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Abstract

In this short note, we give a localized version of the basic triangle theorem, first published in

2011 (see [6]) in order to prove the independence of hyperlogarithms over various function

fields. This version provides direct access to rings of scalars and avoids the recourse to

fraction fields as that of meromorphic functions for instance.

1 Original theorem

Non commutative differential equations with left multiplier can be expressed in the

context of general differential algebras. Notations about alphabets and (noncom-

mutative) series are standard and can be found in [1].



Theorem 1.1 (Th 1 in [6]) Let (A ,d) be a k-commutative associative differential

algebra with unit (ker(d) = k, a field) and C be a differential subfield of A (i.e.

d(C ) ⊂ C and k ⊂ C ). Let X be some alphabet (i.e. some set) and we define

d : A 〈〈X〉〉→ A 〈〈X〉〉 to be the map given by 〈d(S) | w〉= d(〈S | w〉). We suppose

that S ∈ A 〈〈X〉〉 is a solution of the differential equation

d(S) = MS ; 〈S | 1X∗〉= 1A (1)

where the multiplier M is a homogeneous series (a polynomial in the case of finite

X) of degree 1, i.e.

M = ∑
x∈X

uxx ∈ C 〈〈X〉〉 . (2)

The following conditions are equivalent :

i) The family (〈S | w〉)w∈X∗ of coefficients of S is free over C .

ii) The family of coefficients (〈S | y〉)y∈X∪{1X∗} is free over C .

iii) The family (ux)x∈X is such that, for f ∈ C and α ∈ k(X) (i.e. supp(α) is finite)

d( f ) = ∑
x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (3)

iv) The family (ux)x∈X is free over k and

d(C )∩ spank

(

(ux)x∈X

)

= {0} . (4)

Proof. For convenience of the reader, we enclose here the demonstration given in

Th 1 [6].

(i)=⇒(ii) Obvious.

(ii)=⇒(iii)

Suppose that the family (〈S | y〉)y∈X∪{1X∗} (coefficients taken at letters and the

empty word) of coefficients of S were free over C and let us consider the relation

as in (3)

d( f ) = ∑
x∈X

αxux . (5)

We form the polynomial P =− f 1X∗ +∑x∈X αxx. One has d(P) =−d( f )1X∗ and

d(〈S |P〉)= 〈d(S) |P〉+〈S | d(P)〉= 〈MS |P〉−d( f )〈S | 1X∗〉=(∑
x∈X

αxux)−d( f )= 0

(6)

whence 〈S | P〉 must be a constant, say λ ∈ k. For Q = P−λ .1X∗ , we have

supp(Q)⊂ X ∪{1X∗} and 〈S | Q〉= 〈S | P〉−λ 〈S | 1X∗〉= 〈S | P〉−λ = 0 .
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This, in view of (ii), implies that Q = 0 and, as Q =−( f +λ )1X∗ +∑x∈X αxx, one

has, in particular, supp(α) = /0 (and, as a byproduct, f = −λ which is indeed the

only possibility for the L.H.S. of (3) to occur).

(iii)⇐⇒(iv)

Obvious, (iv) being a geometric reformulation of (iii).

(iii)=⇒(i)

Let K be the kernel of P 7→ 〈S | P〉 (linear C 〈X〉 → A ) i.e.

K = {P ∈ C 〈X〉|〈S | P〉= 0} . (7)

If K = {0}, we are done. Otherwise, let us adopt the following strategy.

First, we order X by some well-ordering < ([2] III.2.1) and X∗ by the graded lexi-

cographic ordering ≺ defined as follows

u ≺ v ⇐⇒ |u|< |v| or (u = pxs1 , v = pys2 and x < y). (8)

It is easy to check that X∗ is also a well-ordered by ≺. For each nonzero polynomial

P, we denote by lead(P) its leading monomial; i.e. the greatest element of its

support supp(P) (for ≺).

