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Abstract. In this paper, we examine some aspects of the BTT (basic triangle theorem), first
published in 2011 (see [8]).
In a first part, we review the interplay between integration of Non Commutative Differential
equations and paths drawn on Magnus groups and some of their closed subgroups.
In a second part, we provide a localized version of the BTT and aply it to prove the indepen-
dence of hyperlogarithms over various function algebras. This version provides direct access
to rings of scalars and avoids the recourse to fraction fields as that of meromorphic functions
for instance.

1 Introduction

Iterated integrals (Lappo-Danielevskii), K.-T. Chen [6,7] (path spaces, loops spaces, algebraic topol-
ogy), Brown, Kontsevich
In a second step, we will use an analogue of the well-known closed subgroup theorem (also called
Cartan theorem for finite dimensional Lie groups) which, in the Banach Lie context can be stated
as follows.
Let B be a Banach algebra (with unit e) and G a closed subgroup of the open set B×. By a path
“drawn on T ” (T ⊂ B) is understood any function ϕ : I → T where I is a open real interval.
The first step is to establish what would be seen as the Lie algebra of G.
Let L = L(G) be the set of tangent vectors of G at the origin i.e.

L(G) = {γ ′(0) | γ : I → G is differentiable at 0 (= 0R) and γ(0) = e} (1)

Proposition 1 (see [11]). The set L(G) has the following properties

1) If u ∈ L(G), then, the one-parameter group t 7→ et·u is drawn on G
2) L(G) is a closed Lie subalgebra of B
3) Let g ∈ B s.t. ||g − e|| < 1, then

log(g) ∈ L(G) =⇒ g ∈ G

2 BTT theorem

2.1 Background

Notations about alphabets and (noncommutative) series are standard and can be found in [1].
Set of variables, series, Dirac-Schützenberger duality, Magnus and Hausdorff groups. Series with
constant and variable coefficients. Differential rings and algebras.

2.2 For the Magnus group

We can always consider a series with variable coefficients S ∈ H(Ω)〈〈X 〉〉 as a function i.e. with, for
all z ∈ Ω

S(z) :=
∑

w∈X ∗

〈S | w〉(z)w (2)

we get an embedding H(Ω)〈〈X 〉〉 →֒ C〈〈X 〉〉Ω . With this point of view in head, we can always consider
series S ∈ H(Ω)〈〈X 〉〉 such that 〈S | 1X ∗〉 = 1H(Ω) as (holomorphic) paths drawn on the Magnus
group. The Non commutative differential equations with left multiplier can be expressed in the
context of general differential algebras.



Theorem 1 (See Th 1 in [8]). Let (A, d) be a k-commutative associative differential algebra with
unit (ker(d) = k, a field) and C be a differential subfield of A (i.e. d(C) ⊂ C and k ⊂ C). Let
X be some alphabet (i.e. some set) and we define d : A〈〈X〉〉 → A〈〈X〉〉 to be the map given by
〈d(S) | w〉 = d(〈S | w〉). We suppose that S ∈ A〈〈X〉〉 is a solution of the differential equation

d(S) = MS ; 〈S | 1X∗〉 = 1A (3)

where the multiplier M is a homogeneous series (a polynomial in the case of finite X) of degree 1,
i.e.

M =
∑

x∈X

uxx ∈ C〈〈X〉〉 . (4)

The following conditions are equivalent :

i) The family (〈S | w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S | y〉)y∈X∪{1X∗} is free over C.
iii) The family (ux)x∈X is such that, for f ∈ C and α ∈ k(X) (i.e. supp(α) is finite)

d(f) =
∑

x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (5)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(

(ux)x∈X

)

= {0} . (6)

Proof. For convenience of the reader, we enclose here the demonstration given in Th 1 [8].
(i)=⇒(ii) Obvious.
(ii)=⇒(iii)
Suppose that the family (〈S | y〉)y∈X∪{1X∗} (coefficients taken at letters and the empty word) of
coefficients of S were free over C and let us consider the relation as in (5)

d(f) =
∑

x∈X

αxux . (7)

