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Tunneling amplitude through magnetic breakdown (MB) gap is considered for two-bands Fermi

surfaces illustrated in many organic metals. In particular, the S-matrix associated to the wave func-

tion transmission through the MB gap for the relevant class of differential equations is the main

object allowing the determination of tunneling probabilities and phases. The calculated transmis-

sion coefficients include a field-dependent Onsager phase. As a result, quantum oscillations are not

periodic in 1=B for finite magnetic breakdown gap. Exact and approximate methods are proposed

for computing ratio amplitudes of the wave function in interacting two-band models. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4976631]

I. INTRODUCTION

In recent years, interest regarding determination of the

quantum oscillations phase has been renewed. This was in

particular motivated by the observation of a Berry phase

both in three-dimensional metals1 and topological insula-

tors,2 for example in the case of Dirac fermions.3 One might

add the effect of non-parabolicity of the dispersion equation

which, both in conventional fermions and, especially, in

Dirac fermions is liable to induce phase offsets.4

The problem of the Onsager phase was nevertheless

addressed much earlier, regarding the effect of the phase off-

set induced by magnetic breakdown (MB).5–7 The case of the

model Fermi surface (FS), known as the linear chain of cou-

pled orbits by Pippard,8 is addressed in Refs. 5 and 6. As it

is well known, the first experimental realization of this

FS topology was observed in the organic conductor

j-ðETÞ2CuðSCNÞ2; where ET stands for the bis-ethylenedi-

thio-tetrathiafulvalene molecule.9 In addition to the p=2

dephasing occurring at each MB reflection, it was demon-

strated that a field-dependent phase offset should be observed5

as it has been checked for h-ðETÞ4CoBr4ðC6H4Cl2Þ.10

The main objective of this article is to consider the

tunneling phenomena in interacting cyclotronic orbits, and

its implication to the wave-function characteristics at high

and low field limits. In the first step of this paper, we review

the problem of transmission and reflection coefficients

within the S-matrix theory, when a particle coming from

infinity is scattered by a tunneling region. From the simple

model due to Rosen-Zener12 and applied later to the mag-

netic breakdown case,5,13 we focus on the effect of phase

divergence in the S-matrix amplitudes. This actually occurs

in different fields of physics, for example the level-crossing

problem.14 Amplitude ratio of the wave function is then con-

sidered in the second step when multiple paths are involved

in the tunneling process, leading to an oscillatory behavior

of the transmission coefficient. High field and semiclassical

results are presented and compared to the numerical resolu-

tion of the Schrodinger equation. In the third step, we con-

sider an exact approach to compute the quantum states in the

interacting case of two circular orbits with bound state con-

ditions. This new method is based on an extension of the

usual (creation and annihilation) bosonic operators of the

harmonic oscillator that includes effective coupling between

the individual Fermi surfaces using two parameters, repre-

senting the coupling itself and the gap separately. This is an

approach that can be easily generalized to a linear chain of

coupled orbits, and which should give new insights on the

wave-function properties. Finally, consequences on experi-

mental de Haas-van Alphen oscillations phase offset are con-

sidered for real FS of organic conductors.

II. REVIEW OF THE TRANSMISSION PHENOMENA IN A
SIMPLE TWO-BAND MODEL

The presented model is intended to review the local

transmission phenomena in two-band metals with MB junc-

tions, the FS of which achieves a linear chain of coupled

orbits (see, e.g., Refs. 9, 15, and 16). A typical example of

such Fermi surface is presented in Fig. 1 for (BEDO-TTF)5

[CsHg(SCN)4]2 (Ref. 11) (BEDO-TTF stands for the bis-eth-

ylenedioxi-tetrathiafulvalene molecule), where an incoming

amplitude (a) is transmitted to (b) and reflected to (c). At the

vicinity of the MB junction, two linear sheets hybridized

with energy constant eg can be considered. The local Fermi

surface is represented on Fig. 2 for a non-zero coupling, and

the linearized effective Hamiltonian can be written as

Ĥ
u1

u2

� �
¼ ky þ kx eg

eg ky � kx

� �
u1

u2

� �
¼ 0

0

� �
: (1)

For eg ¼ 0, the two sheets and the wave functions u1 and u2

are independent. In such case, the MB gap which is propor-

tional to e2
g; is zero. In presence of a magnetic field, the
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quantum representation of this model is chosen such that y ¼
ky and x̂ ¼ k̂x ¼ 2ipb@y; with b ¼ eB=ð2p�hÞ: In this case,

the differential equations for the wave functions are

yþ ih
@

@y

� �
u1 þ egu2 ¼ 0 and

egu1 þ y� ih
@

@y

� �
u2 ¼ 0;

(2)

where h ¼ 2pb is an effective magnetic Planck constant.*

This set of first-order differential equations can be reduced

using the transformation u1 ¼ eiy2=2hg1ðyÞ and u2 ¼ e�iy2=2h

g2ðyÞ, where now

g01
g02

 !
¼ eg

h

0 ie�iy2=h

�ieiy2=h
0

 !
g1

g2

 !
¼ eg

h
U yð Þ

g1

g2

 !
;

(3)

where U is a unitary matrix. We can notice that the product

U(y1)U(y2) is diagonal, which makes easier the computation

of any multiple products of U(y)

Uðy1ÞUðy2Þ ¼
e�iy2

1
=hþiy2

2
=h 0

0 eiy2
1
=h�iy2

2
=h

 !
: (4)

The solution of Eq. (3) is given by a series of matrix ordered

products and multiple integrals17

g1 yð Þ
g2 yð Þ

 !
¼ 1þ eg

h

ðy
�y

dy1U y1ð Þ

0
B@ þ

e2
g

h2

ðy
�y

dy1

�
ðy1

�y

dy2U y1ð ÞU y2ð Þ þ ���

1
CA g1 �yð Þ

g2 �yð Þ

 !
: (5)

Using the property Eq. (4) and setting xðyÞ ¼ y2 (x can be a

more general function of y as we shall see later), one can

write a transfer or S-matrix between two points �y and y >
0 on the axis, away from the tunneling region

g1ðyÞ
g2ðyÞ

 !
¼

t s

�s �t

 !
g1ð�yÞ
g2ð�yÞ

 !
; (6)

with t�t � s�s ¼ 1 by conservation of probabilities. The matrix

elements are infinite sums of ordered integrals given by

t ¼ 1þ
e2

g

h2

ðy
�y

dy1

ðy1

�y

dy1e�ix y1ð Þ=hþixðy2Þ=h þ ��� ;

s ¼ eg

h

ðy
�y

dy1e�ixðy1Þ=h þ
e3

g

h3

ðy
�y

dy1

ðy1

�y

dy2

ðy2

�y

dy3

� e�ixðy1Þ=hþixðy2Þ=h�ixðy3Þ=h þ ��� ; (7)

where the yi are dummy variables. The characteristics of this

matrix have been studied by many authors18,19 in the case of

the Zener effect.12 In the Gaussian case, when xðyÞ is qua-

dratic, it is convenient to use the theta function representa-

tion in the complex plane18 when y ¼ 1. Indeed the

diagonal matrix element t ¼ �t can then be computed with the

aid of simple translation transformations. For example, the

double integral in the first line of Eq. (7) can be simplified

by introducing hðxÞ ¼
Þ

dZ
2ipðZ�ieÞ e

izx; where the path in

located on the upper half complex plane, to satisfy the con-

straint y1 > y2

ð1
�1

dy1

ðy1

�1

dy2e�ix y1ð Þ=hþix y2ð Þ=h

¼
ð1
�1

dy1

ð1
�1

dy2

þ
dz

2ip
e�ix y1ð Þ=hþix y2ð Þ=hþi y1�y2ð Þz

z� ie

¼ phð Þ
þ

dz

2ip
eihz2=4

z� ie
¼ ph

2
: (8)

FIG. 1. Fermi surface of the organic conductor (BEDO-TTF)5 [CsHg(SCN)4]2

(from Ref. 11). An incoming wave (a) on the P orbit is reflected in (c) and

transmitted to the a orbit (b).