Now, as R =K r{0} is not empty, let w0 be the minimal element of lead(R) and

choose a P ∈ R such that lead(P) = w0. We write

P = f w0 + ∑
u≺w0

〈P | u〉u ; f ∈ Cr{0} . (9)

The polynomial Q = 1
f
P is also in R with the same leading monomial, but the

leading coefficient is now 1; and so Q is given by

Q = w0 + ∑
u≺w0

〈Q | u〉u . (10)

Differentiating 〈S | Q〉= 0, one gets

0 = 〈d(S) | Q〉+ 〈S | d(Q)〉= 〈MS | Q〉+ 〈S | d(Q)〉=
〈S | M†Q〉+ 〈S | d(Q)〉= 〈S | M†Q+d(Q)〉 (11)

with

M†Q+d(Q) = ∑
x∈X

ux(x
†Q)+ ∑

u≺w0

d(〈Q | u〉)u ∈ C 〈X〉 . (12)

It is impossible that M†Q+d(Q) ∈ R because it would be of leading monomial

strictly less than w0, hence M†Q+d(Q) = 0. This is equivalent to the recursion

d(〈Q | u〉) =− ∑
x∈X

ux〈Q | xu〉 ; for x ∈ X , v ∈ X∗
. (13)
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From this last relation, we deduce that 〈Q | w〉 ∈ k for every w of length deg(Q)
and, because 〈S | 1X∗〉= 1A , one must have deg(Q)> 0. Then, we write w0 = x0v

and compute the coefficient at v

d(〈Q | v〉) =− ∑
x∈X

ux〈Q | xv〉= ∑
x∈X

αxux (14)

with coefficients αx =−〈Q | xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X . Condition (3)

implies that all coefficients 〈Q | xv〉 are zero; in particular, as 〈Q | x0v〉= 1, we get

a contradiction. This proves that K = {0}.

✷

2 Localization

We will now establish the following extension of Theorem 1 in [6]. Let (A ,d) be

a k-commutative associative differential algebra with unit (ker(d) = k, a field). We

consider a solution of the differential equation

d(S) = MS ; 〈S | 1X∗〉= 1A (15)

where the multiplier M is a homogeneous series (a polynomial in the case of finite

X ) of degree 1, i.e.

M = ∑
x∈X

uxx ∈ A 〈〈X〉〉 . (16)

Proposition 2.1 (Thm1 in [6], Localized form) Let (A ,d) be a commutative as-

sociative differential ring (ker(d) = k being a field) and C be a differential subring

(i.e. d(C )⊂C ) of A which is an integral domain containing the field of constants.

We suppose that, for all x ∈ X, ux ∈ C and that S ∈ A 〈〈X〉〉 is a solution of the

differential equation (15) and that (ux)x∈X ∈ C X .

The following conditions are equivalent :

i) The family (〈S | w〉)w∈X∗ of coefficients of S is free over C .

ii) The family of coefficients (〈S | y〉)y∈X∪{1X∗} is free over C .

iii’) For all f1, f2 ∈ C , f2 6= 0 and α ∈ k(X), we have the property

W ( f1, f2) = f 2
2 (∑

x∈X

αxux) =⇒ (∀x ∈ X)(αx = 0) . (17)

where W ( f1, f2), the wronskian, stands for d( f1) f2 − f1d( f2).
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Proof. (i.=⇒ ii.) being trivial, remains to prove (ii.=⇒ iii’.) and (iii’.=⇒ i.). To

this end, we localize the situation w.r.t. the multiplicative subset C× := Cr{0} as

can be seen in the following commutative cube

C Fr(C )

A A [(C×)−1]

C Fr(C )

A A [(C×)−1]

ϕC

j

d

d f rac

j f rac

ϕA

d f rac

ϕC

j j f rac

ϕA

d
(18)

We give here a detailed demonstration of the commutation which provides, in pass-

ing, the labelling of the arrows.

Left face. — Comes from the fact that d(C ) ⊂ C , j being the canonical embed-

ding.

Upper and lower faces. — We first construct the localization

ϕA : A −→ A [(C×)−1] w.r.t. the multiplicative subset C× ⊂ Ar{0} (recall that

C has no zero divisor). Now, from standard theorems (see [5], ch2 §2 remark 3

after Def. 2, for instance), we have

ker(ϕA ) = {u ∈ A |(∃v ∈ C
×)(uv = 0)} (19)

For every intermediate ring C ⊂ B ⊂ A , we remark that the composittion

B →֒ A
ϕA−→ A [(C×)−1]

realises the ring of fractions B[(C×)−1] which can be identified with the subal-

gebra generated by ϕA (B) and the set of inverses ϕA (C×)−1. Applying this to

C , and remarking that C [(C×)−1] ≃ Fr(C ), we get the embedding j f rac and the

commutation of upper and lower faces.