We form the polynomial P = −f1X∗ +
∑

x∈X αxx. One has d(P ) = −d(f)1X∗ and

d(〈S | P 〉) = 〈d(S) | P 〉+ 〈S | d(P )〉 = 〈MS | P 〉 − d(f)〈S | 1X∗〉 = (
∑

x∈X

αxux)− d(f) = 0 (8)

whence 〈S | P 〉 must be a constant, say λ ∈ k. For Q = P − λ.1X∗ , we have

supp(Q) ⊂ X ∪ {1X∗} and 〈S | Q〉 = 〈S | P 〉 − λ〈S | 1X∗〉 = 〈S | P 〉 − λ = 0 .

This, in view of (ii), implies that Q = 0 and, as Q = −(f+λ)1X∗+
∑

x∈X αxx, one has, in particular,
supp(α) = ∅ (and, as a byproduct, f = −λ which is indeed the only possibility for the L.H.S. of (5)
to occur).
(iii)⇐⇒(iv)
Obvious, (iv) being a geometric reformulation of (iii).
(iii)=⇒(i)
Let K be the kernel of P 7→ 〈S | P 〉 (linear C〈X〉 → A) i.e.

K = {P ∈ C〈X〉|〈S | P 〉 = 0} . (9)

If K = {0}, we are done. Otherwise, let us adopt the following strategy.
First, we order X by some well-ordering < ([2] III.2.1) and X∗ by the graded lexicographic ordering
≺ defined as follows

u ≺ v ⇐⇒ |u| < |v| or (u = pxs1 , v = pys2 and x < y). (10)

It is easy to check that X∗ is also a well-ordered by ≺. For each nonzero polynomial P , we denote
by lead(P ) its leading monomial; i.e. the greatest element of its support supp(P ) (for ≺).
Now, as R = Kr {0} is not empty, let w0 be the minimal element of lead(R) and choose a P ∈ R
such that lead(P ) = w0. We write

P = fw0 +
∑

u≺w0

〈P | u〉u ; f ∈ Cr {0} . (11)
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The polynomial Q = 1
f
P is also in R with the same leading monomial, but the leading coefficient is

now 1; and so Q is given by

Q = w0 +
∑

u≺w0

〈Q | u〉u . (12)

Differentiating 〈S | Q〉 = 0, one gets

0 = 〈d(S) | Q〉+ 〈S | d(Q)〉 = 〈MS | Q〉+ 〈S | d(Q)〉 =
〈S | M †Q〉+ 〈S | d(Q)〉 = 〈S | M †Q+ d(Q)〉 (13)

with

M †Q+ d(Q) =
∑

x∈X

ux(x
†Q) +

∑

u≺w0

d(〈Q | u〉)u ∈ C〈X〉 . (14)

It is impossible that M †Q + d(Q) ∈ R because it would be of leading monomial strictly less than
w0, hence M †Q+ d(Q) = 0. This is equivalent to the recursion

d(〈Q | u〉) = −
∑

x∈X

ux〈Q | xu〉 ; for x ∈ X , v ∈ X∗. (15)

From this last relation, we deduce that 〈Q | w〉 ∈ k for every w of length deg(Q) and, because
〈S | 1X∗〉 = 1A, one must have deg(Q) > 0. Then, we write w0 = x0v and compute the coefficient
at v

d(〈Q | v〉) = −
∑

x∈X

ux〈Q | xv〉 =
∑

x∈X

αxux (16)

with coefficients αx = −〈Q | xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X . Condition (5) implies that all
coefficients 〈Q | xv〉 are zero; in particular, as 〈Q | x0v〉 = 1, we get a contradiction. This proves
that K = {0}.

3 Localization

We will now establish the following extension of Theorem 1 in [8]. Let (A, d) be a k-commutative as-
sociative differential algebra with unit (ker(d) = k, a field). We consider a solution of the differential
equation

d(S) = MS ; 〈S | 1X∗〉 = 1A (17)

where the multiplier M is a homogeneous series (a polynomial in the case of finite X) of degree 1,
i.e.

