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Abstract. We present a descriptive review of physical problems dealing with extreme

values in several fields of physics. We consider different physical situations involving

random variables that are correlated or not, and study the statistics of extremal

variables, which is relevant for situations where height fluctuations, catastrophic events

such as material failure, or power outrage occur. We describe the general theory

and relate the cumulative limit distributions that can be accessible in experiments to

microscopic models. In many cases however, the random variables are correlated, in

interface problems for example, and the characteristics of the interaction are revealed

in the asymptotic behavior of the limit distribution.
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1. Introduction

Problems involving extreme values of a large number of random variables are important

in many fields of physics of fracture, engineering and statistics of disordered systems [1,

2, 3, 4, 5, 6, 7], galaxy clusters [8], geology, environment [9, 10], meteorology [11] and

economy for financial markets and stock prices [12, 13], social science with data analysis

in random networks [14], and statistics of athletic records [15]. It is an important field

of research in the sense it probes occurrences of catastrophic events, and how often such

events can occur. A simple example is given by a chain made of individual blocks tied

together by a series of random forces. We can ask what is the minimal force to apply at

the two ends to break the chain into two parts. This is equivalent to find the minimal

value among a set of random variables. In other cases, it is the maximum value(s)

of a set of random variables which is relevant. Applications to physics of disorder are

numerous [16, 4, 17, 18]. In statistical mechanics, the state of a spin system in interaction

at low temperature is determined by its lowest energy, or ground state. For spin glasses,

the landscape of low energy states is generally a random set of values, and the minimum

energies are separated by large barriers, infinite in the thermodynamical limit [16].

The important question that arises from all these problems is how to determine the

class of extreme value distributions given the distribution of the individual random

variables. Theses variables can be dependent through some direct or indirect processes,

and therefore their joint probability can be or not factorized. In the simplest case, when

the individual probabilities are identical and independent, an asymptotic answer can be

given. In other cases, the main question arises on how to obtain approximate or exact

results concerning the limit distributions, and if we can make a general classification of

these functions. When correlations are present, it is pertinent to look at the strength

of the interactions and check if the limit distributions, in the limit of large number of

random variables, change to a new class of functions. For uncorrelated variables, it

is known since a long time that only three classes of distributions exist. However new

results emerge when correlations between the random variables are present [4, 19, 17, 20],

in the sense that new classes of limit distributions appear, and one of the challenge in

this field is to try to find new classification schemes.

In this paper, we first introduce the general theoretical framework to identify the

limit distributions for identically and independently distributed (iid) random variables.

This can be analyzed using renormalization group theory which is an elegant way to

access to the limit distributions via a flow of parameters. Application to the maximal

height distribution in interface problems is then presented, for which the maximal height

can be defined relatively to an origin value or to the averaged height, leading to different

classes of functions. In the consecutive section, extreme values have an important

application to fracture problems, which is modeled by studying how cracks propagate

in a given medium. The hypothesis of the weakest link is then discussed. The next

part deals with correlated random variables, which are present in different models of

height interfaces, and whose largest surface fluctuations can be measured experimentally.
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px(x) x = aNz + bN Gγ type

1 for 0 ≤ x ≤ 1
√
N√

N+2(N+1)
z + N

N+1
e−(1−z) Weibull, γ = −1

κe−κx, x ≥ 0 κ−1[z + log(N)] exp(−e−z) Gumbel, γ = 0
1√
2π
e−x2/2σ2

σ[ 1√
2 log(N)

z +
√

2 log(N)− log(4πN)

2
√

2 log(N)
] exp(−e−z) Gumbel, γ = 0

α
1+α

x−α, α ≥ 1 [N/(1 + α)]1/α(1 + z/α) e−(1+z/α)−α
Fréchet, γ = 1/α

Table 1. Limit distributions for different simple examples of iid variables. In the last

case, we take px(x) =
α

1+α when 0 ≤ x ≤ 1 and px(x) =
α

1+αx
−α when x ≥ 1. In each

example, we give the value of the γ parameter, see Eq. (2).

General ideas for obtaining the limit distribution in interacting problems are finally

presented, based on scaling and saddle point method.

2. Generalities

In this section we present the main mathematical results concerning the extreme value

statistics (EVS) for a set of iid random variables {x1, · · · , xN} when N is large, with

individual probability (or parent distribution) px(x) and cumulative distribution F (x) =
∫ x

−∞ px(u)du. The main quantity associated to the EVS is the cumulative distribution

of the maximum (and in the same manner for the minimum) value max({xi})
Prob(x ≥ max({xi})) = F (x)N . (1)

In particular, we want the distribution to be independent of N in the asymptotic limit.

This can be achieved by noticing that F is monotonically increasing and that F (x) ≤ 1.

The main contribution to the previous expression is for values of x for which F (x) ≃ 1.

One may then try to find two sequences of real numbers aN > 0 and bN such that the

rescaling x = aNz+bN makes the limit series F (aNz+bN)
N converge to a finite function.

It is known [21, 22, 23, 24, 25] that the resulting distribution belongs to one of the three

classes of functions, which can be written in a compact form as

lim
N→∞

F (aNz + bN)
N =











Gγ(z) = exp
(

−(1 + γz)−1/γ
)

, γ 6= 0, (1 + γx) ≥ 0

γ < 0 Weibull, γ > 0 Fréchet

G0(z) = exp(− exp(−z)), γ = 0 Fisher-Tippett-Gumbel

(2)

Depending on the value of the general parameter γ, we can identify the three standard

functions resulting from the EVS: the Weibull (γ < 0), Fréchet (γ > 0), and Fisher-

Tippett-Gumbel (γ → 0) forms respectively, with G0(z) = exp(− exp(−z)) in the

latter case. For most of physical problems, parameters aN and bN can be replaced

by the standard deviation and average value of the maximum 〈max({xi})〉 respectively.
A simple example is given by a set of random variables with a uniform distribution

between 0 and 1: px(x) = 1 for x ∈ [0, 1]. Then F (x)N = xN . The distribution of

the maximum is dF (x)N/dx = NxN−1, from which we can compute the average value

〈max({xi})〉 =
∫ 1

0
duNuN = N/(N + 1) = bN and 〈max({xi})2〉 =

∫ 1

0
duNuN+1 =
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N/(N + 2). Then the variance a2N = N/(N + 1)2(N + 2) behaves like N−2 and the

expectation value bN = 〈max({xi})〉 ≃ 1 − N−1. Replacing these two parameters into

the scaling function F (anz+ bn)
N = (1+(z−1)/N)N and taking the limit N → ∞, one

obtains the asymptotic and finite distribution G−1(z) = exp(−(1− z)), which is exactly

associated with a Weibull distribution of parameter γ = −1 given above Eq. (2). We

have summarized in Table 1 different limit distributions for simple cases. In general, to

find the coefficients aN and bN , it is easier to consider the asymptotic expansion of F (x)

for x large, since F (x)N is dominated by this limit F (x) → 1. In the second example of

Table 1, one can look for solutions exp(−κx) = exp(−z)/N with z independent of N ,

such that (1−N−1 exp(−z))N → exp(− exp(−z)). For the Gaussian case, the procedure

is the same although it requires more algebra.

2.1. Renormalization group applied to EVS

The basic idea to apply the renormalization group (RG) to EVS [26, 27, 28] is to view

the limit distributions as fixed points of the renormalization flow in a coarse-graining

process, based on a decimation method and applied to a system of N iid variables

{xi}i=1,···,N . This set is first divided into p blocks of N/p variables. In each of these

blocks i = 1, · · · , p, we select the maximum value yi = max({xp(i−1)+j, j = 1, · · · , p}).
The new set {yi} is composed of iid random variables, with individual distribution given

by F (x)p, since they are the maximum value of a set of p variables. The continuous

version, for p non integer and close to unity, can be obtained by incorporating the

variation of parameters aN and bN defined in the previous section with the scaling

x = aNz + bN . In that case, the transformation is given by the mapping

F (z) → F (apz + bp)
p = F (z, p) (3)

at each iteration of the renormalization process with scaling factor p. Since F is bounded

between 0 and unity, it is convenient to rewrite it as a generic form

F (z, s) = exp(− exp(−f(z, s))), s = log(p), (4)

with f(z, s) a real function that can take any value. In order to work with differential

equations, we will choose p close to unity and parametrize the flow with the parameter

s = log(p). Initial conditions are given by F (z, 0) = F (z) or f(z, 0) = f(z), the

initial distribution for the iid variables. The functions a(s) and b(s) are unknown and

determined uniquely by additional conditions. One possibility is to fix the values of

F (z, s) and its derivative at the origin z = 0, for example F (0, s) = ∂zF (0, s) = exp(−1)

at each step of the iterations s, which gives two additional conditions f(0, s) = 0 and

∂zf(0, s) = 1 that are sufficient to evaluate the functions a(s) and b(s) [28]. Then, the

RG equation Eq. (3) is identical to the functional equation

f(z, s) = f(a(s)z + b(s))− s. (5)

Using the additional conditions at z = 0, one obtains

a(s)f ′(s) = 1, b(s) = f−1(s). (6)
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We can deduce from these two equalities a relation between a(s) and b(s): a(s) = b′(s).

By differentiating Eq. (5) with respect to s, the differential equation of the flow is equal

to

∂sf(z, s) = (a′(s)z + b′(s))f ′(a(s)z + b(s))− 1.

In particular, for z = 0, the condition ∂sf(0, s) = a(s)f ′(b(s)) − 1 holds. The previous

equation can be replaced by a partial differential equation, after eliminating the f ′

function on the right hand side by considering the partial derivative with respect to z,

and thus eliminating the dependency on the initial probability function

∂sf(z, s) =

(

1 +
a′(s)

a(s)
z

)

∂zf(z, s)− 1. (7)

The ratio γ(s) = a′(s)/a(s) has a physical meaning. If we differentiate the previous flow

equation with respect with z,

∂2
zsf(z, s) = γ(s)∂zf(z, s) + (1 + γ(s)z) ∂2

zzf(z, s),

and take z = 0, one obtains ∂2
zsf(0, s) = γ(s)∂zf(0, s) + ∂2

zzf(0, s). However,

∂zf(0, s) = 1 due to the condition imposed above and therefore is independent of s,

so that ∂2
zsf(0, s) = ∂2

szf(0, s) = 0. Finally, we find that the coefficient γ(s) is directly

interpreted as the curvature of function −f at the origin

γ(s) = −∂2
zzf(0, s). (8)

The flow equation Eq. (7) is a closed equation, since the coefficient a(s), and

subsequently γ(s), depends on the initial distribution f(z, 0) = f(z) through a

differential equation: f(b(s)) = s and a(s) = b′(s). A practical way to compute γ(s) is

to write directly its dependency with the original cumulative distribution F (x)

γ(s) =
∂

∂s
log

(

∂

∂s
f−1(s)

)

, f−1(s) = F−1(exp(−e−s)). (9)

The fixed point or stationary solutions of Eq. (7) are given, in the limit of large s, by the

function f(z, s) = g(z) independent of s. In that case, it is necessary that γ(s) tends to

a constant γ in the same limit. One therefore has to solve the differential equation

(1 + γz)g′(z) = 1, (10)

with initial condition g(0) = 0. The unique solution is then given by g(z) = 1
γ
log(1+γz).