Front and rear faces. — From standard constructions (see e.g. the book [11]),

there exists a unique d f rac ∈Der(A [C×)−1]) such that these faces commute.

Right face. — Commutation comes from the fact that d f rac j f rac and j f racd f rac co-
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incide on ϕC (C ) hence on ϕC (C
×) and on their inverses. Therefore on all Fr(C ).

From the constructions it follows that the arrows (derivations, morphisms) are ar-

rows of k-algebras.

Now, we set

(i) S̄ = ∑w∈X∗ ϕA (〈S | w〉)w ∈ A [C×)−1]〈〈X〉〉
(ii) M̄ = ∑x∈X ϕC (ux)x ∈ A [C×)−1]〈〈X〉〉

it is clear, from the commutations, that (A [C×)−1]〈〈X〉〉,d f rac) where d f rac is the

extension of d f rac to the series, is a differential algebra and that

d f rac(S̄) = M̄S̄ ; 〈S̄ | 1〉= 1 (20)

we are now in the position to resume the proofs of (ii.=⇒ iii’.) and (iii’.=⇒ i.).

ii.=⇒ iii’.) Supposing (ii), we remark that the family of coefficients

(〈S̄ | y〉)y∈X∪{1X∗}

is free over C 1 . Indeed, let us suppose a relation

∑
y∈X∪{1X∗}

gy 〈S̄ | y〉= 0 with (gy)y∈X∪{1X∗} ∈ C
(X∪{1X∗}) (21)

this relation is equivalent to

ϕA ( ∑
y∈X∪{1X∗}

gy 〈S | y〉) = 0 (22)

which, in view of (19), amounts to the existence of v ∈ C× such that

0 = v( ∑
y∈X∪{1X∗}

gy 〈S | y〉) = ∑
y∈X∪{1X∗}

vgy 〈S | y〉 (23)

which implies (∀y ∈ X ∪{1X∗})(vgy = 0) but, C being without zero divisor, one

gets

(∀y ∈ X ∪{1X∗})(gy = 0) (24)

which proves the claim. This implies in particular, by chasing denominators, that

the family of coefficients

(〈S̄ | y〉)y∈X∪{1X∗}

1 As ϕC is injective on C we identify ϕC (C ) and C , this can be unfolded on request, of course.
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is free over Fr(C ). This also implies 2 that ϕA is injective on

spanC (〈S | y〉)y∈X∪{1X∗} (25)

To finish the proof that (ii.=⇒ iii’.), let us choose f1, f2 ∈ C with f2 6= 0 and set

some relation which reads

W ( f1, f2) = f 2
2 (∑

x∈X

αxux) (26)

with α ∈ k(X), then

(∑
x∈X

αxux) =
W ( f1, f2)

f 2
2

= d f rac(
f1

f2
) (27)

but, in view of Th1 in [6] applied to the differential field Fr(C ), we get α ≡ 0.

(iii’.=⇒ i.) The series S̄ satisfies

d(S̄) = M̄S̄ ; 〈S̄ | 1X∗〉= 1A [C×)−1] = 1Fr(C ) (28)

and remarking that

(i) all f in the differential field Fr(C ) can be expressed as f = f1

f2

(ii) condition (iii’) for (S,A ,C ,d,X) implies condition (iii) for

(S̄,A [C×)−1],Fr(C ),d f rac,X) 3 which, in turn, implies the Fr(C )-
freeness of (〈S̄ | w〉)w∈X∗ hence its C -freeness and, by inverse image 4 the

C -freeness of (〈S | w〉)w∈X∗.

✷

Remark 2.2 It seems reasonable to think that the whole commutation of the cube

could be understood by natural transformations within an appropriate category. If

yes, this will be inserted in a forthcoming version.

2 And indeed is equivalent under the assumption of (ii).
3 Once again we identify, with no loss, k ⊂ C , the latter being idetified with its image through

ϕA [C×)−1].
4 If the image (through a A-linear arrow) of a family is A-free then the family itself is A-free.
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3 Closed subgroup property and algebraic independance.

4 Appendix.

4.1 Closed subgroup (Cartan) theorem in Banach algebras

This section is meant to be withdrawn afterwards 5 and integrated within the intro-

duction.