M =
∑

x∈X

uxx ∈ A〈〈X〉〉 . (18)

Proposition 2 (Thm1 in [8], Localized form). Let (A, d) be a commutative associative differ-
ential ring (ker(d) = k being a field) and C be a differential subring (i.e. d(C) ⊂ C) of A which is an
integral domain containing the field of constants.
We suppose that, for all x ∈ X, ux ∈ C and that S ∈ A〈〈X〉〉 is a solution of the differential equation
(17) and that (ux)x∈X ∈ CX .
The following conditions are equivalent :

i) The family (〈S | w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S | y〉)y∈X∪{1X∗} is free over C.

iii’) For all f1, f2 ∈ C, f2 6= 0 and α ∈ k(X), we have the property

W (f1, f2) = f2
2 (

∑

x∈X

αxux) =⇒ (∀x ∈ X)(αx = 0) . (19)

where W (f1, f2), the wronskian, stands for d(f1)f2 − f1d(f2).

Proof. (i.=⇒ ii.) being trivial, remains to prove (ii.=⇒ iii’.) and (iii’.=⇒ i.). To this end, we localize
the situation w.r.t. the multiplicative subset C× := Cr{0} as can be seen in the following commutative
cube
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C Fr(C)

A A[(C×)−1]

C Fr(C)

A A[(C×)−1]

ϕC

j

d

dfrac

jfrac

ϕA

dfrac

ϕC

j jfrac

ϕA

d
(20)

We give here a detailed demonstration of the commutation which provides, in passing, the labelling
of the arrows.
Left face. – Comes from the fact that d(C) ⊂ C, j being the canonical embedding.
Upper and lower faces. – We first construct the localization
ϕA : A −→ A[(C×)−1] w.r.t. the multiplicative subset C× ⊂ Ar {0} (recall that C has no zero
divisor). Now, from standard theorems (see [5], ch2 par. 2 remark 3 after Def. 2, for instance), we
have

ker(ϕA) = {u ∈ A|(∃v ∈ C×)(uv = 0)} (21)

For every intermediate ring C ⊂ B ⊂ A, we remark that the composittion

B →֒ A ϕA−→ A[(C×)−1]

realises the ring of fractions B[(C×)−1] which can be identified with the subalgebra generated by
ϕA(B) and the set of inverses ϕA(C×)−1. Applying this to C, and remarking that C[(C×)−1] ≃ Fr(C),
we get the embedding jfrac and the commutation of upper and lower faces.
Front and rear faces. – From standard constructions (see e.g. the book [15]), there exists a unique
dfrac ∈ Der(A[C×)−1]) such that these faces commute.
Right face. – Commutation comes from the fact that dfracjfrac and jfracdfrac coincide on ϕC(C)
hence on ϕC(C×) and on their inverses. Therefore on all Fr(C).
From the constructions it follows that the arrows (derivations, morphisms) are arrows of k-algebras.

Now, we set

1. S̄ =
∑

w∈X∗ ϕA(〈S | w〉)w ∈ A[C×)−1]〈〈X〉〉
2. M̄ =

∑

x∈X ϕC(ux)x ∈ A[C×)−1]〈〈X〉〉
it is clear, from the commutations, that (A[C×)−1]〈〈X〉〉,dfrac) where dfrac is the extension of dfrac
to the series, is a differential algebra and that

dfrac(S̄) = M̄S̄ ; 〈S̄ | 1〉 = 1 (22)

we are now in the position to resume the proofs of (ii.=⇒ iii’.) and (iii’.=⇒ i.).
ii.=⇒ iii’.) Supposing (ii), we remark that the family of coefficients

(〈S̄ | y〉)y∈X∪{1X∗}

is free over C1. Indeed, let us suppose a relation
∑

y∈X∪{1X∗}

gy 〈S̄ | y〉 = 0 with (gy)y∈X∪{1X∗} ∈ C(X∪{1X∗}) (23)

this relation is equivalent to

ϕA(
∑

y∈X∪{1X∗}

gy 〈S | y〉) = 0 (24)

which, in view of (21), amounts to the existence of v ∈ C× such that

0 = v(
∑

y∈X∪{1X∗}

gy 〈S | y〉) =
∑

y∈X∪{1X∗}

vgy 〈S | y〉 (25)