FIG. 2. Effective two-band model. The hybridization parameter is eg ¼ 0.2.

The arrows represent the increase or decrease of the phase, specifically the

gradient of 6y2=2h: Here are represented two electronic bands with trigono-

metric orientation of the trajectories.

*h is not to be confounded with the real Planck constant that we will write

2p�h in the rest of the paper.
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The last integral is obtained after translating y1 ! y1 þ hz=2

and y2 ! y2 � hz=2; respectively, to remove the couplings

with z: Then t ¼ 1þ pe2
g

2h þ ��� : All the terms in the series can

be computed similarly, and the resummation leads to t ¼
epe2

g=2h: We will introduce in the following the breakdown field

h0 ¼ pe2
g which is characteristic of the tunneling process. The

same techniques could be applied for elements s; but one finds

that the result is diverging in the large y limit. The reason is

that the phase of s is diverging logarithmically,14 as we will

see below, although the modulus is finite. A correct asymptotic

analysis for finite y and �y is therefore needed.

A. Asymptotic analysis

One can solve the equation for g1 and g2 using standard

techniques. Indeed, the differential equation satisfied by g1

can be obtained, separating g1 from g2 in Eq. (3)

g001 þ
2iy

h
g01 ¼

e2
g

h2
g1; g2 ¼

h

ieg
eiy2=hg01: (9)

The two odd and even solutions for g1 are a combination of

two Kummer functions M20 with an imaginary variable, and

which can be chosen such that

g1 yð Þ ¼ AM
ie2

g

4h
;
1

2
;
iy2

h

� �
þ ByM

1

2
þ

ie2
g

4h
;
3

2
;� iy2

h

� �
; (10)

where A and B are constants. Then u1 ¼ eiy2=2hg1 and

u2 ¼ eiy2=2hg2. We notice that there are only two constants

in the problem, since from Eq. (9) g2 is entirely determined

by g1. The S-matrix (6) between points �y and y> 0 can

then be obtained by eliminating the coefficients A and B in

Eq. (10). Setting

g1ð6yÞ ¼ Aa16Bb1; g2ð6yÞ ¼ 6Aa2 þ Bb2;

one can express the outgoing wave function g1(�y) and

g2(y) as function of an incoming wave function g1(y) and

g2(�y) as represented locally in Fig. 1

g1ð�yÞ
g2ðyÞ

 !
¼

1=t �s=t

�s=t 1=t

 !
g1ðyÞ

g2ð�yÞ

 !
¼ M

g1ðyÞ
g2ð�yÞ

 !
:

(11)

The functions (a1, a2, b1, b2) depending on y are given by

Kummer functions

a1 ¼ M
ie2

g

4h
;
1

2
;� iy2

h

� �
; b1 ¼ yM

1

2
þ

ie2
g

4h
;
3

2
;� iy2

h

� �
;

a2 ¼ �
2y2

3eg
eiy2=h 1þ

ie2
g

2h

� �
M

3

2
þ

ie2
g

4h
;
5

2
;� iy2

h

� �

þ h

ieg
eiy2=hM

1

2
þ

ie2
g

4h
;
3

2
;� iy2

h

� �
;

b2 ¼ �y
ieg

h
eiy2=hM 1þ

ie2
g

4h
;
3

2
;� iy2

h

� �
; (12)

and the expression for the S-matrix elements is given by

t ¼ �t ¼ a1a2 þ b1b2

a1a2 � b1b2

; s ¼ 2a1b1

a1a2 � b1b2

;

�s ¼ 2a2b2

a1a2 � b1b2

; t2 � s�s ¼ 1:

Asymptotically, for y large, one can use the expansion21

M a; b; zð Þ ’ C bð Þ
C b� að Þ �zð Þ�a þ C bð Þ

C að Þ e
zza�b

and keep the dominant terms

g1 6yð Þ’
ffiffiffi
p
p iy2

h

� ��ie2
g=4h

� A

C
1

2
� ie2

g=4h

� �6

ffiffiffi
h
p

2
ffiffi
i
p B

C 1� ie2
g=4h

� �
0
B@

1
CA (13)

and

g2 6yð Þ ’
ffiffiffi
p
p �iy2

h

� �ie2
g=4h

� 6
eg

2
ffiffiffiffi
ih
p A

C 1þ ie2
g=4h

� �0
@

� ih

eg

B

C
1

2
þ ie2

g=4h

� �1CA: (14)

Using the different duplication formulas for gamma’s func-

tions: Cðð1=2Þ þ ixÞCðð1=2Þ � ixÞ ¼ p=coshðpxÞ, CðixÞ
Cð1� ixÞ ¼ p=isinhðpxÞ; and Cðð1=2Þþ ixÞCðixÞ¼

ffiffiffi
p
p

21�2ix

Cð2ixÞ; one obtains the probability of tunneling p¼1=
t¼e�pe2

g=2h¼e�h0=2h, which is the typical tunneling ampli-

tude already obtained in many previous works.5,13 The

breakdown field is in this case equal to h0¼pe2
g and corre-

sponds exactly to the semiclassical expression (see text

further below). The remaining elements of the tunneling

matrix M can be obtained after some algebra and one finds

the unitary matrix

M ¼ p �iqe�i/

�iqei/ p

 !
; (15)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
and the phase / depends on the coordi-

nate y

/ yð Þ ¼ �
p
4
þ

e2
g

2h
log

2y2

h

� �
� argC ie2

g=2h
� �

: (16)

The phase diverges logarithmically with y. Since the FS is

not accounted for by Fig. 2 for jkxj � 1 where it should be

more curved, we assume that the phase is finite far from the

tunneling region. Using a Stirling expansion of the gamma

function in Eq. (16), one finds that / is finite asymptotically

only when y2 ¼ h0e�1=4p. This corresponds approximately

to the coordinate where the tunneling region ends, e.g.,

y ’ eg. In this case, instead of Eq. (16), the phase is given by

the following regularization:5,22

/ ¼ �p
4
þ u log u� u� argC iuð Þ; u ¼ h0

2ph
: (17)
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The phase is zero in the low field limit (u large) and equal to

p/4 when h is large (u small).