Let B be a Banach algebra (with unit e) and G a closed subgroup of the open set

B×. By a path “drawn on T ” (T ⊂ B) is understood any function ϕ : I → T where

I is a open real interval.

The first step is to establish what would be seen as the Lie algebra of G.

Let L = L(G) be the set of tangent vectors of G at the origin i.e.

L(G) = {γ ′(0) | γ : I → G is differentiable at 0 (= 0R) and γ(0) = e} (29)

Proposition 4.1 The set L(G) has the following properties

1) If u ∈ L(G), then, the one-parameter group t 7→ et·u is drawn on G

2) L(G) is a closed Lie subalgebra of B

3) Let g ∈ B s.t. ||g− e||< 1, then

log(g) ∈ L(G) =⇒ g ∈ G

Proof. 1) Let γ be such a tangent path (differentiable at 0 and s.t. γ(0) = e), then

one can write

γ(t) = e+ t · γ ′(0)+ t.ε1(t) with lim
t→0

ε1(t) = 0B (30)

and then, t ∈ [−1,1] being fixed,

γ(
t

n
) = e+

t

n
· γ ′(0)+

t

n
· ε2(n) with lim

n→∞
ε2(n) = 0B (31)

now, for ||h||< 1, one has (in B) log(e+h) = h+ ||h|| · ε3(h) so, with

h =
t

n
· γ ′(0)+

t

n
· ε2(n), we get

n log(γ(
t

n
)) = t · (γ ′(0)+ ε2(n))+ ||t · (γ ′(0)+ ε2(n))||ε3(h) (32)

5 Following the advise of Gauss “no self-respecting architect leaves the scaffolding in place after

completing the building”.
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hence limn→∞ n log(γ(
t

n
)) = t · γ ′(0) and then

lim
n→∞

γ(
t

n
)n = lim

n→∞
e

n·log(γ(
t

n
))
= et·γ ′(0) (33)

as γ is drawn on G, each γ(
t

n
)n belongs to G and it is the same for the limit (G

is closed), then et·γ ′(0) ∈ G for all t ∈ [−1,1]. For general t ∈ R, one just has to

use the archimedean property that, for some N ∈ N≥1,
t

N
∈ [−1,1] and remark that

et·γ ′(0) = (e

t

N
·γ ′(0)

)N .

2) To prove that L(G) is a Lie subalgebra of B it suffices to provide suitable paths.

Let u,v ∈ L(G), we have

Path Tangent vector (at zero)

et·uet·v u+ v

eαt·u αu

Let γ1(t) = er(t)·uer(t)·ve−r(t)·ue−r(t)·v

with r(t) =
√

2 · t for t ≥ 0 [u,v]

γ(t) = γ1(t) for t ≥ 0 and

= (γ1(−t))−1 for t ≤ 0

Remains to show that L(G) is closed. To see this, let us consider a sequence

(un)n∈N in L(G) which converges to u. For every fixed t ∈ R, limn→∞ et·un = et·u

because exp : B → B is continuous, then t → et·u is drawn on G and u ∈ L(G).

3) Set u = log(g). Now, as u ∈ L(G), the one-parameter group t → et·u is drawn

on G and g = (et·u)
∣

∣

t=1
(in the neighourhood ||g− e||< 1, we have exp(log(g)) =

g). ✷

Now, we have an analogue of Cartan’s theorem in the context of Banach alge-

bras

Theorem 4.2 Let G ⊂ B be a closed subgroup of B× and L(G) as above. Let

I ⊂R be a non-void open interval and M : I → L(G) to be a continuous path drawn

on L(G). Let t0 ∈ I, g0 ∈ G. Then
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1) The system

Σ(t0,M,g0)







d

dt
(S(t)) = M(t).S(t) (NCDE)

S(t0) = g0 (Init. Cond.)

(34)

admits a unique solution S : I → B.

2) This solution S is a path drawn on G.

Proof. 1-2) I sketch the proof below

1) Let J be an open real interval, t0 ∈ J and m ∈C0(J,L(G)). In order to paste them

together, we call “local solution” (of Σ(t0,m,g)), a C1 map J → G fulfilling the

following system

Σ(t0,m,g)







d

dt
(T (t)) = m(t).T(t) (NCDE)

T (t0) = g (Init. Cond.)