1 As ϕC is injective on C we identify ϕC(C) and C, this can be unfolded on request, of course.
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which implies (∀y ∈ X ∪ {1X∗})(vgy = 0) but, C being without zero divisor, one gets

(∀y ∈ X ∪ {1X∗})(gy = 0) (26)

which proves the claim. This implies in particular, by chasing denominators, that the family of
coefficients

(〈S̄ | y〉)y∈X∪{1X∗}

is free over Fr(C). This also implies2 that ϕA is injective on

spanC(〈S | y〉)y∈X∪{1X∗} (27)

To finish the proof that (ii.=⇒ iii’.), let us choose f1, f2 ∈ C with f2 6= 0 and set some relation which
reads

W (f1, f2) = f2
2 (

∑

x∈X

αxux) (28)

with α ∈ k(X), then

(
∑

x∈X

αxux) =
W (f1, f2)

f2
2

= dfrac(
f1
f2

) (29)

but, in view of Th1 in [8] applied to the differential field Fr(C), we get α ≡ 0.
(iii’.=⇒ i.) The series S̄ satisfies

d(S̄) = M̄S̄ ; 〈S̄ | 1X∗〉 = 1A[C×)−1] = 1Fr(C) (30)

and remarking that

1. all f in the differential field Fr(C) can be expressed as f = f1
f2

2. condition (iii’) for (S,A, C, d,X) implies condition (iii) for (S̄,A[C×)−1], F r(C), dfrac, X)3 which,
in turn, implies the Fr(C)-freeness of (〈S̄ | w〉)w∈X∗ hence its C-freeness and, by inverse image4

the C-freeness of (〈S | w〉)w∈X∗ .

Remark 1. i) It seems reasonable to think that the whole commutation of the cube could be under-
stood by natural transformations within an appropriate category. If yes, this will be inserted in a
forthcoming version.
ii) In fact, in the localized form and with C not a differential field, (iii) is strictly weaker than (iii′),
as shows the following family of counterexamples

1. Ω = Cr (]−∞, 0])
2. X = {x0}, u0 = zβ, β /∈ Q
3. C0 = C{{zβ}} = C.1Ω ⊕ spanC{z(k+1)β−l}k,l≥0

4. S = 1Ω + (
∑

n≥1
zn(β+1)

(β+1)nn! )

Application 1 As a result of the theory of domains (see [12]), the conc-characters (αx0)
∗, (βx1)

∗

are in the domain of Li• (see [12] for details), then due to the fact that H(Ω) is nuclear, their shuffle
(αx0)

∗
⊔⊔(βx1)

∗ = (αx0 + βx1)
∗ is also in Dom(Li•). Let us compute

Li(αx0)
∗

⊔⊔(βx1)
∗)) = Li(αx0)

∗ Li(βx1)
∗) = zα(1− z)β (31)

Now, for a family of functions F = (fi)i∈I , let us note C{fi}i∈I the algebra generated by F within
H(Ω) and then set CC := C{zα(1− z)β}α,β∈C. We, at once, remark that, as M = {zα(1− z)β}α,β∈C

is a monoid,
CC = spanC(z

α(1− z)β)α,β∈C = C[zα(1− z)−β ]α,β∈C

as well.
In this aplication, we give a detailed proof that the family (Liw)w∈X∗ is CC-linearly independent.
Let us suppose Pi ∈ CC, i = 1 . . . 35 such that