This leads to the general set of limit distributions Eq. (2) which depends only on

the parameter γ = lims→∞ γ(s). We can take the second example of Table 1,

F (z) = 1− exp(−κz) = exp(−e−f(z)), and compute the factor γ(s) using Eq. (9) which

is independent of κ

γ(s) =
1− exp(−e−s) + exp(−s+ e−s)

exp(−e−s)− 1
. (11)

In the large s limit, one has the expansion γ(s) ≃ 1
2
e−s → 0. This is consistent with the

asymptotic value γ = 0, and therefore the limit distribution is the Gumbel distribution.

Another simple example is given by the uniform distribution px(x) = 1 in the interval
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x ∈ [0, 1]. In that case f(z) = − log(− log(z)), b(s) = exp(−e−s) and one obtains after

some algebra

γ(s) =
1− 3e−s + e−2s

1− e−s
. (12)

The asymptotic value is γ = −1, and the stationary distribution is an exponential as

found above by guessing the correct scaling parameters. We have seen in this section the

RG method for the statistics of extreme values for iid variables. It gives a set of equations

for parameter γ that converges to one of the three general distributions Eq. (2). We can

mention the important fact that the RG method can also be applied to correlated cases

in constrained Brownian motions for example [29]. The authors developed in particular

an analysis based on the method that computes the extrema distribution of Bessel

processes. In the following, we study the cases where the maximum is taken relatively

to an initial point or from a average value. This can be the case experimentally where

a set of statistical values, such as interface heights, is recorded relatively to a given

reference which can be a random variable itself. It is indeed important to know if the

class of universal distributions Eq. (2) is stable or not, which is the subject of the next

section.

2.2. Relative maximum height distribution

The influence of sensitivity of the maximum value distribution on the initial value has

been discussed in several works, for problems involving a measure with respect to a

reference point. For example, the maximum height of an interface can be measured

with respect to an initial level [30], or to the average value [31, 32, 33], which is

itself a fluctuating variable. This happens experimentally when a time series h(t) is

recorded during an interval T , from which one can extract time correlation functions.

In the discrete version, one considers the set of N iid variables {hi}i=1,···,N , which are

measured at every time step τ , with the substitution t = iτ and T = Nτ . Therefore

in the continuous limit one has hi → h(t). Interfaces can also be described by a

similar set of random variables that describe the height as function of the spatial

position hr, such as hi is the discretized version, which can depend on time as well

hi → hi(t). For finite system one writes L = Na where a is the elementary step

and L the total length. Statistical distribution of the heights is of interest in several

models, such as the Edwards-Wilkinson (EW) [34, 35] and Kardar-Parisi-Zhang (KPZ)

[36] models for example. The maximum value hmax = max({hi}) can be compared

relatively to the initial or average value for example, and one can consider respectively

Prob(h ≥ max({hi − h1})) or Prob(h ≥ max({hi − hN})), where hN =
∑

i hi/N is the

spatial average height for a given configuration of N variables (for time series one has

hT =
∫ T

0
dτh(τ)/T in the continuum limit during a time window T ). If fluctuations of

hN are large, in the particular case where hN does not converge as N → ∞ for example,

they have a direct influence on the limit distribution of the maximum. The problem

appears when the roughness (or width) wN is commonly studied for determining the
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critical exponents of an interface ‡, and therefore its universality class, namely

w2
N = 〈(hi − hN)2〉N . (13)

Here the brackets 〈· · ·〉N denote the average over all the possible configurations for N

variables, and we assume translational invariance so that the influence of boundary

effects is negligible. The maximum value max({hi}) − hN can also be considered and

its fluctuations as well

∆2
N = 〈(max({hi})− hN)2〉N 6= w2

N . (14)

2.2.1. Maximum height relative to an initial value The first case is relevant in

hydrology [37, 38], for determining the fluctuations of water levels for which extrema

are associated to flooding, relatively to a reference point, study of annual or seasonal

peak flows, wind or fluid velocity [39, 40, 41]. This can be translated into a problem of

height statistics, for which we can generally write the following equation

Prob(h ≥ max({hi − h1})) = θ(h)

∫ +∞

−∞
dh1ph(h1)

∫ h+h1

−∞
dh2ph(h2) · · ·

∫ h+h1

−∞
dhNph(hN)

= θ(h)

∫ +∞

−∞
dh1ph(h1)F (h+ h1)

N−1, (15)

for a given distribution ph, where θ(h) = 1 if h > 0 and 0 otherwise. Introducing the

limit cumulative distribution function G such that FN(aNz+ bN) → G(z), with aN and

bN the scaling parameters, one obtains

Prob(h ≥ max({hi − h1})) ≃ θ(h)

∫ +∞

−∞
dh1ph(h1)G(a−1

N (h+ h1 − bN)). (16)

We can isolate three cases, depending on the limit of aN when N is large. The results

are [30]

Prob(h ≥ max({hi − h1})) ≃











∫∞
0

duph(u+ bN − h), aN → 0,
∫∞
−∞ dzaNph(aNz + bN − h)G(z), aN → constant,

G(a−1
N (h− bN)), aN → ∞.

(17)

The probability density can then be deduced by differentiation with respect to h. In

the intermediate case, the probability depends on a convolution between the limit

function G and parent distribution ph. As in the previous section, we can write

F (z) = exp(− exp(−f(z))) and G(z) = exp(− exp(−g(z))), where functions f and g

are related by the scaling limit, equivalent to Eq. (5)

g(z) = lim
N→∞

f(aNz + bN)− log(N). (18)

This equation comes indeed from a direct identification between variables s and log(N)

in the renormalization group flow when N is increasing. Also, additional conditions

‡ For interface problems, the roughness w2
N depends on time w2

N → wN (t)2 if the heights hi(t) are

measured at a given time t.
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ph(x) aN bN G aN
xδe−(x/ξ)α ξα−1(log(N))1/(α−1) ξ(log(N))1/α Gumbel aN → 0, constant, ∞

(xc − x)−1+α α−1N−1/α xc −N−1/α Weibull aN → 0

x−1−α α−1N1/α N1/α Fréchet aN → ∞

Table 2. Limit distributions for the maximum measured relatively to an origin point,

and for several examples of iid distributions. The asymptotic behavior of ph is given

in the first column. In the second example, ph vanishes when x > xc, while α > 0

otherwise.

previously fixed at z = 0, such that F (bN)
N = ∂zF (aN + bN)

N |z=0 = e−1, are equivalent

to the equations

f(bN) = log(N), f ′(bN) = a−1
N . (19)

We easily deduce from these two equalities the relation between aN and bN of the

previous section: aN = ∂bN/∂ log(N). Now we can discuss the limit behavior of

parameters aN and bN for the three conditions Eq. (17). As an application, let us

consider the general parent distribution ph(x) = xβ exp(−(x/ξ)α), with α and β real.

Since function f(x) is diverging asymptotically as F (x) → 1, it is easy to obtain the

asymptotic of f , using

ph(x) ≃ f ′(x) exp(−f(x)). (20)

Then in this example, the dominant behavior is given by f(x) ≃ (x/ξ)α plus some

additional corrections. Solving f(bN) = log(N) when N is large leads to bN =

ξ(log(N))1/α and aN = ξα−1(logN)1/δ−1. There are therefore three possibilities for

determining the behavior of Prob(h ≥ max({hi − h1})) depending on the value of α: if

α > 1 then aN → 0, or if α = 1 then aN → constant, and if α < 1 then aN → ∞. Two

other examples are given in Table 2 by the asymptotic value of ph, where G belongs to

the Weibull and Fréchet class of limit distributions.

2.2.2. Maximum height relative to an average value Unlike the previous case, one can

consider to study the maximal height relatively to the average value. This can be

found in studies of interface roughness in general [42]. Usually the width as defined

in Eq. (13) gives the amplitudes of fluctuations of the relative height hi(t)− hN , which

is a fluctuating variable. The problem is simplified by considering the relative heights

ui = hi − hN satisfying the constraint
∑

i ui = 0. This can be useful in studying

correlated relative heights for interface problems [31, 32]. For example, one can introduce

a Boltzmann weight corresponding to a Gaussian interaction between adjacent sites on

the surface, such as in the EW model, and which softens the roughness, see section

below. In the case of iid variables however, the cumulative distribution is written as

follow

Prob(h ≥ max({hi − hN}) ≥ 0) =
N
∏

i=1

∫ +∞

−∞
dhiph(hi)θ(h− hi + hN).
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In this expression, the different integrals can not be factorized since the theta functions

mixes the different variables hi together because of the term hN . It is however useful

to introduce the characteristic function, or Fourier transform, defined by p̃h(k) =
∫

dhph(h) exp(−ikh), such that

Prob(h ≥ max({hi − hN})) =
N
∏

i=1

∫ +∞

−∞

dki
2π

p̃h(ki)
N
∏

i=1

∫ +∞

−∞
dhi exp (ikihi)

N
∏

i=1

θ(h− hi + hN). (21)

Then the change of variable hi → ui leads to a factorization of the right part of the

previous integral

N
∏

i=1

∫ +∞

−∞
dhi exp (ikihi)

N
∏

i=1

θ(h− hi + hN)

=

∫

dλ

2π

∫

dg
N
∏

i=1

∫ +∞

−∞
dhi exp (ikihi) exp

[

iλ(g − hN)
]

N
∏

i=1

θ(h− hi + g)

=

∫

dλ

2π

∫

dg
N
∏

i=1

∫ +∞

−∞
dui exp

[

igki + iui

(

ki −
λ

N

)]

θ(h− ui). (22)

We can then perform the integration over variables ui, and inverse Fourier transform

the product of integrals over the kis. One finally obtains an integral expression for the

cumulative distribution

Prob(h ≥ max({hi − hN})) =
∫

dλ

2π

∫

dg exp(igλ)

[
∫ g+h

−∞
du exp

(

−iu
λ

N

)

ph(u)

]N

.(23)

A precise evaluation of the integral has to be made in each case. Indeed if the

average value or variance have large fluctuations, the limit distribution may not follow

the general theorem Eq. (2) since the above formula combines the difference of two

random variables with similar behavior. If instead the fluctuations of the average value

are not important, we may expect a smooth behavior of the limit distribution. For

example, we can consider two typical cases where the probability distribution decays

exponentially or with an algebraic power and for which an exact result can be obtained.

In the first case, we consider a set of iid random variables distributed according to

ph(u) = α exp(αu)θ(−u) and for which a finite average value exists. One obtains

Prob(h ≥ max({hi − hN})) =
∫

dλ

2π

∫

dg exp

[

igλ−N log
(

1− iλ

Nα

)

+(Nα− iλ)min(0, g + h)
]

. (24)

We then expand the logarithm term inside the exponential argument up to second order

in λ/N and perform Gaussian integration. One obtains finally a scaling expression in

z = (h− α−1)α
√
N such that the cumulative distribution has the limit form

Prob(h ≥ max({hi − hN})) ≃
1

2
+

1

2
erf(z/

√
2) +

1√
2πN

exp(−z2/2), (25)
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Figure 1. (a) Distribution of h = max({hi − hN}) for an exponential law ph(u) =

α exp(u)θ(−αu), α = 1 and for a size N = 103. Dashed line is the exact result Eq. (25).