III. TRANSMISSION THROUGH THE SMALL POCKET

A more general model is given by an hybridization of

two parabolic bands, whose Fermi surface is composed of

two circular sheets, each of radius k0 and centers 6kc, as dis-

played in Fig. 3, and for which the Hamiltonian reads

Ĥ¼

1

2
kxþkcð Þ2þ1

2
k2

y�k2
0

� �
eg

eg
1

2
kx�kcð Þ2þ1

2
k2

y�k2
0

� �
0
BB@

1
CCA:

(18)

Rescaling the variables with kc and setting x ¼ kx=kc,

y ¼ ky=kc, eg=k2
c ! eg, and y2

0 ¼ k2
0=k2

c � 1 > 0, one obtains

Ĥ¼

1

2
xþ1ð Þ2þ1

2
y2�y2

0�1
� �

eg

eg
1

2
x�1ð Þ2þ1

2
y2�y2

0�1
� �

0
BB@

1
CCA:

(19)

For small x, one has the approximation near the tunneling

points (points a, b, a0, and b0 in Fig. 3)

Ĥ ’
xþ 1

2
y2 � y2

0

� �
eg

eg �xþ 1

2
y2 � y2

0

� �
0
BB@

1
CCA: (20)

This Hamiltonian gives a first order differential matrix equa-

tion, similar to Eq. (3), after setting u1ðyÞ ¼ eixðyÞ=2hg1ðyÞ
and u2ðyÞ ¼ e�ixðyÞ=2hg2ðyÞ

g01
g02

� �
¼ eg

h
0 ie�ix yð Þ=h

�ieix yð Þ=h 0

� �
g1

g2

� �
; (21)

with xðyÞ ¼ ðy3=3� y2
0yÞ instead of xðyÞ ¼ y2. The first

double integral in Eq. (7) contributing to t in the large field

limit and far from the scattering region can be written as

ð1
�1

dy1

ðy1

�1

dy2eix y1ð Þ=hþix y2ð Þ=h

¼
ð1
�1

dy1

ð1
�1

dy2

þ
dze�ix y1ð Þ=hþix y2ð Þ=hþiz y1�y2ð Þ

2ip z� ieð Þ : (22)

We can define each integral over y1 and y2 as a function of z

h zð Þ ¼
ð1
�1

dye�ix yð Þ=hþizy ¼ 2ph1=3Ai �h1=3 y2
0

h
þ z

� �	 

:

(23)

Then using ðz� ieÞ�1 ¼ Pð1=zÞ þ ipdðzÞ, one obtains

t ’ 1þ
e2

g

h2
2p2h2=3Ai2 �h1=3 y2

0

h

� �	

þ 1

2ip

ð1
0

dz

z
h2 zð Þ � h2 �zð Þ
� �35: (24)

This expression is valid at large fields. It contains an imagi-

nary part which is due to the presence of the small a orbit

between points b and b0, with area Sa, in red in Fig. 3.

Indeed, after tunneling through a, the particle can be scat-

tered multiple times around the a orbit, and therefore

acquires a phase proportional to Sa, before exiting trough a0.
In the following we compare the transmission coefficient

T ¼ 1=jtj2 through the small a orbit to the expression given

by the semiclassical relation and numerical results.

A. Semiclassical approximation

The Hamiltonian (20) leads to the set of differential

equations for g1 and g2

h2g001 þ ihx0ðyÞg01 � e2
gg1 ¼ 0;

h2g002 � ihx0ðyÞg02 � e2
gg2 ¼ 0; (25)

with x0ðyÞ ¼ y2 � y2
0.* In Fig. 4, we have represented the

numerical solution of Eqs. (21) and (25), in particular the

modulus of jg1j for different values of fields. At large values

of y, we can approximate Eq. (25) by the equations ihy2g01
�e2

gg1 ’ 0 and ihy2g02 þ e2
gg2 ’ 0, which leads to g1 ’

exp ðie2
g=ðhyÞÞ � constant, and g2 ’ exp ð�ie2

g=ðhyÞÞ �
constant. We have chosen g1ðy� �1Þ ¼ 1 and integrated

numerically the first differential equation. On the far right,

y� 1, the constant value is proportional to exp ðh0=hÞ
¼ 1=p2. Therefore, by computing t, we can access to the

breakdown field h0. The semiclassical approximation

g1ðyÞ ¼ exp ðiSðyÞ=hÞ, where S corresponds physically to an

area enclosed by the trajectory, consists in expanding S(y) as

a series in h � 1. In particular, at the leading order in h for

small field values, one can write S ¼ S0 þ hS1 þ � � � with

FIG. 3. Effective two-band model. The dashed lines are the approximation

Eq. (20) for small x. The parameters are y0¼ 1 and eg¼ 0.05. The shape of

the small lens, corresponding to the a orbit in magnetic field, is slightly

changed by the approximation when y0 is small enough.

*The solutions of Eq. (25) are actually given by triconfluent Heun

functions.23
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S020 þ x0 yð ÞS00 þ e2
g ¼ 0

S00 ¼
1

2
�x0 yð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 yð Þ2 � 4e2

g

q� �
: (26)

When xðyÞ ¼ y2, as for the model Eq. (1) (linear sheets of

Fig. 2)

S0 yð Þ ¼ �
1

2
y26

1

2
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � e2

g

q
7

1

2
e2

g log yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � e2

g

q� �
:

The breakdown field h0 is then given by the tunneling ampli-

tude p ¼ expð�h0=2hÞ through the forbidden region, or

h0 ¼ 2

ðeg

�eg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

g � y2
q

¼ e2
gp;

which corresponds to the exact result in this particular case.

For the second model, Eq. (20) (parabolic sheets of Fig. 3),

the breakdown field through one of the two tunneling

regions, is instead given by

h0 ¼
ðffiffiffiffiffiffiffiffiffiffiy2
gþ2eg

p

ffiffiffiffiffiffiffiffiffiffi
y2

0
�2eg

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2

g � y2 � y2
0

� �2
q

dy ’
pe2

g

y0

: (27)

The phase variation of S0 around the small pocket corre-

sponds to the area Sa of the pocket

Sa ¼ 2

ðffiffiffiffiffiffiffiffiffiffiy2
0
�2eg

p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � y2

0

� �2 � 4e2
g

q
dy

¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 þ 2eg

q
y2

0E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 � 2eg

y2
0 þ 2eg

s0@
1
A

2
4

�2egK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

0 � 2eg

y2
0 þ 2eg

s0@
1
A
3
5 ’ 4

3
y3

0; (28)

where E and K are complete elliptic functions of the second

and first kind, respectively, and the approximation is taken

when eg is small. For a unit cell parameter a¼ 10 Å, or,

equivalently, a unit cell area of 100 Å2, which holds for the

organic metals h-(ET)4CoBr4(C6H4Cl2) and j-(ET)2

Cu(SCN)2, the frequency Fa and magnetic breakdown field

B0, expressed in Tesla are given by

Fa ¼
2p�hSa

a2e
¼ 4136Sa T½ �;

B0 ¼
2pð Þ2�h

a2e
h0 ¼ 25988h0 T½ �: (29)

As examples, the frequency Fa of the two above salts is 944

and 600 T, respectively, yielding y0¼ 0.55 and 0.48. The

MB field B0¼ 35 and 16 T, yielding eg ¼ 0:015 and 0.01,

respectively.

B. Transmission coefficient

We consider the probability of tunneling between points

P and Q in Fig. 3, using the model (20), which is defined by

the modulus T ¼ ju1ðQÞ=u1ðPÞj2 ¼ 1=jtj2. Given the

approximate value of t in Eq. (24), we can estimate T in the

large field limit by exponentiating Eq. (24)

T ’ exp �
4p2e2

g

h4=3
Ai2 �h1=3 y2

0

h

� �" #
: (30)

T reaches its maximum, or resonance value T¼ 1, whenever the

Airy function vanishes. This happens when h ¼ y3
0ð�anÞ3=2

,

where an< 0 are the zeroes of the Airy functions. For exam-

ple, a1¼�2.33811, a2¼�5.08795. A comparison with the

numerical resolution of the differential equation (21) is

shown in Fig. 5. The approximation presents a phase shift

more pronounced as the field decreases. Semiclassically, we

can compute T using the tunneling matrix (15) between the

two points P and Q in Fig. 3. It is the contribution of all pos-

sible trajectories between the two points, including the multi-

ple reflections inside the a orbit

FIG. 4. Wave profile of g1 as function of y for three different values of the

inverse field ratio h0/h. Parameters are y0 ¼ 0:5 and eg ¼ 0:02: From the

initial condition g1ðy� �1Þ ¼ 1, we have integrated Eq. (25). The ratio

between the two amplitudes g1ðy� �1Þ=g1ðy� �1Þ is proportional to

the inverse of tunneling probability exp(h0/h)¼ 1/p2, up to some oscilla-

tion factor which corresponds to interferences in the a-pocket (see text).