(35)

2) We first prove that there exists a local solution to any system Σ(0,m,e) for

t0 = 0, g = e. As m is continuous, there is an open interval J, containing zero,

in which |t|< 1 and is such that ||m1(t)|| ≤ B < 1. In these conditions, Picard’s

process






T0 = e

Tn+1(t) =
∫ t

0 m(s).Tn(s)ds
(36)

converges absolutely (in C0(J,B)) to a function T ∈C0(J,B) such that

T (t) = e+

∫ t

0
m(s).T (s)ds (37)

this proves that, in fact, T ∈C1(J,B). Remains to prove that T is drawn on G.

3) If t and B are sufficiently small est1, we have ||T (t)− e||< 1 and can compute

Ω(t) = log(T ), which is C1 and, by Magnus expansion (see below 4.2), satisfies

Ω′(t) =
adΩ

eadΩ − IdB

[Ω] (38)

where, the symbol
adΩ

eadΩ − IdB

denotes the substitution of adΩ in the series

∑n≥0 Bn
zn

n!
(Bn being the Bernouilli numbers) est2. But we know that Ω(t) is
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the limit of the following process











Ω1(t) =
∫ t

0 m(s)ds

Ωn(t) = ∑n−1
j=1

B j

j!
∑ k1+···+k j=n−1

ki≥1

∫ t
0 adΩk1

· · ·adΩk j
[m(s)]ds

(39)

each Ωn is drawn on L(G) as shows the preceding recursion. Hence T (t)= eΩ(t)

is drawn on G.

4) We can now shift the situation in order to compute a local solution of any system

Σ(t0,m,g) as follows (given J an open real interval, t0 ∈ J and m ∈C0(J,L(G))
• Find a local solution R of Σ(0,m1,e) with m1(t) = m(t + t0)−m(t0). For it

R′(t) = (m(t + t0)−m(t0))R(t) ; T (0) = e (40)

• Define T (t) := R(t)et·m(t0)g, one has

T ′(t) = m(t)T(t) ; T (t0) = g (41)

5) We now return to our original system Σ(t0,M,g0). By the previous item (4) we

know that it admtis at least a local solution (J,S). We remark also that if we

have two local solutions (J1,S1), (J2,S2) they coincide on J1∩J2, thus th union

of all graphs on local solutions of Σ(t0,M,g0) is functional and is the maximal

solution (Jmax,Smax) of Σ(t0,M,g0). Now, if we had bm = sup(Jmax) < sup(I),
we could consider the system Σ(bm,M,e) and a local solution T of it on some

]a,b[ with a < bm < b, now taking some intermediate point t1 within ]a,bm[, we

observe that T SmaxT−1(t1)Smax(t1) and Smax coincide on ]a,bm[ and the union

of their graphs would be a strict extension of Smax. A contradiction, then bm =
sup(I). A similar reasoning proves that am = in f (I) and then theorem 4.2 is

proved.

✷

4.2 About Magnus expansion and Poincaré-Hausdorff formula

Formal derivation of Poincaré-Hausdorff and Magnus formulas

Let (C{X},∂ ) be the differential algebra freely generated by X (a formal vari-

able) 6 . X be a formal variable and (CX ,∂ ) be We define a comultiplication ∆ by

asking that all X [k] be primitive note that ∆ commutes with the derivation. Setting,

6 It is, in fact, the free algebra C〈(X [k])k≥0〉 (with X [0] = X) endowed with ∂ (X [k]) = X [k+1], the

construction is similar to what is to be found in [11], but in the noncommutative realm.
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in Ĉ{X}, D = ∂ (eX )e−X , direct computation shows that D is primitive and hence a

Lie series, which can therefore be written as a sum of Dynkin trees.