(b) Distribution for a power law ph(u) = (1 − u)−2θ(−u) and for two different sizes

N = 103 and N = 104. Blue line is the integral Eq. (28). Green and red dashed lines

are the asymptotics results (see text).

which finally leads to a Gaussian distribution after deriving with respect to z, as

shown on Fig. 1(a). This is to be compare to the limit distribution for the maximum

value only Prob(h ≥ max({hi})), which is given by the exponential law Eq. (2) with

γ = −1 and scaling parameter z = αNh instead. More interesting cases are given by

a distribution with a power law tail for which the mean value of N random variables

has large fluctuations. One solvable situation is given by the individual distribution

ph(u) = (1− u)−2θ(−u), for which we would like to define the limit of Eq. (23) when N

is large. The corresponding expression for the cumulative distribution is given by

Prob(h ≥ max({hi − hN})) =
∫

dλ

2π

∫

dg exp(iλ(g − 1))

[
∫ ∞

1−min(g+h,0)

du

u2
eiuλ/N

]N

.(26)

In this expression we can expand the integral inside the brackets
∫ ∞

a

du

u2
exp(iuλ/N) ≃ a−1 − iλ

N
[γ − 1− log(N) + log(−iλa)] ,

where a = 1−min(g + h, 0). Replacing this expansion inside Eq. (26), one obtains

Prob(h ≥ max({hi − hN})) =
∫

dλ

2π

∫

dg
exp(iλ(g − 1))

aN
×

exp(−iλa[γ − 1− log(N) + log(−iλa)]). (27)

In the large N limit, it is easy to see that aN goes to infinity when g+ h < 0. Then the

integral is non vanishing only for the values of g ≥ −h or a = 1

Prob(h ≥ max({hi − hN})) =
1

2
+ i

∫

dλ

2π
P

(

1

λ

)

exp(−iλ[h+ γ − log(N) + log(−iλ)]).

Here P is the principal value. It is easier to express the distribution itself by deriving

with respect to h and to consider the semi-infinite positive interval of integration to
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obtain a real expression

Prob(h = max({hi − hN})) =
∫ ∞

0

dx

π
cos(x[h+ γ − log(N) + log(x)]) exp(−πx/2).(28)

The resulting integral is then function of the scaling parameter z = h+ γ − log(N) for

which the distribution is independent of N and has a finite limit. In Fig. 1(b) we have

performed numerical simulations for two different sizes and the results collapse to the

previous distribution. Interestingly the asymptotic behavior is of very different nature

for negative of positive deviations, z ≪ −1 and z ≫ 1 respectively. One obtains in

particular the following results for each case

Prob(h = max({hi − hN})) ≃
1√
2π

exp

[

−1

2
(1 + z)− exp(−1− z)

]

, z ≪ −1 (29)

and

Prob(h = max({hi − hN})) ≃
1

z2
+

γ − 3/2

z3
, z ≫ 1. (30)

The distribution falls with a double exponential for negative deviations, and has a

tails in 1/z2 for positive ones, similar to the original distribution ph for the individual

variables. We can generalize the previous case to the class of distributions ph(u) =

α(1− u)−1−αθ(−u) where α > 1, and which do not have a finite variance when α ≤ 2 §.
In particular we have the expansion
∫ ∞

a

αdu

u1+α
exp(iuλ/N) ≃ a−α +

iλ

N

αa1−α

α− 1
−
( iλ

N

)α πα

sin(πα)Γ(1 + α)
− λ2

2N2

αa2−α

α− 2
. (31)

As before the dominant contributions comes from a = 1, otherwise a−αN vanishes as N

goes to infinity. Also for 1 < α < 2 the term proportional to N−α is dominant compare

to N−2 and the third term can be ignored. In this case one has

Prob(h = max({hi − hN})) =
∫

dλ

2π
exp

[

−iλ
(

h− 1

α− 1

)

+ cα(−iλ)αN1−α

]

,

with cα = −πα/ sin(πα)Γ(1 + α) > 0. A natural scaling is given by the change of

variable z = c
−1/α
α N (α−1)/α

(

h− 1
α−1

)

. This leads to the following scaling expression for

the distribution for 1 < α < 2

Prob(h) = c−1/α
α N (α−1)/α

∫ ∞

0

dx

π
cos[xz + sin(πα/2)xα] exp[cos(πα/2)xα]. (32)

This integral is directly related to the Laplace representation of Kohlrausch stretched

exponentials in term of density function [43] ρ(z, α), such that exp(−uα) =
∫∞
0

dzρ(z, α) exp(−zu), in particular it is similar to the Pollard form for exponents

in the range 0 < α ≤ 1. It appears to be a stable Lévy stable distribution [44] and has

exact expressions for few rational values of α. For z ≫ 1, the distribution falls off like

the power law 1/z1+α, which is consistent with the behavior at α = 1. This density

§ The case 0 < α ≤ 1 for which the average value
∫

duuph(u) is infinite can be studied as well following

the same method
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Figure 2. Rescaled distribution of h = max({hi − hN}) for a power law ph(u) =

α(1 − u)−α−1θ(−u) when α = 3/2 using the integral Eq. (32) as function of z =

c
−1/α
α N (α−1)/α[h − (α − 1)−1] (see text for constant cα), in the limit where N is

infinite. Blue dashed line is the asymptotic result Eq. (35) for negative deviations, and

the orange dashed line is the series expansion Eq. (34) for positive values.

function for the stretched exponential, or Laplace inverse transform, has an asymptotic

expansion when 0 < α ≤ 1 [43] which is given by

ρ(z, α) = − 1

π

∞
∑

k=1

(−1)k

k!
sin(παk)

Γ(1 + αk)

z1+αk
. (33)

For α > 1 this expansion is obviously no more valid. However the first term gives a

correct asymptotic behavior for 1 < α < 2, as seen on Fig. 2

Prob(h = max({hi − hN})) ≃ −c−1/α
α N (α−1)/α sin(πα)Γ(1 + α)

πz1+α
. (34)

The asymptotic analysis for z ≪ −1 leads to a different behavior of the distribution at

the unique saddle point, and the distribution behaves like

Prob(h = max({hi − hN})) ≃
c
−1/α
α N (α−1)/α(−z)

α−2
2(α−1)

√

2πα1/(α−1)(α− 1)
exp

(

− α− 1

αα/(α−1)
(−z)α/(α−1)

)

.(35)

In Fig. 2 is plotted the resulting integral for the value α = 3/2, as well as the asymptotic

results Eq. (35) and Eq. (34). When α is close to 2, the term N−α in Eq. (31) appears

to be comparable to the last term N−α = N−2 and one obtains, after expanding

around α = 2 and some algebra, a Gaussian distribution for the rescaled variable
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z =
√

N/2 log(N)(h− 1)

Prob(h = max({hi − hN})) =
√

N

4π log(N)
exp

(

−1

4

N(h− 1)2

log(N)

)

. (36)

Finally, for α > 2, the last term in Eq. (31) is more dominant than the term in N−α,

and the distribution is Gaussian with a scaling variable z =
√

(α− 2)N/α
(

h− 1
α−1

)

Prob(h = max({hi − hN})) =
√

2π(α− 2)N

α
exp

[

−(α− 2)N

2α

(

h− 1

α− 1

)2
]

. (37)

This result is not surprising since for large values of α > 2, the mean and variance are

finite, and we recover the previous result given by Eq. (25) for the exponential law for

which these quantities are also finite.

2.3. Fracture and breakdown problems

The importance of EVS in problems involving fractures is enlightened by the weakest

link hypothesis [1, 2, 45]. Given a system made of subvolumes attached with different

coupling values, the failure occurs when a strain applied to the whole system breaks

the weakest link [46, 47, 48]. The distribution of local couplings can take different form

for small values, decreasing as a power law or as an exponential. In the former case,

it can be shown that the strength failure distribution has a Weibull form, and Gumbel

like in the latter case [49], which can be checked numerically. This has application to

numerous problems, in particular electrical breakdown in random networks modeled by

the random fuse model [49, 50, 51, 52, 53, 54, 55]. Let us define the probability FN(σ)

that the system composed of N segments does not break under strain σ. In this model

the distribution of couplings are iid random variables. Therefore, we can apply as in

section 2.1 a coarse-graining recursion relation for p blocks

FN(σ) = FN/p(apz + bp)
p, (38)

with the appropriate scaling σ = apz+bp. The total probability is indeed the product of

probabilities for each block in the case of independent variables. By replacing directly

p by N , the renormalization group leads to FN(σ) → F1(aNz + bN)
N which is the

usual form Eq. (3) with the cumulative function for individual stress F1 used here

and equivalent to F in the previous sections. For a d-dimensional system, there are

N = (L/L0)
d elements, with L0 being the lowest characteristic size, the dimension

of elementary blocks for example. Then the limit distribution G(z) is defined by

limL→∞ FL0(aLz + bL)
(L/L0)d . This leads to the three fundamental solutions Eq. (2).

Out of the three solutions, only the Gumbel and Weibull forms are relevant empirically

for fracture problems. Note however that uncritical use of the EVS distributions to

describe for experimental strength data has been questioned by the observation that

the Normal distribution is a better fitting function for some materials [56].

There are several models of damage propagation that leads to either catastrophic rupture

(brittle fracture) from a single crack propagation, or ductile fracture, where small cracks
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form (microvoids) and merge to provoke the rupture of the material after a phase of

deformation [57, 58, 59, 60]. We can mention for example the electrical breakdown

problem where a crack is a rupture of local fuse beyond a current threshold that

goes through it, therefore increasing the stress on surrounding fuses which successively

break as well, leading to an avalanche effect. Also problems in elastic media have

been studied [57, 61, 62] in a similar way as the fuse model. Here the fuses are

replaced by springs possessing a stretching limit, which can be random or not. Under

a given macroscopic strain, the shear modulus (ratio between the shear stress and the

displacement) is vanishing in the neighborhood of the failure region. A power law can

be observed between this modulus and the distance p− pc to the percolation threshold

pc of the network, where p > pc is the probability of finding originally a non zero spring

constant between two sites.

