Ψã)t (y −Ψã)

2
σ−2
ǫ

)

(9)

we can infer that,

p(σ−2
ǫ |y, ã,A) ∝

(
σ−2
ǫ

)k−1
exp

(

−
σ−2
ǫ

θ

)

= Γ

(
N + 2

2
,

2

(y −Ψã)t (y −Ψã)

)

(10)
known as Gamma distribution whose mode is σ̃2

ǫ . Therefore, under ho-
moscedastic Gaussian likelihood assumption the MLE of the posterior co-
variance is, C̃aa = σ̃2

ǫ [Ψ
tΨ]

−1
with still ã = [ΨtΨ]

−1
Ψty.

2.3 Gaussian Prior & Ridge Regression

Let us assume now that pa|A = N (a0,Caa). We note that Ω is no longer a
rectangular domain but mostly a hyper-ellipsoid. Then, the joint posterior
distribution of the coefficients is written,

p(a|y,A) ∝ p(y|a,A)p(a|A) (11)

⇔ p(a|y,A) ∝ exp

(

−
1

2

[
(y −Ψa)t C−1

M (y −Ψa) + (a− a0)
t
C−1

aa (a− a0)
]
)

(12)
Analytical Solution: Let us once again develop the term in the exponential,
we get

(y −Ψa)tC−1
M (y −Ψa)+(a− a0)

t
C−1

aa (a− a0) = atΨtC−1
M Ψa−2atΨtC−1

M y

+atC−1
aa a− 2atC−1

aa a0 + c

that we can rearrange as follows,
(y −Ψa)tC−1

M (y −Ψa) + (a− a0)
t
C−1

aa (a− a0) =

at
(
ΨtC−1

M Ψ+C−1
aa

)
a− 2at

(
ΨtC−1

M y +C−1
aa a0

)
+ c

=
[[
Ψ

tC−1
M Ψ+C−1

aa

]1/2
a−

[
Ψ

tC−1
M Ψ+C−1

aa

]−1/2 (
Ψ

tC−1
M y +C−1

aa a0

)]2
+ c

=

[(

a−
[
Ψ

tC−1
M Ψ+C−1

aa

]−1 (
Ψ

tC−1
M y +C−1

aa a0

))t [
Ψ

tC−1
M Ψ+C−1

aa

]1/2
]2

+ c
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with [·]2 = [·]t[·]. We conclude that

p(a|y,A) = (2π)−P/2|Ĉaa|
−1/2 exp

(

−
1

2
(a− â)t Ĉ−1

aa (a− â)

)

(13)

where
â =

[
ΨtC−1

M Ψ +m
¯
C−1

aa

]−1 (
ΨtC−1

M y +C−1
aa a0

)
is called the Maximum A

Posteriori estimate (MAP). When Caa = λIP this solution is known as the
ridge regression estimator (Hoerl and Kennard [1970]).

Ĉaa =
[
ΨtC−1

M Ψ+C−1
aa

]−1
is the covariance associated to â.

N.B.: For the same reason as previously, the posterior joint pdf should be
denoted p(a|a0,Caa,CM ,y,A) = N (â, Ĉaa). When CM = σ2

ǫ IN , it is not
necessary to postulate σ2

ǫ as the latter can be determined simultaneously
with (â, Ĉaa) as shown in the previous subsection (§ 2.2).

2.4 Laplace Prior & LASSO

Let us consider now that the prior distribution is the Laplace one, namely
pa|A = Laplace(a0,Λaa) with Λaa = diag(λ1, . . . , λP ), λi > 0. Then, the
joint posterior distribution of the coefficients becomes,

p(a|y,A) ∝ exp

(

−
1

2
(y −Ψa)tC−1

M (y −Ψa)− sgn (a− a0)
t
Λaa (a− a0)

)

(14)
performing the following transformation b = a− a0, yields,

p(b|y,A) ∝ exp−
1

2

[(

C
−1/2
M (y −Ψb−Ψa0)

)2

+ 2sgn (b)t Λaab

]

(15)

By developing the term in bracket, and by assuming that sgn (b) remains

unchanged within the overall posterior solutions, we get:

btΨtC−1
M Ψb− 2bt

(
ΨtC−1

M (y − a0)−Λaasgn(b)
)
+ c

which can be factorized as follows,

[(
ΨtC−1

M Ψ
)1/2

b−
(
ΨtC−1

M Ψ
)−1/2 (

ΨtC−1
M (y − a0)−Λaasgn(b)

)]2

+ c

⇔
[(

b−
(
ΨtC−1

M Ψ
)−1 (

ΨtC−1
M (y − a0)−Λaasgn(b)

)) (
ΨtC−1

M Ψ
)1/2

]2

+ c

6



From this result, it can be concluded that,

p(a|y,A) = (2π)−P/2|Ĉaa|
−1/2 exp

(

−
1

2
(a− â)t Ĉ−1

aa (a− â)

)

(16)

with the assumption that sgn (â− a0) is constant (to be checked a posteri-
ori),

â = a0+
(
ΨtC−1

M Ψ
)−1 (

ΨtC−1
M (y − a0)−Λaasgn(a− a0)

)
is the Maximum

A Posteriori estimate (MAP) also called in this case Least Absolute Shrinkage
and Selection Operator (LASSO, Tibshirani [1996]) when Λaa = λIP .

Ĉaa =
(
ΨtC−1

M Ψ
)−1

is the covariance of a.

N.B.: For the same reason as previously, the posterior joint pdf should be
p(a|a0,Λaa,CM ,y,A) = N (â, Ĉaa). Solving the problem is not trivial as one
cannot guess sgn(a− a0) (approximated by sgn(â − a0)) before computing
â. From the computational standpoint, this requires a loop over the criterion
that sgn(â− a0) remains unchanged.