P1(z) + P2(z) log(z) + P3(z)(log(
1

1 − z
)) = 0Ω

2 And indeed is equivalent under the assumption of (ii).
3 Once again we identify, with no loss, k ⊂ C, the latter being idetified with its image through ϕA[C×)−1].
4 If the image (through a A-linear arrow) of a family is A-free then the family itself is A-free.
5 i.e. elements of the algebra of the monoid M = {zα(1− z)β}α,β∈C {zα(1− z)β}α,β∈C
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We first prove that P2 =
∑

i∈F ciz
αi(1− z)βi is zero using the deck transformation D0 of index one

around zero.
One has Dn

0 (
∑

i∈F ciz
αi(1− z)βi) =

∑

i∈F ciz
αi(1 − z)βie2iπ.nαi , the same calculation holds for all

Pi which proves that all Dn
0 (Pi) are bounded. But one has Dn

0 (log(z)) = log(z) + 2iπ.n and then

Dn
0 (P1(z) + P2(z) log(z) + P3(z)(log(

1

1− z
))) =

Dn
0 (P1(z)) +Dn

0 (P2(z))(log(z) + 2iπ.n) +Dn
0 (P3(z)) log(

1

1− z
) = 0

It suffices to build a sequence of integers nj → +∞ such that limj→∞ D
nj

0 (P2(z)) = P2(z) which is
a consequence of the following lemma.

Lemma 1. Let us consider a homomorphism ϕ : N → G where G is a compact (Hausdorff) group,
then it exists uj → +∞ such that

lim
j→∞

ϕ(uj) = e

Proof. First of all, due to the compactness of G, the sequence ϕ(n) admits a subsequence ϕ(nk)
convergent to some ℓ ∈ G. Now one can refine the sequence as nkj

such that

0 < nk1 − nk0 < . . . < nkj+1 − nkj
< nkj+2 − nkj+1 < . . .

With uj = nkj+1 − nkj
one has limj→∞ ϕ(uj) = e.

End of the proof One applies the lemma to the morphism

n 7→ (e2iπ.nαi)i∈F ∈ UF

4 Closed subgroup property and algebraic independance.

5 Appendix.

5.1 Closed subgroup (Cartan) theorem in Banach algebras

This section is meant to be withdrawn afterwards6 and integrated within the introduction.
Let B be a Banach algebra (with unit e) and G a closed subgroup of the open set B×. By a path
“drawn on T ” (T ⊂ B) is understood any function ϕ : I → T where I is a open real interval.
The first step is to establish what would be seen as the Lie algebra of G.
Let L = L(G) be the set of tangent vectors of G at the origin i.e.

L(G) = {γ ′(0) | γ : I → G is differentiable at 0 (= 0R) and γ(0) = e} (32)

Proposition 3. The set L(G) has the following properties

1) If u ∈ L(G), then, the one-parameter group t 7→ et·u is drawn on G
2) L(G) is a closed Lie subalgebra of B
3) Let g ∈ B s.t. ||g − e|| < 1, then

log(g) ∈ L(G) =⇒ g ∈ G

Proof. 1) Let γ be such a tangent path (differentiable at 0 and s.t. γ(0) = e), then one can write

γ(t) = e+ t · γ ′(0) + t.ǫ1(t) with lim
t→0

ǫ1(t) = 0B (33)

and then, t ∈ [−1, 1] being fixed,

γ(
t

n
) = e+

t

n
· γ ′(0) +

t

n
· ǫ2(n) with lim

n→∞
ǫ2(n) = 0B (34)

now, for ||h|| < 1, one has (in B) log(e+ h) = h+ ||h|| · ǫ3(h) so, with
h =

t

n
· γ ′(0) +

t

n
· ǫ2(n), we get

n log(γ(
t

n
)) = t · (γ ′(0) + ǫ2(n)) + ||t · (γ ′(0) + ǫ2(n))||ǫ3(h) (35)

6 Following the advise of Gauss “no self-respecting architect leaves the scaffolding in place after completing
the building”.
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hence limn→∞ n log(γ(
t

n
)) = t · γ ′(0) and then

lim
n→∞

γ(
t

n
)n = lim

n→∞
e
n·log(γ(

t

n
))
= et·γ

′(0) (36)

as γ is drawn on G, each γ(
t

n
)n belongs to G and it is the same for the limit (G is closed), then

et·γ
′(0) ∈ G for all t ∈ [−1, 1]. For general t ∈ R, one just has to use the archimedean property that,

for some N ∈ N≥1,
t

N
∈ [−1, 1] and remark that et·γ

′(0) = (e

t

N
·γ ′(0)

)N .