In the random fuse model [47, 48, 50, 52, 63], a regular d-dimensional lattice of linear

size L is composed of individual fuses, placed with probability 0 < p < 1 on each link,

with p chosen above the percolation threshold pc. A voltage V0, equivalent to a global

strain σ, is applied between the top and bottom of the lattice, see Fig. 3(a). Each fuse

breaks when the local current going through it exceeds a threshold value (fixed usually

to be unity, or can be chosen at random). One detects the first fuse that breaks in the

system at value V1 by using Green’s formalism [64] to solve the linear set of Kirchhoff

equations that determine the distribution of the local currents when increasing the

voltage. This fuse is removed and the current distribution is then recalculated until the

second fuse breaks. The procedure is repeated until the lattice is totally disconnected at

value Vb, when the fraction of the remaining fuses is close to the percolation threshold,

and the current can not flow anymore. For a regular lattice, without any disorder, the

minimal critical voltage to apply in order to break a link is equal to L volt (one volt

for each fuse). Since the current is the same in each row, all fuses break altogether at

once at this value, then V1 = Vb. The global strain can be related to the voltage or the

current by defining the reduced variable σ = V0/L. When p is less than unity, for a

given configuration of fuses, V1 6= Vb in general. For one defect, i.e. one fuse missing on

a vertical line, see Fig. 3(b), it has been demonstrated, using a Green function [51, 52]

in two dimensions, that a lower external voltage equal to π
4
L volt is sufficient to break

the fuse on the vertical link next to the missing fuse. Therefore V1/L = π
4
, leading to a

first order transition at the critical voltage, in the thermodynamic limit. Also, once the

first fuse breaks, the others on the horizontal direction break as well, since they carry

even larger load, and total rupture follows: Vb/L = V1/L = π
4
. The stress enhancement

at the tip of a defect (the surrounding fuses) of size n (n consecutive vertical links

or fuses missing on the horizontal direction) has been estimated in d dimension to be

I ′ = I(1+ kdn
1/2(d−1)) [52, 65, 46, 66], where kd is a constant depending on the shape of

the defect, for example the ellipsoid structure in Fig. 3(b), where n can be approximated

by the ratio between the two semi-axis. This means that the breakdown of the network

is dominated by the largest value of the defect size, when n is large. Indeed, the current

at the tip of the horizontal defect is growing with the defect linear size and the voltage
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Figure 3. (a) Random fuse model. A lattice grid is subjected to a potential V0. Each

link is a resistance of 1 ohm and is distributed randomly with probability p. Every

resistance breaks when the current exceeds one ampère with increasing voltage. (b)

Model with one defect. The current I ′ through the side link is enhanced I ′ > I, and

all fuses on the same line break altogether at the same time when the voltage reaches

V1 = Lπ
4 , lowering the critical voltage at breakdown. The ellipsoid shape in red is a

continuum version of the discrete bond model.

V1 is reduced accordingly. We can connect the distribution of these defects with the

distribution of the threshold strain V1/L [49]. We first consider the probability FN(n)

that no defect of size larger that n exists in the whole network formed by N elements of

hypercubes N = (L/L0)
d, with L0 the characteristic length mentioned above. We can

estimate this probability using the same arguments as above. We are indeed making the

assumption that the distribution FN(n) has the same form inside the N hypercubes or

in the total network of volume Ld. This means the scaling relation is similar to Eq. (38)

FN(aNn+ bN) = F1(n)
N . (39)

If the distribution of defects is exponential, which has been demonstrated to be the

case for p below the percolation threshold [67], then it can be shown that the limit

distribution has a Gumbel form

FN(n) = exp
[

−cLd exp(−kn)
]

. (40)

Otherwise, for an algebraic distribution of defects, it has the Fréchet form (see Table 1)

FN(n) = exp
[

−cLdn−α
]

. (41)

with α a positive exponent. To check the assumption and validity of this scaling

argument, one can first compute in two dimensions [52] the probability P (n) that the

horizontal rows contain no cluster of more than n defects [52]. The computation can be

performed with simplified boundary conditions where the left end of each row is attached

to the right end of the preceding row, in a spiral fashion. Therefore, the problem becomes

one-dimensional and clusters of occupied bonds are separated by clusters of unoccupied

ones. It is easy to see that there are the same number c of clusters of ki unoccupied or
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li occupied bonds with i = 1, · · · , c. This can be formulated as

P (n) =
1

2iπ

∮

dzz−L2−1

∞
∑

c=1

c
∏

i=1

n
∑

ki=1

∞
∑

li=1

(1− p)kipliz
∑

i ki+li . (42)

Here we used the Kronecker integral representation around the complex unit circle

δk,0 = 1
2iπ

∮

dzzk−1 to impose the constraint
∑

i ki + li = L2. The three sums can be

performed and one obtains

P (n) =
1

2iπ

∮

dzz−L2−1 (1− pz)[1− (1− p)z]

1− z + (1− p)n+1zn+2
(43)

In the limit of large L, the main contribution of the integral comes from the vicinity of the

pole z = 1+ǫ, which is close to unity, with ǫ ≃ p(1−p)n+1 when n is relatively large and p

not too close to the percolation threshold where clusters of defects can interact with each

other. In that case the integral is dominated by the term z−L2 ≃ (1+ǫ)−L2 ≃ exp(−L2ǫ)

and therefore

P (n) ≃ exp
[

−p(1− p)L2 exp(−n[− log(1− p)])
]

. (44)

This distribution has a Gumbel shape and is coherent with the scaling hypothe-

sis Eq. (40) seen above, with c = p(1 − p) and k = − log(1 − p). From there we can

deduce the general failure or fracture distribution by considering the relation between

the load enhancement until the breakdown threshold I ′ = 1, as a function of defect size

n in the random fuse model. As we have shown before, the larger is the defect, the lower

the voltage that is needed to break the fuses of the edges, since a cascade of failures

occurs suddenly. The total failure of the system is then dominated by the largest defect

at V1, when I ′ exceeds unity. Since V1/L ≃ I, one obtains n ≃ L/V1, for the random

fuse model in two dimensions, up to some constant, and therefore we can construct the

probability of failure upon an external stress V1 by inverting the previous relation

FN(V1/L) ≃ 1− exp
[

−p(1− p)L2 exp(−L[− log(1− p)]/V1)
]

. (45)

The validity of this expression has been checked extensively in numerical studies of

the random fuse model [47], where the distribution of defects is indeed exponential for

small cracks, but the exponential coefficient or slope displays a system size dependent

crossover in the tail of the defect distribution, when small cracks merge to form larger

defects by local correlations, which may lead to a different class of universality. This

affects the general behavior of the survival distribution near the percolation threshold.

Otherwise, it can be checked that the following scaling coefficients in Eq. (39) are valid

in the domains of values p close to unity in two dimensions: aN = 1
2
[log(N)3/2] and

bN = 1/
√

log(N) [47] (we remind that N is the number of sites). The Weibull form is

present instead when the distribution of defects is algebraic, leading instead to

FN(V1/L) ≃ 1− exp
[

−cL2(V1/L)
α
]

, (46)

with α a positive constant. Practically, the two distributions Eq. (45) and Eq. (46) can

be differentiated if one considers numerically the quantity log(− log[1−F (V1/L)]/L
2) as

function of L/V1 or log(L/V1), respectively, which should display an asymptotic linear

behavior for V1 small [49] when the appropriate form is chosen.
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3. EVS for correlated variables

Until now we have seen that for iid variables the three stable distributions Eq. (2) are

commonly found in problems where the scaling Eq. (3) and Eq. (38) relations can be

applied, assuming simply that there are no correlations between random variables that

affect the general behavior of the limit distribution. In presence of correlations, this

scaling relation does not hold anymore and the calculation of the limit distribution for

the extreme value of correlated random variables becomes way more involved, to say the

least. We expect new classes of distributions, depending on the range of correlations for

example.

3.1. An exactly solvable case: Tracy-Widom distributions

In this section we will briefly present a problem of extreme value of correlated random

variables, appearing in the context of random matrices.

Random matrices are matrices whose elements are random variables, supposed here

to be independent. They have been used in physics to describe spectral properties of

large nuclei: the actual Hamiltonian describing such nuclei is so complex that it can be

effectively described as random [68]. The particular case of Gaussian random matrices

is interesting since it allows to derive analytically generic properties of these matrices.

In this case the set of Gaussian random matrices H is associated with a probability

distribution P (H)dH ∝ exp [−Tr (H2) /(2σ2)] dH, where dH is the Haar measure on

the ensemble of random matrices under consideration [69]. Other ensembles of matrices

have also been considered but will not be discussed here (see for instance [70]).

Understanding the ground state energy distribution amounts to compute the

distribution of the smallest eigenvalue of random Hamiltonians, i.e. of random Hermitian

matrices. We therefore see that it is natural in this context to address the question of

the distribution of the extreme eigenvalue of random matrices. The distribution of

matrix elements leads to a probability distribution of the matrices eigenvalues, and one

can then wonder if these distributions are organized in some kind of universality classes

depending on some generic symmetry properties of the matrices and independent of the

details of the element distribution.

A first step to address this question is to see whether eigenvalues {λi} of random matrices

are independent random variables, in other words if their join probability distribution

factorizes. The derivation of this joint probability distribution can be found in the

seminal book by Mehta [69], and proceeds as follow. The idea is to diagonalize the

random matrix H by the mean of a matrix U belonging to a group, depending on the

symmetry properties of H, so that H = UDU−1. Then the statistical distribution of

H ”propagates” to D via this change of variables. Eigenvalues are then expressed in

terms of the uncorrelated elements of H, but the previous product structure induces

correlations between the eigenvalues so that their joint probability distribution does not

factorize.

One can then show that the joint probability distribution of the eigenvalues
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P (λ1, · · · , λN) can be written as

P (λ1, · · · , λN) = C exp

(

− 1

2σ2

N
∑

k=1

λ2
k

)

∏

i<j

|λi − λj|β, (47)

with C a normalization constant [69, 71]. The value of the exponent β depends on the

ensemble under consideration: β = 1 for Gaussian orthogonal matrices (GOE), β = 2

for unitary random matrices and β = 4 for symplectic matrices).

The important point here is to note that expression Eq. (47) can not be factorized, so

that the random eigenvalues λj are not independent. Thus one can not rely on the

factorization property to derive the corresponding extreme value distributions. Quite

remarkably, it has been possible to find the distribution of the largest eigenvalues of

Gaussian random matrices, leading to the celebrated Tracy-Widom distributions.

Let M be N×N random matrix belonging either to the Gaussian Orthogonal Ensemble

(GOE, β = 1), the Gaussian Unitary Ensemble (GUE, β = 2)) or the Gaussian

Symplectic Ensemble (GSE, β = 4), and consider the largest eigenvalue of M . For

fixed N and β, let FN,β(λ) = Pβ(λ > max({λi})) be the probability that λ is greater

than the largest eigenvalue. Then the distribution of the rescaled variable s, defined by

λ = σN−1/6s+2σ
√
N , converges towards Fβ(s) in the limit N → ∞. Tracy and Widom

showed [14, 72, 73] that the expression of this limit is given by

lim
N→∞

FN,β(σN
−1/6s+ 2σ

√
N) = Fβ(s), (48)

with

F2(s) = exp

(

−
∫ ∞

s

(x− s)q(x)2dx

)

, (49)

F1(s) = exp

(

−1

2

∫ ∞

s

q(x)dx

)

F2(s)
1/2, (50)

F4(s/
√
2) = cosh

(

1

2

∫ ∞

s

q(x)dx

)

F2(s)
1/2, (51)

where q(x) is the unique solution of Painlevé II equation, q′′(x) = xq(x) + 2q(x)3,

satisfying the boundary condition q(x) ∼
x→∞

Ai(x) where Ai(x) = 1
π

∫∞
0

cos
(

t3

3
+ xt

)

dt

is the Airy function, solution of q′′(x) = xq(x). This result is quite an achievement

given the complexity of this problem, so much so that some have considered it as ”one

of the most exciting recent results in mathematical physics” [70]. Derivation of this

distribution is quite involved, even in the elegant and ”simple” derivation by Nadal

et al [74] for β = 2, and goes beyond the scope of the present review. Examples

of Tracy-Widom distributions are presented on Fig. 4. The connection between Tracy-

Widom distributions and one-dimensional directed polymers and KPZ equation has been

established both in mathematics [75, 76, 77, 78] and in physics [79, 80, 81], showing

that the probability distribution function of the heights h(x, t) converges at for large t

towards the Tracy-Widom distribution with β = 2.