3 Model selection

In this section, we discuss the model selection issue which boils down, in the
present note, to finding the subset A such that the Bayesian model evidence,
that is,

p(y|A) =

∫

RP

p(y,a|A)da =

∫

RP

p(y|a,A)p(a|A)da (17)

is maximal.
There are many model selection criterion proposed in the literature, one

can cite the Bayesian information criterion (BIC, Schwartz [1978]), the Akaike
information criterion (AIC, Akaike [1973]), the Deviance information crite-
rion (DIC, Spiegelhalter et al. [2002]). In this note, we only consider the
Kashyap information criterion (KIC, Kashyap [1982]). This criterion was
derived in a Bayesian framework and is particularly suited when the input-
output relationship is linear as considered in the present work (see Eq.(1)).
In Schöniger et al. [2014], it is demonstrated that KIC usually outperforms
the BIC and the AIC especially when the model is linear and the error is
Gaussian. For the sake of completeness, the KIC at the MAP is derived in
the next section (there is also a KIC at the MLE not discussed here).
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3.1 Kashyap information criterion

We recall that the solution of (3) is a|y,A = N (â, Ĉaa) under the assump-
tion of Gaussian likelihood and prior. Let us derive the second-order Taylor
series of ln (p(y,a|A)) around the MAP, we get

ln (p(y,a|A)) ≃ ln (p(y, â|A)) + (a− â)t
[
∂ ln (p(y,a|A))

∂a

∣
∣
∣
∣
a=â

]

︸ ︷︷ ︸

=0

+
1

2
(a− â)t

[
∂2 ln (p(y,a|A))

∂2a

∣
∣
∣
∣
a=â

]

(a− â)

(18)

Proof that the 2nd term is zero: By noting that ln (p(y,a|A)) = ln



p(a|y,A)p(y|A)
︸ ︷︷ ︸

indep. of a



,

we get ∂ ln(p(y,a|A))
∂a

∣
∣
∣
a=â

= ∂ ln(p(a|y,A))
∂a

∣
∣
∣
a=â

= 0 by definition of the MAP.

So we come up with,

ln (p(y,a|A)) ≃ ln (p(y, â|A))−
1

2
(a− â)tΣ−1(a− â) (19)

with Σ−1 = −
[

∂2 ln(p(y,a|A))
∂2a

∣
∣
∣
a=â

]

. Replacing (19) in (17) under the Laplace

approximation yields,

p(y|A) = p(y, â|A)

∫

RP

exp

(

−
1

2
(a− â)tΣ−1(a− â)

)

da (20)

N.B.: The strict equality comes from the Laplace approximation that as-
sumes that the pdf is Gaussian around the MAP.

Recalling that p(y|A) = p(y,a|A)
p(a|y,A)

, it is straightforward to guess that, at

the MAP (Σ = Ĉaa), the integral in (20) is equal to,

∫

RP

exp

(

−
1

2
(a− â)tΣ−1(a− â)

)

da =
1

p(â|y,A)
= (2π)P/2|Ĉaa|

1/2.

We conclude that,

p(y|A) = p(y, â|A)(2π)P/2|Ĉaa|
1/2 (21)

The Kashyap information criterion is defined as the deviance, namely,

KICA = −2 ln (p(y|A)) = −2 ln (p(y, â|A))− P ln(2π)− ln
(

|Ĉaa|
)

(22)
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⇔ KICA = −2 ln (p(y|â,A))− 2 ln (p(â|A))− P ln(2π)− ln
(

|Ĉaa|
)

(23)
Conclusion: Under the assumption that the model is linear and that the error
is Gaussian, the best subset of multi-indexes A (or best model) is the one
with the lowest KIC.

4 Concluding remarks

OLS (Gaussian homoscedastic likelihood+uniform prior) provides unbiased
estimates of the coefficients. But it sometimes faces convergence issues, es-
pecially when the y-data have outliers. In that case, imposing informative
prior (ridge regression or LASSO) might help overcoming this issue although
providing biased estimates. Moreover, the choice of the prior’s hyperparam-
eter can be non trivial. LASSO (Laplace prior) is known to provide very
sparse linear models meaning that many coefficients are set to zero and can
be withdrawn from the model though. But in my experience with the KIC
model selection criterion, ridge regression (Gaussian prior) performs as well
as LASSO in most cases.

The formulas derived in the present document have served to derive the
Bayesian sparse polynomial chaos expansion (BSPCE) algorithm in Shao
et al. [2017]. BSPCE takes the form of Eq.(1) with ψα as tensor-product of
univariate orthogonal polynomials. The latter has proven to be very efficient
for performing global sensitivity analysis of computer model responses under
the assumption that the input dataset (namely, x) is sampled from inde-
pendent distributions. The algorithm of BSPCE relies on a stepwise linear
regression strategy. At each step, a new candidate is added to the current
subset A and the associated KIC is assessed. If the latter is worse than the
previous one, the new element is withdrawn from the subset. Notably, the
KICMAP is implemented with Gaussian prior (ridge regression) assigned to
aα that favours low-dimensional and low-degree polynomial elements (spe-
cific choice of Caa).
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A. Schöniger, T. Wöhling, L. Samaniego, and W. Novak. Model selec-
tion on solid ground: Rigourous comparison of nine ways to evaluate
Bayesian evidence. Water Resources Research, 50:9484–9513, 2014. doi:
10.1002/2014WR016062.

Q. Shao, A. Younes, M. Fahs, and T. A. Mara. Bayesian sparse polyno-
mial chaos expansion for global sensitivity analysis. Computer Methods in

Applied Mechanics & Engineering, 318:474–496, 2017.

10