On the other hand, the formula

D = ∑
k≥1

1

k!

k−1

∑
l=0

X l(∂X)X k−1−l · ∑
n≥0

(−X)n

n!
(42)

suggests that all bedegrees (in X ,∂X ) are of the form [n,1] and thus, there exists

an univariate series Φ(Y ) = ∑n≥0 anY n such that D = Φ(adX)[∂X ]. Using left and

right multiplications by X (resp. noted g,d), we can rewrite (42) as

D =
(

∑
k≥1

1

k!

k−1

∑
l=0

gldk−1−l [∂X ]
)

e−X (43)

but, from the fact that g,d commute, the inner sum ∑k−1
l=0 gldk−1−l is ruled out by

the the following identity (in C[Y,Z], but computed within C(Y,Z))

k−1

∑
l=0

Y lZk−1−l =
Y k −Zk

Y −Z
=

(

(Y −Z)+Z
)k −Zk

Y −Z
=

k

∑
j=1

(

k

j

)

(Y −Z) jZk− j (44)

Taking notice that (g−d) = adX and pluging (44) into (42), one gets

D =
(

∑
k≥1

1

k!

k

∑
j=1

(

k

j

)

(adX)
j−1dk− j[∂X ]

)

e−X =

1

adX

(

∑
k≥1

k

∑
j=1

1

j!(r− j)!
(adX)

jdk− j[∂X ]
)

e−X =
eadX −1

adX
[X ′] (45)

which is Poincaré-Hausdorff formula.

Application

Let G be a Lie group with Lie algebra L. Let X(t) be a C1 path drawn within L

(setting as above i.e. X(0) = 0), then

(eX(t))′e−X(t) =
eadX −1

adX
[X ′(t)] (46)

12



In particular, if S(t) is a solution of the system

Σ(0,M,e)







d

dt
(S(t)) = M(t).S(t) (NCDE)

S(0) = e (Init. Cond.)

then Ω = log(S), at a neighbourhood of t = 0 7 must satisfy Ω′ =
adΩ

eadΩ −1
[M] (this

identity 8 lives in the completion of the non-commutative free differential algebra

generated by the single X , constructed like in [11] but non commutative 9 ). This

guarantees the existence of a local solution drawn on G.

5 Appendix (between us, to be withdrawn for the paper and

kept elsewhere)

Free generation

I begin here by what was taught to me by Christian Lair (below at Cartier’s seminar)

https://www.youtube.com/watch?v=zfN4Enr1bLw

in 1992 10 . All further upgrades (in particular w.r.t. modern well-spread notations

and concepts and possibly considering [12], which has the merit to bridge with

computing sciences) are open to discussion. Let C ,D be categories and G : D →C

a (covariant) functor. For each X ∈C , we call “freely generated” by X , a pair ( j, X̂),
where X̂ ∈ D and j ∈ HomC (X ,G(X̂)) with the following universal property:

For all object M ∈ D and f ∈ HomC (X ,G(M)) it exists a unique arrow f̂ ∈
7 Such that the norm of adΩ for the topology of bounded convergence be strictly less that 2π (the

radius of convergence of φ(z) =
z

ez − 1
) for which, it is sufficient that ||Ω||< π .

8 The fraction
adX

eadX − 1

means, of course, φ(adX ) where

φ(t) =
t

et − 1
= ∑

n≥0

Bn
tn

n!

the family (Bn)n≥0 being that of Bernouilli numbers.
9 In fact, this (highly noncommutative) differential algebra (Cdi f f 〈X〉,∂ ) may be realized as the

free algebra C〈(X [k])k≥0〉 (with X [0] = X) endowed with the derivation defined by ∂ (X [k]) = X [k+1]

(see e.g. [4], Ch I, §2.8 Extension of derivations).
10 This visit and Lair’s enlightments motivated subsequently the paper [8].
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HomD(X̂ ,M) such that

f = G( f̂ )◦ j (47)

this is illustrated by the diagram below (where the dashed arrows stand for “mixed”

ones i.e. within some HomC (A,G(B)) and the vertical bar is meant to be continu-

ous todo).

C | D

X Y

X̂

f

j f̂

Remark 5.1 It may happen that the solution of this universal does not exist for

some objects X ∈ C , we will note Dom the class of objects in C for which it exists.

For example

• Let k be a field, C be the category of sets and D be that of finite dimensional

vector spaces, then Dom is the subcategory of finite sets.

• Let k be a field, C be the category of sets and D be that finite dimensional k-

AAU, then Dom consists only of the empty set.

It can be shown that, in all cases, Dom is a full subcategory of C .

Lemma 5.2 The mapping X → [X̂ ] defines a functor from Dom to D̃ , where D̃ is

the category of isomorphism classes of D .