Such a display of heavy mathematics for two particular cases of correlation could appear

discouraging at first, but it turns out that various problems in physics do belong to
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Figure 4. Examples of Tracy-Widom probability density functions Pβ(x) for β = 1

(plain black line), β = 2 (dashed orange line) and β = 4 (dotted dashed red line).

Inset: same PDFs on a lin-log plot.

the universality classes of these two examples. This is the reason why Tracy-Widom

distributions have been obtained in a variety of physics models [82], related either to the

original random matrix problem [83, 84], or to KPZ equation [85], and also recently

to the exact free-energy distribution of directed polymers on the semi-infinite plane and

which converges at large time to the Tracy-Widom distribution β = 4 of the Gaussian

symplectic ensemble (GSE) [86]. Universality of the Tracy-Widom distribution has

also been discussed in the context of third-order phase transition associated to large

deviations of the largest eigenvalue [87]. For the KPZ class of models, the asymptotic

height distribution at large times is indeed directly linked to the distribution of the

largest eigenvalue of special random matrix ensembles, unitary or orthogonal (GUE or

GOE) [69]. The Tracy-Widom distribution depends especially on the geometry of the

interface, either circular or linear respectively ‖. When the physical problem of interest

does not belong to these two classes for which an exact solution is known, an exact

expression for the probability distribution is not available in general, but one can use

various approximation techniques to estimates the tails of the distribution for instance,

as we shall see later in the examples of logarithmic 4.1 and power law interactions 4.2.

‖ The class of universality depends mainly on how the system (or number of sites) grows with time,

this was in particular studied numerically for the KPZ equation in two dimensions [88].
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3.2. Correlated heights

Physical systems involving correlated variables can be found in numerous classes of

interface structures in one dimension [31, 32, 89, 90, 91, 92] or in two-dimensions [93,

90, 94, 95, 96], and which can be investigated by studying the statistics of maximal

height Eq. (14) instead of usual roughness Eq. (13). Maximal value distributions can

also be related experimentally to the height distribution in correlated interface problems,

for example in the KPZ universality class, such as the interface between two turbulent

states in quasi-two-dimensional liquid-crystals [97, 98]. In this case, the heights hi(t)

can be indeed written as as function of a random variable χi satisfying one of the

Tracy-Widom distribution [99]

hi(t) = vt+ (D2λt/8ν)χi, (52)

where v is the uniform growth velocity of the interface, ν is the coefficient of diffusion

of the KPZ equation, λ the coefficient of the non-linear term and D the strength of the

Gaussian disorder in the Langevin equation. For general two-dimensional dynamical

interfaces, where no exact analytical result is available for correlated systems, it is

possible to obtain the signature of the KPZ universality class using skewness and kurtosis

values, as well as universal correlation functions [96]. We can cite in particular two-

dimensional experimental surfaces made by etching, molecular beam epitaxy or chemical

deposition. We may at first assume that exponentially decreasing correlations between

variables will not affect the theorem leading to the three limit distributions presented

above, and discussion has been focused on long range algebraic correlations.

Let us consider the EW model in two dimensions [93] and study the distribution

of the maximal fluctuations. It has to be noticed that the height distribution for the

KPZ equation in the steady state converges to the same Gaussian limit as the EW

model [100, 89], thanks to a modified discretization scheme that leads to same Fokker-

Planck equation. The width distribution was previously studied using field theory [101]

by computing the characteristic function and considering the poles of the Green function

in a sequence of approximations. In general the joint probability between heights can

be seen as a Boltzmann weight for all possible configurations and correlations are

incorporated into an action with a stiffness between height differences, so that the

cumulative distribution for the maximal fluctuation (the largest width and not the

maximal height) in the continuum limit is given by

F (h) =

∫

Dhr exp(−S[hr])
∏

r
θ(h− |hr|)

∫

Dhr exp(−S[hr])
, (53)

with the spatial average
∫

drhr set to zero. For a Gaussian interface the correlations

are quadratic and S[hr] =
K
2

∫

dr(∇hr)
2 where K is the surface tension. This quantity

selects all surface configurations whose width does not exceed h. This means that

F (h) → 1 when h is large. The model is defined on a finite two-dimensional lattice of

size L×L, or, in the discrete version, one a regular lattice containing N = (L/a)2 sites

where a is the elementary lattice step. The notation
∏

r
θ(h− |hr|) has only a meaning
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in the discrete case but can be extended formally in the continuum case. One way

of dealing with the constraint on the maximal width is to introduce an effective mass

µ(h) (or inverse correlation length) in an effective Hamiltonian that mimics the cut-off

at h. Basically we replace S[hr] and the maximal constraint on the fluctuations by

Seff [hr] =
1
2

∫

dr[K(∇hr)
2+µ(h)2h2

r
] with µ(h) vanishing when h is large. This effective

mass can be determined self-consistently by deriving Eq. (53) with respect to h

∂

∂h
logF (h) =

∫

Dhr exp(−S[hr])
∑

r
δ(h− |hr|)

∏

r′ 6=r
θ(h− |hr′ |)

∫

Dhr exp(−S[hr])
(54)

This integral can be performed if we decompose the delta function in two parts δ(h −
|hr|) = δ(h−hr)+ δ(h+hr) and use a Fourier transform hq = (2π)−1

∫

dr exp(−iq.r)hr

and hr = (2π)−1
∫

dq exp(iq.r)hq. Since the action is even in the height variables, the

two delta functions gives the same contribution and are evaluated with the effective

action which is diagonalized in this basis Seff [hq] =
1
2

∫

dq[Kq2 + µ(h)2]hqh−q, with

h−q = h∗
q
. We can notice that a problem of correlated random variables can often be

mapped onto a problem with independent variables in the Fourier space if it is quadratic,

but the new variables are non-uniformly distributed. This is the case here where low

q-modes are dominant in the action, see for example the order parameter distribution

in two-dimension XY-model [102] dominated by spin-waves on the critical line. Using

an integral representation of the delta function, one obtains

F ′(h)

F (h)
= 2

∑

r

∫

dλ

2π
eiλh

∫

Dhq exp
(

−Seff [hq]− iλ(2π)−1
∫

dqeiq.rhq

)

∫

Dhq exp(−Seff [hq])
. (55)

The integral can be computed by considering the discrete version, using
∫

dq →
(2π/L)2

∑

q
, and hq = xq + iyq leading to

F ′(h)

F (h)
= 2

∑

r

∫

dλ

2π
eiλh

∏′
q 6=0

∫

dxqdyqe
− 4π2

L2 [Kq
2+µ(h)2](x2

q
+y2

q
)−iλ 4π

L2 (xq cos(q.r)−yq sin(q.r))

∏′
q 6=0

∫

dxqdyqe
− 2π2

L2 [Kq2+µ(h)2](x2
q
+y2

q
)

,

where the prime sign on the product takes into account only half of the modes

0 < |q| ≤ π/L, and the zero mode is excluded because the spatial average
∫

drhr

was set to zero. Defining the width w2
N(h) = L−2

∑

q 6=0(Kq2 + µ(h)2)−1, one obtains,

after integrating the successive Gaussian integrals over xq, yq and λ, and noticing that

the dependence on the position is removed

F ′(h)

F (h)
=

2N√
2πwN(h)

exp

(

− h2

2wN(h)2

)

. (56)

This simple form is deduced from the Gaussian approximation of the effective action.

Another relation can be deduced from the effective Hamiltonian itself,

F ′(h)

F (h)
=

∂

∂h
log

∏′
q 6=0

∫

dxqdyqe
− 4π2

L2 [Kq
2+µ(h)2](x2

q
+y2

q
)

∏′
q 6=0

∫

dxqdyqe
− 4π2

L2 Kq2(x2
q
+y2

q
)

= −1

2

∂

∂h
µ(h)2

∑

q 6=0

(Kq2 + µ(h)2)−1. (57)
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The two equations Eq. (56) and Eq. (57) give a set of self-consistent equations that

are solved for µ(h). The advantage of this method is that it can be generalized in

any dimension. The solution has been checked numerically up to N = 128 × 128.

Asymptotically, one can estimate the behavior of F (h) for large h since µ(h) → 0. In

particular one finds

wN(h)
2 ≃ (2πK)−1 log[µ0/µ(h)], µ0/µ(h) ≪ N1/2,

≃ (2πK)−1 log(N1/2), µ0/µ(h) ≫ N1/2, (58)

where µ0 =
√
Kπ/a is a characteristic mass. Solving Eq. (56) and Eq. (57) with these

values gives the solutions in the two regimes µ(h) ≃ µ0 exp(−
√

πK/2h) for 1 ≪ h ≪
√

2/πK logN1/2 and µ(h) ≃ µ0 exp(−πKh2/2 log(N1/2)) for h ≫
√

2/πK log(N1/2).

Then the distribution of the maximal fluctuations is given by [93]

F ′(h) =







N exp
(

−cNe−
√
2πKh −

√
2πKh

)

1 ≪ h ≪
√

2/πK log(N1/2)

N exp
(

−cNe−πKh2/2 log(N) − πK
2 log(N)

h2
)

h ≫
√

2/πK log(N1/2),

where c is some constant. In the limit of large N the distribution is consistent with a

Gumbel form with the standard scaling h = aNz+bN . One can identify in particular the

average height 〈hr〉N = log(N)/
√
2πK = bN and standard deviation aN = c′(2πK)−1/2

as parameters of the scaling Eq. (2), with c′ ≃ 0.69 numerically. The roughness diverges

logarithmically with N , wN(h) ≃
√

log(N), while in one dimension the roughness

wN(h) ≃
√
N . However the parameter c is not unity, unlike the Gumbel distribution

where c = 1, and is found numerically to be c ≃ 1.58. This value is close to the

asymptotic exact value c = π/2 present in the general distribution of the classical XY-

model order parameter, describing the fluctuations of the modulus of the total spin

in the critical phase at low temperature [103, 102, 104]. Although the form of the

distribution is similar, in the latter case the fluctuations are associated with a sum of

correlated variables, not extrema. However, in the Fourier space the variables decouple

with non identical weights, leading to the assumption that only few modes with |q|
small are dominant in the sum. This is in contrast with the distribution for sums

of iid variables [105]. The value of c is independent of N or K and is universal and

characteristic of correlated systems. Indeed c = 1 corresponds to the maximum value

distribution of iid variables, and its deviation may correspond to a renormalization of

correlations. Interestingly, we may relate c and c′ using the result in the next section for

the generalized Gumbel form in the correlated case, see Eq. (91) below, and from which

it appears that the exact asymptotic relation c = 1/c′ is coherent with the numerical

value .

In the one dimensional EW model, it is possible to obtain exact results using path

integral formalism and quantum operator method [31, 32, 33, 89] starting from Eq. (53).

The cumulative distribution F (h) in Eq. (53) can be reformulated on a one dimensional

and periodic chain of size L = Na as [32]

F (h) = C(L)

∫ h

−∞
du

∫ hL=u

h0=u

Dhx exp

(

−1

2

∫ L

0

dx(∂xhx)
2

)

δ

(
∫ L

0

hxdx

)

∏

x

θ (h− hx) ,
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where h0 = hL. The difference with Eq. (53) is that the zero average value is taken

explicitly in a delta function, and one considers the maximal height. C(L) is a

normalization constant equal to C(L) =
√
2πL3/2. A change of variable yx = h − hx

simplifies the expression and isolate the dependence on h in the delta function

F (h) = C(L)

∫ ∞

0

du

∫ yL=u

y0=u

Dyx exp

(

−1

2

∫ L

0

dx(∂xyx)
2

)

×

δ

(
∫ L

0

yxdx− hL

)

∏

x

θ (yx) . (59)

In this representation, all yx are positive and their average is simply given by h.