2) To prove that L(G) is a Lie subalgebra of B it suffices to provide suitable paths. Let u, v ∈ L(G),
we have

Path Tangent vector (at zero)

et·uet·v u+ v
eαt·u αu

Let γ1(t) = er(t)·uer(t)·ve−r(t)·ue−r(t)·v

with r(t) =
√
2 · t for t ≥ 0 [u, v]

γ(t) = γ1(t) for t ≥ 0 and
= (γ1(−t))−1 for t ≤ 0

Remains to show that L(G) is closed. To see this, let us consider a sequence (un)n∈N in L(G)
which converges to u. For every fixed t ∈ R, limn→∞ et·un = et·u because exp : B → B is continuous,
then t → et·u is drawn on G and u ∈ L(G).

3) Set u = log(g). Now, as u ∈ L(G), the one-parameter group t → et·u is drawn on G and
g = (et·u)

∣

∣

t=1
(in the neighourhood ||g − e|| < 1, we have exp(log(g)) = g).

Now, we have an analogue of Cartan’s theorem in the context of Banach algebras

Theorem 2. Let G ⊂ B be a closed subgroup of B× and L(G) as above. Let I ⊂ R be a non-void
open interval and M : I → L(G) to be a continuous path drawn on L(G). Let t0 ∈ I, g0 ∈ G. Then

1) The system

Σ(t0,M, g0)

{

d

dt
(S(t)) = M(t).S(t) (NCDE)

S(t0) = g0 (Init. Cond.)
(37)

admits a unique solution S : I → B.
2) This solution S is a path drawn on G.

Proof. 1-2) I sketch the proof below

1) Let J be an open real interval, t0 ∈ J and m ∈ C0(J, L(G)). In order to paste them together, we
call “local solution” (of Σ(t0,m, g)), a C1 map J → G fulfilling the following system

Σ(t0,m, g)

{

d

dt
(T (t)) = m(t).T (t) (NCDE)

T (t0) = g (Init. Cond.)
(38)

2) We first prove that there exists a local solution to any system Σ(0,m, e) for
t0 = 0, g = e. As m is continuous, there is an open interval J , containing zero, in which |t| < 1
and is such that ||m1(t)|| ≤ B < 1. In these conditions, Picard’s process

{

T0 = e

Tn+1(t) =
∫ t

0
m(s).Tn(s)ds

(39)

converges absolutely (in C0(J,B)) to a function T ∈ C0(J,B) such that

T (t) = e+

∫ t

0

m(s).T (s)ds (40)

this proves that, in fact, T ∈ C1(J,B). Remains to prove that T is drawn on G.
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3) If t and B are sufficiently small est1, we have ||T (t)− e|| < 1 and can compute Ω(t) = log(T ),
which is C1 and, by Magnus expansion (see below 5.2), satisfies

Ω′(t) =
adΩ

eadΩ − IdB
[Ω] (41)

where, the symbol
adΩ

eadΩ − IdB
denotes the substitution of adΩ in the series

∑

n≥0 Bn

zn

n!
(Bn

being the Bernouilli numbers) est2. But we know that Ω(t) is the limit of the following process






Ω1(t) =
∫ t

0
m(s)ds

Ωn(t) =
∑n−1

j=1

Bj

j!

∑

k1+···+kj=n−1

ki≥1

∫ t

0 adΩk1
· · · adΩkj

[m(s)]ds
(42)

each Ωn is drawn on L(G) as shows the preceding recursion. Hence T (t) = eΩ(t) is drawn on G.
4) We can now shift the situation in order to compute a local solution of any system Σ(t0,m, g) as

follows (given J an open real interval, t0 ∈ J and m ∈ C0(J, L(G))
– Find a local solution R of Σ(0,m1, e) with m1(t) = m(t+ t0)−m(t0). For it

R′(t) = (m(t+ t0)−m(t0))R(t) ; T (0) = e (43)