Indeed the electron has to cross two breakdown regions, therefore a factor

p2 is involved.

FIG. 5. Transmission coefficient as a function of the inverse field h0/h for

y0¼ 0.5 and a hybridization coupling eg¼ 0.02 (h0¼ 0.002513 and

Sa¼ 0.159598). The black line are computed by solving the differential

equation (21) and the red line is the large field approximation Eq. (30)

obtained by computing approximately t in the S-matrix (24).
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u1 Qð Þ ¼ u1 Pð Þ pieiSa=2hp
� �

þ u1 Pð Þ pieiSa=2h �qe�i/
� ��

� ieiSa=2h �qe�i/
� �

ieiSa=2hp� þ ���

¼ u1 Pð Þ ip2eiSa=2h

1þ q2eiSa=h�2i/
: (31)

The factor i corresponds to passing each of the two singular

(or turning) points on the surface a Fig. 3 where the slopes

are infinite. The phase / is taken from Eq. (17). Therefore

one obtains (see Ref. 24)

T ¼ p4

1þ q4 þ 2q2 cos Sa=h� 2/ð Þ : (32)

T is maximum when the field satisfies cos ðSa=h� 2/Þ
¼ �1, i.e., T¼ 1, and the quantized values are given by

h ¼ Sa

2pnþ pþ 2/ hð Þ
: (33)

If / ’ p=4, then h0=h ¼ 3ph0=2Sa; 7ph0=2Sa;…: In Fig. 6

is plotted the transmission coefficient as function of the

inverse field h0/h. The black continuous lines are obtained

by solving the system of differential equations (21), with the

g1ð�ycÞ ¼ 1, g2ð�ycÞ ¼ 0, yc ¼ 5, then by computing the

ratio T ¼ 1=jtj2 ¼ jg1ð�ycÞ=g1ðycÞj2. Without the phase /

from the reflection coefficient (17), the values differ increas-

ingly as the field is increased (dotted blue lines). Oppositely,

the phase does not contribute to the oscillations when the

field becomes small.

IV. AMPLITUDE RATIOS BETWEEN TWO-INTERACTING
ORBITS

In this section, we consider the model (19), which repre-

sents the hybridization of the two giant orbits corresponding

to the b orbit of the organic metals considered in the last sec-

tion (see Fig. 1). Using the field quantization, one obtains

the set of differential equations

�h2@2
y u1 þ 2ih@yu1 þ ðy2 � y2

0Þu2 þ 2egu2 ¼ 0;

2egu1 � h2@2
y u2 � 2ih@yu2 þ ðy2 � y2

0Þu2 ¼ 0: (34)

As in preceding sections, we introduce two functions g1 and

g2 such that uiðyÞ ¼ giðyÞ exp ðixiðyÞ=hÞ, xi are two phase

functions that are chosen such that the coefficient of gi van-

ishes in Eq. (34) after replacement. One obtains

�h2g001 � 2ihðx01 � 1Þg01 þ 2egg2 exp½iðx2 � x1Þ=h� ¼ 0;

�h2g002 � 2ihðx02 þ 1Þg02 þ 2egg1 exp iðx1 � x2Þ=h� ¼ 0:½
(35)

The phase functions satisfy the differential equations

�ihx001 þ x021 � 2x01 þ y2 � y2
0 ¼ 0;

�ihx002 þ x022 þ 2x02 þ y2 � y2
0 ¼ 0: (36)

We can chose in particular x1 ¼ x and x2 ¼ ��x. The solu-

tions of the Ricatti equations with respect to x0 defined by

Eq. (36) can be found in principle using hypergeometric

functions. The coefficients x01 � 1 and x02 þ 1 in front of the

g0is in Eq. (35) can be removed using an additional transfor-

mation g0iðyÞ ¼ hiðyÞ exp ð2ihiðyÞ=hÞ, such that

h1 ¼ y� x1; h2 ¼ �y� x2: (37)

Then finally

h01 ¼
2eg

h2
g2e�2iy=hþi x1þx2ð Þ=h;

h02 ¼
2eg

h2
g1e2iy=hþi x1þx2ð Þ=h:

The whole system can be cast into a system of first-order dif-

ferential equations

g01
g02
h01
h02

0
BBBB@

1
CCCCA ¼

0 V

U 0

 ! g1

g2

h1

h2

0
BBBB@

1
CCCCA; (38)

with U and V defined by

U ¼ 2egei x1þx2ð Þ=h

h2

0 e�2iy=h

e2iy=h 0

 !
;

V ¼ e2iy=h�2x1=h 0

0 e�2iy=h�2x2=h

 !
: (39)

FIG. 6. Transmission coefficient as a function of the inverse field h0=h for

y0 ¼ 0:5 and for two values of hybridization coupling: (a) eg ¼ 0:02;
h0 ¼ 0:002513, Sa ¼ 0:159598, and (b) eg ¼ 0:05; h0¼ 0.015959 and

Sa ¼ 0:131460. Black lines are computed by solving the differential equa-

tion (21). Red lines, which are indiscernible from the black lines, are the

result of Eq. (32) where the phase / is given by Eq. (17). The dotted lines

are obtained without reflection phase (/¼ 0). /¼ 0 only holds in the limit

of small fields (h0/h� 1).
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The S-matrix can then be formally defined by ordered-

integral iterations of the matrix functions U and V, similarly

as Eq. (4). If we introduce uðyÞ ¼ exp ð2iy=h� 2i=ðxÞ=hÞ
and vðyÞ ¼ exp ð2iy=h� 2ix=hÞ, one finds that the t matrix

element can be expanded as

t ¼ 1þ
4e2

g

h4

ð
y	y1	y2	y3	y4	�y

v y1ð Þ�u y2ð Þ�v y3ð Þu y4ð Þ

þ
16e4

g

h8

ð
y	y1	���	y8	�y

v y1ð Þ�u y2ð Þ�v y3ð Þu y4ð Þv y5ð Þ

� �u y6ð Þ�v y7ð Þu y8ð Þ þ � � � (40)

which is equivalent to Eq. (7) found for one tunneling

junction

A. Case with no hybridization ðeg50Þ
In absence of hybridization, it is interesting to study the

phase for an unbounded state (a state where one of the

boundary condition for the wave function does not vanish at

infinity). The two sheets decouple in this case, and one has

only two independent linear second-order differential equa-

tions for g1 and g2. Setting u1 ¼ g1ðyÞeiy=h and u2 ¼ g2ðyÞ
e�iy=h, Eq. (34) becomes

h2g001ðyÞ ¼ ðy2 � r2Þg1ðyÞ;
h2g002ðyÞ ¼ ðy2 � r2Þg2ðyÞ; (41)

where r2 ¼ 1þ y2
0 is the radius of the b orbit. It is well-

known that the even and odd solutions are expressed using

two Kummer functions M with y2/h as main argument20

g1 yð Þ ¼ Ae�y2=2hM
1

4
� r2

4h
;
1

2
;
y2

h

� �
þ ByM

3

4
� r2

4h
;
3

2
;
y2

h

� �
¼ Au yð Þ þ Bv yð Þ: (42)