The Laplace transform with respect to hL > 0 leads to an effective action given by

S[yx] =
∫ L

0
dx[1

2
(∂xyx)

2 + λyx], where λ is the parameter of the transformation. The

Hamiltonian associated to this action is Ĥ = −1
2
∂yy + V (y), with V (y) = λy for y > 0

and V = ∞ otherwise, which is imposed by the product of θ functions in Eq. (59).

The path integration formalism above can be also interpreted as a quantum trace or

partition function
∫ ∞

0

d(hL)F (h)e−λhL = C(L)

∫ ∞

0

du〈u| exp(−ĤL)|u〉, (60)

using a basis of state vectors |u〉. The eigenfunctions φE(y) of the operator Ĥ,

Ĥ|φE〉 = E|φE〉, are given by Airy functions φE(y) = Ai[(2λ)1/3(y − E/λ)] [32], which

should vanish at y = 0. This imposes a discrete set of energy levels Ek = αkλ
2/32−1/3,

where −αk with k ≥ 1 are the zeroes of the Airy function on the negative real axis, for

example α1 ≃ 2.3381 and α2 ≃ 4.0879. Inverting the Laplace transform back to the

cumulative distribution gives

F (h) =
√
2πL3/2

∫ a+i∞

a−i∞

dλ

2iπ
eλhL

∑

k≥1

e−αkλ
2/32−1/3L, (61)

where a is some constant that is located on the right of the singularities of the integrand.

By a rescaling λ → λL−3/2, the cumulative distribution is a function of the ratio

z = h/
√
L only, and can be written in a dimensionless form as

F (h = z
√
L) =

√
2π

∫ a+i∞

a−i∞

dλ

2iπ
eλz
∑

k≥1

e−αkλ
2/32−1/3

. (62)

The probability distribution function F ′(h) =
√
Lf(z) depends on the scaling function

f(z). Since the Laplace transform of f(z) depends on the zeros of the Airy function,

it is commonly called the Airy distribution. It describes the fluctuations of the area

under a Brownian excursion on the unit time interval, with boundary conditions fixed

by setting the particle at the zero ordinate at both ends [106], and with the additional

condition that the particle stays in the positive domain with an infinite wall below the

horizontal axis. Moreover the Laplace inversion in this case can be done exactly [89] by

computing the moments Mn of order n of the function f(z). These are equal to

Mn =
√
π2(4−n)/2 Γ(1 + n)

Γ([3n− 1]/2)
Kn,
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Kn =
3n− 4

4
Kn−1 +

n−1
∑

i=1

KiKn−i, (63)

where the Kn satisfy non-linear equations with initial condition K0 = −1/2. Formally,

the Laplace transform was also inverted by Takács [107, 106]

f(z) =
2
√
6

z10/3

∞
∑

k=1

e−bkz
−2

b
2/3
k U(−5/6, 4/3, bkz

−2), bk =
2α3

k

27
, (64)

where U(a, b, z) is the confluent hypergeometric function. The asymptotic of the

solution Eq. (62) can be found by analyzing the saddle point. When z is small we

may apply the saddle point method to the argument ϕk(λ) = λz− αkλ
2/32−1/3 for each

k ¶. The solution of ∂λϕk = 0 is unique λ = (2αk2
−1/33−1)3z−3. Replacing this value in

ϕk, we can then perform a Gaussian integration around the saddle point and keep the

first dominant exponential term k = 1, which leads to

F (h = z
√
L) ≃ z−2 exp

(

− 2α3
1

27z2

)

. (65)

This form resembles a Fréchet function, up to corrective terms. In the limit when z

goes to infinity, it can be shown that the probability distribution function vanishes

like a Gaussian F ′(z) ≃ exp(−6z2). The corrective terms in the asymptotic form for

small values of z Eq. (65) is an indication that correlations modify the general theorem

for the limit distribution Eq. (2). The Airy function has many applications beyond

physics, in particular in computer science, see Majumdar for a review [108] on this

topics. Extension to problems involving correlations that decay like a power-law with

exponent α different than 2 as for the EW problem has been treated as well [33, 26] and

also for evaluating maximum relative heights of elastic membranes in disordered media,

using fractional derivatives [109]. The case α = 0 corresponds for example to white

noise. For 0 ≤ α < 1 the limit distribution appears to belong to the Gumbel form. The

case α ≥ 1 is characterized by a diverging variance. In the limit when α → ∞ [33], for

short correlations, the limit distribution is given by a Gaussian decay

F (z) = 1− exp

(

−πz2

4

)

. (66)

This result has to be compare to the asymptotic results Eq. (119) and Eq. (120) in the

section below in the case of power-law interactions between adjacent particles in a one-

dimensional system and in the same limit of the interaction exponent. Asymptotically

one also obtains a Gaussian decay, as well as additional logarithmic corrections.

4. Examples of asymptotic analysis for processes with logarithmic and

power-law interactions

In this section we consider the application of asymptotic analysis applied to EVS in

systems with interacting potentials. Logarithmic potentials were introduced in the

¶ It is more correct to rescale first λ → λ/z and say that the arguments of the exponential terms of

the series have large variations when z → 0, but the result is identical.
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Random Energy Model (REM) for example by Carpentier and Le Doussal [110, 111],

for which the partition function Zβ is the sum of N Boltzmann weights with random

and logarithmically correlated energies Vi, and function of the inverse temperature β

Zβ =
N
∑

i=1

exp (−βVi) . (67)

The original model with uncorrelated energies was introduced by Derrida [112], where

Vi were chosen as iid Gaussian variables with variance proportional to log(N). The

distribution of the free energy, F = −β−1 log(Zβ), reduces, in the limit of low

temperature, to the distribution of the energy minima Vmin = min({Vi}) or ground state

energy for a set of Gaussian iid variables. The correlated case were introduced on a circle

geometry (circular-log model [20]) with energies Vi satisfying logarithmic correlations

through the covariance matrix 〈ViVj〉d = −2 log(|zi − zj|), where the brackets are the

average over disorder, and zj = exp(2iπj/N) the position of the sites on the unit circle.

From the evaluation of the moments 〈Zn
β 〉d, the distribution of the partition function

can be reconstructed. In particular, in the glass phase, below the critical temperature

βc, the probability density for the rescaled variable f = βc[F +2 log(N)] takes the form

of a Fourier integral

Prob(f) =

∫ ∞

−∞

dλ

2π
e−iλf Γ2(1 + iλ)

Γ(1 + iβc

β
λ)

(68)

In the zero temperature limit, or β → ∞, the Fourier transform can be computed

and one obtains the probability distribution for the rescaled free energies in terms of a

modified Bessel function

Prob(f) = 2efK0(2e
f/2). (69)

In the limit f → −∞, the distribution has the asymptotic behavior Prob(f) ≃
−f exp(f/2), which deviates from the Gumbel asymptotic form, while in the limit

f → ∞ one has Prob(f) ≃ √
π exp(3

4
f − 2ef/2). This function arises also for particles

interacting with a logarithmic potential, see in the next section the function P1, Eq. (85).

A continuous version of the circular-log model generated by a Gaussian distributed

logarithmic random correlated potential was proposed as an extension [113], and which

has applications in number theory [114], see section 4.1.3.

It is also interesting to consider special cases of distributions for a set of random

variables distributed along a chain and interacting with a local potential, in such a

way to simulate a gas of particles in interaction. For example one can imagine a gas of

particles in a gravitational field confined in a cylinder. The position of the upper particle

can be seen as the sum of the distances between variables, which links the EVS to the

study of sum of random variables non-identically distributed. It can be shown that the

interactions between particles lead to volume fluctuations that are non-Gaussian and

that can be described by extreme value distributions [115]. In particular the parameter

of these distributions is physically related to the pressure acting on the piston.
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In this section we study a class of interactions that act only between adjacent

particles, located in a cylinder for example. We consider in particular logarithmic

interactions and how they affect the general limit distribution of the system, then we

will study power law interactions, and extract the asymptotic behaviors.

4.1. Logarithmic interactions

Let us consider N random and positive iid variables xi, distributed according to a

Poisson law px(x) = κ exp(−κx). As demonstrated before in section 2, the limit

distribution of the maximum value max({xi}) is known to be a Gumbel form. After re-

indexing variables xi such that x1 ≤ x2 ≤ · · · ≤ xN , we can introduce distance variables

ui = xi − xi−1 ≥ 0, with boundary condition u1 = x1 or x0 = 0. In this case, the

maximum of the set {xi} is simply xN , which is also equal to the sum of the distances

sN = u1 + · · ·+ uN = xN = max({xi}) [116], and therefore

Prob(x = xN) =

∫ ∞

−∞

dλ

2π

∫ ∞

0

N
∏

i=1

duiPu(u1, u2, · · · , uN ) exp

(

iλx− iλ
∑

i

ui

)

, (70)

where Pu is the joint distribution for the set of variables {ui}. It can be expressed using

px

Pu(u1, u2, · · · , uN) ∝
∫ ∞

0

N
∏

i=1

dxipx(xi)δ(ui − xi + xi−1) ∝ e−κ
∑N

k=1(N−k+1)uk . (71)

We then define κk = κ(N − k + 1) as the coefficients of proportionality ensuring the

normalization of the joint probability, and one obtains

Pu(u1, u2, · · · , uN ) =
N
∏

k=1

κk exp (−κkuk) . (72)

The distribution for the maximum can be expressed as function of parameters κk

Prob(x = xN) =

∫ ∞

−∞

dλ

2π
exp (iλx)

N
∏

k=1

∫ ∞

0

κkduk exp (−(κk + iλ)uk)

=

∫ ∞

−∞

dλ

2π
exp

(

iλx−
N
∑

k=1

log

(

1 + i
λ

κk

)

)

. (73)

The sum in the integrand is diverging as N goes to infinity. One way to regularize this

term is to use the formula
∞
∑

k=1

[

log
(

1 +
x

k

)

− x

k

]

= − log Γ(1 + x)− γx, (74)

so that, by adding and subtracting iλ/κk in the integrand to isolate the divergence, one

obtains

Prob(x = xN) =

∫ ∞

−∞

dλ

2π
exp

[

iλ

(

x−
N
∑

k=1

1

κk

+
γ

κ

)

− iλ
γ

κ
+

N
∑

k=1

{

iλ

κk

− log

(

1 + i
λ

κk

)}

]

.
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Defining the rescaled parameter z = κ(x−∑N
k=1 κ

−1
k + γ/κ) ≃ κx− log(N)− 1/2N , the

distribution, in the limit of large N , can be expressed as

Prob(x = xN) =

∫ ∞

−∞

κdλ

2π
exp (iλz) Γ (1 + iλ) . (75)

The normalization follows from the fact that Γ(1) = 1 and that z is proportional to κx.

This integral can be computed by noticing that Γ(1 + iλ) =
∫∞
0

dt exp(iλ log(t) − t).