– Define T (t) := R(t)et·m(t0)g, one has

T ′(t) = m(t)T (t) ; T (t0) = g (44)

5) We now return to our original system Σ(t0,M, g0). By the previous item (4) we know that
it admtis at least a local solution (J, S). We remark also that if we have two local solutions
(J1, S1), (J2, S2) they coincide on J1 ∩ J2, thus th union of all graphs on local solutions of
Σ(t0,M, g0) is functional and is the maximal solution (Jmax, Smax) of Σ(t0,M, g0). Now, if we
had bm = sup(Jmax) < sup(I), we could consider the system Σ(bm,M, e) and a local solution T
of it on some ]a, b[ with a < bm < b, now taking some intermediate point t1 within ]a, bm[, we
observe that TSmaxT

−1(t1)Smax(t1) and Smax coincide on ]a, bm[ and the union of their graphs
would be a strict extension of Smax. A contradiction, then bm = sup(I). A similar reasoning
proves that am = inf(I) and then theorem 2 is proved.

5.2 About Magnus expansion and Poincaré-Hausdorff formula

Formal derivation of Poincaré-Hausdorff and Magnus formulas Let (C{X}, ∂) be the dif-
ferential algebra freely generated by X (a formal variable)7. X be a formal variable and (CX, ∂) be
We define a comultiplication ∆ by asking that all X [k] be primitive note that ∆ commutes with the

derivation. Setting, in Ĉ{X}, D = ∂(eX)e−X , direct computation shows that D is primitive and
hence a Lie series, which can therefore be written as a sum of Dynkin trees.
On the other hand, the formula

D =
∑

k≥1

1

k!

k−1
∑

l=0

X l(∂X)Xk−1−l ·
∑

n≥0

(−X)n

n!
(45)

suggests that all bedegrees (in X, ∂X) are of the form [n, 1] and thus, there exists an univariate
series Φ(Y ) =

∑

n≥0 anY
n such that D = Φ(adX)[∂X ]. Using left and right multiplications by X

(resp. noted g, d), we can rewrite (45) as

D =
(

∑

k≥1

1

k!

k−1
∑

l=0

gldk−1−l[∂X ]
)

e−X (46)

but, from the fact that g, d commute, the inner sum
∑k−1

l=0 gldk−1−l is ruled out by the the following
identity (in C[Y, Z], but computed within C(Y, Z))

k−1
∑

l=0

Y lZk−1−l =
Y k − Zk

Y − Z
=

(

(Y − Z) + Z
)k − Zk

Y − Z
=

k
∑

j=1

(

k

j

)

(Y − Z)jZk−j (47)

7 It is, in fact, the free algebra C〈(X [k])k≥0〉 (with X [0] = X) endowed with ∂(X [k]) = X [k+1], the construc-
tion is similar to what is to be found in [15], but in the noncommutative realm.
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Taking notice that (g − d) = adX and pluging (47) into (45), one gets

D =
(

∑

k≥1

1

k!

k
∑

j=1

(

k

j

)

(adX)j−1dk−j [∂X ]
)

e−X =

1

adX

(

∑

k≥1

k
∑

j=1

1

j!(r − j)!
(adX)jdk−j [∂X ]

)

e−X =
eadX − 1

adX
[X ′] (48)

which is Poincaré-Hausdorff formula.

Application Let G be a Lie group with Lie algebra L. Let X(t) be a C1 path drawn within L
(setting as above i.e. X(0) = 0), then

(eX(t))′e−X(t) =
eadX − 1

adX
[X ′(t)] (49)

In particular, if S(t) is a solution of the system

Σ(0,M, e)

{

d

dt
(S(t)) = M(t).S(t) (NCDE)

S(0) = e (Init. Cond.)

then Ω = log(S), at a neighbourhood of t = 08 must satisfy Ω′ =
adΩ

eadΩ − 1
[M ] (this identity9

lives in the completion of the non-commutative free differential algebra generated by the single X ,
constructed like in [15] but non commutative10). This guarantees the existence of a local solution
drawn on G.
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