Solution for the other function g2 is similar with independent

constants. We impose the constraint that, for large and nega-

tive, g1 vanishes. This leads to the relation

B

2C
3

4
� r2

4h

� �� Affiffiffi
h
p

C
1

4
� r2

4h

� � ¼ 0: (43)

In Fig. 7(a) is represented g1, with a vanishing boundary

condition on the left. Only one constant remains, which

is not relevant when we consider the ratio of the wave

function between P and Q in Fig. 3. Indeed the transmis-

sion factor defined here by T ¼ jg1ð�rÞ=g1ðrÞj2 is exactly

equal to

T ¼
C

1

4
� r2

4h

� �
M

1

4
� r2

4h
;
1

2
;
r2

h

� �
þ 2rffiffiffi

h
p C

3

4
� r2

4h

� �
M

3

4
� r2

4h
;
3

2
;
r2

h

� �

C
1

4
� r2

4h

� �
M

1

4
� r2

4h
;
1

2
;
r2

h

� �
� 2rffiffiffi

h
p C

3

4
� r2

4h

� �
M

3

4
� r2

4h
;
3

2
;
r2

h

� �






















2

; (44)

and is a function of r2=h. In physical units, the ratio r2=2h is

equal to the b-orbit frequency (in Tesla) divided by the mag-

netic field B

r2

2h
¼ Fb

B
; (45)

which is usually a large number (Fb is few thousands of Tesla

for organic conductors). It has to be noticed that imposing a

vanishing wave function at both negative and positive large

values of y (bound state) leads to two conditions

B

2C
3

4
� r2

4h

� �6
Affiffiffi

h
p

C
1

4
� r2

4h

� � ¼ 0; (46)

which can only be satisfied when the gamma functions are

infinite. This happens when both arguments of the gamma

functions are negative integers, and one obtains the usual

quantification relation or Landau levels r2¼ (2nþ 1)h with n
positive integer. Using the different asymptotic expansions

for the Kummer function,1 one obtains for each wave func-

tion u and v a good approximation near the turning points

y ’ 6r (see Figs. 7(b) and 7(c), approximation (2))

u yð Þ ’
ffiffiffi
p
p r2

2h

� �1=6

Ai
r2

2h

� �2=3
y2

r2
� 1

� �" #
cos

p
4
� pr2

4h

� �(

þBi
r2

2h

� �2=3
y2

r2
� 1

� �" #
sin

p
4
� pr2

4h

� �9=
;; (47)

v yð Þ¼
ffiffiffi
p
p

2

r2

2h

� ��5=6

y Ai
r2

2h

� �2=3
y2

r2
�1

� �" #
cos

3p
4
�pr2

4h

� �(

þBi
r2

2h

� �2=3
y2

r2
�1

� �" #
sin

3p
4
�pr2

4h

� �9=
;: (48)

In the region �r< y< r, not too close to the turning points,

the solutions are instead adequately approximated by (see

Figs. 7(b) and 7(c), approximation (1))

u yð Þ ’
1ffiffiffiffiffiffiffiffiffiffi
sin h
p cos

r2

2h
h� 1

2
sin 2h

� �� �
� sin

pr2

4h

� �" #
;

(49)

v yð Þ ’ �
hffiffiffiffiffiffiffiffiffiffi
sin h
p sin

r2

2h
h� 1

2
sin 2h

� �� �
� sin

pr2

4h

� �" #
:

(50)
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Moreover, the ratio between the two constants B and A in

Eq. (43) is approximated by

B

A
¼

2C
3

4
� r2

4h

� �
ffiffiffi
h
p

C
1

4
� r2

4h

� � ’ r

h
cot

pr2

4h
þ p

4

� �
: (51)

Using Eqs. (47) and (48) for y¼6r, and Bi(0)/Ai(0)¼
ffiffiffi
3
p

,

one obtains the semiclassical limit of the inverse transmis-

sion factor, and after some algebra and simplifications one

obtains the simple result

T ’ 4 sin2 pr2

2h
þ p

3

� �
¼ 4 sin2 p

Fb

B
þ p

3

� �
: (52)

The frequency of the oscillations is Fb/2 as expected, but

there is a shift equal to d ¼ p=3 as opposed to the semiclassi-

cal limit, which is equal to d ¼ p=2 for a bound state or

localized wave function, where at each turning point a

Maslov factor equal to p=2 is involved after total reflection

of the wave function.

B. Semiclassical analysis for interacting orbits

In this section, one computes semiclassically for a bound

state the amplitude ratio between points P and Q in Fig. 3,

using a transfer matrix method to obtain all the contributions

from the different electronic paths. One has indeed to evalu-

ate the sum of all the amplitudes corresponding to multiple

orbits connecting the two points P and Q, with their harmon-

ics, and using the connection formula (15) for the tunneling

regions. In Fig. 3, we have represented 4 different points

(amplitudes) (a, a0, b, b0), a and a0 belong to orbits b or 2b �
a, and b and b0 belong to orbits a or b. These points are

located just before the tunneling event, such that there is a

possibility to be transmitted or reflected, just after passing

through the breakdown points. A trajectory is an ensemble

of steps on the surface, which connect P to Q. At time n¼ 0

we start from P. At later time nþ 1, we can write the ampli-

tudes as function of the amplitudes at time n. For example,

amplitude b at time nþ 1 is the sum of b0 after reflection and

a0 after tunneling at time n, and can be written as

bðnþ 1Þ ¼ peiSa=2ha0ðnÞ � qeiSa=2h�i/b0ðnÞ:

There are 3 other equations connecting the different points at

each step on a trajectory. At P, Q, P0, and Q0 we introduce a

phase shift d ¼ p=2. One can write therefore the system

aðnþ 1Þ ¼ qeiðSb�Sa=2Þ=hþi/þ2ida0ðnÞ
þ peiðSb�Sa=2Þ=hþ2idb0ðnÞ;

a0ðnþ 1Þ ¼ qeiðSb�Sa=2Þ=hþi/þ2idaðnÞ
þ peiðSb�Sa=2Þ=hþ2idbðnÞ;

bðnþ 1Þ ¼ �qeiSa=2h�i/b0ðnÞ þ peiSa=2ha0ðnÞ;
b0ðnþ 1Þ ¼ �qeiSa=2h�i/bðnÞ þ peiSa=2haðnÞ: (53)

From these relations, we can define a step matrix R, acting

on vector v(n)T¼ (a(n), b(n), a0(n), b0(n)), with initial condi-

tion vð0ÞT ¼ ð0; 0; e�iðSb�Sa=2Þ=h�id; 0Þ. Then vðnþ 1Þ ¼
RvðnÞ; with

R ¼ 0 A
A 0

� �
; A ¼ qx2b�aei/ px2b�a

pxa �qxae�i/

� �
; (54)

where xa ¼ eiSa=2h and x2b�a ¼ eiðSb�Sa=2Þ=hþ2id. We define

T ¼ 1=jtj2 ¼ jg1ð�rÞ=g1ðrÞj2 which is also equal to

T�1 ¼ jhvð0Þjvð0Þ þ R2vð0Þ þ R4vð0Þ þ � � �ij2

¼ jhvð0Þjð1� R2Þ�1
vð0Þij2: (55)

Only the even powers of R contribute since to go trough a0

twice we need to perform an even number of steps.