Putting this identity in Eq. (75), and integrating over λ, one finally recovers the

derivative of the Gumbel distribution for the density of maxima

Prob(x = xN) = κ

∫ ∞

0

dt δ(log(t) + z)e−t = κ exp(−z − exp(−z)) = κG′
0(z). (76)

Now we consider the same set of particles, randomly located at sites xk, and introduce

correlation effects between adjacent particles only. We consider here a two-body

correlation function V or local potential such that the joint probability Px can be written

now as

Px(x1, · · · , xN) ∝ exp

[

−κ
∑

i

xi −
1

2

∑

i,j

V (xi, xj)

]

, (77)

with the normalization factor as the coefficient of proportionality. Let us choose the

potential such as V (xi, xj) is non zero only for adjacent particles xi and xi±1. In this

case, it is easy to see, after relabeling the xks, that the potential can be written only

as function of the distances 1
2

∑

i,j V (xi, xj) =
∑

i V (ui), which has the property to

factorize the joint distribution

Pu(u1, u2, · · · , uN ) ∝
N
∏

k=1

exp
[

− κkuk − V (uk)
]

, (78)

Let us consider the logarithmic case V (u) = −β log(u), where β > −1 in order to have a

finite normalization factor. After setting for simplicity κ = 1 and reordering the indices

of the uk such that κk = k, one obtains

Pu(u1, u2, · · · , uN ) =
N
∏

k=1

k1+βuβ
k exp(−kuk). (79)

The Fourier transform of the probability density distribution function Prob(x = xN) is

given by

Prob(x = xN) =

∫ ∞

−∞

dλ

2π
exp (iλx)

N
∏

k=1

∫ ∞

0

k1+βduku
β
k exp (−(k + iλ)uk)

=

∫ ∞

−∞

dλ

2π
exp

(

iλx− (1 + β)
N
∑

k=1

log

(

1 + i
λ

k

)

)

. (80)

As before, we can rescale the variable x in order to regularize the integral when N is

large:

Prob(x = xN) =

∫ ∞

−∞

dλ

2π
exp (iλz) Γ1+β(1 + iλ), (81)

where the rescaled variable is z = x− (1 + β) log(N).
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4.1.1. Case of β integer When β is an integer, β = n, we define Pn(z) = Prob(x = xN)

and use the previous integral representation of the Γ function in order to express the

distribution function as a multiple integral

Pn(z) =

∫ ∞

0

dt1 · · · dtn+1 exp (−t1 − · · · − tn+1) δ(log(t1 · · · tn+1) + z). (82)

A recursion relation can be found from this expression, by integrating over the last

variable tn+1

Pn(z) ==

∫ ∞

0

dt1e
−t1

t1
· · · dtne

−tn

tn
exp

(

− t−1
1 · · · t−1

n w
)

w, (83)

where w = exp(−z). One obtains, more specifically the recursion relation Pn(z) =
∫∞
0

dtne
−tnPn−1(t

−1
n w). This recursion relation can also be written, after a change of

variable tn → 1/t, as

Pn(z) =

∫ ∞

0

dt

t2
e−1/tPn−1(tw), P0(z) = G′

0(− log(w)) = w exp(−w). (84)

As examples, the first two distributions are expressed using special functions

P1(z) = 2wK0(2
√
w), P2(z) = G3 0

0 3

(

w

∣

∣

∣

∣

∣

− − −
1 1 1

)

=

∫

γ

ds

2iπ
Γ3(1− s)ws, (85)

where P2, and in general Pn, can be expressed using Meijer G-functions [117] and

defined by

Gm,n
p,q

(

w

∣

∣

∣

∣

∣

a1 · · · ap
b1 · · · bp

)

=

∫

γ

ds

2iπ

∏m
i=1 Γ(bi + s)

∏n
i=1 Γ(1− ai − s)

∏p
i=n+1 Γ(ai + s)

∏q
i=m+1 Γ(1− bi − s)

w−s. (86)

Here the contour γ lies between the poles of Γ(1 − ai − s) and the poles of Γ(bi + s).

If n = p = 0 or m = q = 0 the coefficients ai or bj are missing respectively, as for

the expression of P2. The distribution P1 is found in the previous work on logarithmic

correlations on a unit circle for the REM model [20, 113], below the spins glass transition

and in the limit of zero temperature, see Eq. (69). It also appears in a different context

related to the distribution of number of distinct and common sites visited by independent

walkers [118], as the result of the convolution of two Gumbel distributions.

4.1.2. Asymptotic limits in the general case Starting with Eq. (81) in the general

case and for any real value of β > 0, we would like to study the tails of the density

distribution, which is equivalent to study the saddle points of the argument function in

the integral over λ

ϕ(λ) = iλz + (1 + β) log Γ(1 + iλ), (87)

in the asymptotic region where |z| ≫ 1. This is tantamount to find in the complex

plane the unique or multiple solutions of the saddle point equation

∂ϕ(λ)

∂λ
= iz + i(1 + β)

Γ′(1 + iλ)

Γ(1 + iλ)
= 0. (88)
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Figure 5. (Color online) Plots of the limit density distributions Pn(z) for several

values of n.

Let us first consider the case z ≪ −1. We can find an obvious solution on the negative

imaginary axis λ = −iu, by deforming the integration path according to C− in Fig. 6,

with u ≫ 1, so that

(1 + β)
Γ′(1 + u)

Γ(1 + u)
≃ (1 + β)

[

log(u) +
1

2u

]

= −z. (89)

It is straightforward to see that u = u∗ = exp(−z/(1 + β)) ≫ 1 is a solution. We can

also verify that the second derivative of ϕ is negative

∂2ϕ(λ)

∂λ2
≃ −1 + β

u∗ = −(1 + β) exp
( z

1 + β

)

< 0. (90)

Integrating around the saddle point value, one obtains +

Prob(z ≪ −1) ≃ exp
[

u∗z + (1 + β) log Γ(1 + u∗)− 1

2
log(−ϕ′′(−iu∗))

]

≃ exp

[

−(1 + β) exp
(

− z

1 + β

)

− 2 + β

2(β + 1)
z

]

. (91)

It turns out that the Gumbel form for this limit (double exponentially falloff) is

preserved up to some constant factors depending on the exponent β. This result is

to be compare to the constant c = (1 + β) found in section 3.2 and which is consistent

with the value of c′ = (1 + β)−1 for a correlation strength β. In this other limit z ≫ 1,

+ We can use the asymptotic limit formula log Γ(1+u) ≃ u log(u)−u+ 1
2 log(u)+

1
2 log(2π) for u ≫ 1.



Applications of extreme value statistics in physics 30

Re(λ)

Im(λ)

0

-iu*

i

Figure 6. (Color online) modified path of integration for the saddle point analysis.

C+ is the path chosen when z ≫ 1 and C− when z ≪ −1. The saddle point solution

u∗ for z ≪ −1 is equal to u∗ = exp(−z/(1 + β)) ≫ 1 (see text).

we can use the series expansion Eq. (74) for function log Γ(1+ iλ) to obtain the extrema

of the integrand by deforming the integral path on the imaginary axis without crossing

the singularities. The series Eq. (74) diverges when u is close to −1, u ≥ −1, which

corresponds actually to the first term of the expansion log Γ(1 + u) ≃ − log(1 + u),

when u → −1+. The integration path is therefore modified in order to approach this

singularity, according to C+ in Fig. 6. The other singularities are located at λ = 2i, 3i, · · ·
but the path can not be deformed without crossing the first singularity at λ = i. This

gives u∗ = −1 + (1 + β)/z + γ(1 + β)2/z2 + · · · as saddle point solution. The second

derivative of ϕ is equal to ϕ′′ ≃ −z2/(1 + β) + 2γz, which is negative, and one obtains,

after a Gaussian integration

Prob(z ≫ 1) ≃ zβ exp

[

−z − γβ(1 + β)

z

]

. (92)

The exponential decay of the Gumbel density is therefore modified and enlarged by a

power law term with exponent β. We can compare this result with the exact expansion

of the modified Bessel function of the second kind K0 that appears in the expression of

P1 in Eq. (85), with β = 1. Indeed, we have P1(w = e−z) ≃ √
πw3/4 exp(−2

√
w), when

w ≫ 1, and P1(w) ≃ w(− logw − 2γ) when w ≪ 1, in agreement with Eq. (91) and

Eq. (92) respectively.

4.1.3. Link with number theory The link between logarithmic interaction models and

number theory problem appears when one considers the Riemann zeta function defined
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by

ζ(s) =
∑

n≥1

1

ns
=
∏

p prime

(

1− 1

ps

)

. (93)

It was postulated that the zeros of this function lies on the line s = 1
2
+ it where t is real

(Riemann hypothesis). Selberg [119] proved that log(|ζ(1
2
+ it)|) behaves like Gaussian

random variables with zero mean and variance equal to 1
2
log(log(t)). In particular, these

variables are strongly correlated if we define the potential [114, 120]

Vt(x) = −2 log{|ζ(1
2
+ i(t+ x))|}, (94)

whose correlations, after averaging on a given interval, are

〈Vt(x1)Vt(x2)〉 =
{

−2 log |x1 − x2|, 1
log(t)

≪ |x1 − x2| ≪ 1

2 log(log(t)), |x1 − x2| ≪ 1
log(t)

(95)

These properties have connections with random matrix theory of unitary matrices [114].

Indeed if we consider the ensemble of N × N unitary matrix and choose one element

UN such that its eigenvalues are {eiφ1 , · · · , eiφN} on the unit circle, then we can define

the characteristic polynomial

pN(θ) = det
(

1− UNe
−iθ
)

=
N
∏

i=1

(

1− ei(φi−θ)
)

. (96)

We can then introduce a random potential VN(θ) = −2 log(|pN(θ)|) such that in the

limit of large N , the distribution of log(|pN(θ)|) tends to a Gaussian or normal law with

zero mean and variance equal to 2 log(N) [121]. In particular, the correlation functions

in this limit are equal to

〈VN(θ1)VN(θ2)〉 = −2 log
{

2| sin
(1

2
[θ1 − θ2]

)

|
}

, (97)

which presents the same logarithmic behavior as Eq. (95). Especially one can establish

the correspondence N ≃ log(t) in the large N limit between the two theories. The

distribution of the maximum values of log(|pN(θ)|) was studied [114] in the same context

as the circular-log model presented before [20], and the distribution is exactly equal to

the distribution found in Eq. (69), making an additional link between random matrix

theory and random energy landscape.

4.2. Power law interaction

In this section, we consider instead the power law repulsive potential V (u) = au−β, with

a > 0 for the integrals to be convergent and exponent β > 0. The limit case when β = 0

corresponds to the logarithmic interaction, as seen previously. The joint probability is

proportional to the product

Pu(u1, u2, · · · , uN ) ∝
N
∏

k=1

exp(−kuk − au−β
k ), (98)
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up to a general normalization factor. The distribution of the maximum xN = max({xi})
can be written as

Prob(x = xN) ∝
∫ ∞

−∞

dλ

2π
exp (iλx)

N
∏

k=1

∫ ∞

0

duk exp
(

−(k + iλ)uk − au−β
k

)

∝
∫ ∞

−∞

dλ

2π
exp

(

iλx−
N
∑

k=1

log (k + iλ) +
N
∑

k=1

logRβ[a(k + iλ)β]

)

, (99)

with the function Rβ defined by the integral Rβ(x) =
∫∞
0

du exp(−u − xu−β). For

example, we have R1(x) = 2
√
xK1(2

√
x) ≃ √

πx1/4 exp(−2
√
x), when x ≫ 1. Let

ϕ(u) = −u − xu−β be the argument in the integral representation of Rβ. When

x is large, we can use the saddle point approximation for evaluating Rβ(x). The

equation ϕ′(u) = 0 gives the unique solution u = u∗ = (βx)1/(1+β). Then, since

ϕ′′(u) = −(1 + β)/(xβ)1/(1+β) < 0, one obtains, after the Gaussian integration around

the saddle point

Rβ(x) ≃
√

2πβ1/(1+β)

1 + β
x1/(2(1+β)) exp

(

−x1/(1+β)
[

β1/(1+β) + β−β/(1+β)
])

. (100)

This expression can be used when the potential interaction a is moderately large.