Proof. The functor is well-defined because the object X̂ is well-defined up to iso-

morphism (follows from the universal property). Now suppose f : X → X ′ is a

morphism in Dom. Then, by the universal property, we induce a uniquely defined

morphism f̂ : [X̂ ]→ [X̂ ′] given by the following diagram (in C ).

X G(X̂)

X ′ G(X̂ ′)

f

jX

G( f̂ )

jX ′

✷

We set the image of f as the morphism [ f̂ ] in D̃ (that is, the morphism f̂ ) up

to composition with isomorphisms on left or right). By uniqueness of f̂ in D , the

composition law will be respected by this functor.
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Below a quick list of the categories of use in combinatorics (k is a given field),

morphisms are standard.

1) St, the category of sets

2) Mon, the category of monoids

3) CMon, the category of commutative monoids

4) Gp, the category of groups

5) Vectk, the category of k-vector spaces

6) Liek, the category of k-Lie algebras

7) AAUk, the category of k-Associative Algebras with Unit

8) ACAUk, the category of k-Associative and Commutative Algebras with Unit

9) Mg, the category of Magmas i.e. sets with only a binary laws (without condi-

tions)

10) Algk, the category of k-Algebras (without conditions)

11) DiffAlgk, the category of k-Associative Differential Algebras with Unit.

All of these have a standard forgetful functor to St, called in a standard way G1,n

(and, likewise, for Gi, j when i < j). We describe below the corresponding free

functors which are their left-adjunts and their factors which are the most useful.

• 1→2) Here, a set X (arbitrary, called alphabet) being given, the pair ( j, X̂) =
( j2,X

∗) where X∗ is the monoid of words (with concatenation and the empty

word as unit) and j is the embedding X →֒ X∗ which send a letter to the corre-

sponding one-letter-word hence, here, F2,1(X) = X∗

• 1→3) A set X (arbitrary, called alphabet) being given, the pair ( j, X̂) = ( j3,N
(X))

where N(X) is the set of finitely supported mappings X → N endowed with

addition and j3(x) is the function y → δx,y (Kronecker delta). Note that the

free commutative monoid admits a multiplicative version {Xα}α∈N(X) which is

the monoid of monomials of any algebra multivariate polynomials k[X ]. This

monoid is also that of te multisets.

• 1→4) An (arbitrary, but fixed) set X being given (called alphabet), take a disjoint

copy X̄ of X and build an involution X ∪ X̄ → X ∪ X̄ ; x 7→ x̄ by the rule ¯̄x = x,

then the presented monoid 11

F4,1(X) =< X ∪ X̄ ; (xx̄ ∼ 1X∪X̄)>Mon (48)

with j41 being the composite x 7→ s◦ j21 where s is the quotient map

11 See [12] Definition 4.1.1.19 and around.
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(X ∪ X̄)∗ → F4,1(X). This construction realizes the free group.

• 1→5) The free functor is here given by F(X) = k(X) (the space of finitely sup-

ported functions X → k) and j51(x) = (y 7→ δxy) (Exercise).

• 1→6) One of the most interesting construction. We begin by the construction

of the free magma F9,1(X) i.e. the set T = ⊔n≥1Tn (graded by the number of

leaves) of binary trees with leaves in X defined by the grammar

T1 = X ; Tn = ⊔p+q=nappend(Tp,Tq) (49)

where, here, the operation append(−,−) consists in appending two trees to the

same root. Below another presentation of the grammar for T

•
T = X + ւ ց

T T

in other words a binary tree (with leaves in X ) is either an element of X or a

suspension t = (t1, t2). Then, j91 is just the canonical embedding X →֒ T .

Now the (totally 12 ) free Algebra is the algebra k[T (X)] of the magma T (X),
and the Free Lie Algebra is the quotient of k[T (X)] by the ideal generated by

the elements (see [4])

[t1, t2]+ [t2, t1] ; [t1, [t2, t3]]− [[t1, t2], t3]− [t2, [t1, t3]] (50)

Now, due to the transitivity of the Free Functors, the universal enveloping algebra

of the Free Lie Algebra is the Free AAU. It will be the basis of the construction

of the (noncommutative) Free Differential Algebra todo tomorrow.

1 2

3

4

1 2 3 4

1

2

3 4

1

2 3

4 1

2 3

4

12 By abuse of language, certain authors call “k-Free Algebra” what we will call (X“Free k-AAU”
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