FIG. 7. Wave profile of functions g1 (a), u (b), and v (c) as a function of y
for field value h¼ 0.05 and parameters y0¼ 1, eg¼ 0 (r2¼ 2).

Approximation (1) is given by Eqs. (49) and (50), which are accurate in the

bulk �r< y< r, and approximation (2) by Eqs. (47) and (48), which are cor-

rect only near the borders of the turning points y ¼ 6r ¼ 6
ffiffiffi
2
p

. Function g1

vanishes as y! �1 but is unbounded when y!1.
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Resumming the expression in Eq. (55) involves the inverse

of (1 � R2) which can be computed from (1 � A2)�1 since R
is simply the diagonal block matrix diag (A2, A2), and there-

fore (1 � R2)�1¼ diag((1�A2)�1, (1 � A2)�1). After some

algebra, we extract the third component of (1 � R2)�1
v(0)

to obtain T

T ¼ 1� xax2b�að Þ2 � q2 xaei/ � x2b�aei/
� �2

1� p2xax2b�a � q2x2
ae�2i/













2

: (56)

There are two obvious cases. When p¼ 1 and q¼ 0, one

obtains T ¼ j1� xax2b�aj2 ¼ j1� eiSb=hþ2idj2, or T ¼ 4 sin2

ðSb=2hþ dÞ, which was obtained previously in Eq. (52).

Oppositely, when p¼ 0 and q¼ 1, the particle describes

orbits around 2b�a, and T ¼ j1� x2
2b�ae2i/j2, or T ¼

4 sin2 ðSb � 1
2

SaÞ=hþ dþ /
� �

: This expression depends on /
explicitly.

C. Simple solvable model for two-interacting orbits

Let us rewrite the Hamiltonian (19) in the representation

ðx; ŷ ¼ �ih@xÞ. One obtains the set of coupled differential

equations

�h2@2
x@u1 þ ððxþ 1Þ2 � r2Þu1 þ 2egu2 ¼ 0;

2egu1 � h2@2
x u2 þ ððx� 1Þ2 � r2Þu2 ¼ 0:

(57)

The advantage of this representation is that the imaginary

parts in Eq. (34) are absent, at the cost of a shift in the har-

monic potential. Function u1 is centered around x ¼ �1

whereas function u2 has dominant weight around x¼ 1. We

will consider instead a slightly different set of equations

ðŷ þ d0Þ2u1 þ ððxþ 1Þ2 � r2Þu1 þ 2egðxÞu2 ¼ 0;

2�egðxÞu1 þ ðŷ � d0Þ2u2 þ ððx� 1Þ2 � r2Þu2 ¼ 0;
(58)

where d0 is a parameter and the coupling eg is a function of

x : egðxÞ ¼ ðx� id0Þg with g constant. The Hamiltonian

operator H is then defined by

Ĥ ¼ 1

2

ŷþd0ð Þ2þ xþ1ð Þ2� r2 2g x� id0ð Þ
2g xþ id0ð Þ ŷ�d0ð Þ2þ x�1ð Þ2� r2

 !
;

(59)

and the Fermi surface is the location of points given by the

equation

H x; yð Þ ¼
1

4
yþ d0ð Þ2 þ xþ 1ð Þ2 � r2

h i
� y� d0ð Þ2 þ x� 1ð Þ2 � r2

h i
� g2 x2 þ d2

0

� �
¼ 0:

(60)

For g and d0 non-zero, the surface is composed of two sheets

separated by a gap proportional to d0, see Fig. 8(a). It has to

be noticed that for this particular choice of coupling func-

tion, there is no observable gap on the Fermi surface when

d0¼ 0, since eg (0)¼ 0, but the two surfaces are still coupled

at other points by gx 6¼ 0, see Fig. 8(b). The advantage of the

Hamiltonian (59) is that it can be factorized using simple

bosonic operators associated with centers 6(1 6 id0) in the

complex plane (x, y)

a ¼ 1ffiffiffiffiffi
2h
p xþ 1þ id0 þ h@xð Þ;

a† ¼ 1ffiffiffiffiffi
2h
p xþ 1� id0 � h@xð Þ;

b ¼ 1ffiffiffiffiffi
2h
p x� 1� id0 þ h@xð Þ;

b† ¼ 1ffiffiffiffiffi
2h
p x� 1þ id0 � h@xð Þ; (61)

with ½a; a†� ¼ ½b; b†� ¼ 1. The set of differential equations

(58) are indeed identical to two coupled harmonic oscillators

h a†aþ 1

2

� �
u1 þ egu2 ¼

r2

2
u1;

h b†bþ 1

2

� �
u2 þ �egu1 ¼

r2

2
u2; (62)

and it is straightforward then to consider the following two-

dimensional “bosonic” operators:

P ¼
a

1ffiffiffiffiffi
2h
p

gffiffiffiffiffi
2h
p b

0
BB@

1
CCA; P† ¼

a† gffiffiffiffiffi
2h
p

gffiffiffiffiffi
2h
p b†

0
BB@

1
CCA; (63)

FIG. 8. (a) Fermi surface for g¼ 0.5 and d0¼ 0.1, where a gap is present.

The two surfaces are tilted as their centers are not aligned on the horizontal

axis. (b) Fermi surface for g¼ 0.5 and d0¼ 0 (black), and g¼ d0¼ 0 (red).

When g 6¼ 0, the area of the circular cyclotronic trajectories is slightly larger

since it is proportional to r2þ g2.
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to express the Hamiltonian as an extended harmonic oscilla-

tor in two-dimensions

Ĥ
u1

u2

� �
¼ hP†Pþ1

2

h�r2�g2 0

o h�r2�g2

 !( )
u1

u2

� �
¼0:

(64)

The “bosonic” operators P and P† satisfy the commutation

relation

P;P†
� �

¼ Q0 ¼
1 2igd0=h

�2igd0=h 1

 !
¼ r0 � 2gd0r2=h;

(65)

which is not unity when the product gd0 is not zero. We can-

not therefore call them “bosonic” in the usual sense since

there is a mixing of the two different types of bosons due to

the coupling. Here ri¼0.3 are the usual Dirac matrices in two

dimensions.* There are two possible ways to construct the

wave functions, depending on the value of d0. If d0¼ 0, then

P and P† are true bosonic operators, and we can construct

the ground-state solution PW0 ¼ 0 of lowest energy E0

¼ 1
2

h� r2 � g2
� �

¼ 0, with W0 ¼ ðuð0Þ1 ;uð0Þ2 Þ
T=

ffiffiffi
2
p

: This

imposes the constraint h ¼ r2 þ g2 on the field. Normally we

construct the states above the ground-state energy by quanti-

zation of the area, or En ¼ h nþ 1
2

� �
/ r2 þ g2, but here we

keep r constant (or constant Fermi energy) and solve for h
values for which a set of bounded wave functions can be

found. It is easy to see that the first component uð0Þ1 satisfies

the factorized differential equation

ðxþ h@x6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
Þðxþ h@x7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
Þuð0Þ1 ¼ 0: (66)

The solutions are simple combinations of two Gaussian

exponentials centered at 6xg ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p

u 0ð Þ
1 xð Þ ¼ A exp �

xþ xgð Þ2

2h

	 

þ B exp �

x� xgð Þ2

2h

	 

;

u 0ð Þ
2 xð Þ ¼ � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
g

A exp �
xþ xgð Þ2

2h

	 


� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
g

B exp �
x� xgð Þ2

2h

	 