Replacing Rβ in Eq. (99) by its asymptotic value (strong potential), one obtains, up to

some constant, the argument function

ϕ(λ) = iλx− 2 + β

2(1 + β)

N
∑

k=1

log

(

1 +
iλ

k

)

− Cβa
1/(1+β)

N
∑

k=1

(k + iλ)β/(1+β), (101)

with constant Cβ defined by

Cβ = β1/(1+β) + β−β/(1+β).

When N is large, we can regularize the argument by choosing an adequate rescaled

variable z such that

z = x−
(

1− η

2

)

[

γ +
∑

k

k−1

]

− Cβa
1−η
∑

k

kη−1, (102)

where η = β
1+β

< 1. Then, up to some constant, one obtains the regularized part of ϕ,

expressed with convergent sums only

ϕ(λ) = iλz −
(

1− η

2

)

N
∑

k=1

[

log

(

1 +
iλ

k

)

− i
λ

k

]

−
(

1− η

2

)

iλγ

− Cβa
1−η

N
∑

k=1

[

(k + iλ)η − kη − iληkη−1
]

. (103)

In the limit of large N , the function above is therefore well defined, and one has

ϕ(λ) = iλz +
(

1− η

2

)

log Γ(1 + iλ)− Cβa
1−η

∞
∑

k=1

[

(k + iλ)η − kη − iληkη−1
]

. (104)
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We can notice that ϕ(0) = 0, therefore the distribution Prob(z) for the rescaled variable

z is correctly normalized. Also, it has to be reminded that the limit a = 0 can not be

taken directly since the exponent η in the factor of the logarithm in the above expression

does not vanish as expected in the limit of small values of a. The expression Eq. (104)

is indeed asymptotically valid only for large or moderate values of a.

4.2.1. Saddle point solutions Now, we are seeking the asymptotic behavior of the

distribution Prob(z), and the argument function ϕ has to be extremized with respect

to the variable λ:

1

i

∂

∂λ
ϕ(λ) = z +

(

1− η

2

) Γ′(1 + iλ)

Γ(1 + iλ)
− Cβa

1−ηη
∞
∑

k=1

[

(k + iλ)η−1 − kη−1
]

= 0. (105)

When z ≪ −1, we may try, as before, a solution of the form λ = −iu, with u real. The

series in Eq. (105) can be rewritten as an integral. Indeed, if we define the function

Sη(u) =
∞
∑

k=1

[

(k + u)η−1 − kη−1
]

(106)

we can use the identity k−η = Γ−1(η)
∫∞
0

dt tη−1e−kt, so that

Sη(u) =
1

Γ(1− η)

∫ ∞

0

dt t−η e
−ut − 1

et − 1
, 0 < η < 1. (107)

This function is negative when u > 0 and positive when u < 0, with Sη(0) = 0. It

diverges as Sη(u) ≃ (1 + u)η−1 when u is approaching −1 from above. When u is large,

it diverges with u as a power law

Sη(u ≫ 1) ≃ − uη

Γ(1− η)

∫ ∞

0

dt

t1+η

(

1− e−t
)

= −uη

η
. (108)

The integral is indeed equal to Γ(1 − η)/η using one integration by parts. The saddle

point equation takes two forms, depending on whether u is close to −1+ or large u ≫ 1:

z ≃
(

1− η

2

)

(1 + u)−1 + ηCβa
1−η(1 + u)η−1, u → −1+, (109)

z ≃ −
(

1− η

2

)

(

log u+
1

2u

)

− Cβa
1−ηuη, u ≫ 1. (110)

By inspecting the asymptotic solutions in the two limits, we conclude that Eq. (109)

corresponds to the solution for z ≫ 1 and Eq. (110) to z ≪ −1. In the first case, we

obtain, similarly to the logarithm potential, u∗(z ≫ 1) = −1 + (1− η/2)/z, whereas in

the second case we obtain

u∗(z ≪ −1) ≃ K1/η
β |z|1/η −K1/η

β

(

1− η

2

) 1

η2
|z|(1−η)/η log(Kβ|z|), (111)

where Kβ = (Cβa
1−η)−1 can be considered as an effective inverse length for the potential

range, which is consistent with a simple dimensional analysis. This solution differs from

the previous case since the first logarithmic term is less divergent, as long as β > 0.

The class of the saddle point solutions is different from the logarithm interaction in the

latter case. Expanding Eq. (104) around solution Eq. (109), up to second order, and
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integrating over the Gaussian measure, one obtains the following dominant asymptotic

behavior

Prob(z ≫ 1) ≃ z−
1
2

β
(1+β) exp (−z) . (112)

In the other limit z ≪ −1, we need to study in detail the behavior of the argument

function ϕ Eq. (104) when u is large, around the saddle point Eq. (110), and in particular

the sum defined by

Wη(u) =
∞
∑

k=1

[

(k + u)η − kη − uηkη−1
]

, (113)

which is a primitive of Sη: ∂uWη(u) = ηSη(u), with Wη(0) = 0. It is convenient to use

the integral representation Eq. (107) of Sη, which leads to the solution

Wη(u) =
ηuη

Γ(1− η)

∫ ∞

0

dt

t1+η

1− t− e−t

et/u − 1
. (114)

In the limit of large u, the denominator tends to zero and the integrand is diverging. We

may correct the divergence using the dominant behavior of the expansion (et/u−1)−1 ≃
u/t. Then we can rewrite the integral as

Wη(u) =
ηuη

Γ(1− η)

[

u

∫ ∞

0

dt

t2+η
(1− t− e−t)− u1−η

∫ ∞

0

dt

tη

(

1− 1− e−ut

ut

)(

1

et − 1
− 1

t

)]

=
ηuη

Γ(1− η)

[

u

∫ ∞

0

dt

t2+η
(1− t− e−t)− u1−η

∫ ∞

0

dt

tη

(

1

et − 1
− 1

t

)

+ u−η

∫ ∞

0

dt

t1+η

(

1− e−ut
)

(

1

et − 1
− 1

t

)]

. (115)

In the last integral, it is not possible to replace directly 1 − e−ut by unity in the large

u limit because of the divergence coming from the term t−1−η near t = 0. Instead we

can use the series expansion (et − 1)−1 ≃ t−1 − 1/2 + t/12 when t is small to remove

the divergence, by adding and subtracting 1/2 to (et − 1)−1 − t−1. We then perform an

integration by parts in the first integral, to finally obtain the asymptotic expansion

Wη(u) ≃
η

Γ(1− η)

[

− u1+η

1 + η

∫ ∞

0

dt

t1+η
(1− e−t) + u

∫ ∞

0

dt

tη

(

1

t
− 1

et − 1

)

− uη

2

∫ ∞

0

dt

t1+η
(1− e−t) +

∫ ∞

0

dt

t1+η

(

1

et − 1
− 1

t
+

1

2

)]

. (116)

After this result is replaced in Eq. (104), this leads to the following asymptotic form for

the probability density, up to corrective terms in the argument of the order of O(|z|1/β)

Prob(z ≪ −1) ≃ exp

[

−K1+1/β
β

β

1 + 2β
|z|2+1/β +K1+1/β

β

2 + β

2β
|z|1+1/β log(Kβ|z|)

− (Kβ|z|)1+1/β

{

2 + β

2(1 + β)
+

βI(β)

Kβ(1 + β)Γ((1 + β)−1)

}

+
(2 + β)I(β)

2βΓ((1 + β)−1)
(Kβ|z|)1/β log(Kβ|z|) +O(|z|1/β)

]

, (117)
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where the integral I(β) and its asymptotic behavior are given by

I(β) =

∫ ∞

0

dt

tβ/(1+β)

(

1

t
− 1

et − 1

)

≃ β

∫ ∞

0

dt

(

1

t2
− 1

4 sinh2(t/2)

)

=
1

2
β, β ≫ 1. (118)

4.2.2. Limit of large β In the limit when β is large, which corresponds to the hard

core limit, the previous asymptotic regimes have a limit form. In the first case Eq. (112)

becomes easily

Prob(z ≫ 1) ≃ exp

(

−z − 1

2
log z

)

. (119)

In the other case Eq. (117), we can use the behavior of I in this limit, given in Eq. (118),

as well as the asymptotics limit Γ((1+β)−1) ≃ β and Kβ ≃ 1, independent of parameter

a. In this case it is straightforward to show that Eq. (117) becomes

Prob(z ≪ −1) ≃ exp

(

−1

2
|z|2 + 1

2
|z| log |z| − |z|+ 1

4
log |z|

)

. (120)

The different results found in this section can be summed up as follow. For

logarithmic interactions, the general limit distribution, whose asymptotic behavior is

given by Eq. (91) and Eq. (92), is close to a modified Gumbel form involving the strength

parameter β in factor of the exponential argument, plus logarithmic corrections, in the

regime of negative deviations. In the power-law case, the general asymptotic behavior

given by Eq. (112) and Eq. (117) is close to a stretched exponential or Weibull form in

the same regime, with exponent 2 + 1/β > 2. For positive deviations, both cases lead

to an exponential decay with logarithmic corrections. Therefore correlations modify the

general limit distributions Eq. (2) by introducing corrective terms as well as general

exponents that can be measured precisely.

5. Conclusion

In this review, we studied the physical applications of the extreme value statistics to

several cases described by models of maximal height distribution for various types of

physical problems, such as interface, fracture, random fuse network, and gas of particles

in interaction. The general theorem of the three limit distributions can be applied

in case of iid variables, but correlations lead in general to corrections that appear in

the tail behavior where universal exponents related to the interactions are accessible.

The fracture problem can be modeled by simple scaling arguments leading to either

slow crack propagation in ductile material or catastrophic fracture in brittle material.

Both can be studied by analyzing how the stress load is redistributed locally when

a crack is formed. The case of interface with correlated heights is sensitive to the

strength parameter of the correlations at long distance. All asymptotic corrections due

to correlations can in general be extracted using a saddle point analysis with a proper

rescaling. Recently there have been a development of applications of EVS in relation to

random matrix theory and to the distribution of the largest eigenvalue for certain classes
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of matrices, in relation with number theory [114]. In particular it can be shown that the

fluctuations of the maximal height on a path for certain random surfaces [122], or the

radial distribution of a curved surface belonging to the KPZ universality class [123], can

be mapped onto the largest value distribution of the Gaussian Unitary Ensemble, and

given by the Tracy-Widom distribution [72], which can be further verified by analyzing

the precise value of the skewness and kurtosis.
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