: (67)

The two components are coupled together once the constants

A and B are determined. These constants satisfy a conserva-

tion equation, depending on the filling factor. If we consider

initially a system filled with one electron in each orbital at

zero coupling, therefore two electrons in total, we impose

that, by increasing the coupling, the number of electrons per

orbital does not change. One has the pair of constraintsÐ
juð0Þ1 j

2 ¼
Ð
juð0Þ2 j

2 ¼ 1 (in this case we consider real func-

tions), which leads to hW0jW0i ¼ 1, and to the following

relations of conservation:

1ffiffiffiffiffiffi
ph
p ¼A2þB2þ2ABe�x2

g=h;

1ffiffiffiffiffiffi
ph
p ¼A2 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

p
g

 !2

þB2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

p
g

 !2

�2ABe�x2
g=h:

(68)

The other state vectors at higher energy (or higher nodes) are

given by the successive application of on P† on W0

Wn ¼
1ffiffiffi
2
p u nð Þ

1

u nð Þ
2

 !
¼ 1ffiffiffiffi

n!
p P†W0; (69)

with energy En ¼ h nþ 1
2

� �
� r2 þ g2
� �

=2. When En ¼ 0;

this imposes a field value hn ¼ ðr2 þ g2Þ=ð2nþ 1Þ for which

Wn is solution of Eq. (57). In Fig. 9, we have represented the

two components uðnÞ1 and uðnÞ2 for the state n¼ 10 at constant

r2 ¼ 2. In the limit of small coupling, Eq. (68) leads to the

solutions (we choose A> 0 and B< 0)

A ’ phð Þ�1=4
; B ’ � g

2
phð Þ�1=4 ! 0;

u 0ð Þ
1 ’ phð Þ�1=4

exp �
xþ xgð Þ2

2h

	 

;

u 0ð Þ
2 ’ phð Þ�1=4

exp �
xþ xgð Þ2

2h

	 

; (70)

FIG. 9. Wave profile of bound states uðnÞ1 and uðnÞ2 for coupling parameters

g¼ 0.5 and d0¼ 0 (red), at level n¼ 10, and comparison with the free case

(g¼ 0 (black), independent harmonic oscillators). For g¼ 0.5 and g¼ 0, we

take h¼ (r2þ g2)/(2nþ 1), corresponding to h¼ 0.107 and h¼ 0.095,

respectively. Constant A ¼ ðphÞ1=4
, and B is deduced from Eq. (68).

*We remind that the Dirac matrices are defined by r0 ¼
1 0

0 1

� �
;

r1 ¼
0 1

1 0

� �
; r2 ¼

0 �i
i 0

� �
; and r3 ¼

1 0

0 �1

� �
.

182 Low Temp. Phys. 43 (2), February 2017 J.-Y. Fortin and A. Audouard



which is expected for two independent orbitals. In general,

the two constants A and B are not independent because of

Eq. (68), which leads to an effective coupling between the

two components of the wave function.

Let us now consider the case d0 6¼ 0. The ground state is

still defined by PW0 ¼ 0. Setting zg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ id0Þ2 þ g2

q
;

one obtains

u 0ð Þ
1 xð Þ ¼ A exp �

xþ zgð Þ2

2h

	 

þ B exp �

x� zgð Þ2

2h

	 

;

u 0ð Þ
2 xð Þ ¼ �

1þ id0 � zg

g
A exp �

xþ zgð Þ2

2h

	 


� 1þ id0 þ zg

g
B exp �

x� zgð Þ2

2h

	 

: (71)

The conditions of normalization are the same as before,

which leads to a set of complex equations similar to Eq.

(68). The commutator (65) prevents us to construct the

excited states Wn, which satisfies P†PWn ¼ nWn, directly

from successive applications of P† on the ground state.

Instead we have to seek for linear combinations of functions

P†nW0

Wn ¼ RðnÞn P†nW0 þ R
ðnÞ
n�1P†n�1W0 þ � � � þ R

ðnÞ
ð0ÞW0; (72)

where R
ðnÞ
k are constant matrices to be determined selfconsis-

tently. In the limit d0 ! 0, only the matrix RðnÞn does not van-

ish, and corresponds to the normalization factor. Computing

P†PWn ¼ nWn leads to a set of (nþ 1) relations between

these matrices at order n. In particular, by application of P†P
on each element of Eq. (72), one has

P†PR
ðnÞ
k P†kW0 ¼ ð½P†; ½P;RðnÞk �� � R

ðnÞ
k Q0ÞP†kW0

þ½P;RðnÞk �P†kþ1W0 þ ½P†;R
ðnÞ
k �PP†kW0

þ R
ðnÞ
k PP†kþ1W0: (73)

For the last two terms, after some algebra, we can move the

operator P to the right of P†k and P†kþ1 using the binomial

relation

PP†kW0 ¼
Xk�1

i¼0

k

1

 !
Qk�1�lP

†lW0;

Ql ¼ P†;Ql�1�; P;P†� ¼ Q0:
��

The matrices Qk are zero when Q0¼ 1, and in this case we

have simply PP†nW0 ¼ nP†n�1W0. The identification of each

coefficient of P†kW0 in the equation P†PWn ¼ nWn leads to

the set of (nþ 1) equations which are composed of commu-

tators. In particular, the first three equations read

P;R nð Þ
n

h i
¼ 0; P;R

nð Þ
n�1

h i
þ nR nð Þ

n Q0 � 1ð Þ ¼ 0;

P;R
nð Þ

n�2

h i
þ Rn

n�1 n� 1ð ÞQ0 � n
� �

þ P†; P;R
nð Þ

n�1

h ih i
þ n P†;R nð Þ

n

h i
Q0 þ

1

2
n nþ 1ð ÞR nð Þ

n Q1 ¼ 0: (74)

This can be solved, for example, using Dirac matrices with

unknown scalar coefficients. For example, the matrix coefficients

of the first excited state n¼ 1, W1 ¼ ðR1P† þ R0ÞW0, can be

found by solving the two equations

P;R1� ¼ 0; P;R0� ¼ R1ð1� Q0Þ:½½ (75)

It is useful to write P and P† using 2� 2 Dirac matrices

P ¼ 1ffiffiffiffiffi
2h
p xþ h@xð Þr0 þ gr1 þ 1þ id0ð Þr3

� �
;

P† ¼ 1ffiffiffiffiffi
2h
p x� h@xð Þr0 þ gr1 þ 1� id0ð Þr3

� �
;

and separate the part proportional to identity from the

remaining rI’s : P ¼ ð2hÞ�1=2ðxþ h@xÞr0 þ P0 ¼ Dþ P0

and P† ¼ ð2hÞ�1=2ðx� h@xÞr0 þ P†
0 ¼ D† þ P†

0, with con-

stant matrices

P0 ¼
1ffiffiffiffiffi
2h
p

1þ id0 eg

e �1� id0

 !
;

P†
0 ¼

1ffiffiffiffiffi
2h
p

1� id0 eg

e �1þ id0

 !
; (76)

and ½D;D†� ¼ r0. Differential operators D and D† are propor-

tional to the identity matrix and commute with P0 and P†
0

which are constant matrices. Then the solutions of Eq. (75)

can be expressed using P0 and P†
0 only. An obvious solution of

the first equation is R1 ¼ �a0r0 þ a1P0P†
0, where a0 and a1

are constants which are determined by orthogonality and nor-

malization of the wave functions W0 and W1. Then a solution

of the second equation is simply R1 ¼ �ða0r0 þ a1P0ÞP†
0. In

particular, this leads to the factorization

W1 ¼ ða0r0 þ a1P0ÞðP† � P†
0ÞW0 ¼ ða0r0 þ a1P0ÞD†W0:

(77)

Writing the condition hW0jW1i ¼ 0 leads to

a0hW0jP†
0W0i þ a1hW0jP†

0P0W0i ¼ 0: (78)

The normalization hW1jW1i ¼ 1 gives a supplementary con-

dition which fixes the two constants (up to a phase factor)

hP0P†
0i

2 ¼ ja0j2ðhP†
0P0ið1þ hP†

0P0iÞ � ðhP0i2 þ hP†
0i

2Þ
� hP†

0P0i � hP†
0P0iðhP0ihP0P†

0P0iþhP†
0ihP

†2
0 P0iÞ

� hP0ihP†
0ihðP

†
0P0Þ2iÞ; (79)

where we have omitted W0 in the scalar products to simplify

the notations. When no coupling is present eg ¼ 0, P0

¼ ð1þ id0Þr3, and P†
0P0 ¼ P0P†

0 ¼ ð1þ d2
0Þr0. We also

assume that in this case that hP0i ¼ hP†
0i ¼ 0, so that ja0j2

¼ 2 and a1 ¼ 0, which corresponds to the uncoupled model

of two electrons in two independent orbits. This method

allows for the construction of all excited states and can be

generalized for a linear chain of N coupled orbits. Indeed we

can represent the P and P† operators as extended matrix oper-

ators of dimension N with coupling parameters g and d0 simi-

lar to Eq. (63), and centers corresponding to each individual

oscillator. For example, in Fig. 10, we have represented such

surface, for N¼ 4 connected orbits, by considering the follow-

ing extended bosonic operators in four dimensions
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P ¼ 1ffiffiffiffiffi
2h
p

xþ 3þ id0 þ h@x g 0 0

g xþ 1� id0 þ h@x g 0

0 g x� 1þ id0 þ h@x g

0 0 g x� 3� id0 þ h@x

0
BBBB@

1
CCCCA (80)

and

P† ¼ 1ffiffiffiffiffi
2h
p

xþ 3� id0 � h@x g 0 0

g xþ 1þ id0 � h@x g 0

0 g x� 1� id0 � h@x g

0 0 g x� 3þ id0 � h@x

0
BBBB@

1
CCCCA: (81)

V. ONSAGER PHASE OF DE HAAS-VAN ALPHEN
OSCILLATIONS IN LINEAR CHAINS OF COUPLED ORBITS

In this section, we consider de Haas-van Alphen oscilla-

tions observed in quasi-two-dimensional organic metals with a

Fermi surface which can be regarded as a linear chain of orbits

coupled by magnetic breakdown. Recall that Fourier spectra of

these compounds is composed of Fourier components, labeled

g in the following, the frequency of which are linear combina-

tions of that linked to the closed orbit a and the magnetic

breakdown orbit b : Fg ¼ naFa þ nbFb. The field- and

temperature-dependent amplitude of several of these compo-

nents does not follow the usual Lifshitz–Kosevich formula due

to oscillation of the chemical potential in magnetic field.

Nevertheless, Fourier amplitudes are accounted for by a devel-

opment up to the second order in damping factors in this

case.10,15,16 An extensive discussion of this problematic is

given in Refs. 25 and 26. As an example, let us consider

magnetic torque data relevant to the organic metal h-(ET)4

CoBr4(C6H4Cl2). Field- and temperature-dependent de Haas-

van Alphen oscillations amplitudes of this organic metal are

consistently accounted for by this formalism with the follow-

ing parameters: Fa¼ð94464ÞT; Fb¼ð4600610ÞT; ma¼
1:8160:05;mb¼3:5260:19; g
a¼g
b¼1:960:2; TDa¼TDb

¼ð0:7960:10ÞK; B0¼ð3565ÞT, where FaðbÞ; maðbÞ; g
aðbÞ,
TDaðbÞ, and B0 are the frequencies, effective masses, effective

Lande factors, Dingle temperatures and magnetic breakdown

field, respectively.15 Furthermore, the Onsager phase of the

various Fourier components is accounted for by Eq. (17),

yielding10

/g ¼ /g � nr
g/ðBÞ; (82)

where nr
g is the number of reflections events and ug is equal

to p=2 times the number of turning points of the g orbit. De

Haas–van Alphen oscillations of Fig. 11 are obtained with

this set of parameters, except that various values of B0 are

explored. As expected, as B0, hence the reflection probability

q, increases, the amplitude of all the components involving b
decreases and, at very high B0, only remain the contributions

of a and its harmonics. The striking point, on which we will

focus in the following, is the observed shift of the a oscilla-

tions, for which nr
a ¼ 2,25,26 as B0 varies (whereas the

Onsager phase of b oscillation remains unchanged since

nr
b ¼ 010).

Strictly speaking, the oscillations are not periodic in 1/B
for finite B0 values. This effect can be quantified considering

an “apparent frequency” Fapp ¼ 1=ðB�1
i � B�1

iþ1Þ, where the

indexes i and iþ 1 mark two successive oscillation maxima.

FIG. 10. Fermi surface of four individual coupled orbits, constructed from

operators (80) and (81), with coupling parameters g¼ 0.5 and d0¼ 0.1.

FIG. 11. (a) De Haas-van Alphen oscillations calculated with the parameters

(effective masses, Dingle temperature, etc.) relevant to h-(ET)4CoBr4

(C6H4Cl2)15 albeit for various values of the magnetic breakdown field B0

(B0¼ 35 T holds for the experimental data). Contribution of the component

a is given in (b): as B0 increases, its amplitude increases and the On-sager

phase shifts towards high fields.
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According to Eq. (82), Fapp ¼ Fg þ ðB0=4p2Þd/=du; yield-

ing an “universal” frequency shift

DF

B0

¼ 1

4p2

d/g

du
; (83)

where DF ¼ Fapp � F, which depends on u (see Eq. (17)),

i.e., on the ratio B/B0, only for a given nr
g value. Data of Fig.

12 displays the frequency variations of the a component.

Reported experimental data deal with magnetic fields of

up to 56 T,6 e.g., with maximum B/B0 values of 1.6.

According to the data of Fig. 12, the corresponding fre-

quency shift is DF ¼ 3 T which is within the reported error

bars (since Fa ¼ ð94464ÞT for the considered compound).

Nevertheless, frequency shift predicted by Eqs. (17), (83)

and also recently considered in the case of Bechgaard salts,27

could be detected in the future at higher magnetic fields and

for orbits involving larger number of reflection events nr
g

such as observed in two-dimensional networks (see Ref. 28).

VI. SUMMARY AND CONCLUSION

Calculation of transmission and reflection coefficients

through a magnetic breakdown junction have been reviewed

with the aim of determining the Onsager phase of de

Haas–van Alphen oscillations. The problem of the phase

divergence of the S-matrix describing wave-function trans-

mission has been addressed by suitable asymptotic analysis.

Amplitude of the wave function was then calculated, using

approximate and exact models of connected Fermi surfaces,

yielding the field-dependent phase offset relevant to de

Haas–van Alphen oscillations for Fermi surfaces with mag-

netic breakdown. As a consequence, experimental de

Haas–van Alphen oscillations are not strictly periodic in B�1

for orbits with reflections at the magnetic breakdown junc-

tions. Nevertheless, frequency variations, which follow a

“universal” field dependence remain small within realistic

experimental conditions.
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